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Abstract—Edge computing is being used to facilitate closer
computing, storage and networking resources to support various
IoT applications including delay-sensitive ones. It is envisioned
that the future Edge-IoT systems will incorporate heterogeneous
IoT devices distributed over multiple geographical zones of cer-
tain institution with edge resource demands that vary according
to time and location. Edge servers (resource facilitators) are with
limited resources and are susceptible to “outlandish” situations
such as service overloading, outage, and external attacks; they
may also have to handle the roaming of IoT devices among
different zones. These situations induce the need for alternative
edge servers using an adaptive resource facilitation scheme to
fulfill the demands of the IoT applications. In this paper, we
develop a novel intelligent and hierarchical resource facilitation
framework named I-HARF that adapts to dynamic Edge-IoT
situations including outlandish situations, mobility, application’s
sensitivity and varying resource demand of IoT applications
based on time and location. I-HARF achieves an adaptive
facilitation and holistically addresses the facilitation technical
barriers by: 1) adopting hierarchical structure which efficiently
migrates the resource facilitation from intra-zone to inter-zone
levels; 2) extending novel intra-zone and inter-zone optimization
models to boost the utilities of the edge servers and the IoT
applications; and 3) developing a novel and unique actor dual-
critic and collective actor-critic Deep Reinforcement Learning
(DRL) designs that intelligently facilitate the edge resources in
both intra-zone and inter-zone respectively. The evaluation results
demonstrate I-HARF’s capability enabling adaptive resource
facilitation that adjusts according to the dynamic Edge-IoT
situations.

Index Terms—Edge computing; Internet of Things; Intra-zone
facilitation; Inter-zone facilitation; Heterogeneous IoT devices;
Deep reinforcement learning.

I. INTRODUCTION

Traditional edge facilities such as 4G/5G base stations,

Wi-Fi access points, and wireline central offices are being

revamped into small data centers or “edge cloud” to facil-

itate closer computing, storage and networking resources to

support various IoT applications that can be delay-sensitive,

bandwidth/data intensive, or require closer resources for ma-

chine intelligence. These heterogeneous Edge-IoT systems will

shape the future of our daily life, work and productivity,

as envisioned by the NSF “10 Big Ideas” [1]. The Edge-

IoT environment is expected to connect and provide edge

resources (CPU, storage and bandwidth) for heterogeneous

IoT applications with various QoS requirements and priorities.

These applications run on IoT devices which are distributed

over multiple geographical zones of certain institution such

as university campus, corporation premises, and residential

property.

The resource facilitation at the edge must be adaptive to

handle dynamic situations from both IoT and edge sides. From

IoT side, mobility of IoT devices is considered as a recurrent

problem for resource facilitation as some of the devices such

as smart vehicles may roam from one zone to another around

the institution. In addition, dynamic zone situations might exist

such as more connected devices, various application types with

different QoS requirements and priorities, variation of resource

demand according to time and location, optimization objec-

tives, and multiple types of resources. From the edge side, edge

resource providers (servers) might experience outlandish situa-

tions such as server malfunction due to maintenance problem,

server overloading because of instant surge in the resource

demands from the IoT devices, and hacking of vulnerable

server owing to weak security. Technically, the edge resource

facilitator must: 1) adapt to the dynamic zone situations in

its intra-zone facilitation and fulfill the application demands

with QoS guarantee; 2) adapt to the edge dynamic situations

and devices mobility through transition from the intra-zone

facilitation to inter-zone facilitation in which edge facilitators

coordinate with neighboring edge zones to scale up or down

resource facilitation; 3) support sensitive applications such as

emergency response that cannot tolerate extra latency in the

inter-zone resource facilitation given the outlandish situations.

Most of existing works either focus on “cloud-edge” inte-

gration or involve multiple edge servers for offloading [2],

[3], [4], [5], [6]. Most of the current work on resource

facilitation across multiple edge zones did not jointly consider

edge outlandishness and device roaming. Moreover, the current

intra-zone edge resource facilitation research either focuses

on a specific application, or optimizes specific operations

such as mobile offloading, migration, and orchestration from

latency or energy efficiency perspectives [7], [8], [9], [10].

None of the existing schemes address resource facilitation

in the intra-zone by considering multi-dimensional factors

including application priorities, dynamic demands for different

resources, and heterogeneous QoS requirements for various

IoT systems. Advanced designs for resource facilitation are

needed to coordinate and jointly optimize intra-zone and inter-

zone resource facilitation.

In this paper, we develop a novel intelligent and hierarchical

resource facilitation framework named I-HARF that adapts to

dynamic Edge-IoT situations including outlandish situations,

mobility, application’s sensitivity and varying resource demand
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of heterogeneous applications based on time and location. To

holistically address the above technical challenges, and align

with I-HARF goals, we:

• Develop an adaptive intra-zone resource facilitation

scheme that includes: 1) An intra-zone facilitation model

that aims to boost the edge and IoT application utilities

and maximize the edge server functionality by incorporat-

ing dynamic application priority assignment according to

the current application data volume; and 2) a novel off-

policy actor dual-critic policy gradient (ADCPG) DRL

scheme, which tackles the dynamic situations in the intra-

zone facilitation by leveraging an additional specialized

critic network. This critic will help training the actor to

generate better resource facilitation actions to achieve the

intra-zone objectives and overcome the stability and slow-

ness problem of the classic actor-critic in such context.

• Develop an inter-zone resource facilitation scheme that

tackles the possible edge outlandish situations and mo-

bility of the devices. It incorporates: 1) an inter-zone

facilitation model which aims to migrate the resource

facilitation from the intra-zone to the inter-zone level

by coordinating between different zone facilitators and

optimizing intra-zone goals under edge outlandish and

devices roaming situations; and 2) a novel collective

actor-critic policy gradient (CACPG) DRL scheme to

solve the inter-zone model, which integrates with the

intra-zone DRL to support learning of the inter-zone

resource facilitation policies.

• Design a resource reservation mechanism for sensitive

applications that exploits prediction of resource demands

of these applications to fulfill their delay requirements

as they cannot tolerate the delay encountered due to the

coordination between the resource facilitators.

The rest of the paper is organized as follows. Section II

describes the motivation of I-HARF and a typical resource

facilitation environment example with the possible resource

facilitation scenarios. The related work, its limitations and the

remedy using I-HARF are presented in Section III. Section

IV illustrates the architecture of I-HARF and the proposed

resource facilitation schemes of I-HARF for each scenario in-

cluding system models and DRL techniques. The performance

evaluation is shown in Section V and the paper concludes in

Section VI.

II. MOTIVATION AND FACILITATION ENVIRONMENT

In this section, we present the motivation for the intelligent

and hierarchical design of I-HARF for adaptive resource facil-

itation in Edge-IoT. Moreover, we provide a typical example

of Edge-IoT environment where the presence of I-HARF is

vital.

A. Motivation of I-HARF

Inter-zone facilitation and through coordination between

edge resource facilitators is necessary to achieve adaptive

resource facilitation which is not a trivial task with multiple

edge facilitators involved. Efficient intra-zone facilitation is

a key factor that is required to achieve an efficient inter-

zone facilitation given the dynamic devices’ activities and

the heterogeneous resource demands of their applications.

Therefore, we adopt hierarchical resource facilitation in which

the lower-level “intra-zone” facilitation aims to facilitate the

resources from the intra-zone edge servers. The latest environ-

ment situation is captured and adaptive decisions are made to

assign applications priorities and allocate multi-dimensional

edge resources to maximize edge servers and applications

utilities. The upper level “inter-zone” adopts a collective

facilitation approach and follow a “distributed-to-centralized”

cooperative pattern which maintains the edge and the IoT

application utilities given the multiple resource facilitators

involved. To support sensitive applications such as emergency

response which are delay sensitive and cannot tolerate the

extra latency encountered due to coordination in the inter-

zone facilitation, I-HARF extends its inter-zone facilitation and

reserves resources for these sensitive applications to provide

real-time response. Due to lack of consistent models, it is dif-

ficult to optimize the resource facilitation decision-making for

the highly heterogeneous and dynamic Edge-IoT environment.

Thus, model-free DRL [19] is considered as a good candidate

because it learns and improves itself from experience and

does not require prior knowledge of the system’s behavior.

We exploit an actor-critic [47] DRL framework in order to

leverage the simplicity of the value-based DRL and the ability

to handle continuous action space of the policy-based DRL.

B. Smart Campus: A Typical Example of Resource Facilitation
Environment

Smart campus is a typical future Edge-IoT environment

where various heterogeneous applications exist and span over

multiple zones. Each zone including academic, community,

and recreation are composed of a building or a complex

of buildings and their outdoor area. The envisioned IoT

applications for smart campus as in Table I are distinct in

terms of their QoS requirements, mobility, priority, device

type, and resource demands. The application’s resource de-

mand varies according to the time and location context. For

example, resource requests are expected to be intensive during

the working hours in comparison to the evening time. The

volume of resource requests becomes extraordinary at certain

campus event such as conference or sport games. Moreover,

the location has a key role that impacts the resource demands.

For instance, academic zone is anticipated to have more

resource requests in contrast with the community zone. Fig.

1 presents an abstract of smart campus that shows the zones,

their buildings, and the typical applications in each zone.

There are multiple resource facilitation scenarios to tackle

in smart campus based on the environment variations and

possible occasions. 1) Typical Scenario: this is the case when

the edge facilitators are in healthy condition and able to

fulfill the requested resources for the stationary IoT devices

within their zones. In this scenario, application priority is an

essential factor that affects the resource facilitation process.

For example, smart transportation has significant volume of

data that requires processing at the edge due to a sport event

at the stadium and large number of attendees. However, the

face recognition application running on the academic campus

is supposed to have lower priority in this occasion. It is
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TABLE I
EXAMPLES OF IOT APPLICATIONS IN SMART CAMPUS.

Application Location/Zone Priority Mobility Device Type Sensitivity

Face Recognition 

Smart Transportation 
and Delivery

Emergency Response 
(gunshot, fire )

Education and 
Research Services 
(e.g. AI apps, VR 

apps)

Academic/Research Zone (AZ)

Community Zone (CZ) Recreation 
Zone (RZ)

RZ
AZ

RZ

CZ

AZ
CZ AZ

Fig. 1. Smart Campus Zones.

inefficient to assign a fixed priority for these applications

with varying volume of resource requests. 2) Complicated

Scenario: the edge servers at certain zone may not be capable

to fulfill the resource demands and require the intervention

of the upper-level of facilitation or seek the neighbor servers

support. This inability can be due to: a) the edge server

is overloaded because of specific event at certain time and

location such as academic conference or sport event in which

the IoT applications generate large volume of data that requires

processing; b) the server is hacked or experience malfunction

as a result of certain maintenance issue; c) mobility of the

IoT devices which is the case in the smart transportation and

delivery application. It creates the need for inter-zone resource

facilitation as the devices (vehicles) may hop from one zone

to the other. 3) Exceptional Scenario: this scenario is typically

a complicated scenario with sensitive IoT applications. The

sensitive applications such as emergency response require

extra measures to avoid additional latency. The second and

third scenarios induce the inter-zone resource facilitation.

III. RELATED WORK, ITS LIMITATIONS AND REMEDY

USING I-HARF

In this section, we present the related work, its limitations

and how I-HARF tackles these limitations.

A. Related Work

Many edge computing research have focused on specific

operations such as offloading, migration, chaining and orches-

tration [7] [8] [9] [10], and among others, delay and energy

efficiency have been the key optimization goals [11] [12] [13]

[14]. Various game theory based, bio-inspired, or economic

pricing based optimization methods have been tried [15]

[16][17] [18]. Deep Reinforcement Learning (DRL) [19] has

attracted attention for small-scope problems such as edge

offloading and management [20] [21] [22] [23] [24] [25],

with edge content caching in smart vehicle as a typical

application [26] [27]. Value-based DRL schemes such as Deep

Q-network (DQN) were explored for resource management

problem in the edge computing context [28] [29] [30] [31]

[32] [33]. In [31], authors exploited edge load dynamics,

and formulated a task offloading problem to minimize the

expected long-term cost using model-free DQN. The work in

[33] proposed an improved deep Q-network (DQN) algorithm

to learn the policy of edge resource allocation, where multiple

replay memories are applied to separately store the experi-

ences with small mutual influence. Basic actor-critic based

DRL methods were recently explored for edge offloading

and resource allocation [34] [35] [36] [37]. In particular, the

work [41] aimed to improve the typical deep deterministic

policy gradient (DDPG) method [42] for edge offloading by

considering a critic with double TD neural networks for better

value function estimation. The Work in [35] targets delay and

energy performance in a multi-user system with an online

solution using actor-critic DRL to deal with time-varying

user requests and channel conditions. The authors in [39]

proposed a DDPG-based algorithm to solve the edge resource

management problem using two architectures in vehicular

Network context. Inter-zone resource management in Edge-

IoT was tackled in a narrow range with very few proposals.

The work in [43] proposed a load balancer that accounts for the

dynamicity and limitation of edge clouds. In [44], the authors

designed an AutoScaler to handle offloading in large-scale IoT

deployments. Hierarchical “cloud-edge” structure have been

explored [45], [46] in which the cloud acts as a supportive

resource backup.

B. Related Work Limitation and I-HARF’s Remedy
Given the related works, they neither addressed the need for

inter-zone facilitation in their designs nor built hierarchical

model that takes both intra-zone edge resource facilitation

and possible “outlandish” and roaming conditions in the inter-

zone facilitation into consideration, while both conditions can

be the norms for future Edge-IoT. The current work focuses

on resource facilitation at the intra-zone level. However, it

did not account for the dynamicity of resource demands

from the IoT application in different context. The lower-level

facilitation of the hierarchical design of I-HARF adopts a

dynamic application priority concept in which the priority is

determined in real-time according to application data volume

and its QoS requirements. Dynamic priority accounts for the

impact of dynamic resource demands of the IoT applications

occurred due to variation in data volume according to time

and location contexts. We formulate an intra-zone optimiza-

tion model characterizing environment situations such as the

application types, QoS requirements and resource demands,

and incorporating dynamic priority.

The basic DRL schemes such as DQN and actor-critic used

in most of the existing schemes do not fit the dimensionality

of the considered resource facilitation problem as it involves
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multiple objectives, multiple resources, various QoS require-

ments, and heterogeneous applications. None of the existing

schemes that use the classic actor-critic methods addressed

their potential slowness and stability issues encountered while

solving such resource facilitation problem. Thus, we develop

an off-policy actor dual-critic policy gradient (ADCPG) DRL

that integrates an additional critic network aiming to help

criticizing and training the actor. It generates better resource

facilitation actions and overcome the stability problem of the

classic actor-critic. The additional critic in ADCPG provides

an additional loss function that improves the classic actor-critic

generated action given the dynamic Edge-IoT environment

and achieve better sampling efficiency, faster convergence, and

more stabilized performance. The design is generic and can

be used with any off-policy DRL [42], [48], [49].

In addition, the current work did not exploit the intra-zone

facilitation as a building block for the inter-zone facilitation

and treat them as separate problems despite the fact that the

inter-zone facilitation relies on the current resource facilitation

in the zones. We introduce an inter-zone optimization model

that incorporates the utilities optimization of the intra-zone

model and coordination costs introduced at the inter-zone

level. For the upper-level DRL, we develop a CACPG DRL

that exploits the intra-zone resource facilitation action policies

as seeds to train the upper-level critic network. Moreover, the

value function objective is crafted based on the inter-zone

facilitation model optimization objective. This distinguishes

our scheme from the federated learning [50] based schemes

that rely on handcrafted features to characterize Edge-IoT

conditions and simply aggregate individual value function of

each intra-zone policy.

IV. RESOURCE FACILITATION USING I-HARF

In this section, we present the architecture of I-HARF,
a glimpse of I-HARF adaptation mechanism that adapts to

the facilitation scenarios in Section II.B, and the facilitation

schemes of I-HARF. The facilitation schemes include: the

intra-zone resource facilitation for the typical scenario, the

inter-zone resource facilitation for the complicated scenario

and the inter-zone resource facilitation with the resource

reservation for the exceptional scenario.

A. Architecture and Adaptation Mechanism of I-HARF

I-HARF’s architecture is presented in Fig. 2. The key

components include: 1) the IoT environment; 2) zone edge

facilitators (ZEFs) and edge servers; and 3) the institution edge

facilitator (IEF). The IoT environment is complex due to high

heterogeneity and dynamicity of devices and applications. The

ZEFs act as managers for their associated edge servers and

run the DRL-based function facilitating resources on the edge

servers for the IoT applications. ZEFs comprise the intra-zone

optimization model and lower-level DRL module. The intra-

zone optimization model is solved by the lower-level DRL

module using the proposed novel ADCPG approach, which

consists of the key components including O-Critic, S-Critic

and Actor that work together to achieve the ADCPG design

goals. The intra-zone comprehensive MDP (CMDP) used by

the ADCPG incorporates the intra-zone situation information

represented by the static space of applications QoS and the

stochastic space of the dynamic resource demands. The IEF

Resource 
Reserve 
Module

Upper-level CACPG DRL Inter-zone Optimization Model

Lower-level ADCPG DRL 
Intra-zone Optimization Model

Z
E
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y
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Complex IoT Env. & States: Hetero. Apps and dynamic demands

…
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Action

Inter-zone Collective MDP
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Opt. Function
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Trans. and 

Adapt. 
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Function

Inter-zone Situation Awareness

Outlandish Conditions; Roaming

Applications 

and Edge Util 

Functions

∑

Actor

Intra-zone Comprehensive MDP
Intra-zone Situation-awareness 

(QoS Req. & Resource Demands)  

O-Critic

Action

IoT Environment

Edge
Servers

S-Critic

Action
Loss

Loss

Edge
Servers

Fig. 2. I-HARF Architecture

incorporates the inter-zone optimization model, upper-level

DRL module, and resource reservation modules. The inter-

zone optimization model is solved by the upper-level DRL

module that is based on a collective actor-critic DRL operat-

ing in conjunction with the inter-zone MDP. The inter-zone

MDP includes the aggregated intra-zone CMDP in addition

to the state outlandish conditions to characterize the inter-

zone situation-awareness. The resource reservation module

acts when the inter-zone facilitation engages to reserve the

resources for the sensitive IoT applications.
Fig. 3 maps the functions of I-HARF to the scenarios of

the smart campus and their respective applications. I-HARF

(C)

(A)

(A)

(B)

(C)

(D)

Fig. 3. Intelligent, hierarchical, and adaptive facilitation mechanism.

accounts for the three resource facilitation scenarios in smart

campus as follows. 1) For the typical scenario: ZEFs conceive

IoT situation information at their respective zones and run

the intra-zone optimization models and ADCPG scheme to

achieve the intra-zone resource facilitation for all IoT applica-

tions. 2) For the complicated scenario: IEF uses edge situation

information from its associated ZEFs and run the inter-zone

optimization model and CACPG scheme to achieve the inter-

zone resource facilitation for all IoT applications and support

mobility for smart transportation. 3) For the exceptional sce-

nario: IEF runs the resource reservation mechanism along with

CACPG to support sensitive applications such as emergency

response such that it guarantees their data processing in timely

manner without disruption. The integration between the inter-

zone and intra-zone facilitation is triggered if the resource
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request of the IoT application cannot be handled at the ZEF

due to the IoT device mobility or an outlandish situation. For

mobility, it is assumed that each IoT device reports its location

when it makes the resource request. The corresponding ZEF

asks for IEF intervention for resource facilitation using inter-

zone facilitation if it finds that the device is moving out

of its proximity. For outlandish situations, the ZEF asks for

support of the IEF if it is unable to process request in timely

manner due its limited resource capacity. This is verified by

comparing the application load against its capacity before

facilitation. If the IoT device did not receive any response

from its corresponding ZEF for certain time which indicates

that the ZEF is down, it sends its request to the IEF through the

gateway, thus IEF can intervene and find a replacement ZEF.

The IEF only coordinates the facilitation of special outlandish

and roaming occasions among the affected ZEFs for a limited

period of time and do not replace the role of individual

ZEFs in resource facilitation. After the special situation or

transition is accomplished, the assigned ZEFs will handle the

affected devices. Thus, the IEF will not become a new single

performance bottleneck.
B. Intelligent Intra-zone Resource Facilitation Scheme

In this subsection, we illustrate the intra-zone facilitation

scheme which is customized to handle the typical facilitation

scenario. It includes the system model and its associated DRL.

It tackles the dynamic zone situation challenges including the

multi-dimensional factors in the intra-zone resource facilitation

and serves as a solid base for an efficient inter-zone resource

facilitation. The scheme incorporates an optimization model

that aims to maximize system utility. The optimization model

is integrated with the ADCPG DRL to generate actions that

align with optimization goals. The ADCPG DRL features

CMDP characterizing the complex and dynamic Edge-IoT

environment in both static and stochastic state sub-spaces and

includes the novel actor dual-critic policy gradient design.
1) Intra-zone Resource Facilitation Model: The model aims

to maximize the utilities of Edge-IoT based on the resource

facilitation and application priority decided according to the

current intra-zone situation. For the edge, the edge server

utility is found based on the edge server data processing rate

(DPR). DPR is the number of tasks that can be processed

using the facilitated resources. It is a key factor that evaluates

the efficiency of the edge servers as low value indicates

that the server is not functioning properly. For the IoT, the

IoT applications’ utility is defined based on multiple QoS

metrics including latency (LAT) and data loss rate (DLR).

LAT includes both the network delay and processing delay

at edge. DLR is the packet loss rate due to network issues or

queuing at the edge server.
We formulate the intra-zone model as follows. At time t,

the ZEF decides the application p to be prioritized. The IoT

devices running application p are selected for resource facili-

tation. Application priority is dynamic and changes according

to the current application’s demands. The ZEFs receive all the

applications’ requests in certain decision cycle including all

low and high priority applications and compare them against

the available resources to determine whether the current ca-

pacities of the servers are sufficient to handle all the requests.

If they are sufficient and all the applications can be served, the

ZEFs determine the applications’ priorities according to their

data volume and QoS requirements. They facilitate resources

to the applications according to the assigned priority with the

condition that all applications will be served. Otherwise, ZEFs

will request the IEF support through the inter-zone facilitation.

The resource facilitation decision of each resource R of type

z for each IoT device d ∈ Dp that belongs to application

p ∈ P is evaluated in terms of the edge and IoT application

utilities. The resources are allocated to the IoT application

p such that the edge utility function Γj and the application

utility function Ωp are maximized. We define a set of three

performance metrics: B = {b1, b2, b3}, where b1 = DPR,

b2 = LAT , b3 = DLR. Let us assume that xb,d is the

achieved value for each performance metric b ∈ B and x′
b,d

is its threshold. At the application level, the metric vector

xp = [xb1,p,d, xb2,p,d, xb3,p,d] must meet its corresponding

x′
p.The edge utility function Γj(xp) is defined as a function

of xp = b1 for the edge server j that processes the tasks of

application p. The application utility function is Ωp,Rz
(xp,d),

where Rz ∈ R = {R1, R2} represents the set of resources

(R1 = CPU, R2 = memory) allocated to the IoT application

p and xp is the performance metric vector for QoS metrics b2
and b3. The intra-zone facilitation model related parameters are

defined as: 1) the resource allocation variable yd,r(t) = 1 if

resource r ∈ Rz is allocated to IoT device d and 0 otherwise.

Rz is the set of available resources of certain type; 2) the

application priority indicator Pp(t) = 1 if the application p
is prioritized at time t and 0 otherwise. The intra-zone model

optimization function (ZM ) is formulated as:

ZM = max
y,P

∑

p∈P

∑

d∈Dp

∑

r∈Rz

Pp(t) yd,r(t) Γj(xp(t)) Ωp(xp,d(t))

(1)
s.t.

(C.1)
∑

d

yd,r(t) ≤ 1, r ∈ Rz, (2)

(C.2)
∑

p

Pp(t) ≤ 1, (3)

(C.3)
∑

d

Pp∗(t) = Dp∗, p∗ ∈ P, (4)

(C.4)
∑

d

Pp′(t) = 0, ∀p′ ∈ P (5)

(C.5) xb,p,d(t+ 1) ≤ x′
b,p,d (6)

(C.6)
∑

p∈P

∑

d∈Dp

∑

r∈Rz

yd,r(t) ≤ Cj ∀j, (7)

(C.7)
∑

Rz∈R

∑

r∈Rz

yd,r(t) ≥ Wd (8)

The solution of (1) is to select the best priority and facilitation

action at t such that the utility functions for IoT and edge are

maximized. The constraints in (C.1) indicates that each unit of

resource can only be allocated to one device. (C.2) specifies
that only one application will be prioritized at time t to obtain

resources. The devices running the prioritized application p∗
will qualify for resources as in (C.3). The devices that run
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other applications p′ will be blocked at t (C.4). (C.5) enforces
the QoS requirements of the applications. (C.6) guarantees

that the allocated resources for all applications are below the

edge server capacity Cj . (C.7) ensures that the total allocated

resources for each IoT device satisfy its demand Wd for all

the resource types.

APP Number 
of Devices

Resource 
Demands QoS Req.

ST

VR

FR

Model 
Run by 

DRL

   

 
 

Fig. 4. Intra-zone resource facilitation example.

We illustrate the intra-zone facilitation via an example of

three applications: (a) Smart Transportation (ST), (b) Virtual

Reality (VR), and (c) Face Recognition (FR) as shown in

Fig. 4. First, zone situation information is acquired at t includ-
ing: the number of devices, applications’ dynamic resource

demands of CPU and memory, and the applications’ QoS

requirements B = {LAT,DLR}. Then, the DRL runs with

the model to determine: 1) the real-time application priority,

in this example, the highest priority is given to the VR as

it currently has high demand with considerable number of

devices and moderate QoS requirements; 2) for prioritized

VR, resource facilitation policy is also generated to allocate

resources for the IoT devices under the constraints in (C.1-
C.7). The process is repeated for the ST and FR applications.

2) Novel ADCPG Approach for Intra-zone Facilitation: We

plan to base our method on the actor-critic framework [47]

to benefit from both value-based and policy gradient DRL.

In addition, given the multi-dimensional factors of the intra-

zone resource facilitation and the dynamicity of Edge-IoT

environment, the proposed ADCPG method features a unique

critic structure and process to improve and expedite the action

policy learning process comparing with other existing actor-

critic methods [42], [48], [49]. We first formulate the CMDP

that features two-dimensional space of attributes: (static and

dynamic) and consists of the following components: 1) State:
The state reflects static and dynamic zone situation information

and is defined at t as s(t) = (sε(t) = (x′, d, p), sυ(t) = Wp) ∈
S, where sε(t) is the static attribute with x′ representing

the QoS requirements of the application p and d is the IoT

device that belong to application p. The dynamic state attribute

sυ(t) is defined as the dynamic demand of the application

(Wp) found according to the application data volume. 2)
Action: The action at t is defined jointly with two attributes as

a(t) = (Pp, Yr,p,d), where Pp is the priority of application p
and Y is the resource facilitation. Given the current application

demand Wp, the state s(t) will evolve based on a(t) as s∗(t)
and record the achieved performance metric x∗ as a result

of the action a(t). The state transition function is defined as

f : S×A → S∗, s∗(t) = f(s, P, Y ). 3) Reward: The reward

value evaluates how application and edge server utilities will

improve at t + 1 in comparison to t with action a(t), and is

expressed as RW (s∗, s) = RW (s∗)−RW (s) where RW is

associated with the joint applications and server utilities found

in equation (1). 4) Action Policy and Value Function: we

define the resource facilitation policy generated by the actor

as π : S × A that maps the Edge-IoT system state over the

action space. We define the value function under the given fa-

cilitation policy π as V πφ(s) = Eπ[
∑∞

t γtRWt+1|s(0) = s]
representing the sum of rewards from the initial state, where

γt ∈ [0, 1] is the discount factor. The reward function RW is

defined as: RW = ZM , where ZM is defined in Equation

(1) as a function of the edge and IoT application utilities

given the resource facilitation action taken by the ADCPG-

DRL mechanism.

The proposed ADCPG method workflow is presented in Fig.

5. It begins as ADCPG interacts with the environment via the

defined CMDP and experience samples are stored in the replay

memory. Training batch will be fetched from the memory to

train both critics. The specialized additional critic (S-Critic)

supports the original critic (O-Critic) to improve the action

policy learning process. The S-Critic provides an additional

loss value denoted by Lζ with network parameter ζ optimized

during the learning process. This loss guides the actor and

it is explicitly trained to find a resource facilitation action

given the multi-dimensional factors involved in the intra-zone

facilitation instead of merely estimate the value function as in

the typical actor-critic. The O-Critic provides the loss value Lθ

in addition to Lζ to train the actor to generate the action policy

πφ using stochastic gradient descent, where φ is the actor

network parameter. The action policy is updated by defining

the actor loss in terms of the expected return J(φ) and taking

its gradient �φJ(φ), where J(φ) is evaluated according to

the value function V πφ(s). We formulate the actor network φ
learning process using the gradient of both critics as follows,

φ∗ = min
φ

(Lθ(DAtrn;φ) + Lζ(DAtrn;φ)) (9)

Lθ of the O-Critic is found using a training batch DAtrn

sampled from the memory as Lθ = −J(φ) = −EsV
πφ(st; θ),

where Es = γRWt. The O-Critic uses the estimated value

function to update its network parameter θ. The S-Critic

consists of the network gζ(DAtrn;φ) which takes φ and the

state/action in DAtrn as input and outputs a scalar value.

Fig. 5. The ADCPG DRL scheme.

This value represents the loss value Lζ which is differen-

tiable with respect to φ. The actor network parameter φ is

updated using both critics losses as follows: 1) O-Critic loss



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3151667, IEEE Internet of
Things Journal

7

Lθ: φ is updated to increase the probability of actions that

achieve higher value functions as φ− = φ − ρ∂Lθ(DAtrn)
∂φ ;

2) S-Critic and O-Critic losses (Lθ, Lζ): the parameter φ is

updated to stabilize and improve the learning performance as

φ+ = φ−ρ∂Lθ(DAtrn)
∂φ −ρ

∂Lζ(DAtrn)
∂φ , where ρ is a constant.

To guarantee that the S-Critic will improve the learning

performance and will not overfit, a testing batch DAtst is

sampled from the memory and used to find the S-Critic in-

trinsic loss as LS(DAtst;φ
−, φ+) = tanh(Lθ(DAtst;φ

+) −
Lθ(DAtst;φ

−)). The S-Critic network parameter ζ is updated

to minimize LS and consequently maximize the performance

on the testing batch. Thus, the real actor network is updated

using both critics. This also guarantees that S-Critic and actor

networks are evolved online and in parallel. We exploit the

Optimistic Actor Critic exploration method proposed in [51],

which approximates a lower and upper confidence bound on

the value function. This method performs direct exploration

using the upper bound while still using the lower bound to

avoid overestimation. The optimistic exploration tackles the

problem of combining a greedy actor update with a pessimistic

estimate of the critics thats leads to the avoidance of new

actions. In addition, it avoids sampling actions with equal

probability in opposite directions from the mean as we need

actions taken in certain directions much more than others.

C. Intelligent Inter-zone Resource Facilitation Scheme

In this subsection, we develop the inter-zone facilitation

model and the associated DRL which tackles the complicated

scenario represented by the outlandish edge situations and

mobility of IoT devices. Specifically, we develop an inter-zone

optimization model for the inter-zone facilitation that responds

to the complicated situations by searching and assigning a

new ZEF. Moreover, we expand CACPG DRL to generate

facilitation policies that maximize the institution-level objec-

tives via cooperation between ZEFs and the IEF. The inter-

zone situation information and the intra-zone DRL policies

are exploited to train the institution level critic and generate

actions that determine the inter-zone resource facilitation at

the institution scale.

1) Inter-zone Resource Facilitation Model: Since the inter-

zone facilitation extends the decision of the intra-zone facili-

tation and assigns certain ZEFs to accommodate the affected

IoT devices, the proposed inter-zone model’s optimization

objective incorporates the intra-zone optimization function

ZM , adaptation cost and transiting cost functions for the

outlandish conditions. We define an adaptation cost (AC) as

the cost of powering certain edge server components to provide

resources to the affected IoT devices. Transiting cost (TC) is

the cost of transiting the affected IoT devices to another edge

server more suitable to provide the requested resources. The

inter-zone model leverages a holistic view of the environment

to make intelligent collective decisions achieving lower costs

comparing with greedy or conservative strategies. We illustrate

its collective decision effects via a simple example in Fig. 6

which involves server A and B connected to two ZEFs, and an

IoT device needs alternative resource provider due to roaming

(scenario 1) and edge failure (scenario 2). In scenario 1, the

Fig. 6. Inter-zone facilitation example

device roams from server A to B at t = 1 and move back at

t = 2. Greedy strategy suggests transiting the device’s task

from A to B at t = 1 and transiting back at t = 2. The
inter-zone model calculation shows that it is better to keep the

workload on server A (utility gain: 20 vs. 7.5). In scenario

2, server A suddenly overloaded/fails for one time unit and

the workload is transited to server B. Conservative strategy

suggests keeping workload on server B at t = 2, while the

inter-zone model suggests transiting workload back (utility

gain: 16 vs. 11.5). In both scenarios, the holistic collective

inter-zone model achieves better results.

We formulate the inter-zone model as follows. Suppose

ZEF = {m1,m2, ....mM} are interconnected in an institution
scale and the set of IoT devices Dp is distributed and free

to roam. The IEF selects the most suitable ZEF or distribute

loads over multiple ZEFs to align with the inter-zone opti-

mization goal. The intra-zone optimization function in (1) is

re-formulated with latency LAT (locd,t,md,t) between device

location loc and the corresponding ZEF,

ZM∗ =
∑

d∈Dp

[LAT (locd,t, sd,t)+

∑

s∈ZEF

∑

p∈P

∑

r∈Rz

Pp(t) ys,d,r(t) Γj(t) Ωp(xp(t))] (10)

The AC is proportional to the workload (data volume) and the

amount of resources allocated to the affected devices,

AC =
∑

j∈servers

caj (
∑

d∈Dp

Yj,d(t)−
∑

d∈Dp

Yj,d(t− 1))+ (11)

where caj > 0 is the cost of increasing unit resource for the

server j. (
∑

d∈Dp
Yj,d(t)−

∑
d∈Dp

Yj,d(t− 1))+ captures the

increase of the device workload on server j from time t − 1
to t, and Yj,d is the amount of resource allocated to device d,
and (V )+ = max{V, 0}. TC is determined according to the

required bandwidth and the incurred delay for transiting,

TC =
∑

j∈servers

Bout
j W out

j (t) +Bin
j W in

j (t) (12)

where the data moving in and out of j are Bout
j and Bin

j .

W out
j = (

∑
d∈Dp

Yj,d(t− 1)−∑
d∈Dp

Yj,d(t))
+ and W in

j =

(
∑

d∈Dp
Yj,d(t) −

∑
d∈Dp

Yj,d(t − 1))+ are the device load

that is transited out and received by the new server. The
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institution-level optimization function (IM ) maximizes ZM
and minimizes all the associated costs as follows,

max
j,P,y

IM = ZM∗ −AC − TC s.t. (13)

(C.8)
∑

d∈Dp

∑

r∈Rz

yd,r(t) ≤ Cj , (14)

(C.9)
∑

j∈servers

Yj,d(t) ≥ Wd (15)

where Yj,d =
∑

r∈Rz
yd,r(t) is the amount of resources

allocated by the corresponding ZEF at server j to device d. The
optimization problem here is subjected to all the constraints

of the intra-zone model in addition to the ones in (14) and

(15), which takes the selected server associated with the ZEF

of the zone in consideration for the capacity and workload

constraints.

2) Novel CACPG Approach for Inter-zone Facilitation: The
novel CACPG DRL exploits the intra-zone policies generated

by ADCPG from multiple ZEFs to achieve the inter-zone

facilitation policies. It involves multiple zones cooperating

with their IEF through ZEF/IEF resource facilitation policy

updates. We formulate the inter-zone collective MDP for

the upper DRL as follows. 1) Global State: it includes an

aggregation of the intra-zone states defined in Section IV.B.2

for the affected zones with outlandish conditions and the their

situation information as sg(t) = {sm(t)}∀m∈ZEF , where m is

the index of the ZEF. 2) Global Action: the action determines

the new ZEF that facilitates the resources to the IoT devices

affected by outlandishness/roaming in addition to the intra-

zone resource facilitation decision by ZEF defined in Section

V.A.2. It is expressed as ag(t) = {(Pp, Yr,p,d)}∀m. 3) Global
Reward: it incorporates the intra-zone reward RW (s) and the

associated costs Cg = AC+TC and defined in equation (13)

as a modified reward RWg(t) = f(RW (s), Cg). The total

inter-zone reward is defined as an aggregation of the modified

intra-zone rewards as RWG(t) =
∑

m∈ZEF RWg(t). The

system evolves to the next state s′g(t) and the transition

function is given as (sg(t), ag(t), RWG(t), s
′
g(t + 1)). The

inter-zone facilitation action selection is defined by an inter-

zone policy πg which is a mapping from a given inter-zone

state to an inter-zone action. The inter-zone value function is

given as V πφg (sg) = Eπ[
∑∞

t γtRWG(t+ 1)|sg(0) = sg].

The proposed CACPG DRL scheme implemented at the

IEF is shown in Fig. 7. The intra-zone CMDP components

including the action policies and value functions from the

ZEFs are aggregated to initially populate the inter-zone replay

memory associated with the inter-zone actor-critic. The inter-

zone actor uses the replay memory training data samples

DAg−trn and the inter-zone state information to generate the

inter-zone action policy πφg
that maximizes the function in

equation (13) and denoted by J∗. The parametrized policy

πφg is directly updated by the loss function Lθg given by the

inter-zone critic in terms of the expected return J∗(φg) and

taking its gradient �φg
J(φg). Thus, the inter-zone actor φg

improves its learning according to the following optimization

function φ∗
g = minφg

(Lθg (DAg−trn;φg)). The inter-zone

Fig. 7. Collective Actor-Critic DRL.

critic evaluates the actions generated by the inter-zone actor

via the following loss function,

Lθg = −J∗(φg) = −γRWG(t)V
πφg (sg(t); θg) (16)

where φg and θg are the actor and the critic parameters

respectively. The inter-zone critic estimates the value function

and update θg as,

θg ← min
θg

(V πφg (sg(t); θg)−RWG(t)−γV πφg (sg(t+1); θg))
2

(17)

The iterative procedure of the inter-zone action generation is

illustrated in Algorithm 1. The procedure takes the inter-zone

state information and the intra-zone actions from the replay

memory as inputs. It generates an action set A = a
(i)
g [m′](t)∪

Algorithm 1:
Require: ࢓ܽ(ݐ)௚ݏ =ݐ ܽଵ ݐ ,ܽଶ ݐ ,ܽଷ ݐ , . . . . ࡹܽ, ݐ ࡹ,
Ensure: ܽ௚(ݐ)ܽ(଴) ← ܽ௠ ݐ

for (݅ = 0,1, . . . . ,ܰ) do
for (݉ = 1,2, . . . . (ܯ, doܣ = ܽ௚(௜)[݉ᇱ](ݐ) ∪ ܽ௠(ݐ)݉ܽ௚(௜)[݉](ݐ) = ௔ೕݔܽ݉ ௚ܸగ(ݏ௚)

8:   end for ߶௚ ௚ߠ
end forܽ௚(ݐ) = ܽ௚(ே)(ݐ)

Text

am(t), for the involved ZEFs. The inter-zone action for the

ZEF m is updated such that it has the maximum inter-zone

critic value function as shown in line 7 and minimal loss value.

The procedure is iterated until it converges and outputs the

inter-zone actions for all the affected ZEFs.

The IEF does not need to recompute everything and use the

output of the ZEFs as seeds to find the inter-zone resource

facilitation policy. The IEF only coordinates the facilitation of

special outlandish and roaming occasions among the affected

ZEFs for a limited period of time and do not replace the

role of individual ZEFs in resource facilitation. After the
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special situation or transition is over, the new ZEFs handle

the affected devices. Thus, the IEF does not become a new

single performance bottleneck. Even if the IEF goes offline,

it does not affect the independent functioning of the low-level

ZEFs in their zones. The complexity of the DRL in I-HARF is

found based on the two DRL components: the zone level run

at the ZEF and the institution level implemented at the IEF.

The complexity of the ADCPG DRL is tied to the number

of IoT devices Dp involved and is calculated as O(DpRz),
where Rz is the amount of resources available at the local

ZEF. The training complexity is obtained according to the

number of epoch and the training interval for the ADCPG

as O(2NΩ), where Ω is the training interval. For the inter-

zone facilitation, the complexity calculation is affected by the

number of ZEFs and their operation complexity and found as

O(MDpRz). The training complexity of CACPG is calculated

as O(2MNΩ + NΨ) where Ψ is the training interval at the

IEF.

D. Resource Reservation Mechanism in Inter-zone Resource
Facilitation

This subsection tackles the problem of the exceptional sce-

nario which comprises sensitive IoT applications that cannot

tolerate latency introduced due to coordination between ZEFs

and IEF in the inter-zone resource facilitation. The sensitive

applications include sensitive data based on which extremely

urgent responding decisions must be made while coordination

latency is avoided. A typical scenario in smart campus is ex-

plained as follows: emergency response is sensitive application

while academic AI research data processing is less sensitive. In

certain campus event (exceptional scenario), the environment

changes rapidly and the volume of data that needs processing

from different applications is significant which overloads the

edge servers. Consequently, the inter-zone resource facilitation

engages to handle the applications resource requests. How-

ever, these applications may experience extra latency due to

ZEFs/IEF coordination. Emergency response does not tolerate

such latency as other applications such as AI research does.

The proposed resource reservation mechanism reserves the

edge resources for those sensitive applications such that their

associated tasks are processed in a timely manner. It relies

on prediction of the volume of the tasks for such applica-

tions. The sensitive applications are identified by the system

based on their latency requirements. The applications with

sensitive latency requirement qualify for resource reservation.

The sensitivity of the latency requirement is evaluated by

comparing it against certain threshold determined according

to the applications executed in the Edge-IoT system. The

reserved resources are utilized to process the sensitive ap-

plications tasks upon arrival which mitigate the coordination

latency impact. The CACPG structure presented in Section

IV.C.2 is modified such that the exceptional scenario occurred

at certain event is handled using the inter-zone DRL with

the resource reservation mechanism depicted in Fig. 8. The

resource reservation module (RRM) receives the prediction

information from the prediction module and execute the reser-

vation mechanism which uses the prediction of the sensitive

applications demands, the current demand from all the running

applications, and the resource facilitation policy of the ZEFs.

The CACPG actor receives the output of the RRM as an

additional input that contributes to the inter-zone resource

facilitation policy generated by the CACPG. Prediction of

the sensitive applications resource demands in such Edge-IoT
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Fig. 8. Resource reservation mechanism.

environment is non-trivial as it comprises complex interplay

among the applications data generation patterns and the en-

vironment variation considering possible random outlandish

events. Thus, we adopt a prediction module that exploits a

hybrid prediction approach that relies on convolutional neural

networks (CNN) [52] and long short term memory (LSTM)

[53]. This hybrid approach achieves accurate prediction re-

sults as CNN improves features extraction. The features of

the prediction model in the reservation mechanism consist

of real-time observable parameters that impact the resource

reservation decision. The features include M-time history

window of the application requests of resources including

CPU and memory, computation and communication loads of

the application requests, and requests processing time. With

these features history window as input, the prediction model

outputs the N time-step ahead of the application resource

demands. The prediction method is a multivariate time series

forecasting problem that predicts multiple time steps ahead.

It exploits the advantage of combining CNN and LSTM

to achieve prediction with high accuracy and small training

samples. Convolutional layers with pooling layers in the CNN-

LSTM prediction module capture the local dependencies and

the invariant in the data features. A 1D convolutional layer

with multiple filters of certain kernel size is used on the

input data to obtain time step-wise information from the

input features, and comprehend their local dependencies and

invariance over features in every time sample. Max pooling

extracts the invariant attributes and feeds the output to the

LSTM network. Each feature fed to the LSTM has a dimension

equivalent to the number of filters in the CNN. The LSTM

considers the time series as a sequence of dimensional feature

vectors. A drop out layer is introduced for regularization.

Its output is moved to a fully connected layer to output the

prediction results. The complexity of the prediction is kept low

with choice of small number of convolutional layers which is

the case as the prediction is only necessary ahead of certain

outlandish occasions. RRM exploits the prediction output to

determine the reservation decision as follows. At certain time

slot t, it checks the current applications’ resource requests
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and forwards the requests of the sensitive application to the

CACPG be allocated first. Then, RRM checks the remaining

edge resources, the non-sensitive application requests, and

the projected sensitive application requests obtained using

the prediction module. If the remaining edge resources are

sufficient to process the non-sensitive applications requests

and the projected sensitive requests, the RRM pushes the

non-sensitive application requests to the CACPG for resource

allocation. Otherwise, it holds the non-sensitive requests to the

next allocation time slot.

V. PERFORMANCE EVALUATION

We evaluate the performance of I-HARF for intra-zone

facilitation, inter-zone facilitation, and resource reservation

for sensitive applications in the heterogeneous smart campus

environment explained in Section IV with possible outlandish

and mobility situations. The performance is evaluated in terms

of the rate of successful processing of application requests

(SPAR), system utility, average latency of sensitive applica-

tions and system convergence.

A. Evaluation Setup

In the following evaluation, we simulate an Edge-IoT en-

vironment that includes 200 IoT devices and 20 ZEFs with

two types of resources: CPU and memory. These numbers

are used in all the simulations unless otherwise indicated.

We consider four types of IoT applications with various re-

quirements: Emergency Response (ER), Virtual Reality (VR),

Face Detection (FD) and Smart transportation (ST). The QoS

in [LAT,DLR] are set for: ER as [20ms, 10−3], VR as

[45ms, 10−2], FD as [60ms, 10−2] and ST as [30ms, 10−3].
The number of IoT devices deployed in this simulation is

variable with ratio of 1/4 for each application. The resource

demand (request) for each IoT device is determined according

to its application. They are generated following Poisson distri-

bution in the following ranges [0.1, 0.8] for vCPU and [0.8, 4]

GB for memory. We normalize the resource capacity of edge

servers. Thus, the resource capacity of each edge server is of

one unit. The computing capacity of the edge servers is set

between 1 GHz and 6 GHz. The average data transmission

rate is distributed between 250 Mbps and 1200 Mbps. For the

actor and critic networks, we use fully connected DNNs with

2 hidden layers of 250 neurons and ReLU activation function

for good performance and adequate complexity. The replay

memory capacity is 5000 samples. The learning rates are set

as (0.0005, 0.001) for the actor and two critics respectively.

Actor-Critics DRL algorithms are executed using double Intel

i7 quad core 3.4 GHz CPUs, 16 GB Random Access Memory

(RAM), and 512 GB disk. The edge servers are chosen from

the set of M4 Amazon EC2 instances [54]. Amazon M4

instance of type M4.10xLarge includes 40 vCPU, 160 GiB

of memory, and 4 GHz of bandwidth.

Fig. 9 presents the simulation setup and the steps followed

to facilitate resources described as follows.

First Step (Intra-zone resource facilitation in typical sce-
nario): The ZEF acquires the current situation information

from the associated IoT environment and runs the intra-zone

model integrated with ADCPG DRL to facilitate resources for

the IoT applications with the goal of system utility maximiza-

tion.

Fig. 9. Evaluation setup and related steps

Second Step (Inter-zone resource facilitation in compli-
cated scenario): This step is required when outlandish situa-

tions occur or an IoT device roams from one zone to another.

The IEF retrieves the current situation of its associated ZEFs

and runs the inter-zone model in conjunction with CACPG

DRL to facilitate resources for the IoT applications with the

goal of system utility maximization and minimization of the

associated costs.

Third Step (Sensitive applications support through re-
source reservation in exceptional scenario): This step

complements the inter-zone resource facilitation in case of

existence of an IoT sensitive application that needs further

measures to guarantee its latency requirements. The reser-

vation mechanism is executed to assist CACPG in resource

facilitation with minimal latency.

Various evaluations detailed in the next subsections are

conducted to demonstrate I-HARF capabilities. On the one

hand, we compare the performance of I-HARF to resource

allocation methods including DRL-based systems (DQN) in

[30] and Actor-Critic in [34] for the intra-zone facilitation.

On the other hand, I-HARF is compared against resource

allocation methods developed for resource facilitation from

multiple edge-servers including (RA-QoS) in [55] and DDQN-

FL in [56].

B. SPAR Evaluation

SPAR is the normalized successfully processed applications

requests at the edge. It is calculated as the ratio of the

number of the processed applications requests to the total

number requests initiated by the applications. We evaluate

the achieved SPAR for each IoT application in the intra-

zone facilitation mode and study the impact of the possible

outlandish situations on the achieved SPAR in the inter-zone

facilitation. Fig. 10 presents SPAR for each IoT application

in the intra-zone facilitation. The figure shows that I-HARF
maintains SPAR at ratio close to 1 in comparison to other

schemes. To study the impact of the outlandish situations

on the achieved SPAR which mainly impact the capacity of

the resources available at the edge, we plot SPAR against a

variable number of IoT devices while some ZEFs are with
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Fig. 10. SPAR of different IoT applications.

Fig. 11. SPAR vs. number of IoT devices.

randomly changing status. Fig. 11 presents the achieved SPAR

vs. the number of IoT devices. Increasing the number of

IoT devices leads to significant demand for resources. This

overwhelms the corresponding ZEF which becomes incapable

to fulfill the demand due to the insufficient resources. Due to

the poor management in DDQN-FL and RA-QoS, they are not

capable to find the most appropriate alternative ZEF to provide

the required resources to the increasing number of IoT devices.

However, IEF in I-HARF coordinates with its associated ZEFs

to accommodate the resources’ requests of the increasing IoT

devices. I-HARF maintains the SPAR at a high level even

when the number of IoT devices is large. We clearly notice

that I-HARF outperforms other DRL based resource allocation

schemes in the intra-zone facilitation and the systems that

involve allocation of resources from multiple edge servers

specifically at critical system settings with a large number of

IoT devices. The achieved SPAR by I-HARF is justified as I-

HARF incorporates dynamic priority assignment mechanism

supported by the novel DRL scheme, which allows the system

to process different application’ requests successfully at high

rates. With dynamic priority, the system becomes able to

accommodate more requests regardless of the application types

or load. The hierarchical system structure with two-DRL levels

enhance the processing capacity of the applications’ requests

as multiple servers can be involved to fulfill the demands in

a real-time decision-making fashion as in Fig 11.

C. System Utility

The system utility presented in (13) evaluates the efficacy of

I-HARF for both IoT side and edge side. From the IoT side, it

indicates if the QoS requirements of the IoT applications are

satisfied while it evaluates the efficiency of tasks processing at

the edge side. The system utility includes the IoT application

and the associated edge server utilities. The application utility

Ωp(xp) is a function of the QoS metrics achieved by the

application and the edge utility Γj(xp) is found based on the

data processing rate of an edge server for certain application.

In the following, we evaluate the system utility in the typical

and the complicated scenarios. Fig. 12 presents the system

utility vs. the normalized task arrival rate in the typical

scenario. The task arrival rate follows Poisson distribution

from all the IoT applications. Fig. 12 indicates that the utility

decreases as the task arrival rate increases as there is more

demand for the resources at the edge.

Fig. 12. Average system utility in the intra-zone facilitation (Typical
Scenario).

Fig. 13. Average system utility in the inter-zone facilitation (Compli-
cated Scenario).

To study the impact of the outlandish situations and mobility

in the complicated scenario on the achieved system utility

which mainly impacts the resource availability at the edge,

we focus on mobile application (smart transportation) and

some of the ZEFs experience malfunctions. Fig. 13 presents

the achieved system utility vs. the the task arrival rate. It

is shown that the mobility of devices and the failure of the

ZEFs lead to a decline in the achieved utility as the resource

availability becomes limited and competition for resources

between IoT devices escalates. However, I-HARF manages

to maintain the utility at reasonable level in comparison to

other methods and to the typical scenario. We clearly notice

that I-HARF outperforms other resource allocation methods in

the IoT system utility evaluation specifically at critical system

settings in the complicated scenario. In addition, we notice

that I-HARF maintains the system utility in the complicated

scenario close to the one in the typical scenario and is within

the range of 10% difference. The rationale for the ultimate

performance of I-HARF is that it focuses on both application

and edge utilities in the developed intra-zone model and in-

corporates transit and adaptation costs in the inter-zone model.
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Considering both utilities makes the system more efficient in

matching the applications QoS requirements with the available

resources at the edge. Additional costs considered in the inter-

zone model causes the utility functions to be more practical

as migrating the processing of the applications’ requests from

one server to another is not granted without considering the

time and coordination required for it.

D. Latency of the Sensitive Applications
In this evaluation, we demonstrate I-HARF capability to

support sensitive applications in the exceptional scenario and

guarantee their latency requirements. We focus on the emer-

gency response as a typical sensitive application. Latency is

picked for evaluation here as it is the most critical QoS metric

for these applications. Fig. 14 presents the average latency of

the ER application vs. its number of tasks to be processed. The

figure shows that I-HARF keeps the latency of the application

below the threshold which is 500 ms despite the outlandish

situation. The tail (99th percentile) latency of the emergency

response application is plotted in Fig. 15. This evaluation

Fig. 14. Average latency of ER application.

Fig. 15. Tail (99th Percentile) latency of ER application.

clearly demonstrates the efficacy of the resource reservation

mechanism. Latency of the sensitive applications such as ER

plotted in Fig. 14 demonstrates I-HARF capability to accom-

modate sensitive application additional requirements as these

applications cannot tolerate additional latency that might be

encountered due to coordination in the inter-zone facilitation.

The advantage of the developed reservation mechanism in

I-HARF is clearly demonstrated in the latency evaluation.

Reservation of resources for the sensitive applications in the

inter-zone facilitation allows these applications to process their

data in timely manner in comparison to schemes that leave the

resource facilitation to the existing environment conditions that

cause intolerable latency by the application.

E. I-HARF Convergence

We conduct this evaluation to demonstrate the convergence

performance of I-HARF. The convergence is evaluated in the

typical and complicated scenario using the system utility. Fig.

16 shows the achieved system utility against the number of

epoches in the typical scenario with task arrival rate of 0.8.

We notice that at the beginning, the utility is low because

DRL agent does not have enough experience to make rational

decisions for resource facilitation. With the increase in the

number of epoches, the utility increases gradually until a rela-

tively stable value is reached. Fig. 16 also shows that I-HARF
converges faster than other DRL based frameworks. The plot in

Fig. 17 presents the system utility in the complicated scenario.

The figure indicates that I-HARF converges faster than the

other frameworks and achieve higher system utility.

All the evaluations reveal the advantages of I-HARF design

principles to build a resource facilitation framework that is

adaptive to all possible situations. These principles include: 1)

dynamic priority which is determined in real-time to match

with the application current data volume; 2) ADCPG DRL

which is capable of resolving the multi-dimensional intra-zone

resource facilitation problem; 3) hierarchical resource facilita-

tion using CACPG DRL which is able to facilitate resources

in complicated scenarios using the inter-zone facilitation; and

4) the resource reservation mechanism which manages to

guarantee QoS requirements for sensitive applications in the

inter-zone facilitation.

Fig. 16. Convergence of system utility in the typical scenario.

Fig. 17. Convergence of system utility in the complicated scenario.

VI. CONCLUSION

The paper has tackled the resource facilitation problem

in Edge-IoT environment with consideration of outlandish

environment situations. We proposed intelligent, adaptive and

hierarchical I-HARF framework which comprises intra-zone
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and inter-zone resource facilitation schemes. Intra-zone facil-

itation adopts dynamic priority based model which is solved

by novel ADCPG DRL scheme. Inter-zone facilitation exploits

the intra-zone facilitation policy and situation awareness to

develop resource facilitation scheme that is adaptive to the

experienced mobility and outlandish situations. Both facili-

tations maximize the application and the edge utilities. In

addition, I-HARF employs a reservation mechanism that ex-

ploit prediction to reserve resources for sensitive applications

that cannot tolerate experienced delays due to the outlandish

situations and consequence of coordination between ZEFs

and IEF. Evaluation results demonstrate I-HARF’s capabilities
including maximizing SPAR and system utility, guaranteeing

latency for sensitive applications, and fast system convergence.
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