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Abstract—Processing-in-memory (PIM) architecture has been
considered as a promising solution for the “memory-wall” issue
in many data-intensive applications, especially in bioinformatics.
Recent works of developing PIM for genome alignment and
assembling have achieved tremendous improvement, while an-
other important genome analysis - mRNA quantification has
not been explored. Efficient and accurate mRNA quantification
is a crucial step for molecular signature identification, disease
outcome prediction and drug development. In this paper, for
the first time, we propose a SOT-MRAM based PIM platform,
named PIM-Quantifier, for efficient mRNA quantification. A
PIM-friendly alignment-free quantification algorithm is first pro-
posed. Then, we present the optimized PIM architecture/circuit
designs and mapping method to efficiently accelerate mRNA
quantification. Extensive experiments show that PIM-Quantifier
significantly improves mRNA quantification performance than
CPU and recent other PIM platforms in efficiency defined as
throughput/power.
Index Terms—Processing-in-memory, mRNA-seq, MRAM

I. INTRODUCTION

According to the central dogma of molecular biology, a
gene contains exons and introns in its structure, where coding
exons are translated into protein. A single gene can encode
a set of distinct proteins that participate in diverse biological
functions by producing multiple transcripts (i.e., mRNA) with
different combinations of exons. To better understand the
biological functions and identify important molecular signa-
tures for disease progression prediction and drug development,
efficient and accurate transcript quantification with large-scale
mRNA-sequencing (RNA-seq) data is crucially important [1],
[2]. The high throughput RNA-seq technology is capable of
measuring transcript expression by mapping tens of millions
mRNA (or DNA) short reads (Fig.1(a)) to tens of thousands
of annotated genes and each short read contains hundreds of
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mRNA base pairs (bps). The normalized read coverage on
genes or transcripts represents their expression levels.

A typical transcript quantification with RNA-seq requires
alignment of short reads to the whole genome or transcriptome
before estimating the abundance, which is extremely time-
consuming. For example, aligning 30 million short reads from
one sample to the reference genome, using the widely used
software program TopHat2 [3] takes 28 CPU hours, while
quantification with the companion programs (e.g., Cufflinks
[4]) takes another 1-2 CPU hours. Since a read can be mapped
to multiple positions, ignoring the full base-to-base alignment
of the reads can significantly increase alignment efficiency,
and hence, the quantification too. An alignment-free technique
[1] has been developed recently to solve the above issue. As
shown in Fig.1(b), the technique only focuses on determining
the transcripts from which the reads are generated, not the
exact location. Without sacrificing the overall accuracy, this
approach uses k-mer based counting algorithms where each
transcript is split into k-length (bps) substrings to make it
mappable with short reads efficiently and accurately. This
striking idea introduces several novel bioinformatics tools
(e.g., Kallisto [1] and Salmon [2]) which can quantify mRNA
abundances (Fig.1(c)) without the exact position-wise align-
ment in a relatively short amount of time. However, there
is an intrinsic need to map each short read to hundreds of
thousands of transcripts for mRNA quantification, which still
takes a large amount of computational resources. In this work,
we aims to develop an efficient and fast hardware accelerator
for such compute- and data-intensive alignment-free mRNA
quantification process, which is a crucial step for molecular
signature identification, disease progression prediction and
drug development, etc.

In the meantime, Processing-in-Memory (PIM) architecture
is being introduced widely in the past two decades to solve
the memory wall bottleneck and improve processing time
by exercising parallel computing [5]-[7]. Moreover, PIM has
been demonstrated as a promising candidate to accelerate
data-intensive applications, especially for neural-network and
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Fig. 2. mRNA quantification-in-memory: Index-table is on-time pre-computed
and will be continuously used to process new incoming short reads. The key
operations in the algorithm are XNOR based match and AND functions.

bioinformatics. Existing prior works only explored how to
leverage PIM for DNA alignment and DNA assembling [8]—
[11]. How to efficiently leverage PIM architecture to accelerate
important mRNA quantification has yet been explored.

Our contributions in this work are summarized as following:
(1) To the best of our knowledge, we are the first to propose a
PIM-friendly mRNA quantification algorithm, which converts
the complex graph processing based algorithm into primary
bulk bit-wise logic operations supported by most PIM archi-
tectures.

(2) We develop the PIM-Quantifier architecture and circuit,
based on emerging non-volatile Spin-Orbit Torque Magnetic
Random Access Memory (SOT-MRAM), optimized for our
proposed mRNA quantification algorithm with fast and effi-
cient one-cycle parallel XNOR&AND logic operations.

(3) We propose a large gene data partition and mapping algo-
rithm to efficiently deploy the proposed mRNA quantification
algorithm into our PIM-Quantifier hardware platform, which
shows great increase in parallelism and throughput.

(4) We extensively assess our PIM-Quantifier with other recent
non-volatile PIM platforms and software implementation (i.e.
CPU) in performance and energy efficiency.

II. MRNA QUANTIFICATION-IN-MEMORY ALGORITHM

Our proposed mRNA quantification-in-memory algorithm
is shown in Algorithm 1 and Fig.2, which requires following
steps. First, each gene will be transferred to an index-table
which contains two parts: k-mers and k-comp (line-1 in algo-
rithm 1). All transcripts’ sequences of a gene is fragmented
into k-length substrings, defined as ‘k-mer’, starting from each
position; and for each k-mer, the k-compatibility (‘k-comp’)
classes are defined according to its presence in the transcript
(‘I’ means present’, whereas ‘0’ means ‘not present’). The
k-comp classes are represented as a one-dimensional vector
with ‘0’s and ‘1’s with size same as the number of transcripts
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Algorithm 1 mRNA quantification

: Generate index_table for each gene. Index table consists k-mers and associated
k_comp classes.

2: Initialize result = ones(m,n) /m is the number of genes, n is the length of k-comp
3: input_fragment = short_read[i=0:j=k] // k is the length of k-mer

4: for input_fragment in short_read do

5: for index_num < length(index_table) do

6: if input_fragment in index_table{index_num} then
7: k_comp = index_table{index_num }(input_fragment)

8: result(index_num,:) = AND(result(index_num,:), k_comp)
9: else

10: result(index_num,:) = zeros(1,n)

11: end if

12: end for

13: input_fragment = short_read[i+1:j+1]

14: end for

15: Return result //result indicates the compatible transcripts of all genes

in that specific gene. The k-mers along with its k-comp
classes are then pushed into a Hashmap. The index-table is
then constructed from the k-mers and their k-comp classes.
The size of index-table depends on the value of k, and its
size can be at most L — k + 1, for a gene with length L.
Typically, human genome contains thousands of genes, each
gene represented by one index-table which has thousands of
k-mers on average, with k-mer length of 40. Note that, this
index-table construction step is one-time effort for every gene,
and it will be pre-generated and stored in our PIM platform.

Second, a sliding window with length same as k-mers will
be used to generate input fragments for every short read (line-
13). Each fragment will be sent to every gene index-table to
search if an exact match (implemented using bit-wise XNOR
logic in hardware) will be identified. Once the exact match in
one index-table is found, the corresponding k-comp value will
be recorded for the next step (line-7). If there is no match,
it means this short read doesn’t belong to any transcript in
this gene. Thus, the whole short read should be discarded for
this index-table (line-10). When all fragments are processed,
the corresponding k-comps will be collected to conduct bit-
wise AND operations (line-8). The value-‘1" and its position
in AND logic outputs indicate the corresponding transcript is
compatible with current input short read.

To better explain the process, one example is shown in Fig.2.
Each gene generates an index-table with the parameter “k-mer
length: T” in the pre-computing stage. In this example, k-mer
length is 3. It is also assumed this gene has 3 transcripts,
resulting in the length of k-comp is 3. For example, the
k-mer “AAC” has the corresponding k-comp “101”, which
means it is occurred in the transcript-0 and transcript-2 in
this gene, but not in transcript-1. Again, this index-table only
belongs to one gene, which is generated only once in advance
and will be continuously used for processing new incoming
input short reads. As an example in Fig.2, if the input short
read length is 8, 6 k-mers with k=3 will be generated. Each
fragment will be fed into the pre-generated index-table to find
the exact match and its corresponding k-comp. Bit-wise AND
operation is then performed on all the selected k-comps to
produce the final output. In this example, based on the final
AND output-‘100°, the transcript-0 is the found compatible
transcript. Of course, the final output may have multiple ‘1’s,
indicating more than one transcript is compatible. We validated
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our quantification-in-memory algorithm with existing software
programs in [1], [2], showing the same computation results and
similar computing complexity, while ours is optimized for PIM
acceleration.

To summarize, for PIM hardware implementation, the main
operations of our quantification-in-memory are k-mer match-
ing (based on XNOR) and AND logic for matched k-comps.
For k-mer matching, one of the XNOR based match operand
is fixed (i.e. pre-computed k-mers in the index-table), and the
other operand is fragment of input short read (i.e. a variable).
This XNOR operation naturally matches with non-volatile PIM
platform due to its greatly reduced leakage, non-volatility and
parallel logic computation. Moreover, the matching operation
among different index-tables are independent, where each
computational array could be used as one matching engine
to fully leverage the parallelism of PIM architecture. For
AND operation, since it obeys the associative law, we will
divide the whole bit-wise AND operations into consecutive
AND?2 logic operations. Therefore, for each input fragment,
after XNOR matching to identify k-mer in each index-table,
the corresponding k-comp will be activated to conduct AND
logic with previous AND output, updating final output. Above
analysis clearly shows that fast and parallel XNOR/AND logic
operations are essential for PIM acceleration of quantification.

III. PIM-QUANTIFIER ARCHITECTURE AND CIRCUIT

Our proposed PIM-Quantifier is designed to be an inde-
pendent high-performance, parallel, and energy-efficient ac-
celerator based on main memory architecture. The hierarchy
structure is given in Fig.3(a). The main memory is com-
posed of a set of MRAM chips. Each chip contains multiple
banks, sharing I/O, buffer and control units. Each bank is
divided to multiple MATs connected to a Global Row Decoder
(GRD) and a shared Global Row Buffer (GRB). Each MAT
consists of 2D arrays of computational Spin-Orbit Torque
Magnetic Random Access Memory (SOT-MRAM) arrays as
demonstrated in Fig.3(a)-(b). Every compute array includes
two crucial sub-arrays termed as K-mer and K-comp arrays.
They could work in two modes (i.e. memory and in-memory
computing mode) to process the computationally-intensive bit-
wise XNOR and AND logic, respectively, required by the
quantification-in-memory algorithm. These two arrays stores
different types of data, but using the same designs of mem-
ory row/column decoder, Sense Amplifier (SA) (Fig.3c

(A,
write driver (Fig.3c®), and local row buffers (Fig.3c).

Fig.3b© shows the k-mer array architecture with a sample
3x3 array. Each SOT-MRAM cell is associated with the Write
Word Line (WWL), Read Word Line (RWL), Write Bit Line
(WBL), Read Bit Line (RBL), and Source Line (SL) to per-
form typical memory and in-memory computing operations.
To program free-layer magnetization direction (thus low or
high resistance level representing data - ‘0’ and ‘1°) of SOT-
MRAM, flow of charge current (+y) through Spin Hall Metal-
SHM (Tungsten, 5 — W [12]) will cause accumulation of
opposite directed electron spin on both surfaces of SHM due
to spin Hall effect [13]. Thus, a spin current flowing in £z is
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generated and further produces spin-orbit torque (SOT) on the
adjacent free magnetic layer, causing switch of magnetization,
as well as the resistance of SOT-MRAM cell (i.e. writing data).

To perform memory read and PIM logic operations, we
propose to add a 2:1 MUX and a reference resistor (Ry)
to each RBL, as shown in Fig.3c@. For the typical mem-
ory read (e. g. M1), a read voltage is applied through the
MUX’s first input (V) to RBL1 and the sense current Igense
flows from the selected SOT-MRAM cell’s resistance (Ryp)
to ground. Then, assuming Ry and Ry as two elements
of a voltage divider, our voltage-based sensing mechanism
generates Vense™ Rl\f]l\ﬂ& x Vpy at the input of SA. This
voltage is then compared with the memory mode reference
voltage (Vense P <Viet<Vsense.ap). Now, if the Viepee is higher
(/lower) than Vi, i.e. R4ap (/Rp), then the output of the SA
produces High (/Low) voltage indicating logic ‘1’ (/ ‘0’). In
the computing mode, we propose to store the first operand in
the memory as a resistance state where the second operand
(‘0’/°1’) could be fed into the 2:1 MUX and selected by the
ctrl unit. This will effectively convert the binary input into
a proportional sense voltage (V;/V},) to drive the RBL. In
this way, our voltage-based sensing mechanism generates the
corresponding Vgepse to various input combinations. Through
selecting different reference voltages (Enanp, Enor), the
SA executes basic Boolean logic functions (i.e. AND and OR).
For AND operation, V,..5 is set at the midpoint of V4p//Vp
(‘1’,0’) and Vap//Vap (‘1°,1). In the k-mer array, by
activating two enables (EFnanp, EFnor) simultaneously for
all the RBLs, bulk bit-wise XNOR2 could be implemented in
a single memory cycle quite efficiently. Fig.3b® represents
the k-comp array developed to handle the consecutive AND
operation of the selected k-comp, leveraging the same logic-
in-memory design. The all-zero detection circuit in Fig.3c,
as explained in algorithm section, is used to detect whether
XNOR output is all zero (need to discard current short read).
Fig.3c@ is the shift register to generate the fragment from
input short read.

IV. MAPPING TO PIM-QUANTIFIER

In this section, we present how to deploy the mRNA
quantification to PIM-Quantifier. To start, each pre-computed
index-table will be stored in compute array consisting of k-mer
array and k-comp array. Both k-mers and k-comps are stored
along bit-lines required by the property of above discussed
in-memory-logic designs and friendly for parallel computing.
However, the k-mer table size could be very large, making it
difficult to fit into one memory sub-array. Thus, we introduce
an index-table partition method with property that k-mers
within the same memory sub-array share the same one or more
front-end nucleotides (nf) depending on the total data size
and memory sub-array size. The advantage of such partition
method is that it could save several XNOR cycles for the front-
end nt(s). For example, in Fig.4, the k-mers in sub-array-1 are
all starting with nt-‘A’. Note that, this rule could be partially
relaxed if k-mers starting with different nt could be all stored
in the same memory sub-array. When the input fragment is
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Fig. 4. mRNA quantification-in-memory process and data mapping.

received, the first step is to locate which memory sub-array
should be directed for the next matching stage, which could
be implemented by a small look up table (LUT).

In Fig.4, assuming the input fragment is ‘AAA’. According
to the LUT, the k-mers staring with ‘A’ are all stored in the
sub-array-1. Thus we activate the sub-array-1 for the XNOR
based matching operation as discussed in previous section.
After that, it identifies one match, indicating ‘AAA’ is stored
in the first column in the sub-array-1. Thus, the corresponding
k-comp value stored in the first column -‘111" will be activated
to conduct AND logic with the previous partial AND result
stored in the latch. After this round of AND operation, its
result will be saved into the latch to update partial AND result.
When all fragments of a short read are processed, all the partial
AND results from each sub-array stored in their latches will be
collected to conduct final round of AND operation to generate
the final output, indicating which transcript is compatible with
current input short read. Fig.4 provides an example to process
6 input fragments.

For the XNOR based matching Within sub-array, we use
the first input fragment ‘AAA’ as one input example as
shown in Fig.5. Since there are only 4 types of nt, we use
two bits to encode them defined in Fig.4. Thus, the input
‘AAA’ is encoded as ‘000000’. It needs 6 cycles to perform
XNOR based matching within the corresponding sub-array.
As mentioned earlier, the k-mers are stored along bit-lines. In
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Fig. 5. Parallel search&matching operation

this 6x4 example array, it shows 4 k-mers, i.e. ‘AAA’,'AAG’,
‘AGA’, and ‘ACA’, from left to right. To maximize computing
parallelism, multiple bit-lines (4 in this example) will be
activated at the same time to conduct parallel XNOR logic
between the input and stored k-mers bit by bit. First, it will
check if all k-mers in this array are staring with ‘A’. According
to the XNOR result, it excludes those k-mers that are not
staring with ‘A’, to narrow the search space for next nt. After
two nt (i.e. 4 bits) matching, the XNOR based match result
are ‘1100’, indicating the corresponding first two k-mers are
matched up to now, i.e. ‘AAA’ and ‘AAG’. Similar XNOR
based match will compare the input with the last nt, generating
XNOR based match result as ‘1000°. It indicates the first
‘1’ is matched with input-‘AAA’. Then, the first k-comp in
the corresponding k-comp array is activated for the following
AND operation. Of course, it is possible there is no exact
match in this k-mer array. In that case, the XNOR based match
result should be all-zeros, which will be detected based on the
circuit shown in Fig.3(c). Correspondingly, no k-comp will
be activated for the following AND operations.

V. PERFORMANCE ESTIMATION

A. Experiment Setup

To assess the performance of PIM-Quantifier as the new
PIM platform from circuit-level up to algorithm-level, we
develop a cross-layer comprehensive simulator similar as [10].
The PIM-Quantifier’s sub-array and peripheral circuits are
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designed in Cadence Virtuoso with 45nm NCSU Product
Development Kit (PDK) library [14] and then evaluated in
Cadence Spectre for the circuit-level performance parameters.
The architecture-level simulator is based on NVSim [15]
where the configuration file is flexible and corresponding to
different array design and working mechanism. Thus, different
types of PIM platforms can share the similar organization and
simulator for fare comparison. For those Content Addressable
Memory (CAM) based designs, we use NVsim-CAM [16] to
estimate their performances. On top of architecture simulator,
we use Matlab to pre-process the real genome data. The cross-
layer simulator could evaluate latency, energy, and through-
put for the alignment-free based quantification with human
genome hg38 dataset.

We use 1 million short reads with length of 101 as test
inputs. 22000 genes (index-tables) are tested in total. Each
index-table contains 3000 to 10000 k-mers with length of 25.
We configure the PIM-Quantifier’s memory array with 256
rows and 1024 columns, 8x2 mats (with 1/1 as row/column
activation) per bank organized in H-tree routing manner, 64x64
banks (with 1/1 as row/column activation) in each memory
group. Totally, 65K sub-arrays are enough in most cases.

In the rest of this section, we first analyze the bulk bit-
wise operations for the proposed platform. The Monte-Carlo
simulation is also performed to show its stability. Then, more
detailed experiments are conducted to include different PIM
hardware platforms comparison, data-mapping optimization,
and real gene data.

B. Circuit Level Analysis

Functionality. Fig.6 depicts the transient simulation results
of a single k-mer/k-comp sub-array based on the architecture
shown in Fig.3a. For the sake of clarity, we assume a 3ns
period clock synchronises the write and read operations. How-
ever, a 2ns clock period could be used for a reliable read op-
eration. During the precharge phase of SA (Clk=1), the Vyyrite
voltage is set and applied to the WBL to change the selected
SOT-MRAM cell’s resistance to Rijoy= 5.95€2 or Rpjgn=15.7k€).
This way, the first operand is stored into the memory bit-cell as
a resistance state. Prior to the evaluation phase (Eval.) of SA,
WWL and WBL is grounded. The second operand (‘0°/1”) is
converted to a sense voltage (400mV/500mV) and fed to the
RBL. In the evaluation phase, RWL goes high. Depending on
the resistance state of SOT-MRAM bit-cell, Vepse is generated
through the resisitve voltage divider with the Ry= Sk as the
first input of SA, when Vi is applied at the second input of
SA. The comparison between Vgpse and Vit for all possible
input cases are plotted in Fig.6. We observe when Vense <Vor
(only in the first evaluation phase), the SA outputs binary ‘0’,
whereas output is “1”. We also plotted the Iy to analyze
possible read disturbance when applying the Vgepse. It can be
seen that in the worst case Liepse (154A4)< Tyrire (1301A4).

Variation analysis. To validate the variation tolerance of
the sensing circuit, we have performed a worst-case scenario
Monte-Carlo simulation with 100000 trials. A o 5%
variation is added to the Resistance-Area product (RAp), and a
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o = 10% process variation (typical MTJ conductance variation
[17]) is added on the TMR. The simulation result of sense
voltage (Vgense) distributions for the presented one-row acti-
vation in-memory mechanism is shown in Fig.7a. We observe
that 34.2mv and 18.7mv sensing margin are achieved between
three possible cases. Fig.7b shows the sensing margin for the
conventional 2-row activation PIM logic. It can be seen that the
presented design provides larger sensing margins especially
when it comes to “01” and “11” margin. This is mainly due
to the fact that, assuming Ry, and Ry as two MRAM cells
located in a same bit-line and Ry as the reference resistor, our

. . . Ry

voltage-based sensing mechanism provides Vepse™ T £ X
Vi, where the current-based two-row activation mechanism
[18] provides Viense™ Isense X (Rm1//Ryz). Since the parallel
resistance is virtually half of the resistance of a single cell.
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C. Experiment Results

Since there is no prior PIM based hardware acceleration
of mRNA quantification, to conduct fair comparison, we re-
implement several representative non-volatile PIM designs
from CAM [20]-[22], IMCE [18], Pinatubo [19], to also
deploy our quantification-in-memory algorithm in those plat-
forms. Similar to our design, the CAM based platforms is
configured to only store one XNOR operand in memory
array and convert the other operand as voltage/current input.
Thus, those CAM based platforms share the same memory
structure like our design. The IMCE and Pinatubo need to
write both XNOR operands into the non-volatile memory
array for logic functions, thus larger memory array size is
needed for theses two platforms to use the same index table
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TABLE I
ENERGY AND LATENCY OF DIFFERENT PLATFORMS

PIM-Quantifier IMCE [18] | Pinatubo [19] RRAM MRAM PCM
512x1024 512x1024 CAM [20] | CAM [21] | CAM [22]
Technology(nm) 45nm 45nm 45nm 45nm 45nm 45nm
Latency(ns) 3.69ns(read) 3.691ns 6.994ns 7.79ns 150.61ns 30.69ns
1.66ns(write) 1.840ns 5.968ns 17.76ns 32.59ns 100ns
Energy(Read/row pJ) 90.94pJ 135.940pJ 137.436pJ) 54.43pl 697.28p] 116.7pJ
Energy(Write/row plJ) 61.34pJ 92.092pJ 1.088nJ 1.200nJ 147.96p] 7.34n]

partition. But the MAT and bank organization remains the
same as other platforms. We also compare the CPU (Intel
E5-2620) performance using state-of-the-art mRNA transcript
quantification software-Kallisto [1].

Table.I, Fig.8 and Fig.9 summarize the key performance of
different PIM platforms and CPU. Thanks to our optimized cir-
cuit designs, PIM-Quantifier requires less read&write energy
than IMCE and Pinatubo. Different from IMCE and Pinatubo,
the input of PIM-Quantifier does not need to be written into
memory array for computing, eliminating extra input operand
writing power/latency and smaller memory size required. As
expected, CAM based platforms achieve highest throughput
due to its high parallel matching scheme. But such high
throughput is at the cost of extremely high power consumption.
Moreover, those platforms need 4T2R cell structure, making
each memory cell two times larger than other PIM platforms.
If defining the efficiency as ‘throughput/power’, as shown
in Fig.8(c), PIM-Quantifier is 1.7x - 71.5x more efficient
(Throughput/Power) than other PIM based platforms. CPU has
the worst efficiency in this case, almost three orders worse than
all PIM based platforms. Fig.9 shows the normalized com-
parison of throughput/power/area of different PIM platforms,
showing PIM-Quantifier greatly outperforms others.

Throughput Throughput/Power
) (query/sec/W)
10! . (norm.) 2000 query/
1.5
~ 0.75 1.67M 1500
= 1.7
£l 0.5 1000
§ 3
<(0 5 0.25 141.5K 500
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Fig. 8. (a) Comparison between area, power, and throughput of different PIM
accelerators and CPU. (b) Normalized throughput and (c) Throughput/Watt.
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Fig. 9. Normalized throughput/power/area of various PIM platforms.
VI. CONCLUSION

In this work, we present PIM-Quantifier to accelerate
compute- and data-intensive mRNA quantification. A PIM-
friendly quantification algorithm is presented along with the
optimized hardware platform and mapping method. The ex-
periments show that mRNA quantification on PIM platforms
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with our algorithm has orders higher throughput than tra-
ditional CPU implementation. PIM-Quantifier also achieves
the best efficiency, defined as throughput/watt, among recent
PIM platforms compatible with our quantification-in-memory
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