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Abstract—Edge computing is emerging to empower the future
of Internet of Things (IoT) applications. However, due to hetero-
geneity of applications, it is a significant challenge for the edge
cloud to effectively allocate multidimensional limited resources
(CPU, memory, storage, bandwidth, etc.) with constraints of
applications’ Quality of Service (QoS) requirements. In this
paper, we address the resource allocation problem in Edge-IoT
systems through developing a novel framework named DeepEdge
that allocates resources to the heterogeneous IoT applications
with the goal of maximizing users’ Quality of Experience (QoE).
To achieve this goal, we develop a novel QoE model that considers
aligning the heterogeneous requirements of IoT applications to
the available edge resources. The alignment is achieved through
selection of QoS requirement range that can be satisfied by the
available resources. In addition, we propose a novel two-stage
deep reinforcement learning (DRL) scheme that effectively allo-
cates edge resources to serve the IoT applications and maximize
the users’ QoE. Unlike the typical DRL, our scheme exploits
deep neural networks (DNN) to improve actions’ exploration by
using DNN to map the Edge-IoT state to joint resource alloca-
tion action that consists of resource allocation and QoS class.
The joint action not only maximize users’ QoE and satisfies het-
erogeneous applications’ requirements but also align the QoS
requirements to the available resources. In addition, we develop
a Q-value approximation approach to tackle the large space
problem of Edge-IoT. Further evaluation shows that DeepEdge
brings considerable improvements in terms of QoE, latency and
application tasks’ success ratio in comparison to the existing
resource allocation schemes.

Index Terms—Resource allocation, deepEdge, edge-IoT, deep
reinforcement learning (DRL), quality of experience (QoE).

I. INTRODUCTION

GROWING Internet of Things (IoT) applications such as
Google Home and Amazon Echo raise the demands for

cloud computing platforms for data processing. However, it
is very difficult for the existing centralized cloud computing
model to scale with projected large number of IoT devices
and ubiquitous applications, due to the large amount of gen-
erated data to be sent over relatively long distance between
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IoT devices and clouds. Edge or fog computing [1], [2], [3] is
considered as a potential approach to fulfill these applications
demands by moving more computing, storage, and intelligence
resources to the edge, which would benefit IoT applica-
tions that are delay-sensitive, bandwidth/data intensive, or that
require closer intelligence. We envision a future “Edge-IoT”
environment where various IoT applications could use edge
computing to fulfill their resource demands and performance
requirements. To enable such a vision, there are some sig-
nificant challenges to overcome. On the one hand, from the
demand side, a massive number of IoT devices can run het-
erogeneous applications with various Quality of Service (QoS)
requirements and different priorities. On the other hand, from
the supply side, the edge clouds are expected to dynamically
allocate multidimensional resources (CPU, storage, and band-
width) at geospatially distributed points and different levels
of network hierarchy. This severely complicates the required
resource allocation and scheduling algorithms. Most of the
current edge computing research either focuses on resource
allocation without paying attention to QoS requirements of
heterogeneous applications, or optimizes specific operations
such as mobile offloading, migration, placement, chaining and
orchestration [4], [5], [6].
In this paper, we develop a new Edge-IoT framework named

DeepEdge using deep reinforcement learning (DRL) that allo-
cates resources to heterogeneous IoT applications with the goal
of maximizing users’ Quality of Experience (QoE). Unlike the
existing resource allocation schemes in the Edge-IoT research,
our proposed DeepEdge framework ensures IoT users’ satis-
faction with guaranteed heterogeneous application’s QoS and
accounts for the dynamic resource availability at the edge in
the resource allocation decisions. The paper has the following
new contributions that align with DeepEdge goals.

• We develop a novel QoE model that maps the applications
QoS requirements to a cumulative QoE score that reflects
the IoT users’ satisfaction. The developed QoE model is
noteworthy as it supports adjustment of QoS requirements
acceptable ranges to match with the available resources at
the edge. In addition, it specifies certain weight for each
QoS performance metric to emphasize its impact on the
overall application performance.

• We propose a novel two-stage DRL to fulfill the QoE
model objectives by generating joint actions includ-
ing QoS class selection which aligns applications’ QoS
requirements to the available resources in addition to

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2022 at 23:13:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5960-0663
https://orcid.org/0000-0003-4881-5711


ALQERM AND PAN: DeepEdge: NEW QoE-BASED RESOURCE ALLOCATION FRAMEWORK 3943

the resource allocation action. The scheme exploits
deep neural networks (DNN) to map the edge-IoT state
information to resource allocation joint actions.

• The proposed DRL tackles the dimensionality problem in
the heterogeneous edge-IoT environment where the size
of state and action space is large. It formulates the Q-
value in a form of compact representation in which it is
approximated as a function of smaller set of variables.

• The proposed DRL scheme tackles the tradeoff between
exploration and exploitation encountered in the DRL
action generation by ranking the actions according to their
Q-values to avoid the equal probability of action selection
used in ε-greedy based exploration solutions [48].

The rest of the paper is organized as follows, the related
work, its shortcomings, and the motivation for the QoE and
DRL based resource allocation are presented in Section II.
Section III describes DeepEdge system architecture, system
model and QoE optimization problem formulation. The two-
stage DRL-based resource allocation scheme is illustrated in
Section IV. Section V presents the performance evaluation and
the paper concludes in Section VI.

II. RELATED WORK AND MOTIVATION

In this section, the related work is discussed. In addition,
we present the motivation for developing QoE model that is
backed by DRL for resource allocation.

A. Related Work

The potential benefits of edge computing in different
network applications have been studied extensively in the
recent literature. A large number of existing work has
focused on edge computing either about allocation for
specific applications, or optimizing some operations such
as offloading, migration, and orchestration [4], [5], [6]. For
offloading, many schemes have been proposed to make
offloading decisions to optimize energy consumption and delay
performance [7], [8], [9], [10], [11]. Some of the proposals
targeted allocation of edge resources. For example, the utiliza-
tion of distributive game-theoretical approaches for resource
allocation in “cloud-edge” multi-level networks [12]. The
authors in [9] proposed an optimization framework for energy-
efficient resource allocation, by assuming that the network
operator is aware of the complete information of all users’
applications.
DRL has been employed for solving decision-making

related problems in the context of edge computing such as
computation offloading [13], [14], [15], [16], management
problems in vehicular networks [17], [18], [19], [20], [21]
and edge resource allocation [22], [23]. For vehicular
networks, DRL has been investigated to solve several problems
including resource allocation [24] and computation offload-
ing [25], [26], [27]. For instance, the work in [28] exploited
DRL to solve the problem of edge resource management
by leveraging hierarchical learning architectures. In [29],
the authors proposed a knowledge driven service offload-
ing decision framework for vehicular network in which the
offloading decision was formulated for multiple tasks as a

TABLE I
EDGE-IOT APPLICATIONS AND THEIR CHARACTERISTICS

long-term planning problem solved by DRL. The authors
in [30] proposed a resource allocation policy for the Edge-
IoT system to improve the efficiency of resource utilization
using deep Q-networks (DQN). The work in [31] proposed
a DQN-based resource allocation scheme, which can allocate
computing and network resources to reduce the average ser-
vice time. In [32], a joint optimization solution solved by
actor-critic DRL was proposed for allocation of resources in
fog-enabled IoT systems. The work in [33] proposed a frame-
work for edge offloading based on DRL with latency and
power consumption minimization as optimization objectives.
Task offloading with a single-user edge computing system was
explored in [34] where DRL was exploited to optimize the
trade-off between energy consumption and slowdown of tasks
in the processing queue. An online computation offloading
scheme based on DQN was studied in [35] under random task
arrivals. The work in [36] investigated strategies for the alloca-
tion of computational resources using DRL in edge computing
networks.
Given the related work, none of the existing schemes con-

sidered awareness of multiple heterogeneous applications’
demands and aligning them with the available resources at
the edge. Heterogeneous IoT applications may have dif-
ferent requirements and characteristics. These requirements
might not be fulfilled with the available resources at the
edge at certain time instant, given that the edge has lim-
ited computing power comparing with the cloud computing
that is of virtually unlimited computing power but the rel-
atively high latency. The problem of satisfying users’ QoE
and applications’ demands in multiple heterogeneous appli-
cations and dynamic IoT environment with the ability to
adjust QoS requirements of applications to fit with the
available resources is not addressed. None of the proposed
DRL schemes for resource allocation considered using DNN
to diversify action generation rather than approximation
of value functions of reinforcement learning. In addition,
the related work neither proposed an effective approach to
tackle the problem of large state space in Edge-IoT nor
effectively handled the tradeoff of exploration and exploita-
tion in reinforcement learning. A series of typical Edge-
IoT applications and their characteristics are summarized in
Table I.
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B. Motivation

1) Quality of Experience (QoE): QoS metrics have been
utilized for long as the performance optimization objective
in resource allocation proposals [37], [38]. However, they
do not capture the quality perceived by users, which may
result in waste of network resources. QoE concept came
into practice to enable broader understanding of the impact
of the network performance and complement the traditional
performance measurement. In contrast to QoS, QoE not only
depends on the technical performance of the system but also
other factors such as contents, applications, user expectations
and goals, and contexts of use. QoE is more comprehen-
sive evaluation particularly for IoT application services as it
focuses on users satisfaction reflected by application QoS guar-
antees through the maximization of certain quality scores. In
this paper motivated by the heterogeneous applications, which
directly deal with the users’ perception, QoE fits the resource
allocation problem as an optimization goal since it can guaran-
tee dynamic resource allocation with users satisfaction. Thus,
we develop a novel QoE estimation model for edge resource
allocation with heterogeneous IoT applications that has the
following characteristics: 1) It monitors the Edge-IoT envi-
ronment and gathers information including QoS requirements
of applications and edge resources availability. 2) It defines
the QoS performance metrics that are associated with certain
IoT application, and determines their impact on the applica-
tion performance. 3) Moreover, it supports the adjustment of
the application’s QoS to align with the available resources and
boosts the achieved QoE.
There are some existing works utilizing the QoE concept in

the edge computing context. For example, the authors in [39]
proposed a QoE-aware application placement policy that pri-
oritizes different application placement requests according to
user expectations. In [40], a framework for edge computing
resource distribution was proposed with crucial security and
authentication components by which it ensures the delivery
of users’ QoE. However, none of these proposals considered
resource allocation problem for multiple heterogeneous appli-
cations as each one is focusing on specific application and
mostly HTTP videos. Moreover, they do not tackle the sit-
uation when QoS requirements of the application cannot be
fulfilled by the available resources at certain time.
2) Deep Reinforcement Learning: Reinforcement learn-

ing [41] such as Q-learning has become an active research
area [42], [43]. It deals with agents that learn to make better
decisions directly from experience through interacting with
the environment. Recently, reinforcement learning was com-
bined with deep learning techniques to develop DRL which
demonstrated significant impact on various applications such
as video gaming, Computer Go, and data center cooling. DRL
is well-suited for the resource allocation problem in Edge-IoT
given its large scale and dynamicity for the following reasons:
1) Edge-IoT systems are dynamic in the context of resource
demand and resource availability varies over the time which
makes it difficult to use numerical optimization to solve the
resource allocation problem. DRL learns over time resource
allocation actions that match with environment dynamics.

2) Resource allocation decisions made in the Edge-IoT context
are highly repetitive, hence, it generates a bunch of training
data for the DRL technique; 3) DRL is capable of modeling
complex systems such as Edge-IoT systems as various sig-
nals can be formulated as inputs to the DNN and the output
strategy can be utilized in an online stochastic environment.
With continuous learning, the learning agent becomes able to
optimize specific tasks under varying conditions; 4) DRL does
not require any prior knowledge of the system’s behavior to
learn a resource allocation policy. Moreover, it can support
a variety of objectives just by using different reinforcement
rewards.

III. SYSTEM DESCRIPTION

In this section, we present the proposed DeepEdge system
model and architecture, the QoE model, and the QoE
maximization problem formulation.

A. DeepEdge System Model and Architecture

The considered system model in this paper consists of
multiple groups of IoT devices at one side of the network.
These IoT devices demand resources from the edge of the
network to support their applications in tasks processing. Each
group of IoT devices runs different applications. These appli-
cations are assumed to be heterogeneous and may have distinct
QoS requirements. In addition, the system model includes the
edge at the other side of the network which is considered as
the resource provider and manager of the Edge-IoT resource
allocation. The resources are located at the edge servers where
computation, memory and other resources are available. The
resource allocation process is managed by a controller located
at the edge. It is a centralized component that receives IoT
devices’ requests and allocate resources at the edge servers
using DRL integrated with QoE optimization.
The proposed DeepEdge architecture is presented in Fig. 1.

The architecture consists of multiple components that work
together to achieve the resource allocation with maximum
users’ QoE. The architecture includes the IoT environment
and the edge cloud. The IoT environment comprises multiple
types of IoT devices: devices that run multiple applications
and multiple devices that run the same applications such as
camera surveillance. The edge cloud consists of certain num-
ber of edge servers that comprise virtual machines, memory,
and computation resources. IoT and edge computing update
the controller implemented at the edge with their states. For
example, the IoT sends information about QoS requirements of
the IoT applications’ and the edge computing servers provide
information about the available resources, their location, and
their current load. The controller incorporates a resource allo-
cation manager (RAM) which runs the two-stage DRL scheme
and decides the resource allocation policy that maximizes the
QoE and adapts applications’ QoS requirements to align with
the available resources. The controller receives the application
and edge servers state information through the devices and
servers modules respectively. The QoE model is integrated
with the controller to enforce its objectives and constraints to
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Fig. 1. DeepEdge Architecture.

achieve user satisfaction and efficient resources utilization in
Edge-IoT with multiple heterogeneous applications.

B. The New QoE Model

The proposed QoE model aims to dynamically map the
IoT applications’ performance metrics such as latency into a
cumulative quality score that evaluates the IoT user satisfac-
tion. QoE is designated to be the optimization objective that
DeepEdge exploits to drive the resource allocation decisions.
The QoE formulation consists of multiple QoS performance
metrics that quantify the IoT application performance. A
cumulative quality score is mapped to multiple quality scores
each corresponds to a QoS metric acceptable range. This range
is tunable to enforce the QoS requirements to fit with the avail-
able resources. This brings a wide range of flexibility that can
enhance the system resource allocation capability and main-
tains applications operations uninterrupted. Moreover, the QoE
model incorporates the following key attributes: 1) determina-
tion of the weights of QoS metrics according to their impact on
the IoT application operation; 2) QoE estimation based on the
achieved QoS performance metrics of multiple heterogeneous
IoT applications and the application priority that is determined
according to the application type. For instance, applications
with critical QoS requirements are given the highest priority.
Our QoE model is generic and can accommodate several

IoT applications. We picked the following applications in
this paper for demonstration purposes: emergency response,
health monitoring, and personal identification. These applica-
tions comprise a broad range of QoS performance metrics,
different priorities and various resource demands. Emergency
response is latency sensitive with intensive data and high com-
putation requirements while health monitoring has low latency
sensitivity and requires lower data and computation. Personal
identification has the least priority with moderate data inten-
siveness, computation and latency requirements. We denote
the application type by the index ς and the IoT user (device)
that runs the application by index i ∈ N . The network
model assumes that one device can run single or multiple

TABLE II
SAMPLE QUALITY SCORE FOR HETEROGENEOUS APPLICATIONS

WITH VARIOUS REQUIREMENTS

applications; or multiple devices run the same application. The
QoE model considers latency (T), packet error rate (RE ), and
packet loss rate (RL) as QoS metrics for each application
and assigns certain weight w for each metric to describe its
impact on the application QoS. A parameter called applica-
tion’s QoS class ας is defined to represent the possible metric
adjustment range. The range is evaluated using a quality score
Φ which quantifies the IoT user satisfaction and contributes
to the cumulative quality score. ας is selected to achieve the
alignment of the QoS requirements of the IoT application such
that they are consistent with the application’s priority and the
available resources at the edge. The application’s priority βς
is ranked starting from 1 to indicate the highest priority and
it is assumed to be predetermined.
Table II presents the parameters of our QoE model including

βς , ας , w and the corresponding quality score Φ of each met-
ric class for the three heterogeneous applications considered in
this model. The priority βς is specified based on how crucial
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is the resource allocation for the application. The performance
metric weight w is selected to show how sensitive the appli-
cation for the corresponding metric. For example, emergency
response is more sensitive to latency than to PLR or PER. The
QoS class ας is set using DRL to maximize Φ and align to the
resource availability at the edge. For instance, if the current
resource request for certain application at certain time instant
cannot be fulfilled due to lack of resources at the edge, the
application ας will be altered in certain ranges that maintains
the application service and fit with the available resources.
The metric classes indicated in Table II show examples of
the metric ranges that correspond to certain ας . The quality
score Φ given in Table II shows how the selection of different
class ας affects the achieved QoE. All the presented values
for metric ranges and Φ are for demonstration of the QoE
model functionality and how Φ is influenced by the selected
on ας . Moreover, the values of the metrics ranges are tied to
the metric weight specified. For instance, high latency weight
in emergency response causes its latency ranges of different
classes to be lower than other applications.
Φ is mapped to the following metrics: (T), (RL) and (RE ).

The latency T is calculated according to the link bandwidth,
data size and the propagation medium. Packet loss rate RL is
evaluated according to [44] as, RL = MSS .η

goodput .RTT where MSS
is the maximum segment size, η is a constant that incorporates
the loss model and the acknowledgment strategy, goodput is
the ratio of the delivered packets over the delivery completion
time, and RTT is the round trip time. The packet error rate
RE is found according to the estimation model in [45], which
relies on the link characteristics found using statistics from
two distinct types of probing messages. QoE combines user
experience and expectation to the edge computing system and
network performance. The performance of the edge system
is typically evaluated by QoS metrics. Thus, it is necessary
to have qualitative relationship between QoS and QoE to be
able to achieve QoE control mechanism based on QoS with
maximum efficacy [46], [47]. To achieve this, we use a generic
formula to correlate the variation in QoE with the achieved
QoS metrics including latency, loss and error rates. The QoS
metrics are represented by quality scores ΦT , ΦRL, and ΦRE
for latency, packet loss rate and packet error rate respectively.
Each of these scores is obtained based on the application type
and the selected metric class ας as indicated in Table II. For
instance, if the resource allocation action was to select ας as 1
for the emergency response application which corresponds to
the best range for all the QoS metrics, the quality score will be
10. The cumulative quality score achieved for each application
with certain amount of resources allocated is calculated as
follows,

Φς =
∑

i

∑

j

∑

r

xr ,i ,j
[
w1.ΦT + w2.ΦRL

+ w3.ΦRE

]
(1)

where xr ,i ,j is the resource allocation indicator with r as a
resource type (CPU, memory..etc.), i is the index of IoT device
running the application, j is the index of the edge server pro-
viding the resources, and w is the weight of the performance
metric. The cumulative quality score captures the impact of
each of the QoS metrics on the overall performance. If the

QoS metrics are below minimum thresholds, the cumulative
quality score Φς will be compromised. The proposed defi-
nition of QoE reflects all its impacting parameters including
cumulative Φς normalized score, the metric class (ας ) and the
priority (βς ). It maps the relationship between Φς and QoE
according to the applications’ characteristics since the appli-
cations’ requirements vary from one type of application to the
other. Therefore, QoE for multiple applications is modeled
using an exponential mapping function to the quality score
Φς as follows,

QoE = ϑ
∑

ς

{
eΦς−ας + e−Φς+ας

eας + βς
+ 1

}
(2)

where ϑ is scaling constant selected for the mapping func-
tion. The definition in (2) is non-linear exponential monotonic
mapping function, which suits our model as the performance
metrics considered cannot be scaled uniformly, i.e., equal per-
ceived performance difference does not correspond to equal
numerical difference in the Φς score. The considered QoS
metrics including LA, PLR, and PER have exponential inter-
dependency with user QoE in the proposed edge-IoT system.
For example, when the QoE value is high, any variation in
these metrics will heavily impact the QoE. However, consider-
able variation in these QoS metrics will not exhibit significant
impact if the QoE is low. Thus, exponential mapping function
is able to capture the impact of QoS metrics on QoE specifi-
cally for sensitive applications such as emergency response. In
addition, different experiments in the literature demonstrated
that exponential mapping outperforms other mapping functions
such as linear or logarithmic [49].

C. Problem Formulation

In this section, we formulate the resource allocation
optimization problem with the goal of maximizing the QoE
found in (2) with consideration of all applications. QoE is
rewarded when applications’ QoS requirements are satisfied
and thereafter the user satisfaction through achieving high
QoE. The resource allocation optimization problem for QoE
maximization is formulated as:

max
(xr,i,j ),ας

QoE (3)

s.t . xr ,i ,j ≥ 0, ∀j , r (4)
∑

j

∑

r

xr ,i ,j ≤ Cj , ∀i (5)

T ς ≤ Tmax (6)

Rς
E ≤ Rmax

E (7)

Rς
L ≤ Rmax

L . (8)

Edge server’s capacity Cj is defined in constraint (5) to
confirm that the allocated resources cannot exceed the server
capacity. Equation (6), (7), (8) are the constraints for QoS
metrics including T, RE , and RL respectively to guarantee
that they will not exceed the maximum threshold. Note that
ς is used to indicate the performance metric achieved for
certain application. The definition of QoE in (2) is derived
as a function of quality scores for each QoS metric Φ and
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the resource allocation factor x. The quality scores correspond
to the user satisfaction according to the achieved below the
threshold QoS metrics values as in the constraints (6) to (8).
Technically, we try to maximize the achievable QoE for each
user under the conditions that all other users running different
applications achieve maximum QoE. The mutual interest in
each resource unit at certain server for all the users causes the
optimization problem to be coupled across them. Moreover,
the constraint in (5) makes the optimization problem coupled
across all the resources of each edge server. This makes the
convexity of the QoE cannot be guaranteed and hence, the
optimization function in (3) becomes non-convex.
The formulated QoE optimization problem comprises the

allocation of resources xr ,i ,j and the selection of the most
appropriate QoS class ας . This will be the core of the decision-
making problem solved by DRL in the next section.

IV. TWO-STAGE DEEP REINFORCEMENT LEARNING

SCHEME FOR RESOURCE ALLOCATION IN EDGE-IOT

In this section, we illustrate the two-stages DRL scheme
built to allocate resources from the edge to the IoT appli-
cations. First, rationale and overview of the scheme are
presented. Then, the two stages of DRL are illustrated.

A. Scheme Rationale and Overview

The DRL for resource allocation is implemented in the
RAM module in the controller of DeepEdge. Despite the
fact that DRL has a potential to solve the resource allo-
cation problem in the Edge-IoT domain, diversity in action
exploration remains a major challenge for DRL in such envi-
ronment with large state/action space and sparse reward values.
It is infeasible to rely on simple look up table of state/action
and Q-values, i.e., it is necessary to approximate the Q-value
to minimize the complexity of the scheme and account for
state/action dimensionality. The sparse reward values can lead
the DRL to achieve sub-optimal resource allocation policy. In
addition, it is necessary to utilize multi-dimensional data and
analyze it to determine the best resource allocation policy. The
multi-dimensional data comprises edge server resources avail-
ability, IoT applications resource demands, and applications’
QoS requirements. To tackle these challenges and leverage
the multi-dimensional data for resource allocation, we build a
novel two-stage DRL scheme that has the following merits:
1) It exploits DNN to enhance action exploration by map-
ping the Edge-IoT system state to joint actions of resource
allocation and QoS class selection. Q-value of DRL is approx-
imated as a function of smaller set of variables to tackle the
large state/action space of Edge-IoT environment. This dis-
tinguishes our scheme from the typical DRL schemes which
utilize DNN to approximate the value function using temporal
difference and train DNN accordingly. 2) The exploration gen-
erated actions are ranked according to their Q-values to avoid
the equal probability of action selection. This ranking is used
to select the DNN training data and balance exploration and
exploitation of actions. The balance is achieved using effective
action selection probability, which is varied as a graded func-
tion of Q-value using Boltzmann distribution [50] such that

Fig. 2. DeepEdge two-stage DRL scheme overview.

the best action is given the highest selection probability. 3) It
exploits information about QoS requirements of the heteroge-
neous applications, the resource demands, and the resources
availability in actions generation; 4) The scheme generates
joint actions including resource allocation with certain QoS
class.
Our DRL scheme consists of two stages: 1) Action explo-

ration and evaluation. 2) Action exploitation and DNN train-
ing. In the first stage, we employ DNN to generate joint
resource allocation and QoS class selection actions. After
the generation of the joint actions, reinforcement learning is
engaged to evaluate the joint actions and select the ones that
have the maximum Q-value, which is defined based on the
achieved QoE described earlier in the system model. In the
second stage, the joint actions with the highest Q-value dur-
ing exploration are exploited and stored in a replay memory.
The memory is used to train the DNN and update its param-
eter such that the actions generated in the next iteration are
improved. The overview of the two-stage DRL mechanism
is shown in Fig. 2. More specifically, in the first stage, the
scheme generates joint actions based on the DNN current
action policy πθt , parameterized by θt which is the weight
that connects the hidden neurons in DNN. Then, the generated
actions during exploration are evaluated using the proposed
approximated Q-value.
In the second stage, the best joint actions are selected

among the actions generated with certain action selection
probability. The state and the corresponding selected joint
action with the highest Q-value (St ,X

∗
t ) is added to a replay

memory. The action policy at DNN is updated by fetching
a batch of training samples to train the DNN. After train-
ing, DNN updates its weighing parameter θt to θt+1 and
the action policy πθt+1

. The new action policy πθt+1
will

be exploited in the next iteration to generate joint actions
at t + 1. Such a reinforcement learning iteration allows
the DNN to continuously improve the quality of the actions
generated.

B. Deep Reinforcement Learning Stages

In this section, we illustrate the two stages of DRL for
resource allocation joint action generation.
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1) First Stage (Action Exploration and Evaluation): In this
stage, the DNN receive the Edge-IoT state St information at
time t defined as the IoT applications resource demand yi ,
the QoS requirements and the resources available at the edge
St = {yi ,Rmax

L ,Rmax
E ,Tmax ,Cj }. According to the current

action policy denoted as πθt : {St} → Xt , a set of joint
actions is generated by DNN and denoted by a mapping fθt
as follows,

Xt = fθt (St ) (9)

where Xt = {X t
k , k = 1, 2, . . . ,K}, and X t

k = {x tr ,i ,j , αt
ς}

is the kth entry of Xt . Each entry in Xt is a joint action
and is assumed to be continuous. The universal approxima-
tion theorem claims that if hidden layers have large number
of hidden neurons and a proper activation function is applied
at the neurons, they will be sufficient to approximate any con-
tinuous mapping f [51]. We exploit ReLU as an activation
function [52] of the hidden layers, where the output b and
input v of a neuron are related by b = max{v, 0}. In the output
layer, we use sigmoid activation function as b = 1/(1+e−v ).
It is necessary to map the set of joint actions Xt to a dis-
crete action set such that the actions can be evaluated by the
reinforcement learning Q-value function. We employ typical
K-nearest-neighbors (KNN) algorithm [53] to do the map-
ping. After obtaining the candidates discrete joint actions from
KNN, the performance of these actions is evaluated using rein-
forcement learning. The action evaluation is conducted based
on the QoE optimization objective defined in (3).
We assume that the Edge-IoT environment evolves as

a discrete-time Markov decision process (DTMDP). The
maximization problem in (3) falls within the domain of a
DTMDP. In order to find the optimal action policy, we define
a DTMDP that associates an action to every Edge-IoT state,
a state transition and a reward function. The state transitions
and actions occur at discrete time epochs. DeepEdge controller
monitors the Edge-IoT state St in current epoch t and gener-
ates discrete joint actions Xt , which are found using DNN. A
reward function is generated for each joint action Xt at the
end of the epoch. The reward function Rt is selected to be the
QoE defined in (2). The formal expression for the DTMDP is
given as (S, X, T, R), where T : S × X × S ′ → [0, 1] is
a state transition probability function. Ultimately, the objec-
tive of DRL integrated with DTMDP is to find an optimal
joint action Xt that maximizes the QoE in (2). The Q-value
of the reinforcement learning is exploited to evaluate the joint
action is defined as the current expected reward plus a future
discounted reward as follows,

Q∗(St ,Xt ) = E

[
R(St ,Xt ) + ϕ max

X ′∈Xt

Q∗(S ′
t ,X

′
t

)]
(10)

where ϕ ∈ (0, 1] is the discount factor. The optimal Q-value
Q∗(St ,Xt ) is updated by the change in the Q-value according
to the transition from state St to state S ′

t under the action Xt

at epoch t as follows,

Q t+1(St ,Xt ) =
(
1− μt

)
Q(St ,Xt ) + μ[

R(St ,Xt ) + ϕ max
X ′∈X

Q
(
S ′
t ,X

′
t

)]
(11)

where μ ∈ [0, 1] is the learning rate. Reinforcement learn-
ing is a stochastic approximation method that solves the
Bellman’s optimality equation associated with the DTMDP.
It does not require state transition probability model as it
converges with probability one to a solution if

∑∞
t=1 ϕ

t is infi-
nite,

∑∞
t=1(ϕ

t )2 is finite, and all state/action pairs are visited
infinitely often [54].
One of the main shortcomings of using Q-value for action

evaluation in the dynamic Edge-IoT environment is the large
state space. It is not feasible to use state/action tables and
find the corresponding Q-value in such environment for action
evaluation. Thus, it is necessary to approximate the Q-value.
This approximation reduces the complexity of the system
and enhances its convergence. Thus, we approximate the Q-
value as a function of a smaller set of variables in which
Q-value utilizes a countable state space S∗ using the func-
tion Q ′ : S∗ × X . This function is referred as a function
approximator. The vector ρ = {ρp}Pp=1 is exploited to approx-
imate the Q-value by minimizing the metric of difference
between Q∗(St ,Xt ) and Q ′(St ,Xt , ρ) for all (St ,Xt ) ∈
S∗ × X . Thus, the approximated Q ′ value is formalized as,
Q ′(St ,Xt , ρ) =

∑P
p=1 ρ

pψp(St ,Xt ) = ρψT (St ,Xt ) where
T denotes the transpose operator and the vector ψ(St ,Xt ) =
[ψp(St ,Xt )

P
p=1] with a scalar function ψp(St ,Xt ) that is

identified as the basis function (BF) over S∗×χ, and ρp(p =
1, . . . ,P) are the associated weights. We use Stochastic
Gradient Descent (SGD) method to update the weights. The
Q-value update rule in (11) is redefined as follows,

ρt+1ψ
T (St ,Xt ) =

{(
1− μt

)
ρtψ

T (St ,Xt ) + μt

[
R(St ,Xt ) + ϕ max

X ′∈X
ρtψ

T (
S ′
t ,X

′
t

)]}

× ψ(St ,Xt ) (12)

where the gradient is a vector of partial derivatives with respect
to the elements of ρt .
2) Second Stage (Action Exploitation and DNN Training):

The action with the highest Q-value X ∗
t must be exploited

among other actions of state St and added to the replay
memory to train the DNN. The replay memory will be popu-
lated with state/action pairs that have the highest Q-value over
certain number of iterations. The action exploitation is accom-
plished through determination of action policy (πtς ), which is
defined as the probability of selection of action Xt at state
St . It corresponds to the set of actions with the highest Q-
value. The attainment of this policy is tied to resolving the
exploration vs. exploitation tradeoff. Exploration aims to look
for new joint actions so it does not only utilize the actions
known to achieve high Q-value. Exploitation is the process of
using the good actions available. The most common method
to balance exploration and exploitation is to use the ε-greedy
selection [48], where ε is the portion of the time that a learn-
ing agent takes a randomly selected action instead of taking
the action that is most likely to maximize its reward given the
actions available. However, ε-greedy selects equally among the
available actions, i.e., the worst action is likely to be chosen as
the best one. In order to overcome this issue, we develop a new
method in which the action selection probabilities are varied as
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a graded function of Q-value. The best joint action is given the
highest selection probability while others are ranked accord-
ing to their Q-values. Boltzmann distribution [50] is adopted to
achieve this ranking. The action selection probability at epoch
t is given as follows,

π∗ς (St ,Xt ) =
eQ(St ,Xt )/τ

∑
X ′∈X eQ(S ′

t ,X
′
t )/τ

(13)

where τ is a positive parameter which can take high value and
this indicates that the actions probabilities nearly equal. In case
τ has low values, this indicated a big difference in selection
probabilities for actions with different Q-values. This action
selection probability is updated after Q-value approximation
as follows,

π∗ς (St ,Xt ) =
eρtψ

T (St ,Xt )/τ

∑
X∈X eρtψ

T (St ,Xt )/τ
. (14)

The selected state/actions pairs are added to the memory at
each epoch and utilized later to train the DNN. This improves
the upcoming joint actions that will be generated by the DNN
in the future epoch. To achieve this, DeepEdge maintains an
initially empty memory of limited capacity. At the t-th epoch,
a new training data (St ,X

∗
t ) is added to the memory. When

the memory is full, the newly generated data sample replaces
the oldest one. The experience replay technique [42], [55] is
utilized to train the DNN using the stored data samples. After
certain number of epochs when there is enough data to train
the DNN, we randomly select a group of training data samples
{(Sυ,X ∗

υ )|υ ∈ Υt} from the memory, where Υ is the set
of selected time indices. The DNN parameter θt is updated
using Adam algorithm [56] which targets minimization of the
average cross-entropy loss L(θt ) defined as follows,

L(θt ) = − 1

|Υt |
∑

υ∈Υt

[
(X ∗

υ )
T log fθt (Sυ)

+ (1− X ∗
υ )

T log
(
1− fθt (Sυ)

)]
(15)

where |Υt | is the size of Υt , T denotes the transpose operator,
and the log function is the element-wise logarithm operation
for a vector. We start the training step when the number of
samples is larger than half of the memory size. Eventually, the
DNN learns the best joint action for each state (St ,X ∗

t ). Thus,
it becomes smarter and continuously improves its produced
joint action.
The two-stage DRL for resource allocation procedure is

presented in Algorithm 1. The algorithm acquires the Edge-IoT
state information which includes QoS requirements, resource
demand and edge servers resources capacity information.
It starts by initializing the DNN with certain parameter θ.
The DNN generates the joint actions. The output of DNN
is converted to discrete format and then received by the
approximated reinforcement learning to evaluate the generated
actions by the DNN. The actions with the highest Q-value
are exploited according to the probability in (14) and used to
populate the dedicated memory of DNN. After certain num-
ber of epoch, a sample of state/action pairs is fetched from
the memory and used for DNN training and updating θ using
Adam algorithm.

Algorithm 1 Two-Stage Deep Reinforcement Learning
Algorithm to Solve Resource Allocation in DeepEdge
Require: Network state St which include QoS require-

ments of the application, resource demands edge servers
resources capacity at each epoch t

Ensure: Joint action for resource allocation and QoS metric
class Xt = {X ∗

t , α
t
ς}

1: BEGIN
2: Initialize the DNN with random parameters θt and empty

replay memory
3: Set iteration number m and the training interval Ω
4: for (t=1 to m) do
5: Generate a set of joint actions Xt = fθt (St )
6: Use KNN to convert the continuous set of actions into

a discrete set
7: Run Approximated reinforcement learning to evaluate

the action for resource allocation that must satisfy X ∗
t =

maxX ρψT (St ,Xt )
8: Exploit actions according (14)
9: Update the memory by adding (St ,X

∗
t )

10: if Ω = 1 then
11: Uniformly select a group of data samples

{(Sυ,Xυ)|υ ∈ Υt} from the memory
12: Train the DNN with {(Sυ,Xυ)|υ ∈ Υt} and update

θt using Adam algorithm
13: end if
14: end for
15: END

The complexity of the proposed two-stages DRL is found
based on the number of edge servers J, the number of avail-
able resources of certain type r, and the number of devices
that demand the resources N. The implementation of the
DRL algorithm considers different application and scenar-
ios. It associates actions generation for the device with the
available resources and edge servers. The computation com-
plexity of the action exploration stage of the DRL is O(JN r )
operations. The complexity of the exploitation and training
stage is O(mΩ) according to the number of epoch m and
the training interval Ω. The memory requirements to store
the samples for DNN training is N (r∗J ). Exploration and
exploitation are achieved with the merit of the approximated
Q-value O(Q ′θt (St ,Xt , ρ)) instead of the typical Q-value in
the traditional Q-learning. The computation complexity of our
proposed two-stages DRL is acceptable given the achieved
performance and in comparison with the traditional Q-learning
which has a an exponential computational complexity of
O(N J∗r ). The traditional Q-learning may only achieve max-
imum achievable QoE by searching all possible combinations
of state/action/rewards. Consequently, it requires more number
of operations and its computation complexity escalates in an
exponential pattern.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed DeepEdge for
resource allocation in Edge-IoT with respect to the average
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TABLE III
SYSTEM PARAMETERS

Fig. 3. Latency for emergency response application.

application’s latency, achieved users’ QoE, and the average
application tasks success ratio.

A. Evaluation Setup

We consider a network that consists of 10 edge servers uni-
formly distributed in the network. Each server is equipped
with a 3-core CPU where the CPU cycle frequency of each
core is 3 × 109 cycles per second. The frame length is 600
symbols where the time of one symbol is 4.5 μs. The block-
length of uplinks are all assumed to be equal to 200 symbols.
The number of IoT users is assumed as N ∈ [100, 400], ran-
domly distributed within the network. The bandwidth available
for sharing is set to 10 MHz. Applications’ latency require-
ment and data size, as well as the corresponding CPU cycles,
are determined by the specific IoT application type. We con-
sider the three applications described in the system model and
their corresponding QoS requirements. The DRL parameters
and rest of simulation parameters are presented in Table III.
The application task data size is set as a uniform distribution,
[2, 8] MB, and corresponding CPU cycles is variable.

B. Application Latency Evaluation

We evaluate the performance of DeepEdge in terms of
the average encountered latency for certain application by
varying the number of IoT users starting from 100 users
where 50% of the users run the evaluated application and
50% run the other two applications with 25% of the users
for each. Fig. 3, 4, and 5 present the average latency for
the three applications: emergency response, health moni-
toring and personal identification respectively with variable
number of IoT users. The achieved latency is compared
to the resource allocation schemes: DQN-based (AD) [31]
and actor-critic (DR-Leanring) [32] presented in the related

Fig. 4. Latency for health monitoring application.

Fig. 5. Latency for personal identification application.

TABLE IV
EVALUATIONS OF DEEPEDGE VS OPTIMAL EXHAUSTIVE SEARCH

work. We increase the number of users from 100 to
400 by step of 100 to show the change of latency. The
results show that our proposed DeepEdge achieves the best
result in terms application latency comparing with the other
schemes. Moreover, the latency is maintained low in com-
parison to other schemes even with large number of users
involved.
In addition, we compare the performance of DeepEdge in

terms of latency against the optimal exhaustive search resource
allocation for the three applications: emergency response,
health monitoring and personal identification. Exhaustive
search requires searching through all the possible resource
allocation possibilities. It is impractical in the considered edge-
IoT applications where the search becomes complicated and
consumes significant time as the system scale grows in terms
of the numbers of IoT devices, edge server and edge resources.
Table IV presents the recorded latency for 20 devices which
is a small number given the mentioned applications. We only
notice a minimal difference in the latency for different appli-
cations between DeepEdge and the optimal scheme given the
small number of devices.
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TABLE V
EVALUATIONS OF DEEPEDGE RESOURCE ALLOCATION SCENARIOS

Fig. 6. DeepEdge resource allocation scenarios.

C. Evaluation of Various DeepEdge Resource Allocation
Scenarios

In this subsection, we discuss and evaluate multiple scenar-
ios of how DeepEdge operates to perform resource allocation
with QoE maximization. Fig. 6 depicts the scenarios of
resource allocation for multiple heterogeneous applications.
For the first scenario, it has 100 IoT users which run emer-
gency response application with high QoS requirements. The
resources requests of emergency response application are sent
to the RAM in the controller. The request is processed through
the two-stage DRL by selecting the most appropriate QoS class
ας and allocate edge resources accordingly. In the second sce-
nario (application heterogeneity), it is assumed that each one
of 200 IoT user runs two applications (emergency response
and personal identification), which lets the controller treat
all the IoT users the same. The RAM here receives requests
from the same user but for multiple applications. It recog-
nizes the application type ς , identifies the applications priority
βς and analyzes their QoS requirements. Then, it enforces
the application QoS class adaptation starting with the lower
priority application. For example, the QoS class of the per-
sonal identification application that has the lowest priority
will be adapted first through proper election of its ας . The
two-stage DRL allocates the resources for both applications
with the goal of maximizing the QoE in (3). In the third sce-
nario (users and application heterogeneity), we present two
evaluation examples: First, there are 300 heterogeneous IoT
users of which 100 users are running emergency response,
100 users for health monitoring and 100 with two applica-
tions emergency response and health care monitoring. In the

Fig. 7. QoE for multiple applications scenarios.

second example: there are 400 IoT users of which 100 users
emergency response, 100 users health monitoring, 100 users
with personal identifications, and 100 users running the three
applications simultaneously. All the users report their requests
along with the QoS requirements of applications to the RAM
at the controller. All the requests are sorted according to the
users index i and application type ς . Then, the RAM allocates
resources to these applications with consideration of applica-
tion priority βς and resource availability at the edge. These
parameters are exploited by the two-stage DRL to adapt QoS
class αi ,ς and allocate resources accordingly with the goal to
maximize the joint QoE for all users and satisfaction of their
applications. Table V presents the specifications of the three
scenarios, QoS metrics requirements and the average achieved
metrics by DeepEdge for each application. We observe that
DeepEdge always maintains the QoS metrics below the speci-
fied threshold even in the most complicated setting of the third
scenario.
Moreover, QoE is evaluated with consideration of the differ-

ent scenarios presented in Table V to demonstrate DeepEdge
capability to tackle the heterogeneity of IoT applications
in resource allocation. The QoE function derived in (2) is
exploited as an evaluation metric to demonstrate the merit of
the proposed two-stages DRL against other DRL schemes:
the DQN-based scheme (AD) [31] and the actor critic scheme
(DR-Learning) [32]. However, the QoE function for the AD
and DR-Learning schemes is calculated using the quality score
of the application latency only (not including quality scores
for PLR and PER) as it is the only QoS metric they consid-
ered as an optimization goal. The average QoE is plotted in
Fig. 7. Fig. 7 shows that DeepEdge outperforms both schemes
as they lack the capability of handling multiple applications
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TABLE VI
EVALUATIONS OF RUNTIME FOR ALL SCHEMES

IN DIFFERENT SCENARIOS

Fig. 8. Average task success ratio convergence.

running on large number of devices. We notice that in the
first scenario, other schemes achieve comparable performance
as only one application is running. The QoE decreases as the
number of users increases which is expected as the competi-
tion between users for resources increases. However, the drop
of QoE in DeepEdge as the number of users increased with
variety of applications is not significant in comparison to the
other schemes.
In addition, we compare the system runtime for each sce-

nario settings for all schemes. Table VI presents the runtime in
seconds for each scheme in each scenario that correspond to
the achieved QoE in Fig. 7. We notice that DeepEdge records
the lowest runtime in comparison to other resource alloca-
tions schemes in all scenarios with considerable difference in
the most complicated scenario with 400 devices. Thanks to
the enhanced design of the developed two stages DRL.

D. Task Success Ratio

Another evaluation factor considered in this paper is the
task success ratio, which is the ratio of the application’s
tasks with satisfied QoS requirements to the total number
of running application’s tasks. We adopt the settings of the
second scenario in Table V. Fig. 8 presents the average task
success ratio of the proposed DeepEdge with average appli-
cation’s resources request rate of 0.5. It is observed that the
performance is improved gradually with learning as the system
becomes familiar with the environment and capable to make
better resource allocation decisions. Moreover, we evaluate
the task success ratio against the variable task arrival rates in
Fig. 9. It shows that DeepEdge outperforms other allocation
schemes and maintains the success ratio above 0.9 regardless

Fig. 9. Average task success ratio vs. arrival rate.

Fig. 10. Normalized Training Loss rate.

of the increase in the task arrival rates. Other schemes’ success
ratios fall dramatically as the tasks arrival rate evolves.

E. Convergence and Training Evaluation and Discussion

We evaluate the performance of the DNN utilized in
DeepEdge in terms of the training losses. The evaluation shows
the training quality of DNN in DeepEdge as the resource
allocation proceeds. We plot the training loss rate of our
proposed DRL in Fig. 10 and compare it to other allocation
schemes. The training loss rate gradually decreases and sta-
bilizes at around 0.04. We clearly notice that DRL developed
in DeepEdge converges faster and with lower training loss
rate comparing to the DQN in AD [31] and actor-critic in
DR-Learning [32]. The convergence speed of DeepEdge is
evaluated in terms of the achieved normalized QoE with
respect to the number of epoch as in Fig. 11. We observe that
the moving average QoE of DeepEdge gradually converges to
the maximum. Specifically, the achieved average QoE exceeds
0.98 and the variance gradually decreases to zero as iteration
becomes larger. We adopt the settings of the second scenario in
Table IV for the evaluation of training losses and convergence.
The evaluation of DeepEdge shows that it outperforms

other resource allocation schemes. The reason for that is the
consideration of multiple heterogeneous applications in the
proposed QoE model, which aims to guarantee IoT users sat-
isfaction through fulfillment of different applications’ QoS
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Fig. 11. Normalized QoE for DeepEdge.

requirements. The consideration of aligning the IoT applica-
tions’ requirements with the available resources at the edge
has a tremendous contribution to the achieved performance.
In addition, the developed two-stage DRL adds the following
advantages to DeepEdge. 1) It benefits from historical actions
to foster the framework experience. 2) It generates joint actions
and enhances the diversity of actions at the exploration stage
using DNN. 3) The Q-value approximation reduces the com-
plexity of the system which can be noticed at the convergence
speed in comparison to other schemes.

VI. CONCLUSION

Edge computing comes into practice as a potential solu-
tion to tackle the IoT applications resource demanding issue
in a fast manner. Resource allocation in the context of edge
computing becomes important as there can be many heteroge-
neous IoT applications competing for limited resources at the
edge. The paper has tackled the resource allocation problem
in Edge-IoT environment in a way that fulfills the IoT appli-
cations’ requirements and maximizes IoT users’ satisfaction.
We developed the DeepEdge framework which comprises a
novel QoE model to quantify the IoT users satisfactions based
on the QoS requirements of applications. DeepEdge employs
a novel two-stage DRL scheme which learns by reinforce-
ment resource allocation policy that maximizes users’ QoE,
and tunes the application requirements to align with the avail-
able edge resources. Moreover, DeepEdge exploits DNN to
generate joint actions and utilizes historical allocation deci-
sion to improve its generated actions and expedite the system
convergence. Evaluation results demonstrate DeepEdge’s capa-
bility in optimizing users QoE and maintaining task success
ratio at the maximum.
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