
PIM-Quantifier: A Processing-in-Memory Platform
for mRNA Quantification

Fan Zhang
School of Electrical, Computer

and energy Engineering
Arizona State University

Tempe, USA

fzhang95@asu.edu

Shaahin Angizi
School of Electrical, Computer

and energy Engineering
Arizona State University

Tempe, USA

sangizi@asu.edu

Naima Ahmed Fahmi
Department of Computer Science

University of Central Florida
Orlando, USA

fnaima@knights.ucf.edu

Wei Zhang
Department of Computer Science

University of Central Florida
Orlando, USA

wzhang.cs@ucf.edu

Deliang Fan
School of Electrical, Computer and energy Engineering

Arizona State University
Tempe, USA

dfan@asu.edu

Abstract—Processing-in-memory (PIM) architecture has been
considered as a promising solution for the “memory-wall” issue
in many data-intensive applications, especially in bioinformatics.
Recent works of developing PIM for genome alignment and
assembling have achieved tremendous improvement, while an-
other important genome analysis - mRNA quantification has
not been explored. Efficient and accurate mRNA quantification
is a crucial step for molecular signature identification, disease
outcome prediction and drug development. In this paper, for
the first time, we propose a SOT-MRAM based PIM platform,
named PIM-Quantifier, for efficient mRNA quantification. A
PIM-friendly alignment-free quantification algorithm is first pro-
posed. Then, we present the optimized PIM architecture/circuit
designs and mapping method to efficiently accelerate mRNA
quantification. Extensive experiments show that PIM-Quantifier
significantly improves mRNA quantification performance than
CPU and recent other PIM platforms in efficiency defined as
throughput/power.

Index Terms—Processing-in-memory, mRNA-seq, MRAM

I. INTRODUCTION

According to the central dogma of molecular biology, a

gene contains exons and introns in its structure, where coding

exons are translated into protein. A single gene can encode

a set of distinct proteins that participate in diverse biological

functions by producing multiple transcripts (i.e., mRNA) with

different combinations of exons. To better understand the

biological functions and identify important molecular signa-

tures for disease progression prediction and drug development,

efficient and accurate transcript quantification with large-scale

mRNA-sequencing (RNA-seq) data is crucially important [1],

[2]. The high throughput RNA-seq technology is capable of

measuring transcript expression by mapping tens of millions

mRNA (or DNA) short reads (Fig.1(a)) to tens of thousands

of annotated genes and each short read contains hundreds of

This work is supported in part by the National Science Foundation under
Grant No.2005209, No.2003749

mRNA base pairs (bps). The normalized read coverage on

genes or transcripts represents their expression levels.

A typical transcript quantification with RNA-seq requires

alignment of short reads to the whole genome or transcriptome

before estimating the abundance, which is extremely time-

consuming. For example, aligning 30 million short reads from

one sample to the reference genome, using the widely used

software program TopHat2 [3] takes 28 CPU hours, while

quantification with the companion programs (e.g., Cufflinks

[4]) takes another 1-2 CPU hours. Since a read can be mapped

to multiple positions, ignoring the full base-to-base alignment

of the reads can significantly increase alignment efficiency,

and hence, the quantification too. An alignment-free technique

[1] has been developed recently to solve the above issue. As

shown in Fig.1(b), the technique only focuses on determining

the transcripts from which the reads are generated, not the

exact location. Without sacrificing the overall accuracy, this

approach uses k-mer based counting algorithms where each

transcript is split into k-length (bps) substrings to make it

mappable with short reads efficiently and accurately. This

striking idea introduces several novel bioinformatics tools

(e.g., Kallisto [1] and Salmon [2]) which can quantify mRNA

abundances (Fig.1(c)) without the exact position-wise align-

ment in a relatively short amount of time. However, there

is an intrinsic need to map each short read to hundreds of

thousands of transcripts for mRNA quantification, which still

takes a large amount of computational resources. In this work,

we aims to develop an efficient and fast hardware accelerator

for such compute- and data-intensive alignment-free mRNA

quantification process, which is a crucial step for molecular

signature identification, disease progression prediction and

drug development, etc.

In the meantime, Processing-in-Memory (PIM) architecture

is being introduced widely in the past two decades to solve

the memory wall bottleneck and improve processing time

by exercising parallel computing [5]–[7]. Moreover, PIM has

been demonstrated as a promising candidate to accelerate

data-intensive applications, especially for neural-network and

978­1­6654­3274­0/21/$31.00�©2021�IEEE 43

20
21
�5
8t
h�
A
C
M
/IE
EE

�D
es
ig
n�
A
ut
om
at
io
n�
C
on
fe
re
nc
e�
(D
A
C
)�|
�9
78
­1
­6
65
4­
32
74
­0
/2
1/
$3
1.
00
�©
20
21
�IE
EE

�|�
D
O
I:�
10
.1
10
9/
D
A
C
18
07
4.
20
21
.9
58
61
44

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

(b) Alignment-free
technique

(a) RNA-seq
Short reads

(c) Transcript (mRNA)
quantification

Input Read Gene A

Transcript y

Transcript z

Transcript x

Fig. 1. fast alignment-free mRNA transcript quantification is a crucial step
for molecular signature identification, disease progression prediction and drug
development, etc.

A A A G A C A T

A A A
A A G
A G A
G A C
A C A
C A T

Pre-generated
Index-Table

Key: K-mers Value: K-Comp

A A C

A A G
A G A
G A C
A C A
C A T

A A A
1 0 1

1 1 1
1 1 0
1 0 0
1 1 0
1 0 0

1 1 1

… … 1 0 0

1 1 1
1 1 0
1 0 0
1 1 0
1 0 0

1 1 1

AN
D

AN
D

AN
D

K-Comps
of all inputShort

Read:

Input
fragments:

Sliding the window to the right

Transcript
Index: 0 1 2

Step1:
Generate inputs

Step2:
One-One Mapping

(Stored in PIM)

Step3:
AND Result

K mers length: T

Length = T

Fig. 2. mRNA quantification-in-memory: Index-table is on-time pre-computed
and will be continuously used to process new incoming short reads. The key
operations in the algorithm are XNOR based match and AND functions.

bioinformatics. Existing prior works only explored how to

leverage PIM for DNA alignment and DNA assembling [8]–

[11]. How to efficiently leverage PIM architecture to accelerate

important mRNA quantification has yet been explored.

Our contributions in this work are summarized as following:

(1) To the best of our knowledge, we are the first to propose a

PIM-friendly mRNA quantification algorithm, which converts

the complex graph processing based algorithm into primary

bulk bit-wise logic operations supported by most PIM archi-

tectures.

(2) We develop the PIM-Quantifier architecture and circuit,

based on emerging non-volatile Spin-Orbit Torque Magnetic

Random Access Memory (SOT-MRAM), optimized for our

proposed mRNA quantification algorithm with fast and effi-

cient one-cycle parallel XNOR&AND logic operations.

(3) We propose a large gene data partition and mapping algo-

rithm to efficiently deploy the proposed mRNA quantification

algorithm into our PIM-Quantifier hardware platform, which

shows great increase in parallelism and throughput.

(4) We extensively assess our PIM-Quantifier with other recent

non-volatile PIM platforms and software implementation (i.e.

CPU) in performance and energy efficiency.

II. MRNA QUANTIFICATION-IN-MEMORY ALGORITHM

Our proposed mRNA quantification-in-memory algorithm

is shown in Algorithm 1 and Fig.2, which requires following

steps. First, each gene will be transferred to an index-table

which contains two parts: k-mers and k-comp (line-1 in algo-

rithm 1). All transcripts’ sequences of a gene is fragmented

into k-length substrings, defined as ‘k-mer’, starting from each

position; and for each k-mer, the k-compatibility (‘k-comp’)

classes are defined according to its presence in the transcript

(‘1’ means present’, whereas ‘0’ means ‘not present’). The

k-comp classes are represented as a one-dimensional vector

with ‘0’s and ‘1’s with size same as the number of transcripts

Algorithm 1 mRNA quantification

1: Generate index table for each gene. Index table consists k-mers and associated
k comp classes.

2: Initialize result = ones(m,n) //m is the number of genes, n is the length of k-comp
3: input fragment = short read[i=0:j=k] // k is the length of k-mer
4: for input fragment in short read do
5: for index num < length(index table) do
6: if input fragment in index table{index num} then
7: k comp = index table{index num}(input fragment)
8: result(index num,:) = AND(result(index num,:), k comp)
9: else

10: result(index num,:) = zeros(1,n)
11: end if
12: end for
13: input fragment = short read[i+1:j+1]
14: end for
15: Return result //result indicates the compatible transcripts of all genes

in that specific gene. The k-mers along with its k-comp

classes are then pushed into a Hashmap. The index-table is

then constructed from the k-mers and their k-comp classes.

The size of index-table depends on the value of k, and its

size can be at most L − k + 1, for a gene with length L.

Typically, human genome contains thousands of genes, each

gene represented by one index-table which has thousands of

k-mers on average, with k-mer length of 40. Note that, this

index-table construction step is one-time effort for every gene,

and it will be pre-generated and stored in our PIM platform.

Second, a sliding window with length same as k-mers will

be used to generate input fragments for every short read (line-

13). Each fragment will be sent to every gene index-table to

search if an exact match (implemented using bit-wise XNOR

logic in hardware) will be identified. Once the exact match in

one index-table is found, the corresponding k-comp value will

be recorded for the next step (line-7). If there is no match,

it means this short read doesn’t belong to any transcript in

this gene. Thus, the whole short read should be discarded for

this index-table (line-10). When all fragments are processed,

the corresponding k-comps will be collected to conduct bit-

wise AND operations (line-8). The value-‘1’ and its position

in AND logic outputs indicate the corresponding transcript is

compatible with current input short read.

To better explain the process, one example is shown in Fig.2.

Each gene generates an index-table with the parameter “k-mer

length: T” in the pre-computing stage. In this example, k-mer

length is 3. It is also assumed this gene has 3 transcripts,

resulting in the length of k-comp is 3. For example, the

k-mer “AAC” has the corresponding k-comp “101”, which

means it is occurred in the transcript-0 and transcript-2 in

this gene, but not in transcript-1. Again, this index-table only

belongs to one gene, which is generated only once in advance

and will be continuously used for processing new incoming

input short reads. As an example in Fig.2, if the input short

read length is 8, 6 k-mers with k=3 will be generated. Each

fragment will be fed into the pre-generated index-table to find

the exact match and its corresponding k-comp. Bit-wise AND

operation is then performed on all the selected k-comps to

produce the final output. In this example, based on the final

AND output-‘100’, the transcript-0 is the found compatible

transcript. Of course, the final output may have multiple ‘1’s,

indicating more than one transcript is compatible. We validated

44

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

our quantification-in-memory algorithm with existing software

programs in [1], [2], showing the same computation results and

similar computing complexity, while ours is optimized for PIM

acceleration.
To summarize, for PIM hardware implementation, the main

operations of our quantification-in-memory are k-mer match-

ing (based on XNOR) and AND logic for matched k-comps.

For k-mer matching, one of the XNOR based match operand

is fixed (i.e. pre-computed k-mers in the index-table), and the

other operand is fragment of input short read (i.e. a variable).

This XNOR operation naturally matches with non-volatile PIM

platform due to its greatly reduced leakage, non-volatility and

parallel logic computation. Moreover, the matching operation

among different index-tables are independent, where each

computational array could be used as one matching engine

to fully leverage the parallelism of PIM architecture. For

AND operation, since it obeys the associative law, we will

divide the whole bit-wise AND operations into consecutive

AND2 logic operations. Therefore, for each input fragment,

after XNOR matching to identify k-mer in each index-table,

the corresponding k-comp will be activated to conduct AND

logic with previous AND output, updating final output. Above

analysis clearly shows that fast and parallel XNOR/AND logic

operations are essential for PIM acceleration of quantification.

III. PIM-QUANTIFIER ARCHITECTURE AND CIRCUIT

Our proposed PIM-Quantifier is designed to be an inde-

pendent high-performance, parallel, and energy-efficient ac-

celerator based on main memory architecture. The hierarchy

structure is given in Fig.3(a). The main memory is com-

posed of a set of MRAM chips. Each chip contains multiple

banks, sharing I/O, buffer and control units. Each bank is

divided to multiple MATs connected to a Global Row Decoder

(GRD) and a shared Global Row Buffer (GRB). Each MAT

consists of 2D arrays of computational Spin-Orbit Torque

Magnetic Random Access Memory (SOT-MRAM) arrays as

demonstrated in Fig.3(a)-(b). Every compute array includes

two crucial sub-arrays termed as K-mer and K-comp arrays.

They could work in two modes (i.e. memory and in-memory

computing mode) to process the computationally-intensive bit-

wise XNOR and AND logic, respectively, required by the

quantification-in-memory algorithm. These two arrays stores

different types of data, but using the same designs of mem-

ory row/column decoder, Sense Amplifier (SA) (Fig.3c A),

write driver (Fig.3c F), and local row buffers (Fig.3c E).

Fig.3b C shows the k-mer array architecture with a sample

3×3 array. Each SOT-MRAM cell is associated with the Write

Word Line (WWL), Read Word Line (RWL), Write Bit Line

(WBL), Read Bit Line (RBL), and Source Line (SL) to per-

form typical memory and in-memory computing operations.

To program free-layer magnetization direction (thus low or

high resistance level representing data - ‘0’ and ‘1’) of SOT-

MRAM, flow of charge current (±y) through Spin Hall Metal-

SHM (Tungsten, β − W [12]) will cause accumulation of

opposite directed electron spin on both surfaces of SHM due

to spin Hall effect [13]. Thus, a spin current flowing in ±z is

generated and further produces spin-orbit torque (SOT) on the

adjacent free magnetic layer, causing switch of magnetization,

as well as the resistance of SOT-MRAM cell (i.e. writing data).

To perform memory read and PIM logic operations, we

propose to add a 2:1 MUX and a reference resistor (Rs)

to each RBL, as shown in Fig.3c A . For the typical mem-

ory read (e. g. M1), a read voltage is applied through the

MUX’s first input (V l) to RBL1 and the sense current Isense

flows from the selected SOT-MRAM cell’s resistance (RM1)

to ground. Then, assuming RM1 and Rs as two elements

of a voltage divider, our voltage-based sensing mechanism

generates Vsense� RM1
RM1+Rs

× V h/l at the input of SA. This

voltage is then compared with the memory mode reference

voltage (Vsense,P<Vref<Vsense,AP). Now, if the Vsense is higher

(/lower) than Vref, i.e. RAP (/RP), then the output of the SA

produces High (/Low) voltage indicating logic ‘1’ (/ ‘0’). In

the computing mode, we propose to store the first operand in

the memory as a resistance state where the second operand

(‘0’/‘1’) could be fed into the 2:1 MUX and selected by the

ctrl unit. This will effectively convert the binary input into

a proportional sense voltage (Vl/Vh) to drive the RBL. In

this way, our voltage-based sensing mechanism generates the

corresponding Vsense to various input combinations. Through

selecting different reference voltages (EnAND, EnOR), the

SA executes basic Boolean logic functions (i.e. AND and OR).

For AND operation, Vref is set at the midpoint of VAP //VP

(‘1’,‘0’) and VAP //VAP (‘1’,‘1’). In the k-mer array, by

activating two enables (EnAND, EnOR) simultaneously for

all the RBLs, bulk bit-wise XNOR2 could be implemented in

a single memory cycle quite efficiently. Fig.3b D represents

the k-comp array developed to handle the consecutive AND

operation of the selected k-comp, leveraging the same logic-

in-memory design. The all-zero detection circuit in Fig.3c B ,

as explained in algorithm section, is used to detect whether

XNOR output is all zero (need to discard current short read).

Fig.3c E is the shift register to generate the fragment from

input short read.

IV. MAPPING TO PIM-QUANTIFIER

In this section, we present how to deploy the mRNA

quantification to PIM-Quantifier. To start, each pre-computed

index-table will be stored in compute array consisting of k-mer

array and k-comp array. Both k-mers and k-comps are stored

along bit-lines required by the property of above discussed

in-memory-logic designs and friendly for parallel computing.

However, the k-mer table size could be very large, making it

difficult to fit into one memory sub-array. Thus, we introduce

an index-table partition method with property that k-mers

within the same memory sub-array share the same one or more

front-end nucleotides (nt) depending on the total data size

and memory sub-array size. The advantage of such partition

method is that it could save several XNOR cycles for the front-

end nt(s). For example, in Fig.4, the k-mers in sub-array-1 are

all starting with nt-‘A’. Note that, this rule could be partially

relaxed if k-mers starting with different nt could be all stored

in the same memory sub-array. When the input fragment is

45

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. (a) PIM-Quantifier architecture, (b) SOT-MRAM based computational array contains both k-mer and k-comp array, (c) Peripheral circuitry.

A 0 0
C 0 1
G 1 0
T 1 1

A A A A …
A A G C …
A G A A …
C …
A …
T …… … … … … …

Sub-array1

Sub-array2

…

K-mer

2-bits Binary
Representation

1 1 1 1 …
1 1 1 1 …
1 1 0 0 …
1 …
0 …
0 …… … … … … …

1
1
0

1
0
0

K-comp

Partial
AND

1
0
0

AND
Result

Read 0 1 2 3 4 5 6
Input - AAA AAG AGA GAC ACA CAT
K-
comp

- 111 111 110 100 110 100
Partial
AND1

111 111 111 110 110 110 110
Partial
AND2

111 111 111 111 100 100 100

1 1 0

1 0 0

1 0 0

=

Partial
AND1

Partial
AND2

Final
Result

AXX Sub-array1
CXX Sub-array2
GXX Sub-array3
… …

K-mer Array K-comp Array

Input

LUT

…

……

Fig. 4. mRNA quantification-in-memory process and data mapping.

received, the first step is to locate which memory sub-array

should be directed for the next matching stage, which could

be implemented by a small look up table (LUT).

In Fig.4, assuming the input fragment is ‘AAA’. According

to the LUT, the k-mers staring with ‘A’ are all stored in the

sub-array-1. Thus we activate the sub-array-1 for the XNOR

based matching operation as discussed in previous section.

After that, it identifies one match, indicating ‘AAA’ is stored

in the first column in the sub-array-1. Thus, the corresponding

k-comp value stored in the first column -‘111’ will be activated

to conduct AND logic with the previous partial AND result

stored in the latch. After this round of AND operation, its

result will be saved into the latch to update partial AND result.

When all fragments of a short read are processed, all the partial

AND results from each sub-array stored in their latches will be

collected to conduct final round of AND operation to generate

the final output, indicating which transcript is compatible with

current input short read. Fig.4 provides an example to process

6 input fragments.

For the XNOR based matching Within sub-array, we use

the first input fragment ‘AAA’ as one input example as

shown in Fig.5. Since there are only 4 types of nt, we use

two bits to encode them defined in Fig.4. Thus, the input

‘AAA’ is encoded as ‘000000’. It needs 6 cycles to perform

XNOR based matching within the corresponding sub-array.

As mentioned earlier, the k-mers are stored along bit-lines. In

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

0 0 0 0Input

1 1 1 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

0 0 0 0

1 1 0 1XNOR
Result

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0
1 1 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0
1 1 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

Input

Activate
Row

Cycle 0 Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Input A A A
Binary 00 00 00

XNOR
Matching

XNOR Result

1 0 0 0

All Zeros?

1 1 1 1
1 1 1 0
1 1 0 1

N Activate col

Y
Disgard

1
1
1

1 1 1 1

0 0 0 00 0 0 00 0 0 0

XNOR
Result

Fig. 5. Parallel search&matching operation

this 6x4 example array, it shows 4 k-mers, i.e. ‘AAA’,‘AAG’,

‘AGA’, and ‘ACA’, from left to right. To maximize computing

parallelism, multiple bit-lines (4 in this example) will be

activated at the same time to conduct parallel XNOR logic

between the input and stored k-mers bit by bit. First, it will

check if all k-mers in this array are staring with ‘A’. According

to the XNOR result, it excludes those k-mers that are not

staring with ‘A’, to narrow the search space for next nt. After

two nt (i.e. 4 bits) matching, the XNOR based match result

are ‘1100’, indicating the corresponding first two k-mers are

matched up to now, i.e. ‘AAA’ and ‘AAG’. Similar XNOR

based match will compare the input with the last nt, generating

XNOR based match result as ‘1000’. It indicates the first

‘1’ is matched with input-‘AAA’. Then, the first k-comp in

the corresponding k-comp array is activated for the following

AND operation. Of course, it is possible there is no exact

match in this k-mer array. In that case, the XNOR based match

result should be all-zeros, which will be detected based on the

circuit shown in Fig.3(c) B . Correspondingly, no k-comp will

be activated for the following AND operations.

V. PERFORMANCE ESTIMATION

A. Experiment Setup

To assess the performance of PIM-Quantifier as the new

PIM platform from circuit-level up to algorithm-level, we

develop a cross-layer comprehensive simulator similar as [10].

The PIM-Quantifier’s sub-array and peripheral circuits are

46

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

designed in Cadence Virtuoso with 45nm NCSU Product

Development Kit (PDK) library [14] and then evaluated in

Cadence Spectre for the circuit-level performance parameters.

The architecture-level simulator is based on NVSim [15]

where the configuration file is flexible and corresponding to

different array design and working mechanism. Thus, different

types of PIM platforms can share the similar organization and

simulator for fare comparison. For those Content Addressable

Memory (CAM) based designs, we use NVsim-CAM [16] to

estimate their performances. On top of architecture simulator,

we use Matlab to pre-process the real genome data. The cross-

layer simulator could evaluate latency, energy, and through-

put for the alignment-free based quantification with human

genome hg38 dataset.

We use 1 million short reads with length of 101 as test

inputs. 22000 genes (index-tables) are tested in total. Each

index-table contains 3000 to 10000 k-mers with length of 25.

We configure the PIM-Quantifier’s memory array with 256

rows and 1024 columns, 8x2 mats (with 1/1 as row/column

activation) per bank organized in H-tree routing manner, 64x64

banks (with 1/1 as row/column activation) in each memory

group. Totally, 65K sub-arrays are enough in most cases.

In the rest of this section, we first analyze the bulk bit-

wise operations for the proposed platform. The Monte-Carlo

simulation is also performed to show its stability. Then, more

detailed experiments are conducted to include different PIM

hardware platforms comparison, data-mapping optimization,

and real gene data.

B. Circuit Level Analysis

Functionality. Fig.6 depicts the transient simulation results

of a single k-mer/k-comp sub-array based on the architecture

shown in Fig.3a. For the sake of clarity, we assume a 3ns

period clock synchronises the write and read operations. How-

ever, a 2ns clock period could be used for a reliable read op-

eration. During the precharge phase of SA (Clk=1), the Vwrite

voltage is set and applied to the WBL to change the selected

SOT-MRAM cell’s resistance to Rlow= 5.9kΩ or Rhigh=15.7kΩ.

This way, the first operand is stored into the memory bit-cell as

a resistance state. Prior to the evaluation phase (Eval.) of SA,

WWL and WBL is grounded. The second operand (‘0’/‘1’) is

converted to a sense voltage (400mV/500mV) and fed to the

RBL. In the evaluation phase, RWL goes high. Depending on

the resistance state of SOT-MRAM bit-cell, Vsense is generated

through the resisitve voltage divider with the Rs= 5kΩ as the

first input of SA, when Vref is applied at the second input of

SA. The comparison between Vsense and Vref for all possible

input cases are plotted in Fig.6. We observe when Vsense<VOR

(only in the first evaluation phase), the SA outputs binary ‘0’,

whereas output is “1”. We also plotted the Isense to analyze

possible read disturbance when applying the Vsense. It can be

seen that in the worst case Isense (15μA)� Iwrite (130μA).

Variation analysis. To validate the variation tolerance of

the sensing circuit, we have performed a worst-case scenario

Monte-Carlo simulation with 100000 trials. A σ = 5%
variation is added to the Resistance-Area product (RAP), and a

0 0 1

1 1

1

0

1 0 0

"11"

1

0

Prech.

"00"

V
sense

>V
AND

Eval.

"10""01"

Fig. 6. Transient simulation wave-forms of PIM-Quantifier’s sub-array and
its reconfigurable SA for performing single-cycle in-memory operations.

σ = 10% process variation (typical MTJ conductance variation

[17]) is added on the TMR. The simulation result of sense

voltage (Vsense) distributions for the presented one-row acti-

vation in-memory mechanism is shown in Fig.7a. We observe

that 34.2mv and 18.7mv sensing margin are achieved between

three possible cases. Fig.7b shows the sensing margin for the

conventional 2-row activation PIM logic. It can be seen that the

presented design provides larger sensing margins especially

when it comes to “01” and “11” margin. This is mainly due

to the fact that, assuming RM1 and RM2 as two MRAM cells

located in a same bit-line and Rs as the reference resistor, our

voltage-based sensing mechanism provides Vsense� RM1
RM1+Rs

×
V h/l, where the current-based two-row activation mechanism

[18] provides Vsense� Isense ×(RM1//RM2). Since the parallel

resistance is virtually half of the resistance of a single cell.

~22mv

37.5mv

~5mv

24.9mv

Fig. 7. Monte-Carlo simulation of Vsense (with RAP/TMR=5%/10% -
tox=1.2nm) for (a) one-row activation PIM scheme (b) conventional two-row
activation PIM scheme.

C. Experiment Results

Since there is no prior PIM based hardware acceleration

of mRNA quantification, to conduct fair comparison, we re-

implement several representative non-volatile PIM designs

from CAM [20]–[22], IMCE [18], Pinatubo [19], to also

deploy our quantification-in-memory algorithm in those plat-

forms. Similar to our design, the CAM based platforms is

configured to only store one XNOR operand in memory

array and convert the other operand as voltage/current input.

Thus, those CAM based platforms share the same memory

structure like our design. The IMCE and Pinatubo need to

write both XNOR operands into the non-volatile memory

array for logic functions, thus larger memory array size is

needed for theses two platforms to use the same index table

47

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ENERGY AND LATENCY OF DIFFERENT PLATFORMS

PIM-Quantifier
IMCE [18]
512x1024

Pinatubo [19]
512x1024

RRAM
CAM [20]

MRAM
CAM [21]

PCM
CAM [22]

Technology(nm) 45nm 45nm 45nm 45nm 45nm 45nm

Latency(ns)
3.69ns(read)
1.66ns(write)

3.691ns
1.840ns

6.994ns
5.968ns

7.79ns
17.76ns

150.61ns
32.59ns

30.69ns
100ns

Energy(Read/row pJ) 90.94pJ 135.940pJ 137.436pJ 54.43pJ 697.28pJ 116.7pJ
Energy(Write/row pJ) 61.34pJ 92.092pJ 1.088nJ 1.200nJ 147.96pJ 7.34nJ

partition. But the MAT and bank organization remains the

same as other platforms. We also compare the CPU (Intel

E5-2620) performance using state-of-the-art mRNA transcript

quantification software-Kallisto [1].

Table.I, Fig.8 and Fig.9 summarize the key performance of

different PIM platforms and CPU. Thanks to our optimized cir-

cuit designs, PIM-Quantifier requires less read&write energy

than IMCE and Pinatubo. Different from IMCE and Pinatubo,

the input of PIM-Quantifier does not need to be written into

memory array for computing, eliminating extra input operand

writing power/latency and smaller memory size required. As

expected, CAM based platforms achieve highest throughput

due to its high parallel matching scheme. But such high

throughput is at the cost of extremely high power consumption.

Moreover, those platforms need 4T2R cell structure, making

each memory cell two times larger than other PIM platforms.

If defining the efficiency as ‘throughput/power’, as shown

in Fig.8(c), PIM-Quantifier is 1.7x - 71.5x more efficient

(Throughput/Power) than other PIM based platforms. CPU has

the worst efficiency in this case, almost three orders worse than

all PIM based platforms. Fig.9 shows the normalized com-

parison of throughput/power/area of different PIM platforms,

showing PIM-Quantifier greatly outperforms others.

Fig. 8. (a) Comparison between area, power, and throughput of different PIM
accelerators and CPU. (b) Normalized throughput and (c) Throughput/Watt.

0.006 0.01 0.025

Fig. 9. Normalized throughput/power/area of various PIM platforms.

VI. CONCLUSION

In this work, we present PIM-Quantifier to accelerate

compute- and data-intensive mRNA quantification. A PIM-

friendly quantification algorithm is presented along with the

optimized hardware platform and mapping method. The ex-

periments show that mRNA quantification on PIM platforms

with our algorithm has orders higher throughput than tra-

ditional CPU implementation. PIM-Quantifier also achieves

the best efficiency, defined as throughput/watt, among recent

PIM platforms compatible with our quantification-in-memory

algorithm. REFERENCES

[1] N. L. Bray et al., “Near-optimal probabilistic rna-seq quantification,”
Nature biotechnology, vol. 34, no. 5, pp. 525–527, 2016.

[2] R. Patro et al., “Salmon provides fast and bias-aware quantification of
transcript expression,” Nature methods, vol. 14, no. 4, 2017.

[3] A. Dobin et al., “Comment on “tophat2: accurate alignment of tran-
scriptomes in the presence of insertions, deletions and gene fusions” by
kim et al.” Biorxiv, p. 000851, 2013.

[4] C. Trapnell et al., “Transcript assembly and quantification by rna-
seq reveals unannotated transcripts and isoform switching during cell
differentiation,” Nature biotechnology, vol. 28, no. 5, pp. 511–515, 2010.

[5] P. Siegl et al., “Data-centric computing frontiers: A survey on
processing-in-memory,” in Proceedings of the 2nd International Sym-
posium on Memory Systems, ser. MEMSYS ’16, 2016, p. 295–308.

[6] M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-
gramming 1t1m crossbar to accelerate matrix-vector multiplication,” in
53rd DAC, ser. DAC ’16, 2016.

[7] K. Kim et al., “An energy-efficient processing-in-memory architecture
for long short term memory in spin orbit torque mram,” in ICCAD,
2019, pp. 1–8.

[8] S. Angizi et al., “Pim-assembler: A processing-in-memory platform for
genome assembly,” in 57th DAC, 2020, pp. 1–6.

[9] Z. I. Chowdhury et al., “A dna read alignment accelerator based on
computational ram,” IEEE JXCDC, vol. 6, no. 1, pp. 80–88, 2020.

[10] S. Angizi et al., “Aligns: A processing-in-memory accelerator for dna
short read alignment leveraging sot-mram,” in 56th DAC, 2019, pp. 1–6.

[11] F. Zokaee et al., “Aligner: A process-in-memory architecture for short
read alignment in rerams,” IEEE Computer Architecture Letters, vol. 17,
no. 2, pp. 237–240, 2018.

[12] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall
effect of tungsten,” Applied Physics Letters, vol. 101, no. 12, 2012.

[13] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, no. 1, pp. 1–22, 2016.

[14] Ncsu eda freepdk45. [Online]., http://www.eda.ncsu.edu/wiki/FreePDK45.
[15] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area

model for emerging nonvolatile memory,” IEEE TCAD, vol. 31, no. 7,
pp. 994–1007, 2012.

[16] S. L. andothers, “Nvsim-cam: A circuit-level simulator for emerging
nonvolatile memory based content-addressable memory,” in 2016 IC-
CAD, 2016, pp. 1–7.

[17] X. Fong et al., “Spin-transfer torque memories: Devices, circuits, and
systems,” Proceedings of the IEEE, vol. 104, no. 7, 2016.

[18] S. Angizi et al., “Imce: Energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in 23rd ASP-DAC, 2018, pp. 111–116.

[19] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in 53rd DAC,
2016, pp. 1–6.

[20] Li-Yue Huang et al., “Reram-based 4t2r nonvolatile tcam with 7x
nvm-stress reduction, and 4x improvement in speed-wordlength-capacity
for normally-off instant-on filter-based search engines used in big-data
processing,” in Symposium on VLSI Circuits Digest of Technical Papers,
2014, pp. 1–2.

[21] S. Matsunaga et al., “A 3.14 um2 4t-2mtj-cell fully parallel tcam based
on nonvolatile logic-in-memory architecture,” in VLSIC, 2012.

[22] J. Li et al., “1 mb 0.41 μm² 2t-2r cell nonvolatile tcam with two-bit
encoding and clocked self-referenced sensing,” IEEE Journal of Solid-
State Circuits, vol. 49, no. 4, pp. 896–907, 2014.

48

Authorized licensed use limited to: ASU Library. Downloaded on September 29,2022 at 23:29:43 UTC from IEEE Xplore. Restrictions apply.

