DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with
Deep Learning

PINGPING CAI, University of South Carolina, USA
SANJIB SUR, University of South Carolina, USA

3D Point Cloud Data (PCD) is an efficient machine representation for surrounding environments and has been used in many
applications. But the measured PCD is often incomplete and sparse due to the sensor occlusion and poor lighting conditions. To
automatically reconstruct complete PCD from the incomplete ones, we propose DeepPCD, a deep-learning-based system that
reconstructs both geometric and color information for large indoor environments. For geometric reconstruction, DeepPCD uses
a novel patch based technique that splits the PCD into multiple parts, approximates, extends, and independently reconstructs
the parts by 3D planes, and then merges and refines them. For color reconstruction, DeepPCD uses a conditional Generative
Adversarial Network to infer the missing color of the geometrically reconstructed PCD by using the color feature extracted
from incomplete color PCD. We experimentally evaluate DeepPCD with several real PCD collected from large, diverse indoor
environments and explore the feasibility of PCD autocompletion in various ubiquitous sensing applications.

CCS Concepts: « Human-centered computing — Ubiquitous and mobile computing systems and tools; « Computing
methodologies — Machine learning approaches.

Additional Key Words and Phrases: Point Cloud Data, Graph Convolutions, Vision Transformer, Generative Adversarial
Networks

ACM Reference Format:
Pingping Cai and Sanjib Sur. 2022. DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2, Article 43 (June 2022), 29 pages. https://doi.org/10.1145/3534611

1 INTRODUCTION

Understanding and interpreting the surrounding 3D environments is a challenging machine perception problem
[1, 2], and such perception enables many ubiquitous sensing applications in robotics, drones, autonomous
driving, and virtual or augmented reality (VR/AR) [3-6]. To help machines understand 3D objects, shapes, and
environments, researchers have developed multiple data structures for machine representation, e.g., 3D Voxels
[7], Meshes [8], and Point Clouds [9]. Among them, Point Cloud Data (PCD) is one of the efficient and popular
representations and has been used in many research and commercial applications: Mobile robot simultaneous
localization and mapping (SLAM) [10]; Object tracking for AR applications [11]; Real-time mapping of floors and
surfaces during construction [12]; Vehicle detection in autonomous driving [5]; Object detection and classification
in Structural Engineering [13]; Digital elevation models construction in archaeological applications [14]; etc.

A PCD is a set of points in 3D Cartesian coordinates embedding the depth and color information of the objects
and environment [9]. It can effectively represent 3D objects with simple data structure compared to Meshes, and
it can represent finer geometric structures with accurate point positions compared to Voxels. To obtain a PCD, we

Authors’ addresses: Pingping Cai, pcai@email.sc.edu, University of South Carolina, USA; Sanjib Sur, sur@cse.sc.edu, University of South
Carolina, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.

2474-9567/2022/6-ART43 $15.00

https://doi.org/10.1145/3534611

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

HTTPS://ORCID.ORG/0000-0002-1487-1443
HTTPS://ORCID.ORG/0000-0002-5711-3087
https://doi.org/10.1145/3534611
https://orcid.org/0000-0002-1487-1443
https://orcid.org/0000-0002-5711-3087
https://doi.org/10.1145/3534611

43:2 « Caiand Sur

use optical devices, such as RGB-D cameras and LiDAR sensors, to scan an environment from different vantage
points manually or automatically [15]. However, we face three major challenges in scanning and obtaining a
complete, high-quality PCD from an indoor environment: (1) It requires a lot of time and effort from humans
or machines for scanning, especially in an environment with large scales; (2) It requires precise planning of
the scan trajectories so that the device can cover all environmental surfaces and features; and (3) It requires
powerful, long-range camera and depth sensors. Even by solving these challenges, we may not obtain a complete,
high-quality PCD due to the sensor occlusion and poor indoor lighting conditions. The resultant PCD could be
sparse and incomplete, missing a lot of important geometric and color information about the environment, and
using it in 3D sensing applications will result in significant performance degradation [16]. Thus, reconstructing
complete, high-quality PCD from incomplete, sparse, or low-quality ones is of vital importance.

Recently, a few research works proposed to use machine learning models to reconstruct high-quality PCD
from low-quality inputs [17-20]. Although these methods are effective, they are designed for and tested on
the PCD of small 3D objects, such as tables, cars, bikes, etc., where each PCD comprises thousands of points
only [21-23]. But for many vision-based ubiquitous sensing applications, we need high-quality PCD of large
indoor environments to predict accurate locations and poses, facilitate device navigation, and understand scenes.
Besides, the existing methods focus on global shapes and features of small objects during reconstruction. But
PCD reconstruction of a large environment requires an emphasis on both the local and global structures, and
local geometric information could get buried under the global features during feature extraction and learning.
Thus, training existing networks with indoor PCD as input not only would be cumbersome but also may often
fail to converge. (See Fig. 6 for an example where existing models fail to reconstruct the shape of walls).

PCD with only Geometric Structure

(e) : 0

Fig. 1. (a) Ground truth PCD with only geometric structure. (b) Its incomplete structure. (c) Output of DeepPCD with only
geometric structure. (d) Ground truth PCD with geometric structure and color. () Its incomplete structure and color. (f)
Output of DeepPCD with structure and color.

We propose DeepPCD, a deep-learning-based system that solves the above challenges for high-quality PCD
reconstruction of large indoor environments. Rather than asking the user to spend significant time scanning the
entire environment in detail, DeepPCD lets the user freely scan within a short amount of time and obtain a
coarse-grained, low-quality PCD with many missing parts and features. Then, by processing this PCD through
learning based reconstruction models, DeepPCD outputs a fine-grained, high-quality, and complete PCD. Fig. 1
shows an example of ground truth PCD, its incomplete/low-quality version, and DeepPCD’s output. For mobile

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:3

and ubiquitous applications that rely on PCD for vision-related tasks, the quality of the PCD determines the
applications’ performance. Successfully solving this problem can bring significant improvements for these
ubiquitous applications. Our system is designed as a preprocessing module for these applications and can be
deployed easily without additional software modifications.

To design the reconstruction models, DeepPCD leverages three key ideas: (1) Although PCD is a collection of
unordered set of points, indoor buildings mostly consist of simple geometric structures, such as straight walls,
smooth floors, etc.; so, many points could be combined and approximated as a 3D plane. (2) A large environment
could be split into multiple parts, and each part could be predicted independently and merged iteratively to
reconstruct the full environment; this ensures that not only the reconstructed PCD preserves the accurate local
and global structures but also the model converges during training. (3) Walls, floors, and many large objects from
similar environments will likely share similar colors; so it may be feasible to infer the missing colors of one PCD
from learning color from several examples of ground truth PCD. Although these three ideas are intuitive, it is
challenging to synthesize them coherently into a deep learning framework. DeepPCD proposes a novel design
that outputs high-quality PCD incorporating all three ideas.

At a high-level, DeepPCD first reconstructs the geometric structure of the incomplete PCD and then reconstructs
its color; so, it trains two models in sequence, where the output from the geometric reconstruction is used as the
input to the color reconstruction. For geometric structure reconstruction, DeepPCD divides the entire PCD into small
patches and uses PointNet++ [24], a graph convolution network, as a backbone to extract the local patch features.
This division approach is directly following intuition (2) so that DeepPCD can extract important local patch-level
features with high accuracy. Then, these patch features are fed into a customized 2D Vision Transformer [25], that
extracts the global shape features. DeepPCD then designs a Plane Point Generator to populate initial 3D points
for each patch, and guided by the local patch features, it predicts the point displacements, shifts each point to the
target position, and compensates the missing portions using a Multi-Layer Perceptron (MLP). The Plane Point
Generator follows the intuition (1) to approximate multiple unordered set of points into 3D planes to facilitate
the reconstruction process. Finally, DeepPCD merges these reconstructed parts together, and guided by the global
features, it uses another MLP to reconstruct a structurally complete PCD. For color reconstruction, DeepPCD uses a
conditional Generative Adversarial Network (cGAN) to infer the color of structurally complete PCD. The choice
of cGAN is motivated by intuition (3) where the network could look for similar-looking indoor shapes in training
datasets to generate the missing color of shapes at run-time. To this end, DeepPCD first extracts the conditional
features from the incomplete color PCD using a PointNet++ backbone. Next, given a PCD without color, DeepPCD
uses an MLP based encoder to encode the geometric features and merges them with the conditional features.
Finally, an MLP based decoder infers the full color of the structurally complete PCD.

We implement and evaluate DeepPCD with two datasets: (1) Real dataset collected by us using an AR smart-
phone, and (2) Open-sourced Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset. During training, we feed
pairs of incomplete and ground truth PCD into DeepPCD, and during testing, we evaluate the efficacy of Deep-
PCD in reconstructing both the geometric and color information of unseen, incomplete PCD. To simulate the
incompleteness, we randomly generate holes and distortions in the PCD. Besides, we evaluate the benefit from
DeepPCD in 3 ubiquitous applications: Localization, navigation, and object detection. Our real dataset consists of
3000 PCD samples from 50 different indoor environments, which are used to train our machine learning models
and benchmark the effectiveness of the design components. We find that DeepPCD reconstructs the PCD with
Chamfer Distance (ChD)! ranging from 0.00019 to 0.04189 (smaller the better) across all datasets, and the output
closely resembles the ground truth. In contrast, the base-line methods have difficulties in reconstructing correct
shapes and the missing portion of PCD. Besides, for the color reconstruction, the reconstructed PCD has an
average similarity score ranging from 0.64 to 0.96 (1 is a perfect match) w.r.t. the ground truth PCD, and the

1ChD is the average squared distance among two closest points between two point sets: A metric to determine PCD quality [18, 20, 23, 26, 27]

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:4 + Caiand Sur

reconstructed color PCD is almost similar to the ground truth for many cases. For indoor applications, DeepPCD
can predict the locations of a device based on the reconstructed PCD with less than 0.01 m median error and
track a device with less than 0.04 m median error. In contrast, incomplete PCD typically has median localization
and tracking errors of 0.05 m and 0.62 m, respectively. DeepPCD can also accurately retrieve objects with a failure
rate of less than 15% only.

In summary, we make the following contributions: (1) We design a customized deep learning framework for
automatic PCD shape completion of large indoor environments by re-thinking existing models. To the best of
our knowledge, DeepPCD is the first learning based system that facilitates the reconstruction of a large indoor
PCD. (2) We design another customized learning framework to automatically assign colors to the PCD and use
them to improve the performance of ubiquitous sensing applications. Our results demonstrate that DeepPCD is
generalizable in many diverse indoor environments across multiple buildings. To catalyze the PCD based research,
we have open-sourced the measured dataset and DeepPCD implementation through our project repository [28].

2 BACKGROUND AND CHALLENGES
2.1 Point Cloud Data

A PCD is represented by a set of points in the 3D Cartesian coordinates [x, y, z], which captures the environ-
ment’s geometrical shape. Each point is also associated with 3 intensity values, [r, g, b], representing their color
information. Such data representation stores information of 3D environments directly and can be processed or
manipulated by various applications [9]. A key challenge is to obtain PCD with high quality and resolution, and
quality and resolution directly affect the performance of many vision-based sensing applications. For example, if
the measured PCD is incomplete during movement, the PCD based localization and tracking algorithms [29]
could not extract enough distinct features to estimate the current pose or track the device during navigation.
Typically, we can improve the PCD quality and resolution by scanning the environment for a longer duration.
However, this method not only requires more time and effort but also does not guarantee that PCD will be
complete or has high quality due to the camera occlusion, poor lighting conditions, and limited measurement
range. Besides, to process and extract information from PCD using deep learning models, we face the following
two challenges: (1) Since PCD contains an unordered set of points, the model should be robust to any sequence
of input points; such properties are unavailable with traditional convolution based models. (2) The model should
be able to extract geometric information among a cluster of points efficiently.

2.2 Challenges for Indoor Point Cloud Completion

A key challenge for indoor PCD completion is to efficiently extract geometric information from the incomplete
PCD. Although past works have explored reconstructing high-quality, complete PCD, they mostly work with
small 3D objects with thousands of points. For example, VoxelNet [7] converts the PCD to grids and then uses
a 3D Convolution Neural Network (CNN) as the feature extractor to improve the object’s shape. However, the
computation and memory cost for voxel-based models grows cubically with the number of input points [30].
Besides, voxelization can cause a loss of information, even for PCD of small objects. These challenges will amplify
with the indoor environments as they not only have large dimensions, requiring millions of points for PCD
representation, but also have widely different structures, disparate lighting conditions, and perspective mismatch.
Researchers have also proposed graph convolution networks to directly extract good data locality and regularity
from the PCD. For example, PointNet++ [24] designs a feature extractor with a graph based convolution kernel
and a Farthest Point Sampling (FPS) strategy that samples a subset of points farthest away from each other.
Point-GNN [31] extends this method and efficiently encodes the point cloud with a nearest-neighbor graph to
extract local relationships among points. It achieves a good reconstruction for PCD of small objects by focusing on

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:5

the finer-grained, local features. But the reconstruction of large environments needs emphasis on both the local
and global features. Besides, PCD completion is an ill-posed problem [32], i.e., multiple possible reconstruction
outputs could fit one incomplete input. So, without prior knowledge and correct guidance, graph convolutions
alone may not be sufficient for PCD completion.

3 SYSTEM DESIGN
3.1 Overview

DeepPCD aims to reconstruct complete, high-quality PCD from incomplete ones to improve the overall perfor-
mance for many PCD-based ubiquitous sensing applications, such as device localization, robot navigation, and
object tagging in 3D scenes for VR/AR. Since DeepPCD can directly output a high-quality PCD with the same
data structures and formats as the original PCD, all these applications could run without additional software
modifications. But it will improve the applications’ overall performance by substituting the original PCD with the
reconstructed ones. Fig. 2 shows the complete system pipeline. It consists of two main components: A geometric
structure reconstruction network and a color reconstruction network. The components run in steps where the
geometric network first reconstructs the full structure of the incomplete PCD, and then the color network assigs
the colors to the points. DeepPCD is designed in such a two-step framework because we cannot pre-assign
the color to each point before knowing their final geometric position. Besides, a model shows the difficulty in
convergence when we attempt to merge the geometric and color reconstruction into one big network to learn
the position and color at the same time. We now describe these design components in detail.

8m Height:
fio Fﬂ- 34m -
i '@ & | | | | Color Inference
Y i i
b
Split to Patches 1]
Local Features with Plane Point Conditional
=
©
. ' '
.
i Global Features with Patch and Global cGAN based
e Vision Transformer
& - -
= il truct: R tructi
Input Point Cloud Data (PCD) Geometric Structure Reconstruction Geometrically Complete PCD Fully Reconstructed PCD

Fig. 2. System overview of DeepPCD.

3.2 Geometric Structure Reconstruction

The core purpose of the geometric structure reconstruction network is to reconstruct high-quality structural contents
from incomplete, low-quality input PCD. Since an indoor PCD contains many points, it is challenging to efficiently
extract features from the large, incomplete PCD and reconstruct it with arbitrary input point order. One solution
could be to split the PCD into small parts, use the existing voxel-based or point-based models for reconstructing
each part, and geometrically merge them to output the whole PCD. However, this method does not preserve the
global geometrical information, and the final output may look distorted at the junction area of each patch. To
overcome these challenges and better preserve both local and global geometric information, we propose a novel
patch based reconstruction network that splits the input PCD into several patches, adaptively extracts the patch
features by considering both their local and global structures, and merges and refines them. Once the PCD is split
into small patches, DeepPCD passes them into two network blocks: (1) A feature extraction block that extracts
the patch-level features as well as the global-level features, and (2) A global reconstruction block that extracts
plane information for generating the initial points for small patches, predicts the true point locations using the
local and global features, and merges them to produce the final output PCD. Fig. 3 shows the overall geometric
structure reconstruction network.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:6 « Caiand Sur

Patch Features
3 768 512 256 64 3

Feature ‘ L+ | ‘ S o o A 5 o
w > s = b= ==
% Extractor |]+] MLP 5] ESRNETEY A
& 3
Patch 1 X 4 o |8 il s
. Layer Norm o L = 4
. . : : g Patch Reconstruction
4 Shared T
i Multi-Head @
o Weights Patch Position Salf Atiantion o , Global Featues e s o
v Features Embedding Ik v g F) meal NN E o
Layer Norm (] Z o] 2 = = =2 &
s » Feature v v] =, B S (L =
L Z 3 c
i Extractor]+] Embedded Patches 8| = R
Patch N Graph Convolutions Vision Transformer Sl R e
. £y roay o ®
B T n v .
% =
. = Patch1 @ o
Predictor ~ Patch 1 = g >
@ 0]
) . 3 ° o
2y > ¢ > S > o —F» g —»
23 ° 2 . @
53 g g
[Sh=1 > =
) S g e
PatcH N Patch N Reconstructed PCD
Rotation
3 64 128 3 384 768 1024 512 256 9 Matrix
3 2 E
; % Q § 128 % 256 % 384 § 384 ; 512 % 768 Pooing_768 % -ﬂé_
Sampled Points Patch Features "g 5
and Features & L . .)
Feature Extractor Point Features Patch Features Rotat|0n MatrIX Pred|ct0r

Fig. 3. Geometric structure reconstruction network of the DeepPCD system.

3.2.1 Feature Extraction. To extract the patch and global features, DeepPCD uses a customized Graph Convolution
Network, derived from PointNet++ [24], and a customized Vision Transformer (ViT) network [25].

Local Features Using Graph Convolution Network: A commonly used feature extractor for many Computer
Vision related tasks is the convolution network [33]. However, it is difficult to extract features from a 3D PCD
using traditional convolution because a point may exist in any 3D location sparsely [34]. Besides, traditional
convolutions, such as 3D CNN [35], do not meet two key requirements for PCD feature extraction: (1) The
extractor needs to be point permutation invariant, i.e., it should be able to extract features independent of the
input order of points, and (2) The extractor should be able to learn not only the individual point features but also
the geometrical relationship between points.

To meet these requirements, DeepPCD proposes to use a customized Graph Convolution Network as the
local feature extractor, built atop the existing PointNet++ model [24]. Given an input PCD with N patches,
a straightforward approach could be building N different local feature extractors. Although independently
extracting the patch features could be sufficient for individual patch reconstruction, they may not help for
capturing the global relationship between patches. To capture these global relationships, DeepPCD proposes to
share the weights of graph convolution between the patch feature extractors (see Fig. 3). This ensures that not
only the network learns the local features per independent patches and is robust to any number of patches, but
also all patch features are tuned at the global scale. But sharing the extractors’ weights is challenging because
points within different patches reside in separate relative coordinate systems; so, their absolute values are not
tuned to the global scale. For example, the 1% patch may span the coordinates (0, 0,0) to (0.25,0.25, 1) while
the N** patch may span the coordinates (0.75,0.75,0) to (1,1, 1). This coordinate gap would confuse the feature
extractors and increase the difficulty of training the shared-weight extractor. Thus, DeepPCD designs a point

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:7

re-scaling technique by scaling each patch coordinate value to [0, 1]. First, these scaled patches are fed into the
shared-weight feature extractors to extract the local patch features. Then, these local patch features are used in
the reconstruction module to guide and reconstruct local patches (Section 3.2.2). Finally, after reconstructing all
local patches, they are scaled back to their true coordinates. The output of this module consists of local patch
features tuned at the global scale. Table 1 summarizes the local features extraction network parameters.

Table 1. Local feature extraction network parameters. MLP: Multi-Layer Perceptron; PConv: Point Convolution with Farthest
Point Sampling; ReLU: Rectifier Linear Unit. F + 3: F is the feature dimension, and 3 is the (x,y,z) coordinate value of the point.

Layer MLP1 | MLP2 | PConvl | MLP3 | MLP4 | PConv2 | MLP5 | MLP6 | MaxPool
Number of Points N N N/4 N/4 N/4 N/8 N/8 N/8 1
Input Channels 3 64 128 128+3 | 256 384 384+3 | 512 768
Output Channels 64 128 128 256 384 384 512 768 768
Activation Function | ReLU | ReLU ReLU | ReLU ReLU | ReLU

Global Features Using Vision Transformer: While the above local features encode each small patch, simply
merging them may not be suitable for a whole PCD, spanning multiple patches. This is because the local features
are still more focused on finer shape reconstruction at a local scale and may be unable to express the global shape
of the full PCD. To this end, DeepPCD designs a customized 2D ViT for extracting global features from all patches
to refine the PCD reconstruction. The purpose of 2D ViT is to combine the patch-level local features and learn
the relationship between them to form a PCD-level global features. This global feature could then be used to
guide the patch merging process later, ensuring that not only each patch will be placed at the correct location but
also the final output will be a smoothly merged PCD. Traditionally, ViTs are designed for 2D computer vision
tasks, such as 2D image classification and segmentation [25], where it splits the image into a fixed number of
patches and uses a shared convolution kernel to extract the local features. Then, a relative positional embedding
based attention mechanism helps ViT to extract the overall global features. With this attention, ViT captures
better global features and consequently outperforms traditional CNN [25].

DeepPCD customizes and extends the ViT framework to work with the 3D patches for the PCD. The traditional
ViT framework uses a 2D positional embedding with a fixed number of patches. However, PCD from different
indoor environments have different sizes and shapes and can have different number of patches. So, the existing
fixed positional embedding strategy does not work. To this end, DeepPCD proposes a novel positional embedding
strategy, inspired by the 1D Sinusoidal positional embedding in speech data transformer [36], that adaptively
fits any number of patches inside the ViT framework. The 1D Sinusoidal positional embedding is given by [36]:
PEy2; = sin(x/10%/?) and PE, 5;1; = cos(x/10%/9), where x is the 1D position, and i € [0,d/2] is the index of
each embedding feature with a maximum dimension of d. We extend this positional embedding strategy to make
our network aware of the relative position of each patch, independent of the number of patches. We follow
the same criteria in [36] to ensure that (1) each patch has a unique encoding for its 2D position, and (2) the
embedding difference between any two positions is consistent with their patch distance. Specifically, we enable a

2D Sinusoidal positional embedding with the following:

PE. y4i = sin(x/10'6/%) x sin(y/lOwi/d); PEy yais1 = sin(x/10'67/%) x cos(y/1016i/d); O
. . . . 1
PEy yaiv2 = cos(x/10%/?) x sin(y/lOlé’/d); PEy y4i+3 = cos(x/10"/%) x cos(y/1016’/d)

where x, y is the 2D position, and i € [0, d/4] is the index of each embedding feature with a maximum dimension
of d. These functions ensure that each dimension of the positional embedding corresponds to a sinusoid, similar
to [36], and the wavelengths form a geometric progression from 27 to 10* x 27. Different from [36], we use 4
elements as basic encoding tuples because we have 2D positions. So, Equation (1) can encode patches at any 2D

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:8 « Caiand Sur

position, and any fixed offset PE, , can be expressed as a linear function of PE,. ;. It enables DeepPCD to adapt
to a variable number of input patches, still ensuring their features are spatially located at the correct global scale.
Table 2. Global feature extraction network parameters. MLP: Multi-Layer Perceptron; GeLU: Gaussian Error Linear Unit.

Module Multi-Head Attention Normalization MLP
Layer Query | Key | Value | Context | Layer Norm | MLP1 | MLP2
Input Channels 768 768 768 768 768 768 1024
Output Channels 768 768 768 768 768 1024 768
Activation Function GeLU

After adding 2D positional embedding with patch features, we feed them to a transformer encoder consisting of
normalization, attention, and MLP layers. This encoder network is the same as the original ViT and is designed to
extract the global features from the local patch features. Specifically, our transformer encoder uses one head self
attention module, which consists of 3 fully connected layers to generate Query, Key, and Value, respectively. For
each patch, its Query vector is multiplied with the Key and Value vectors of all patches to calculate the attention
scores and context output, which in turn, fed into a fully connected layer to generate the attention output. This
output is concatenated with the original embedded patch feature and fed into an MLP layer to generate the final
output. The output of the ViT module is the global feature, which is fed into the reconstruction block to guide
the final reconstruction process. Table 2 summarizes the global features extraction network parameters.

3.2.2 PCD Structure Reconstruction. Once DeepPCD extracts the patch and global features, it employs the
structure reconstruction block leveraging a plane point generator and point displacement prediction networks.

Table 3. Rotation matrix prediction network parameters. MLP: Multi-Layer Perceptron; ReLU: Rectifier Linear Unit.

Layer MLP1 | MLP2 | MLP3 | MLP4
Number of Points N N N N
Input Channels 1155 | 1024 512 256
Output Channels 1024 512 256 3%x3
Activation Function | ReLU | ReLU | ReLU

Plane Points Generator: Since the PCD completion task is an ill-posed problem [32], prior knowledge could
help guide DeepPCD for better outputs. To this end, we introduce the plane prior and design a plane point
generator to populate good initial points and facilitate the reconstruction process. In Cartesian coordinate space
(x,y,2), a plane can be expressed as: a* (x —x9) + b * (y —yo) + ¢ * (z — z9) = 0, where [xo, yo, 2] is the coordinate
of a point on the plane, and [a, b, c] is the normal vector of that point. Ideally, given a point and its normal, we
can generate any number of points on this plane and use them as our initial 3D points for reconstruction, but
the method will fail for shapes with multiple planes, such as the junction between a wall and ground. To this
end, we first generate predefined grid points on the XY plane and then rotate and transform them to construct
different 3D planes. For rotation, we use a 3X3 rotation matrix and multiply it with the point coordinates. To
automatically learn such rotation matrix, we randomly sample N points inside an incomplete patch, extract their
features, and use an MLP network that takes these sampled points’ features and local patch features as input
and outputs the predicted rotation matrix. The rotation matrix is then multiplied with the predefined grids to
populate the rotated 3D plane points, which will be used for the final reconstruction. Table 3 shows the detailed
network structure for predicting the rotation matrix.

Patch and Global Reconstruction: The generated plane points for each patch should be moved into their true
position to complete the input patches. A strawman approach could be feeding these points into a network

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:9

Table 4. Local and global point displacement prediction network parameters. MLP: Multi-Layer Perceptron; LNorm: Layer
Normalization; ReLU: Rectifier Linear Unit; Tanh: Hyper-tangent activation function.

Layer MLP1 | MLP2 | LNorm | MLP3 | MLP4
Number of Points N N N N N
Input Channels 768+3 | 512 256 256 64
Output Channels 512 256 256 64 3

Activation Function ReLU Tanh

and letting themselves regress to the right coordinates. However, without additional local and global shape
features to guide the reconstruction process, the network cannot learn the position transformation. So, instead of
using a direct regression, we design a local point displacement prediction network, similar to [27], that merges
the local shape feature with the point coordinates and learns the accurate transformation to identify where
those points should move. So, we duplicate the patch feature vector and concatenate them with initial plane
points populated by the plane point generator. Then, we feed them into an MLP with a Hyper-tangent (Tanh)
activation function to predict the point displacement for each point. Finally, we add the original point position
with predicted displacement to generate their final coordinates. Ideally, if we can correctly complete all patches,
then a simple merging strategy would be enough to reconstruct the final output. However, as each small patch
does not contain the global information, the reconstructed patches still need to be refined by a global module.
So, we also use a global point displacement network, with the same architecture as the local displacement, to
merge all local patches, refine them, and produce the final structurally complete PCD. Note that both patch and
global point displacement prediction networks take 768+3 dimensional features as input, where 768 is the feature
dimension, and 3 is the (x,y,z) coordinates of the points. Also, the activation function for displacement prediction
is Tanh since the displacement could be in the range [-1,+1] in any direction. Table 4 summarizes the detailed
network structure for both the local and global point displacement prediction networks.

3.2.3 Structure Loss Function. All the network blocks rely on their loss functions to tune the convolution/MLP
weights appropriately and train themselves. We use the Chamfer Distance (ChD) between the ground truth and
reconstructed PCD as the loss function [26]. Chamfer Distance measures the average squared L2-norm distance
among two point sets and is defined as:

1 1
Low(S52) = 5 D min llp = pallf+ 5= D7 min lipz = pill @
P1ES P2€S;
where Sy, S, are the two point sets, Ny, N, are the number of points in two point sets, and p;, p, are the Cartesian
coordinates of the points. Although minimizing ChD loss ensures that the location difference of the points
between the ground truth and reconstructed PCD are minimized, it alone does not guarantee to preserve the
accurate geometric structure of each patch or the global structure of the reconstructed PCD. To preserve better
local and global structures, we propose an additional Patch loss based on the ChD of the reconstructed patches:

1
Lpatch = N Z Lcwp(Pi, Gi) (3)
P

where N, is the number of patches, P; is the reconstructed patch, and G; is its ground truth patch. Furthermore,
to constrain the predicted rotation matrix and ensure that it follows the fundamental property (i.e., R xR =1,
where R and I are the Rotation and Identity Matrices, respectively), we introduce the Rotation loss as:

T
Lgor = |1 = R X RI[; (4)
The combined loss function of the geometric structure reconstruction network is then determined as:

LGeometry = Ackp - Lenp + Ap - Lpateh + AR + Lror (5)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:10 « Caiand Sur

where, Acpp, Ap, and Ag are the network hyper-parameters that balance the weight of the global ChD, Patch,
and Rotation losses, respectively. They represent the networks’ focus on patch, rotation, and global structure
adjustments during the reconstruction. Our goal is to find the best set of values for these parameters, and
determining the exact values is tricky and difficult. But intuitively, the value for Acyp should be the largest since
it is responsible for accurate reconstruction of global 3D shapes. We will discuss the hyper-parameters tuning
in more detail in Section 4. This network, with its optimized loss function, enable DeepPCD to fill up the missing
portion of the incomplete PCD and reconstruct an accurate structurally complete PCD.

3.3 Color Reconstruction

For many vision-based ubiquitous applications, such as device localization, robot navigation, etc., geometric
structure information is sufficient to enable their functionalities. However, other applications, such as 3D object
tagging in VR/AR, would require both the geometric structure and the color information of the objects and
environments. Thus, DeepPCD also aims to reconstruct the color of the incomplete PCD leveraging the output from
the geometric structure reconstruction and using the color reconstruction network.

3.3.1 Color Reconstruction Network Design. Our network design is intuitive: Walls, floors, and many large
objects across different environments in a building or set of buildings will likely share similar colors. So, we
could infer the missing colors of the PCD based on the partial color and geometric structures. To this end,
DeepPCD leverages a cGAN framework, similar to the existing methods [37-39]; but different from their works,
it uses the incomplete color PCD as additional information to guide the color reconstruction. We found that
cGAN fits the color reconstruction requirements better since it can look for similar shapes in training datasets
and generate colors at run-time by extracting color features from incomplete color PCD and then use them as
guidance (conditional feature) for predicting the color of geometric reconstructed PCD. At a high-level, DeepPCD
trains a cGAN framework by leveraging hundreds of incomplete color PCD and the corresponding ground truth
(completely colored PCD). cGAN uses a Generator G to learn the association between the incomplete color to the
ground truth and uses a Discriminator D that trains G to learn better association at each epoch [40]. During the
run-time, when cGAN has been trained appropriately, G can estimate the PCD colors without the ground truth.

GAN Fundamentals: The traditional GAN is designed to learn the regularities and patterns in the input data
and then generate new datasets that resemble the input [41]. GAN uses two models for training: A generative
model G that learns the input data distribution and tries to generate new datasets, and a discriminative model
D that classifies whether the generated dataset is real or fake. The training procedure for GAN is a zero-sum,
two-player, adversarial game [41], where G tries to maximize the probability of D classifying the generated
dataset wrongly, and D tries to minimize this probability. The conditional version of the GAN (cGAN), is trained
by feeding conditional data to both G and D, so that the generated datasets are restricted to only a certain domain
[40]. Therefore, in DeepPCD, we propose a cGAN based model, where the ground truth datasets are only restricted
to the indoor PCD, and the generated datasets are conditioned on the completely colored PCD.

Adapting cGAN for 3D PCD: Directly applying the cGAN, however, is infeasible since it is designed for 2D
images, but the datasets in DeepPCD are 3D PCD. Thus, we customize the traditional cGAN [40] and design
appropriate G and D for indoor PCD. Fig. 4 shows the overall structure of the color reconstruction network.
For the Generator G design, we first use PointNet++ [24] as the backbone to extract 1D conditional features
from the incomplete color PCD. Simultaneously, we design a feature encoder-decoder based network to predict the
color of each point in the structurally complete PCD. Note that the feature encoder and decoder should meet the
following requirements: (1) The networks should not change the number of points in the input PCD, and (2) They
should be flexible to process different numbers of points to accommodate various indoor environments. To meet
these requirements, we design an MLP based encoder and decoder which can extract high level features from

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:11

Table 5. Generator network parameters for PointNet++ feature extractor. MLP: Multi-Layer Perceptron; PConv: Point
Convolution with Farthest Point Sampling; ReLU: Rectifier Linear Unit; N1 = N X Sampling rate; N2 = N1 X Sampling rate;

Act. Func.: Activation Function.

Layer MLP1 | MLP2 | PConvl | MLP3 | MLP4 | PConv2 | MLP5 | MaxPool
Number of Points N N N1 N1 N1 N2 N2 1
In Channels 6 64 128 131 256 384 387 512
Out Channels 64 128 128 256 384 384 512 512
Act. Func. RelLU | ReLU ReLU | ReLU ReLU
Ground truth PCD Incomplete PCD
Generator kb -
PointNet++
;(e,?;lé:, = Conditional Feature : ¢
<@
©
Incomplete PCD o w g
Discriminator 5 =
T <
E0C> (O]
Encoder —| —
Reconstructed PCD
(without color) Recongtructed PCD
(predicted color)
6 64 128 ®
5 2 131 384 2 £
g §Ial>l;§_ﬁ = §_512 q 6 64 128 256 512 768 Conditional
§ g % 2 g g g ; E oD F:aglure PointNet++
F = <— Feature
PointNet++ Feature Extractor = £ e Extractor
3 32 64 12 = 256 1zs 3 2&2’"—"
L1 Comect Encoder and Decoder Discriminator .

Fig. 4. Color reconstruction network of the DeepPCD system.

variable input sizes. But preserving the low level features is also important to reconstruct the color of individual
points in the PCD. So, we employ a densely connected architecture and concatenate the encoder output with
the intermediate outputs of previous MLP layers and max pooling layer. Finally, after merging the conditional
feature with encoded features, we use an MLP based decoder to predict the color of each point.

For the Discriminator D design, we first use an MLP based network with global max pooling to extract the
1D global information from the generated color PCD and the ground truth PCD. Then, we concatenate it with
the conditional feature generated by the PointNet++ and feed them into another MLP network. To output the
classification score (i.e., whether the generated PCD is real or fake), D uses a Sigmoid activation function. Finally,
G leverages the score from D for adjusting its weights and predicting the accurate color PCD. Tables 5, 6, and 7
show the detailed G and D parameters for DeepPCD’s color reconstruction network.

3.3.2 Color Loss Function. Similar to the structure reconstruction, the color reconstruction network also relies
on loss functions to train itself. Recall that G tries to generate colors that are as close as the real ones, while D
tries to distinguish generated colors from the real ones. So, we use a combination of the traditional cGAN loss,
L.can(G, D) [40], and point-to-point L1-norm color loss, Lc(G) [38, 39]. Color loss helps G in predicting a point
color by minimizing point-to-point mean absolute error, while cGAN loss maintains the global adversarial game.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:12 « Caiand Sur

Table 6. Generator network parameters for the encoder and decoder.

Layer MLP1 | MLP2 | MLP3 | MLP4 | MaxPool | MLP5 | MLP6 | MLP7 | MLP8 | MLP9
Number of Points N N N N 1 N N N N N
Input Channels 3 32 64 128 256 1248 512 256 256 128
Output Channels 32 64 128 256 256 512 256 256 128 3
Activation Function | ReLU | ReLU | ReLU | ReLU ReLU | ReLU | ReLU | ReLU | ReLU

Table 7. Discriminator network parameters.

Layer MLP1 | MLP2 | MLP3 | MLP4 | MLP5 | MaxPool | MLP6 | MLP7 | MLP8 | Sigmoid
Number of Points N N N N N N 1 1 1 1
Input Channels 6 64 128 256 512 768 1280 512 256 1
Output Channels 64 128 256 512 768 768 512 256 1 1
Activation Function | ReLU | ReLU ReLU | ReLU ReLU | ReLU | ReLU

The traditional cGAN loss and the L1-norm color loss are defined as:

Lean(G, D) = Ex[log (D(x[y))] +Ez[log (1-D(G(zly))]; Lc(G) = Ez[||Crear = G(2[Y)|l1] (6)

where x is the predicted color PCD, y is the conditional extra information, and z is the input PCD without color.
Note that in the original cGAN, z is defined as the noise to generate non-deterministic outputs. However, in
DeepPCD, we generate the deterministic color output using the L1-norm loss. Here, Cge,; is the ground truth color
PCD. Similar to [38], we use a combination of the cGAN loss and L1 color loss, which is defined as:

Lcolor = Legan(G, D) + Ac - Le(G) (7)

The hyper-parameter A¢ is used to balance the cGAN loss and L1 color loss. Intuitively, for our color reconstruction,
both L.gan and L¢ are equally important; so, the losses should have equal weights. This network, with its optimized
loss function, enables DeepPCD to reconstruct the color PCD similar to the ground truth.

4 IMPLEMENTATION
4.1 Hardware Platform and Datasets

To implement and evaluate DeepPCD, we use two datasets. The first one is collected by us using an AR-capable
smartphone, ASUS Zenfone AR [42], with an RGB camera and depth sensor. The smartphone is equipped with a
22.7 megapixel (MP) RGB camera and a 0.3 MP depth sensor with 77° field of view. The camera and depth sensor
have sampling rates of 30 fps and 1.8 fps, respectively. The maximum range of the depth sensor is 6 m only; so, to
scan a large environment, we walk around by holding the phone with different poses. We collect PCD of 25 large,
diverse indoor environments across 3 buildings using a SLAM app, RTABMap [43], running in real-time on the
smartphone, and then, extract the PCD offline to a host PC.

To collect the ground truth PCD without holes and incompleteness, we scan the environment in detail across
all ceilings, floors, walls, and objects. These detailed scans enable us to not only capture the high-quality PCD
but also train, test, and benchmark all our design components. The indoor environments include general-purpose
hallways, office spaces, lobby, etc. Each collected PCD contains over 3 million points with detailed geometric
structure and color information, and it takes an average 15 min for scanning. After collecting each raw, complete
PCD, we notice that the ground truth PCD could still contain many redundant parts and floating points caused
by the RGB and depth sensor pollution. Since the noisy data could affect the network training and applications,
we pre-process the PCD. To this end, we use a MeshLab application [44] that allows us to remove unnecessary
parts manually as well as crop the PCD and tag meaningful objects in it.

The second dataset is from an open-sourced Stanford Large-Scale 3D Indoor Spaces (S3DIS) [45], containing
PCD of 6 different big floors with many rooms. Compared to our dataset, which contains mainly large open

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:13

areas, such as hallways and corridors, S3DIS contains mainly small areas, such as classrooms and offices. We also
select 25 distinct environments from S3DIS. Combining these two datasets allows us to evaluate the versatility of
DeepPCD in reconstructing complete PCD of various indoor environments with diverse structures.

To expedite the training/testing time, we downsample the PCD to contain approximately 20,000 points using a
Poisson-disk sampling [46]. Note that due to the MLP based network design, DeepPCD’s trained models are not
constrained by the number of input points and can be used without any network architecture change for a larger
PCD. Before feeding PCD into the DeepPCD networks, we scale them to [0,1] for both RGB and location attributes
and split them into small patches. This scaling step helps to speed up the model training and convergence time.
The splitting process is very similar to splitting a 2D image, but instead of splitting the PCD into 3D volumetric
patches, we split it across the length and breadth. This is because most indoor environments have large length and
width and small (mostly fixed) heights. We split the PCD into 5X5 grid patches across the length and breadth and
store the position of every small nonempty patch. But the total number of PCD is still too small for robust training;
so, we augment the datasets synthetically. First, we randomly crop a complete PCD to generate 5 different PCD.
Second, we introduce incompleteness by randomly generating small holes inside the cropped PCD, that mimics
PCD incompletion of real data collection: We select several different random seed points, and for each seed, we
remove 3% of the total points closest to the seed. Finally, we generate 10 different incomplete PCD for every
cropped PCD, and each of them has different regions of incompleteness. In summary, our collected and S3DIS
datasets contain a total 3000 distinct PCD samples. For each dataset, we use 1200 samples for training DeepPCD,
and the rest of the samples are used for testing and benchmarking all our design components and applications.

4.2 Network Training

We explore different network settings to ensure DeepPCD converges to the optimal parameters. For the structure
reconstruction, we first set the total epoch to be 500 and use “Adam” as the optimization function with a learning
rate of 3x10™*. Then, we design a smart learning scheduler to speed up the training process: Specifically, we
evaluate the network performance every 20 epochs, and if we observe the validation error is on a plateau, we
automatically decrease the learning rate by a scale of 0.1. It allows the network to converge to the optimal settings
faster. We also explore different combinations of hyper-parameters by training the network multiple times and
find that the geometric structure reconstruction performs much better when the ratio between Acpp and Ap is
2x, and the ratio between Acyp and Ag is close to 1000X, e.g., (Achp, Ap, AR) = (1, 0.5, 0.001). This fits our intuition
because DeepPCD cares more about the final global reconstruction results than the local patch reconstruction,
and the rotation loss should be much smaller than both of them to prevent the network from learning incorrectly.
Across all datasets, our network converges successfully within 500 epochs.

For the color reconstruction, we set the total epoch to be 500 and use “Adam” as the optimization function.
Note that, for cGAN, we need to train two models, the Generator G and the Discriminator D, simultaneously. To
this end, we follow the traditional GAN training procedure, and in each epoch, we first fix G and only train D
with a Binary Cross Entropy loss [41]. Then, we fix D and train G with both the Binary Cross Entropy loss and
the Color loss. After trying different combinations of learning rates, we set the optimal rate of G and D as 2x10™*
and 1x107%, respectively. For hyper-parameter settings, we also explore different combinations and find that the
color reconstruction network performs much better with equal weightage on cGAN and color loss, i.e, Ac = 1.

The networks are implemented in PyTorch with Python 3.8 and CUDA support [47] in a server with Nvidia’s
RTX A6000 [48]. For structure reconstruction, the network takes ~0.5 days to complete the training, and for color
reconstruction the network takes ~2 days to complete the training.

5 PERFORMANCE EVALUATION

We evaluate DeepPCD using 2 metrics commonly adopted to compare the point cloud quality and additional
2 metrics for evaluating applications based on the PCD. Furthermore, to illustrate the efficacy of DeepPCD,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:14 «+ Caiand Sur

we compare its performance with 2 traditional 3D-vision based algorithms: Plane Fitting [49] and Hole Filling
[50], as well as 2 advanced deep-learning-based algorithms: FoldingNet [23] and PCN [18]. Also, to evaluate
DeepPCD’s robustness, we perform multiple ablation studies and estimate the metrics under different network
settings and environments. We also explore 3 ubiquitious applications based on the indoor PCD and compare
their performances with and without DeepPCD.

» Chamfer Distance (ChD): The objective measure of the differences between the point locations inside
the reconstructed PCD w.r.t. the ground truth PCD [18, 20, 23, 26, 27]. It is estimated as the average squared
distance among two closest point pairs between two point sets: Smaller the ChD between the ground truth and
reconstructed PCD, better the reconstructions. The unit of ChD is meters?, and its scale goes from 0 and co.

» Structural Similarity Index Measure (SSIM): The objective measure of distortion of structural information
between two colored images [51]. SSIM is designed for 2D images; so, we follow [52] to map the 3D PCD into
voxel-images by voxelizing the reconstructed and ground truth color PCD and then projecting them into 2D
images on 3 isometric planes. Finally, we calculate the average SSIM between these projected 2D images. The
SSIM scale goes from 0 to 1, where 1 means a perfect match between pixels of ground truth and reconstruction.

» Localization and Tracking Errors: The absolute error between the ground truth and predicted locations
obtained from the ground truth and reconstructed PCD, respectively.

» Object Tagging Accuracy: The objective measure to find the correct number of objects in the reconstructed
PCD with reference to the ground truth PCD.

Evaluation Summary: (1) For the structure reconstruction, DeepPCD achieves a median ChD of 0.00045 and
outperforms all the base-line algorithms, both traditional 3D vision-based and advanced deep learning based, by
significant margins. The results are consistent across diverse environments from two different datasets, and most
reconstructed PCD is visually similar to the ground truth. (2) For the color reconstruction, DeepPCD achieves a
median SSIM of 0.89 w.r.t. the ground truth across all test cases, and the reconstructed colors match well with the
ground truth colors in many cases. (3) For the indoor localization and tracking, DeepPCD reduces the average
errors by 0.04 m and 0.17 m, respectively, compared to the incomplete PCD based approaches, and the results are
similar to the ground truth PCD based approaches. Furthermore, DeepPCD is able to reduce the error in object
tagging from 26.5% to 16.4% across all test environments.

HoleFilling == HoleFilling ==
PlaneFitting g4 PlaneFitting T
08 |- PCN = & & i . 08 |- PCN =— m
FoldingNet FoldingNet
DeepPCD DeepPCD -3
0.6 oot R E [E
[s w
= :d Q H
O 04 R N B — O 04 |, i —
0.2 |-y T . 02 | 3 .
F i
I : :
o L 0 S
0.0001 0.001 0.01 0.0001 0.001 0.01
(a) Chamfer Distance (ChD) (b) Chamfer Distance (ChD)

Fig. 5. ChD distribution for the PCN, FoldingNet, Plane Fitting, Hole Filling, and DeepPCD for 300 test samples in each
dataset: (a) Ours; (b) S3DIS.

5.1 Geometric Structure Reconstruction

We start by evaluating the performance of DeepPCD’s geometric structure reconstruction across S3DIS and our
datasets. For each dataset, we have 300 test samples and we estimate the ChD for the reconstructed PCD w.r.t.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:15

Our Dataset

S3DIS Dataset

%,
R W Q‘-jl!',_&. R
¥ g
- ey |
3 iy |} "hl‘.:i L r!_}:__.‘)_ﬂ e -
(a) Input (b) Plane Fitting (c) Hole Filling (d) PCN (e) FoldingNet (f) DeepPCD (g) Ground Truth

Fig. 6. Geometric structure reconstruction results.

the ground truth. We also compare DeepPCD with four existing methods: Plane Fitting [49], Hole Filling [50],
PCN [18], and FoldingNet [23]. The Plane Fitting method first detects plane by RANSAC algorithm [53] and once
a plane is found, points are assigned by uniformly filling in gaps in the plane. The Hole Filling algorithm first
connects the neighboring points to form triangles in the 3D scene, and then, the larger triangles are converted
to polygons, which represent the holes in the input scene. After that, we can generate synthetic points to fill
the holes. For both these methods, we use their open-sourced code to test their performances. Both the deep
learning methods, PCN and FoldingNet, are originally designed for PCD reconstruction of small objects. For a fair
comparison, we use their open-sourced code, split each of our large PCD into small patches, train their models
with default hyper-parameters, and reconstruct the large PCD by merging the predicted small PCD.

Fig. 5a shows the Cumulative Distribution Function (CDF) of the ChD across all test cases. For our dataset, the
median and 90" percentile ChDs of DeepPCD are only 0.0004 and 0.0010, respectively, which is tolerable in practice.
In contrast, the median ChD for the PCN and FoldingNet are 0.0017 and 0.0009, respectively, and the median
ChD for the Plane Fitting and Hole Filling are 0.0012 and 0.0010, respectively. Besides, PCN and FoldingNet are
unable to reconstruct many PCD: The shapes are ambiguous, and the point distribution is significantly different
than the ground truth (see Fig. 6 for an example). Although the Hole Filling and Plane Fitting can fill the holes in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:16 + Caiand Sur

incomplete PCDs, they lack an understanding of the global shapes and cannot distinguish holes from common
shape borders. As a result, they always fill in unnecessary parts (Fig. 6).

For S3DIS dataset too, DeepPCD outperforms all base-line algorithms and reconstructs high-quality PCD: The
median and 90" percentile ChDs are 0.0005 and 0.0008, respectively (Fig. 5b). So, DeepPCD can successfully
reconstruct the missing portion of incomplete inputs and is able to preserve the core geometric structure of
large objects, such as the walls, floors, and ceilings, of the PCD in most cases. These results show that DeepPCD’s
geometric structure reconstruction network is well generalizable for multiple environments, and it reconstructs PCD
similar to the ground truth consistently.

5.2 Color Reconstruction

Next, we evaluate DeepPCD’s color reconstruction network on the same test samples. We first statistically evaluate
the performance of color reconstruction by estimating the SSIM. For each PCD, we map it into 6 perpendicular
cubic faces (e.g., front, back, left, right, etc.) to obtain the 2D projected images. Then, we compute the SSIM of
these images w.r.t. the ground truth projections and average the 6 SSIM values. We estimate the SSIM of the
reconstructed color PCD and compare it with the incomplete color PCD. Fig. 7(a-b) show the CDF plots of the
SSIM values. For our collected dataset, the median and 90" percentile SSIM for the incomplete PCD are only 0.83
and 0.91, respectively. In contrast, DeepPCD significantly improves the color quality of the PCD, and the median
and 90" percentile SSIM are 0.89 and 0.95, respectively. For S3DIS dataset also, DeepPCD performs very well (Fig.
7b), and the median and 90*" percentile SSIM are 0.93 and 0.98, respectively.

T T 1 T T T
Incomplete == | Incomplete == :
DeepPCD = DeepPCD =
0.8 [-meeeo b s o . 0.8 [--omimoot e e
06 [ur: rrrrrrrrrrrrrrrrrrrrrrrrrrrr . 06 [Tommg it
T L
a Dataset | : 3 [a) :
O 04— P e . O 04T
0.2 [S T . 02
0 et ; o Lot ; ; ; ; ;
0.5 0.6 0.7 0.8 0.9 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
(a) SSIM (b) SSIM

Fig. 7. SSIM distribution for the Incomplete and DeepPCD reconstructed PCD across 300 test samples in each dataset: (a)
Our dataset; (b) S3DIS dataset.

Fig. 8 shows visual examples of color reconstructed PCD, and we observe that DeepPCD can infer similar color
as the ground truth in most regions. But occasionally, it could reconstruct slightly worse colors in those regions
that already have the color information in the incomplete PCD. This is because we rebuild the entire PCD color
from scratch using an encoder-decoder structure. So, this process could introduce some distortion and loss of
information of existing colors. In such cases, DeepPCD could identify those regions in the reconstructed PCD
and replace the predicted colors with the true colors from the incomplete PCD. These results demonstrate that
DeepPCD reconstructs not only the structure but also the color of the PCD similar to the ground truth for multiple,
diverse environments consistently.

5.3 Ablation Study

To further analyze the effectiveness of different components of DeepPCD, we perform explicit ablation studies.
Specifically, we evaluate the performance of DeepPCD for different number of points and different number of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:17

Our Dataset

S3DIS Dataset

(b) DeepPCD

(a) Incomplete (c) Ground Truth (e) DeepPCD

(d) Incomplete (f) Ground Truth

Fig. 8. Color reconstruction results.

patches for ViT, effectiveness of the Plane Point Generator in the geometric structure reconstruction, and effect
of different percentages of incompleteness in PCD on both geometric and color reconstructions.

5.3.1 Performance Under Different Number of Points and Different Number of Patches. Recall that we downsample
the PCD into a fixed number of points before training. Intuitively, with more points per cubic space of the PCD,
the ChD would be smaller because the network have more references and features for reconstruction. On the
other hand, the training time will increase with more points. So, to understand the effects of number of points on
DeepPCD, we conduct ablation study by varying the number of points for each PCD from 5000 to 25000 at a step
of 5000 points. Table 8 shows the result, and we see that the trend of ChD follows our intuition. Besides, with
more points, the training time also increases from approximately 411 min to 600 min. Throughout the rest of the
evaluations, we have used 20000 points for each PCD to balance between accuracy and training time.
Table 8. Performance of DeepPCD with different number of points.

Number of Points 5000 10000 15000 20000 25000

ChD (median) 6.65x107% | 4.83x107* | 4.15x107* | 3.88x107™* | 3.77x107*

ChD (90" %-ile) | 17.16x107* | 12.83x10™* | 11.4x10™* | 10.77x10™* | 10.16x10~*
Training Time 411 min 445 min 495 min 543 min 600 min

Additionally, the number of patches may also affect the performance of DeepPCD since more number of smaller
patches allows generating denser points with better local details. But when the patch grids is too dense, the
number of input points in each grid will be smaller and the feature extractor may not extract sufficient structure

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:18 « Caiand Sur

) 2 x10° . .

2 Median =1

% 15t 90th Percentile. - -+
e 4

2

E 05}

S

<

O 0

73x37 74x47 5x5 6x6 7x7
Different Number of Patches

Fig. 9. Performance of DeepPCD with different number of patch grids.

information form it, which may cause a performance degradation. To understand the effect of grid numbers, we
conduct another ablation study. Specifically, we train and test our network under different grid numbers from
3 X 3to7 %7, and Fig. 9 shows the result. We see that when the number of patch grids increases from 3 X 3 to
5 X 5, the median ChD reduces steadily, but beyond 5 X 5, the benfit diminishes. Besides when the number of
patches is too large, the training time increases too. So, throughout the rest of the evaluations, we have selected
the number of patches to be 5 X 5 to balance the time and accuracy.

5.3.2 Effectiveness of Plane Point Generator. Recall that the Plane Point Generator populates the initial points
on planes to facilitate the reconstruction process. To evaluate its effectiveness, we remove this generator and
substitute it with 2D grid points on the X-O-Y plane, similar to [23]. Specifically, for each patch in the PCD, we
first generate a 2D grid with 1024 points and then feed them directly into our patch and global reconstruction
modules to generate the complete PCD. For a fair comparison, we train this ablated network (i.e., without Plane
Point Generator) using the same network parameter settings and same datasets as DeepPCD.

Table 9. Performance of DeepPCD’s geometric structure reconstruction with and without the Plane Point Generator.

DeepPCD | ChD (median) | ChD (907 %-ile)
Without 43%x107¢% 11.51x107%
With 3.88x1074 10.77x10™%

Table 9 shows the median and 90" percentile ChD with and without the Plane Point Generator. With the
generator, the median error reduces from 4.3x107* to 3.88x107%, and the 90th percentile error reduces from
11.51x107* to 10.77x10™%. Fig. 10 shows visual examples of a PCD with and without the generator and compares
the results with the incomplete and ground truth PCD. We observe that the points reconstructed without the
generator are more likely to be unevenly distributed, and the walls and floors will be distorted. This is because
without the Plane Point Generator the ChD loss alone cannot guarantee that the points will be located on a
plane. Hence, without the good initial points, DeepPCD will have difficulty in converging to the optimal network
parameters for the PCD reconstruction. So, the Plane Point Generator populates well-distributed initial points to
facilitate structure reconstruction accurately and consistently.

5.3.3 Effect of Different Percentages of Incompleteness. We then evaluate DeepPCD under various types of
incompleteness of the input PCD. We follow the method described in Section 4 to control the total number of
points inside a PCD by generating small holes inside it to mimic the PCD incompletion of real data collection.
Table 10 shows the results. The median and 90 percentile ChD loss under 50% of incompleteness (i.e., 50% of
points removed from the ground truth PCD) could be up to 10.1x10™* and 25.7x107%, respectively. But these
losses reduce quickly when the percentage of incompleteness decreases, i.e., when incomplete PCD includes more
points. But a larger number of points do not always improve DeepPCD’s performance: There is hardly 1.6x10™*

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:19

- "?:T';;.. ;

e —

M f'
o
[
(b)

Fig. 10. (a-b) Ground truth and incomplete PCD. Geometric reconstructions: (c) without Plane Point Generator. (d) with.

(c) (d)

Table 10. Performance of DeepPCD under different percentages of PCD incompleteness.

Incompleteness | ChD (median) | ChD (90”1 %-ile) | SSIM (median) | SSIM (90th %-ile)
50% 10.1x10~% 25.7x10~4 0.81 0.89
30% 3.9x107% 10.8x1074 0.89 0.95
10% 2.6x1074 7.1x1074 0.93 0.97

ChD improvement for an additional 20% points. Similarly, for the SSIM in color PCD, we notice the same trend
as ChD. Under 50% of incompleteness, the median and 90" percentile SSIM is 0.81 and 0.89, respectively, and
they improve quickly to 0.89 and 0.95, respectively, with additional 20% points. Fig. 11 shows example visual
results under different percentages of incompleteness. We notice that the top portion of PCD in Fig. 11d is
completely missing, and under such circumstances, DeepPCD could not reconstruct that region. This is intuitive
since, without any structural clues of a missing region, DeepPCD would unlikely be able to reconstruct it. In such
cases, DeepPCD could mark the region in the reconstructed PCD and guide the user to briefly re-scan the area.
We leave this real-time guidance system design as future work.

Available Available Missing Missing

7 -
<3, m’

(a) Ground truth (b) 10% Incompleteness (c) DeepPCD Output (d) 50% Incompleteness (e) DeepPCD Output

Fig. 11. (a) Ground truth PCD. Geometric reconstructions under different percentages of PCD incompleteness. (b) 10%
incompleteness in PCD. (c) Reconstruction results of (b). (d) 50% incompleteness in PCD. (e) Reconstruction result of (d).

5.3.4 Evaluation on Real Incomplete PCDs. So far, we have seen that DeepPCD can reconstruct PCD with good
structures and colors for synthetic incomplete PCD. To understand its performance in realistic conditions, we
train the DeepPCD model with synthetic incomplete PCD, and test it on real incomplete PCD. To this end, we
place the smartphone on an office cart to simulate a robot movement and measure the PCD for an average 4 min
in various environments (ground truth PCD is measured with 15 min scan time). Fig. 12 shows the PCD and
reconstruction results. Due to the limited scan time and range and arbitrary scan trajectory, the collected PCD
is naturally incomplete. But DeepPCD can successfully reconstruct both the structure and color of the missing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:20 « Caiand Sur

regions. These results show that DeepPCD adapts very well in different environments without requiring the user to
spend a lot of time scanning and collecting the entire indoor PCD.

(a) (b) (c) (d)

Fig. 12. Reconstruction results for real incomplete PCD: (a) Measured structure of incomplete PCD. (b) DeepPCD’s structure
reconstruction. (c) Measured color of incomplete PCD. (d) DeepPCD’s color reconstruction.

Table 11. Inference time from DeepPCD.

Module Model Size | Inference Time
Geometric 30.9 MB 0.028 s
Color 34.7 MB 0.18 s

5.3.5 Run-time Complexity of DeepPCD. For mobile and ubiquitous computing environments, the ability to
quickly generate complete PCD is important and can improve the user experience. It is possible to build a GPU
server where a user could upload the collected incomplete PCD and download the complete PCD quickly. So,
to understand the run-time performance of DeepPCD, we evaluate its inference time on the RTX A6000 GPU
server. Table 11 shows that the inference time for the geometric and color reconstruction networks are quite fast,
on average, 0.028 s and 0.18 s, respectively. The size of trained models is also quite small, less than 35 MB; so, a
mobile platform with a powerful GPU could download the model and run it locally. So, DeepPCD is suitable for
mobile platforms and can respond to a user in near real-time.

5.4 Applications Result

So far, we have evaluated DeepPCD’s ability to reconstruct high-quality PCD. We now showcase the benefits
of such reconstructions for three applications: (1) Device localization; (2) Device navigation; and (3) Object
tagging and retrieval. Each application runs in different indoor environments, and we evaluate and compare their
performance using incomplete PCD with 30% of incompleteness, reconstructed PCD, and ground truth PCD.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning

43:21

-3 AR AR S Incomplete” + - 0.9 |
: : : HoleFilling
: : : DeepPCD * 0.8 [
34 A = Ground truth @ 0.7 [et st
: : : P g : 0.6 foe et T
— Lo T .8
E* T & o5t
‘ Lo O o4l
: ' g ! : Incomplete =+
2.8 food B P 0.2 HoleFilling
[: 0.1 DeepPCD = |
26 : : : : : : 0 : Ground truth ==+
32 33 34 35 36 37 38 39 0.001 0.01 0.1 1
(a) X (m) (b) Localization Error (m)

Fig. 13. (a) Examples of estimated locations. (b) CDF of localization errors in all test environments.

5.4.1 Device Localization. Accurate indoor localization enables many ubiquitous sensing applications and has
been an active area of research in the past decade. Since GPS is typically inaccurate indoors, researchers have
explored IMUs, such as accelerometers, gyroscopes, magnetometers, wireless signals, and 3D scenes, etc., to
estimate device position. Among them, visual data based device localization remains the most popular and
widely used technique [10]. Since the device’s localization accuracy depends on its ability to reconstruct an
accurate 3D scene or point cloud [10], a high-quality PCD could bring significant improvement in localization
performance. So, to test the efficacy of DeepPCD, we employ the existing vision-based localization technique
using the Normal-Distributions Transform (NDT) [29]. In the NDT based localization, we can identify the location
of a device based on the scene changes between itself and a reference location. Since we would like to evaluate
the individual location estimation performance, we consider the center of the PCD to be the reference position,
and its location and scene to be accurately known a-priori. Then, we randomly select 10 different locations, run
the NDT based localization, and estimate the Euclidean distance, i.e., error, between the predicted and ground
truth locations. For the predicted location, we compare the localization accuracy among DeepPCD, Hole Filling,
incomplete and ground truth PCDs.

Fig. 13a visually shows the localization result in a 2D plane for one environment. We observe that, compared
to the incomplete PCD, the predicted locations using DeepPCD’s reconstructed PCD mostly match with the
estimated location using the ground truth PCD. Fig. 13b shows the CDF of localization errors across all test cases.
The median and 90" percentile location errors using DeepPCD’s reconstructed PCD are 0.006 m and 0.54 m,
respectively, which are very close to the ground truth PCD based localization. However, using the reconstructed
PCD by Hole Filling, the median and 90 percentile location errors increase to 0.007 m and 0.70 m, respectively.
Next, Table 12 shows the localization error for different approaches under varying incompleteness level. Under
all conditions, we observe that DeepPCD’s performance is relatively stable and close to the ground truth. These
results indicate that DeepPCD’s reconstructed PCD is quite similar to ground truth and can achieve close to the
ground truth localization performance.

Table 12. Average localization errors under different percentages of PCD incompleteness.

Incompleteness | Incomplete | Hole Filling | DeepPCD | Ground Truth
50% 0.166 0.149 0.127 0.122
30% 0.194 0.193 0.137 0.122
10% 0.162 0.154 0.124 0.122

5.4.2 Device Navigation. We now evaluate the performance of DeepPCD for aiding vision-based device navigation
in indoor environments. Different from the localization above, navigation involves continuous device movement
and estimation based on the prior location in device’s path. We leverage the existing NDT based tracking algorithm
[29] and compare the performance of DeepPCD w.r.t. the incomplete and ground truth PCD. The tracking algorithm
is similar to the previous localization, but the key difference is that instead of using a fixed, known reference
location, it uses the previously estimated location as the reference. To this end, we first manually generate a

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:22 « Caiand Sur

35} Incomplete = - R
. E;::p%'gte — HoleFilling
HoleFilling \E/ Grgﬁﬁgiﬁg -T
« GroundTruth 5 25 [i
| e ek T LItJ 2 LO'-
LA | - T o
E 5wl A 2 15 $) R
> 14 g [: " Incomplete =
o © 02 F- AR S, HoleFilling N
Y P — — 05 : : DeepPCD =
Ground truth ==
0 ; 0 ! ! i . i
t ety : : : 0 5 10 15 20 25 30 35 0 0.5 1 1.5 2 25 3
(a) : : X (m) (b) Moving Steps (c) Tracking Error(m)

Fig. 14. (a) Tracking results in one test environment. (b) Tracking error (m) with moving steps. (c) CDF of tracking error.

device’s moving path given a fixed field of view inside the indoor environment. Then, for each point in this path,
we find the visible PCD of the device and treat it as the scanned PCD. Finally, we feed this continuously scanned
PCD into the NDT tracking algorithm to estimate the moving path. Fig. 14(a-b) illustrate an example tracking
result on a 2D plane and the accumulated error with movement steps. The tracking result with incomplete PCD is
distorted, but DeepPCD can follow the ground truth closely. Furthermore, we examine the tracking performance
across 10 different environments, and Fig. 14c shows the CDF plot of error using PCD from incomplete, ground
truth, and DeepPCD. We see that the median and 90" percentile tracking errors using incomplete PCD are 0.21
m and 0.66 m, respectively. In contrast, using the reconstructed PCD from DeepPCD, the median tracking error
closely match with the ground PCD based tracking and decreases to 0.04 m only. Similarly, Table 13 also shows
that DeepPCD has similar tracking performance as the ground truth PCD even under different incompleteness.
These results demonstrate that the tracking errors do not accumulate significantly when devices use DeepPCD’s
reconstructed PCD.
Table 13. Average tracking errors under different percentages of PCD incompleteness.

Incompleteness | Incomplete | Hole Filling | DeepPCD | Ground Truth
50% 0.17 0.50 0.16 0.11
30% 0.34 0.52 0.17 0.11
10% 0.28 0.32 0.07 0.11

5.4.3 Object Tagging and Retrieval. Besides localization and navigation, applications such as AR/VR require
the capability to tag and retrieve 3D objects. Unlike tracking and localization, which only use PCD shape and
position information, the accuracy of object tagging and retrieval depends on the detailed geometric and color
information of the input PCD. To test how effectively DeepPCD improves these applications’ ability to tag and
retrieve objects in 3D scenes, we run a template matching algorithm that matches objects in reconstructed PCD
with the ground truth PCD. Specifically, we first manually tag meaningful objects, such as doors, windows, tables,
chairs, etc., inside each ground truth PCD and store their relative object bounding boxes. Next, during testing, we
use these bounding box’s coordinates as a reference and find the same regions within the reconstructed PCD.
Then, we calculate the SSIM of reconstructed objects in these regions compared to ground truth objects. If the
SSIM is larger than a threshold (0.9), then we assume that DeepPCD successfully reconstructs this object, and
we treat it as one detected object. Similarly, we re-run this matching algorithm with the incomplete PCD. Fig.
15a shows one example of a reconstructed door in PCD. Compared to incomplete ones, the reconstructed object
contains more geometric information. Furthermore, to count how many objects we can reconstruct compared to
the incomplete PCD, we re-run the same process on the ground truth and incomplete PCD. Fig. 15b shows the
failure rate in detecting objects with DeepPCD and incomplete PCD w.r.t. the ground truth. We detect 170 and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:23

191 total objects in all the incomplete and reconstructed PCD, respectively, and we have 207 total objects in the
ground truth. Thus, DeepPCD reduces the failure rate in detection from 17.3% to 7.3%.

30

Incomplete =
DeepPCD =

[N
o

PN
o o o

Failure Rate of Detection (%

" Ground truth Incomplete DeepPCD (b)

o o

Fig. 15. (a) A door in the ground truth, incomplete, reconstructed PCD. (b) % of failures in detecting objects across all test
environments.

In sum, these results demonstrate that DeepPCD is generalizable across diverse environments and improves the
ubiquitous applications’ performance by reconstructing PCD similar to the ground truth.

6 RELATED WORK
6.1 3D Shape Completion

Existing approaches for 3D shape completion can be divided into three categories: Geometry-based, alignment-
based, and learning-based. Geometry-based approaches infer the missing regions directly from the observed
regions by extracting geometric clues. For example, [54] introduces a formal method for discovering regular
or repeated geometrical structures in 3D shapes for shape repair. Authors in [55] assume most objects in a
target scene are symmetrical and present an algorithm to identify the symmetric structures in the incomplete
shapes for plausible scene completions. However, such an assumption may not always hold true for complex
objects in indoor environments. Alignment-based approaches, instead of generating the missing part directly,
build large shape databases and fill the incomplete input by searching the most similar shape from the database
[56, 57]. However, constructing such a database for real indoor environments consisting of many objects could
be challenging. Learning-based approaches train a model to predict the complete shape from the partial input
and have been shown to outperform both the geometry or alignment-based approaches [18, 21, 58].

Based on their network structures, we can further divide the learning-based approaches into two main
categories: Convolution-based and Graph-based. Convolution-based method, such as [17], first voxelizes the
PCD into 3D voxels and then uses 3D CNN to process it, learn features, and reconstruct better quality PCD.
Although 3D CNN captures coarse geometric features between voxels, a lot of fine geometrical information
could be lost during the voxelization process. Decreasing the size of voxels and increasing the number of total
voxels could preserve more geometric information, but the process is more computational and memory intensive.
Graph-based method, such as [18], solves these challenges by building a graph neural network and combining
MLP to process and extract features directly from the PCD. But graph neural network relies on the edge graph to
explore the relationship among points, which is built upon the Euclidean distance between points and cannot
capture accurate geometric features like 3D CNN kernels. Recently, GRNet combines these two methods together
and introduces 3D grids as intermediate representations to regularize unordered PCD [19]. To further improve
the performance of shape reconstruction, several researchers use prior knowledge to guide the network. For
example, authors in [59] proposed a shape prior learning method for 3D objects to improve the performance of
shape reconstruction. Besides, authors in [58] addressed this task by introducing an extra single-view image to
guide the point cloud completion. Although these methods can reconstruct good shapes, they are designed for
reconstructing small objects and may not work well with PCD of large indoor environments [60]. In contrast,
DeepPCD explores and uses the property of indoor environments and proposes a patch based method for PCD
reconstruction of large indoor environments accurately and consistently.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:24 « Caiand Sur

6.2 Indoor PCD Completion

The completeness of the indoor scene is critical for many ubiquitous sensing applications. Recently, several
works have started exploring the indoor scene completion task. For example, authors in [60] introduce a novel
mesh-based completion approach where it takes an incomplete scan as input and predicts a complete mesh
along with semantic labels. However, their method is designed for 3D meshes and can not be applied for indoor
PCD. Authors in [16] propose a traditional method for PCD completion using a surface connectivity relation
inference. Missing points are completed by estimating the connectivity relations between pairs of the surfaces
and by filling individual planar surfaces. Although they show that their method is good at estimating the missing
points in a small region, it is difficult to reconstruct the large missing area of PCD. Besides geometric structures,
reconstructing color information is also important for PCD completion. Authors in [38] propose a point cloud
colorization network based on a GAN architecture, which directly takes a PCD as input and outputs color
information for each point. Authors in [39] extend the GAN and use a conditional GAN (cGAN) for 3D PCD
colorization. They not only use a point Discriminator to directly judge the color of each point but also render the
estimated colored PCD into a 2D image. Different from these existing approaches, DeepPCD aims to reconstruct
the missing colors of incomplete PCD with measured incomplete colors as the prior information to guide the
color reconstruction process.

7 DISCUSSION AND FUTURE WORKS

Although, DeepPCD can reconstruct the structure and color of a majority of the PCD, we observe for a few cases,
the location and color of points could be distorted. We believe this could be due to the use of encoder-decoder
architecture which highly compresses and decompresses the abstract features, and the use of disjoint geometric
and color reconstruction networks. One approach to solve this problem is to jointly train both the networks with a
closed-loop feedback between them so that the performance of each reconstruction could be better. Designing this
large network is non-trivial due to the tuning requirement of a large number of parameters and hyper-parameters.
We leave this study as future work. Besides, for the geometric reconstruction, we have used a static number of
patches to split each PCD, but we believe it would be feasible to split the PCD adaptively depending on the level
of homogeneity in an indoor environment. We will also explore this adaptive splitting technique in our future
work. Currently, we have designed and implemented DeepPCD in a stand-alone system to mainly demonstrate its
feasibility and effectiveness. The inference time is fast, on average, it takes 0.028 s and 0.18 s for geometric and
color reconstructions, respectively. In the future, such inference can run directly on a GPU server, and a user
could upload the incomplete PCD to the server and obtain the reconstruction results in near real-time. Finally,
we also plan to customize DeepPCD by trimming different layers so that it can be potentially trained on mobile
platforms directly with deep-learning frameworks, such as TensorFlow Lite [61] or PyTorch Mobile [62].

8 CONCLUSION

We propose DeepPCD, a deep-learning-based system that can reconstruct the missing geometric and color
information of large indoor incomplete PCD. DeepPCD designs customized graph neural networks and vision
transformer to extract the local and global features, and proposes a plane prior to improve the structural quality of
the PCD. It further designs a customized cGAN based network to extract color information from incomplete PCD
and uses them to predict the color of structurally complete PCD. Experimental results validate the effectiveness
of DeepPCD, qualitatively and quantitatively, in two diverse datasets, spanning 50 indoor environments, and
show its efficacy in improving the performance of vision-based ubiquitous sensing applications.

ACKNOWLEDGMENTS

We sincerely thank the reviewers and the editors for their comments and feedback. This work is partially
supported by the NSF under grant CNS-1910853 and CAREER-2144505.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:25

REFERENCES

(1]

B.-S. Kim, P. Kohli, and S. Savarese, “3D Scene Understanding by Voxel-CRF,” in IEEE International Conference on Computer Vision (ICCV),
2013.

A. Vincent, “A 3D Perception System for the Mobile Robot Hilare,” in IEEE International Conference on Robotics and Automation, 1986.
T. Vieville, E. Clergue, R. Enciso, and H. Mathieu, “Experimenting with 3D Vision on a Robotic Head,” Robotics and Autonomous Systems,
vol. 14, no. 1, 1995.

H. Zhang, G. Wang, Z. Lei, and J.-N. Hwang, “Eye in the Sky: Drone-Based Object Tracking and 3D Localization,” in ACM International
Conference on Multimedia, 2019.

Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li, and N. Sun, “RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous
Driving,” IEEE Robotics and Automation Letters, vol. 3, no. 4, 2018.

K. C. Kwan and H. Fu, “Mobi3DSketch: 3D Sketching in Mobile AR,” in ACM CHI, 2019.

Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection,” in IEEE/CVF CVPR, 2018.

C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of Spherical Parameterization for 3D Meshes,” in ACM SIGGRAPH, 2003.

L. Linsen, “Point Cloud Representation,” Karlsruhe Institute of Technology, Germany, Tech. Rep., 2001.

X. Li, S. Du, G. Li, and H. Li, “Integrate Point-Cloud Segmentation with 3D LiDAR Scan-Matching for Mobile Robot Localization and
Mapping,” MDPI Sensors, vol. 20, no. 1, 2020.

R. Radkowski, “Object Tracking with a Range Camera for Augmented Reality Assembly Assistance,” Journal of Computing and Information
Science in Engineering, vol. 16, no. 1, 2016.

Q. Wang and M.-K. Kim, “Applications of 3D Point Cloud Data in the Construction Industry: A Fifteen-Year Review from 2004 to 2018,
Advanced Engineering Informatics, vol. 39, 2019.

S. B. Walsh, D. J. Borello, B. Guldur, and J. F. Hajjar, “Data Processing of Point Clouds for Object Detection for Structural Engineering
Applications,” Computer-Aided Civil and Infrastructure Engineering, vol. 28, no. 7, 2013.

D. A. White, “LIDAR, Point Clouds, and Their Archaeological Applications,” in Mapping Archaeological Landscapes from Space, 2013.
M. Labbe and F. Michaud, “RTAB-Map as an Open-Source Lidar and Visual Simultaneous Localization and Mapping Library for
Large-Scale and Long-Term Online Operation,” Journal of Field Robotics, vol. 36, no. 2, 2019.

Y. Xiao and Y. Taguchi and V. R. Kamat, “Coupling Point Cloud Completion and Surface Connectivity Relation Inference for 3D Modeling
of Indoor Building Environments,” Journal of Computing in Civil Engineering, vol. 32, no. 5, 2018.

A. Dai, C. Ruizhongtai Q., and M. Niessner, “Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis,” in IEEE/CVF
CVPR, 2017.

W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “PCN: Point Completion Network,” in International Conference on 3D Vision (3DV),
2018.

H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun, “GRNet: Gridding Residual Network for Dense Point Cloud Completion,” in
European Conference on Computer Vision: Computer Vision — ECCV, 2020.

M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu, “Morphing and Sampling Network for Dense Point Cloud Completion,” AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“ShapeNet: An Information-Rich 3D Model Repository,” https://shapenet.org/, 2015.

L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “TopNet: Structural Point Cloud Decoder,” in IEEE/CVF CVPR, 2019.
Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation,” in IEEE/CVF CVPR, 2018.
C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,” in Advances in
Neural Information Processing Systems (NIPS), 2017.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” in International Conference
on Learning Representations (ICLR), 2021.

H. Fan, H. Su, and L. Guibas, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image,” in IEEE/CVF CVPR,
2017.

P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han, “SnowflakeNet: Point Cloud Completion by Snowflake Point
Deconvolution with Skip-Transformer,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2021.

S. Sur, “DeepPCD Project,” 2022. [Online]. Available: https://syrex.cse.sc.edu/research/ubiquitous-sensing/deeppcd/

H. Sobreira, C. M. Costa, I. Sousa, L. Rocha, J. Lima, P. C. Farias, P. Costa, and A. P. Moreira, “Map-matching algorithms for robot
self-localization: A comparison between perfect match, iterative closest point and normal distributions transform,” J. Intell. Robotics
Syst., vol. 93, 2019.

Z.Liu, H. Tang, Y. Lin, and S. Han, “Point-Voxel CNN for Efficient 3D Deep Learning,” in Advances in Neural Information Processing
Systems (NIPS), 2019.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

https://syrex.cse.sc.edu/research/ubiquitous-sensing/deeppcd/

43:26 « Caiand Sur

[31] W. Shi and R. Rajkumar, “Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud,” in IEEE/CVF CVPR, 2020.

[32] S.I Kabanikhin, “Definitions and Examples of Inverse and Ill-posed Problems,” Journal of Inverse and Ill-posed Problems, vol. 16, no. 4,
2008.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, 1998.

[34] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-Shape Convolutional Neural Network for Point Cloud Analysis,” in IEEE/CVF CVPR, 2019.

[35] S.Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural Networks for Human Action Recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, 2013.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin, “Attention is All You Need,” in
Advances in Neural Information Processing Systems (NIPS), 2017.

[37] X. Cao and K. Nagao, “Point Cloud Colorization Based on Densely Annotated 3D Shape Dataset,” in MMM, 2019.

[38] J. Liu, S. Dai, and X. Li, “PCCN: Point Cloud Colorization Network,” in IEEE International Conference on Image Processing (ICIP), 2019.

[39] T. Shinohara, H. Xiu, and M. Matsuoka, “Point2Color: 3D Point Cloud Colorization Using a Conditional Generative Network and
Differentiable Rendering for Airborne LiDAR,” in IEEE/CVF CVPR Workshops, 2021.

[40] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” 2014. [Online]. Available: https://arxiv.org/abs/1411.1784

[41] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
Advances in Neural Information Processing Systems (NIPS), 2014.

[42] AsusTek Computer Inc., “Zenfone AR: Go Beyond Reality,” 2021. [Online]. Available: https://www.asus.com/us/Phone/ZenFone- AR-
ZS571KL/

[43] IntRoLab, “Real-Time Appearance-Based Mappingy,” 2021. [Online]. Available: http://introlab.github.io/rtabmap/

[44] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in
Eurographics Italian Chapter Conference, 2008.

[45] I Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese, “3D Semantic Parsing of Large-Scale Indoor Spaces,” in

IEEE/CVF CVPR, 2016.

R. Bridson, “Fast Poisson Disk Sampling in Arbitrary Dimensions,” in ACM SIGGRAPH 2007 Sketches, 2007.

Open-Source, “PyTroch,” 2021. [Online]. Available: https://pytorch.org/

NVIDIA, “RTX A6000,” 2021. [Online]. Available: https://www.nvidia.com/en-us/design-visualization/rtx-a6000/

L. Li, F. Yang, H. Zhu, D. Li, Y. Li, and L. Tang, “An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal

Distribution Transformation Cells,” Remote Sensing, vol. 9, no. 5, 2017.

[50] Geodan, “Generate Synthetic Points to Fill Holes in Point Clouds,” 2020. [Online]. Available: https://github.com/Geodan/fill-holes-
pointcloud

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, 2004.

[52] Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang, and J. Sun, “Predicting the perceptual quality of point cloud: A 3d-to-2d projection-based
exploration,” IEEE Transactions on Multimedia, vol. 23, 2021.

[53] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, 1981.

[54] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas, “Discovering Structural Regularity in 3D Geometry,” in ACM SIGGRAPH,
2008.

[55] P. Speciale, M. R. Oswald, A. Cohen, and M. Pollefeys, “A Symmetry Prior for Convex Variational 3D Reconstruction,” in European
Conference on Computer Vision: Computer Vision — ECCV, 2016.

[56] Y.Li, A. Dai, L. Guibas, and M. NieBner, “Database-Assisted Object Retrieval for Real-Time 3D Reconstruction,” Computer Graphics
Forum, 2015.

[57] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi, and T. Funkhouser, “Learning Part-Based Templates from Large Collections of 3D
Shapes,” ACM Transactions on Graphics, vol. 32, no. 70, 2013.

[58] X.Zhang, Y. Feng, S. Li, C. Zou, H. Wan, X. Zhao, Y. Guo, and Y. Gao, “View-Guided Point Cloud Completion,” in IEEE/CVF CVPR, 2021.

[59] X. Wang, J. Ang, Marcelo H, and G. H. Lee, “Point Cloud Completion by Learning Shape Priors,” in IEEE/RSF International Conference on
Intelligent Robots and Systems (IROS), 2020.

[60] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Niebner, “ScanComplete: Large-Scale Scene Completion and Semantic
Segmentation for 3D Scans,” in IEEE/CVF CVPR, 2018.

[61] Open-Source, “Deploy Machine Learning Models on Mobile and IoT Devices,” 2022. [Online]. Available: https://www.tensorflow.org/lite

[62] Open-Source, “PyTorch Mobile,” 2022. [Online]. Available: https://pytorch.org/mobile/home/

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

https://arxiv.org/abs/1411.1784
https://www.asus.com/us/Phone/ZenFone-AR-ZS571KL/
https://www.asus.com/us/Phone/ZenFone-AR-ZS571KL/
http://introlab.github.io/rtabmap/
https://pytorch.org/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://github.com/Geodan/fill-holes-pointcloud
https://github.com/Geodan/fill-holes-pointcloud
https://www.tensorflow.org/lite
https://pytorch.org/mobile/home/

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:27

A APPENDIX

A.1 Additional Reconstruction Results

Our Dataset S3DIS Dataset

7pRLE!
(a) Ground truth (b) Incomplete (c) DeepPCD (d) Ground truth (e) Incomplete (f) DeepPCD

Fig. 16. Additional geometric structure reconstruction results.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

43:28 « Caiand Sur
Our Dataset

-Ei Ei'&.

_Zoom in

S3DIS Dataset

[

Zoom in

” 53 ™
(d) Ground truth (e) Incomplete (f) DeepPCD

(a) Ground truth (b) Incomplete (c) DeepPCD

Fig. 17. Additional color reconstruction results.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

1eseleq INO

DeepPCD: Enabling AutoCompletion of Indoor Point Clouds with Deep Learning « 43:29

18seleq SI1des

By

(@) GroundTrth (b) Incomple (c) Reconstructed

Fig. 18. Color reconstruction results of objects inside PCDs.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 43. Publication date: June 2022.

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Point Cloud Data
	2.2 Challenges for Indoor Point Cloud Completion

	3 System Design
	3.1 Overview
	3.2 Geometric Structure Reconstruction
	3.3 Color Reconstruction

	4 Implementation
	4.1 Hardware Platform and Datasets
	4.2 Network Training

	5 Performance Evaluation
	5.1 Geometric Structure Reconstruction
	5.2 Color Reconstruction
	5.3 Ablation Study
	5.4 Applications Result

	6 Related Work
	6.1 3D Shape Completion
	6.2 Indoor PCD Completion

	7 Discussion and Future Works
	8 Conclusion
	References
	A Appendix
	A.1 Additional Reconstruction Results

