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Ground Truth

MiShape

Figure 1. MiShape generates high-resolution silhouettes similar to vision-based systems using only millimeter-wave signals.

We propose MiShape, a millimeter-wave (mmWave) wireless signal based imaging system that generates high-resolution
human silhouettes and predicts 3D locations of body joints. The system can capture human motions in real-time under low
light and low-visibility conditions. Unlike existing vision-based motion capture systems, MiShape is privacy non-invasive and
can generalize to a wide range of motion tracking applications at-home. To overcome the challenges with low-resolution,
specularity, and aliasing in images from Commercial-Off-The-Shelf (COTS) mmWave systems, MiShape designs deep learning
models based on conditional Generative Adversarial Networks and incorporates the rules of human biomechanics. We have
customized MiShape for gait monitoring, but the model is well adaptive to any tracking applications with limited fine-tuning
samples. We experimentally evaluate MiShape with real data collected from a COTS mmWave system for 10 volunteers, with
diverse ages, gender, height, and somatotype, performing different poses. Our experimental results demonstrate that MiShape
delivers high-resolution silhouettes and accurate body poses on par with an existing vision-based system, and unlocks the
potential of mmWave systems, such as 5G home wireless routers, for privacy-noninvasive healthcare applications.
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1 INTRODUCTION
The need for understanding and perceiving at-home human activities is critical for numerous applications, such as
monitoring behavior of elderly patients in assisted living conditions or detecting falls [1, 2], monitoring recovery
of post-surgery or post-stroke patients [3], monitoring infants [4], and monitoring early biomarkers of critical
health conditions [5–7]. Optical cameras, IRs, LiDARs, etc., can be used to design such applications [8–12], but
they do not perform well in low light and low visibility conditions [13]. Furthermore, the scope of these systems
is also limited by additional hardware requirements, such as LiDARs, which are expensive and cumbersome to
instrument inside an average home. More importantly, cameras capture the scene through a true-color image
representation, making them privacy-invasive and undesirable to the users to implement in their private space,
like home or office. Fortunately, ubiquitous networking devices, such as 5G home wireless routers [14], can be
augmented with intelligence to enable such at-home monitoring applications without being intrusive. These
networking devices have built-in millimeter-wave (mmWave) technology, and they can illuminate the target
scene and capture its image using high-frequency mmWave wireless signals [15]. The mmWave imaging systems
are robust to low light and low visibility conditions, can enable through-occlusion imaging, and have been widely
used in airports and security portals to detect hidden weapons [16, 17]. Furthermore, they provide an advantage
over the camera-based systems by capturing only the general body shape or silhouette and preserving users’
privacy [15]. So, the ubiquity of mmWave technology in 5G-and-beyond devices, such as home wireless routers,
enables the opportunity for bringing privacy non-invasive human motion capture systems to the masses at-home.

Wireless signal based motion capture systems traditionally rely on low-frequency signal reflections from Wi-Fi
devices to capture at-home human activities [18–21]. These systems deliver information about the human body in
the form of skeletons/joints at a coarse-grain scale. Even though skeletal representation is adequate for tracking
the movement of a person, they lack meaningful, discriminatory information, such as somatotype, contour of
the body, etc., on par with the existing vision-based systems, e.g., RGB cameras, Vicon, or Kinect [22–24]. So, it
might result in an identical skeleton for two different somatotypes of the same height, which is undesirable in
human monitoring applications. Significant research efforts have been directed towards extracting meaningful
information in the form of fine-grained mesh or silhouette from mmWave signals [25, 26]. This is because the
smaller wavelength of mmWave signals theoretically allows us to capture a target scene with a higher resolution
than Wi-Fi and represent the human body at a fine-grain scale. With such a fine-grained representation, privacy
non-invasive information about the human body, comparable to the vision-based system, can be derived. But it is
challenging to design mmWave imaging on networking devices for three key reasons.
First, mmWave imaging resolution is still very low compared to optical cameras. Imaging resolution of a

system is proportional to the antenna array size and signal bandwidth [27]; so, a practical mmWave networking
device, with less than 4 GHz bandwidth and less than 5 cm × 5 cm of antenna size [28], creates a significant
image pixel spread along the horizontal and vertical directions. This results in the elimination of high-frequency
components, such as the contour, limbs, and joints, and the final output looks like blobs, making it human or
machine imperceptible (see Figure 3[c]). Second, mmWave reflections suffer from the challenges of specularity and
variable reflectivity. Since human body mainly absorbs mmWave signals [29, 30], most of the signals transmitted
do not reach back to the mmWave receiver, and some of the body parts can only create specular reflections [25].
Furthermore, due to the presence of clothing, different body parts would reflect signals differently, creating an
imperceptible human shape with many missing parts. Finally, existing wireless systems require special antenna
arrangements, such as bulky T-shaped or rectilinear, or uniform antenna arrays [25, 31, 32] that are unavailable
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in Commercial-Off-The-Shelf (COTS) devices at homes. Deploying traditional mmWave imaging algorithms on a
COTS device with non-uniform antenna arrangements is challenging because of the image aliasing effect, where
aliasing refers to the presence of spurious/ghost reflections and distortion of the target scene [33–37].
To overcome these challenges, we propose MiShape, a low-barrier system that brings high-resolution mmWave

imaging on COTS devices for at-home continuous monitoring of human motions and activities.MiShape relies on the
reflected signals from multiple mmWave antennas on a COTS device to estimate human silhouettes accurately.
But combining the reflections using traditional imaging algorithms produces low-resolution, distorted human
shapes with many missing parts [38, 39]. This is because traditional algorithms reconstruct each pixel on the
target scene independently without the knowledge of the well-defined shape and biomechanics of humans. To
this end, MiShape designs a deep learning framework to learn the representation of mmWave reflections to the
human shapes and generate high-resolution silhouette images by identifying patterns from several examples.
But instead of trying to learn thousands of pixels in high-resolution silhouettes from only a few points in the
reflected signals, which could lead to a network divergence during learning, MiShape divides the learning task
into three networks. First, it designs a customized conditional Generative Adversarial Network (cGAN) to learn
very low-resolution silhouettes consisting of hundreds of pixels from the input reflected signals. Then, it converts
the low-resolution silhouettes to high-resolution using a Super-Resolution Generative Adversarial Network
(SRGAN), that is customized for human shapes. Finally, from the generated silhouettes, it predicts accurate 3D
locations of joints by incorporating well-established rules of human biomechanics.
We design and prototype MiShape on a COTS mmWave device and conduct microbenchmark and field-trial

experiments for at-home application. Since the current COTS mmWave networking devices cannot switch
between Tx and Rx mode within nanoseconds and do not provide user access to the raw signal reflections yet, we
built a customized setup using two 77–81 GHz mmWave Radars [40] to collect the reflected signals and a Microsoft
Kinect Xbox One [41] to collect the ground truth silhouettes and 3D joint locations. We collect reflected signals
and ground truths from 10 volunteers performing 17 different poses, spanning over a period of two months, and
our dataset consists of nearly 100 K samples (> 14 GB). The dataset is used to not only train and fine-tuneMiShape
but also benchmark its effectiveness. Our baseline experiments with a single volunteer’s data show that MiShape
can generate human silhouette images with a median Intersection of Union (IoU) and Multi-Scale Structural
Similarity Index Measure (MS-SSIM) of 0.72 and 0.96, respectively, where IoU [42] and MS-SSIM [43] measure
the shape and quality similarity between generated and ground truth images. In contrast, traditional imaging
algorithms can only achieve a median IoU and MS-SSIM of 0.06 and 0.11, respectively. Furthermore, MiShape
can upsample the silhouettes to generate high-resolution images, which accentuates the fine-grained texture
and the frame of the human body, and still maintains a median MS-SSIM of 0.91 for 8× upsampling. MiShape
also performs well across diverse mmWave antenna configurations with fundamentally different resolutions
in their captured samples and consistently outperforms an existing deep learning model. In addition, MiShape
predicts the 3D locations of joints with an average error of ∼ 10 cm across many critical body joints. We also find
that MiShape requires little fine-tuning for new volunteers: The model, when fine-tuned with only 2 randomly
selected volunteers’ data samples, can achieve a median IoU of 0.60 across all 10 subjects. Finally, our field-trial
experiments for at-home gait monitoring application show that MiShape consistently predicts its key metrics
with accuracy similar to the RGB-D camera-based systems.

In summary, we make the following contributions: (1) We design a deep learning based imaging framework for
generating high-resolution human silhouettes by overcoming the challenges in COTS devices. To the best of our
knowledge, MiShape is the first system to address the fundamental aliasing problem, and achieve high-resolution
silhouettes on par with the existing vision-based systems with COTS mmWave device. (2) We design a framework
based on generative models and rules of human biomechanics to enable at-home healthcare applications, and
prototype and evaluate its performance for multiple volunteers with diverse ages, gender, height, and somatotype.
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Figure 2. A mmWave device captures reflected signals and combines signals from multiple antennas to generate an image.

Our results demonstrate that MiShape is generalizable under real conditions and work consistently with practical
COTS devices. To accelerate the research on COTS mmWave device based human imaging and motion tracking,
we will open-source our measured dataset and codebase.

2 BACKGROUND AND FUNDAMENTALS

2.1 Millimeter-Wave Imaging
To construct an image, a transceiver illuminates the target scene by radiating mmWave signal from its planar
antennas. The signal then bounces off of the target and the background to reach back to the transceiver. By
combining the received signals from multiple antennas, the transceiver can generate an image. If the combination
is coherent, a human’s shape could be identified against the background by estimating the reflection strengths at
different spatial points. Let us consider that a human body has R reflecting points, and the location and reflectivity
coefficient of r th point is (xr ,yr , zr ) and σr , respectively. The mmWave transceiver sends a wide bandwidth signal
from each antenna location (xk ,yk , 0) and receives reflection from these R points (Figure 2). The received signal
of k th antenna can be expressed as a sum of all time-delayed transmitted signals, p[t], and can be written as:
S(xk ,yk , t) =

∑
r ∈R σr ·p[t − 2drk/c], where c is the wireless propagation speed (∼3×108 m/s) and 2drk is the round

trip distance between the r th point and the k th antenna [44]. To generate the image, first, a Fast Fourier Transform
(FFT) is applied to the received signal to estimate the intensity and phase at different depths. Then, these values
are interpolated and compressed w.r.t. the mean depth, and a 3D image grid is created along the XYZ dimensions.
Finally, for each depth bin and for each antenna, the reflected signals are combined and projected onto the image
grid to generate the 3D voxel of the target scene [38]. A 2D silhouette image can be generated by identifying a
high-intensity cluster inside the voxel and extracting the slice with maximum energy across depth.

2.2 Challenges in Imaging with COTS Millimeter-Wave Devices
Achieving high-resolution images from COTS mmWave networking devices, such as home wireless routers, is
challenging because of two reasons.
(1) Small Antenna Array Size: The resolution of mmWave images depends on the antenna array size, and

larger antenna arrays, with each antenna placed at the correct location, achieve higher resolution since it can
better distinguish close-by reflecting points [27, 44]. However, to be cost-effective, the array size for most mmWave
networking devices are very small, typically, 4×4 or 2×4 or 2×8 1 [45–49]. So, the resolution of the generated
images will be extremely poor and the resultant shapes are often imperceptible by both humans and machines.
For example, Figure 3 shows the silhouette image of a human posing in front of two mmWave antenna arrays:
While a rough shape could be visually perceivable with a 32×32 array, the shape appears like a blob for the 2×8
array. Such a shape also lacks enough discriminating features for simple automation tasks, e.g., recognizing or
distinguishing human poses.
1N×M represents the number of antennas across vertical and horizontal directions.
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(a) (b) (c)

RGB-D Camera 32x32 Antenna Array 2x8 Antenna Array

Figure 3. (a) Silhouette image of a human performing a pose in front an RGB-D camera. (b) Silhouette image generated
for this pose with rectilinear mmWave antenna array size of 32×32. (c) Silhouette image generated by a more practical and
widely available mmWave antenna array size of 2×8.

(a) (b)

(d)(c)

Figure 4. (a–b) Two poses. (c–d) Aliased images generated for these poses.

(2) Non-Uniform Antenna Placements: While the image resolutions can be improved by deploying a larger
antenna array, each antenna must be placed by strictly adhering to the Nyquist criterion for alias-free imaging
[50] (which states that the critical distance between adjacent antenna elements should be ∼ λ/2, where λ is the
signal wavelength). Combining the reflected signals from multiple non-uniformly spaced antennas often leads
to image aliasing, distorting the target scene and creating spurious/ghost reflections [34]. This is because the
reflected signals are combined incoherently, adding destructively where it should be constructive, and vice versa.
While the next-generation of expensive mmWave devices for outdoor networking applications, such as [51, 52],
promises to include more antennas, they will distribute the antenna arrays non-uniformly across the device to
improve the network coverage. So, they will likely produce aliased images with unrecognizable human shapes.
Figures 4(a–d) show that for two different poses, it generates similar-looking indistinguishable silhouette images
when two antenna arrays of size 1×4 are placed non-uniformly, which are difficult to perceive or distinguish.

3 MISHAPE DESIGN

3.1 Overview
MiShape aims to generate high-resolution human silhouette images and predict accurate 3D joint locations by
addressing the practical challenges in COTS mmWave devices. This could enable many at-home healthcare
applications, such as physiotherapy and gait monitoring, from ubiquitous mmWave networking devices. Instead
of relying on traditional imaging algorithms, MiShape trains a set of customized deep learning frameworks with
thousands of examples of mmWave signal reflections, ground truth human silhouettes, and 3D joint locations
to learn the generalized relationships between them. Then, at run-time, when the model has been trained
appropriately,MiShape can accurately predict the silhouettes and joints from only the mmWave signal reflections
without using the ground truth. Figure 5 shows an overview of the MiShape system.
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Figure 5. System overview of MiShape.

To trainMiShape with the ground truths, first, we collect a diverse dataset with different human poses, activities,
etc., which records the signal reflections from mmWave devices and the corresponding ground truth silhouette
images and joint locations from a co-located RGB-D camera. The silhouettes and joints are then sanitized, and
the reflected signals are synchronized and resampled in time to align with the ground truths. These datasets
are then fed to MiShape for training, which consists of two components: A human silhouette generator and a
joint location estimator. Inside the silhouette generator, the reflected signals are paired with the ground truth
silhouette images to train Generative Adversarial Networks (GAN). The GANs, from thousands of data pairs,
learn the association between images and signals and can generate the silhouettes from only the reflected signals
at run-time. Inside the joint location estimator, the generated silhouette images are paired with the ground truth
3D locations of joints, and the model is trained by incorporating the rules of human biomechanics so that it can
predict accurate joint locations at run-time. We now describe these design components in detail.

3.2 Relationship between Human Silhouette and Signal Reflections
MiShape relies on a deep learning model so that mmWave reflected signals can generate accurate human
silhouettes. Before building such a model, we first analyze the reflected signals and ground truth silhouettes to
understand their relationships. To this end, we have two hypotheses: (1) The raw reflected signals from various
poses of a human should have distinct features so that a model could extract and learn them, even when the
generated mmWave images from these signals are indistinguishable. (2) The same pose performed by different
humans should generate different features in the reflected signals, so that a model could not only distinguish humans
but also learn to generalize itself for multiple humans. To test these hypotheses, we first collect mmWave reflected
signals from a single volunteer performing 6 different poses in front of MiShape (see Figure 6[a]). Furthermore,
we ask 6 volunteers (different heights, somatotypes, see Figure 6[c]) to perform the same pose in front ofMiShape
and collect their reflected signals. Then, we analyze the features of the reflected signals by measuring the t-SNE
distribution [53], where similar features in the input space should cluster near each other.
Figures 6(b) and (d) show the t-SNE distributions for these datasets. We observe 6 distinct feature clusters in

the reflected signals corresponding to the case when the same volunteer performs distinct poses (Figure 6[b]).
Besides, for each pose, its cluster is highly concentrated around the centroid, which shows that the behavior
of the reflected signal is consistent across the same pose. We also observe another 6 distinct feature clusters,
concentrated around their centroids, corresponding to the case when multiple volunteers perform the same pose
(Figure 6[d]). This preliminary analysis validates the hypothesis and suggests that mmWave reflected signals can
be used as an input to a learning based system to distinguish between humans and their poses.
However, these results do not showcase whether it is feasible to map these reflected signals to generate

silhouette images. To this end, we hypothesize that visually similar-looking silhouettes likely produce similar
mmWave reflections and vice versa, so that a model could learn the association between the reflected signals and
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(a) Single volunteer performing different poses.
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(b) t-SNE plot for different poses.
Volunteer 1 Volunteer 2 Volunteer 3

Volunteer 4 Volunteer 5 Volunteer 6

(c) Single pose from different volunteers.
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(d) t-SNE plot for different volunteers.

Figure 6. t-SNE analyses of reflected signals from poses and volunteers show dominant sub-clusters in feature space.
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Figure 7. Analyzing one-to-one relational mapping between reflected signals and visual data across: (a) Different poses and
(b) Different volunteers.

silhouettes and train itself to generate viable silhouettes given only the reflected signals. To this end, we use
our data to identify the visual similarity between silhouette images and the difference in reflected signals across
a pair of datasets with one-to-one mapping. The visual similarity is measured using the 2D IoU between the
silhouette images [42] (where IoU value 1 means two images are identical), and the signal difference is measured
using a normalized Mean Square Error (MSE) between the signals (where MSE value 0 means two signals are
identical). We select the datasets for poses 1 through 4 and for volunteers 1 through 4, and find the corresponding
IoU and MSE for pairs of poses (i.e., pose 1 vs. 1, pose 1 vs. 2, etc.) and pairs of volunteers (i.e., volunteer 1 vs. 1,
volunteer 1 vs. 2, etc.).
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Figures 7(a) and (b) show the relationship between visual similarity and signal differences across pairs of poses
and volunteers, respectively. Clearly, the IoU and MSE (in Figure 7[a]) for datasets of the same pose pairs are
clustered near 1 and 0, respectively, which indicates that a pose consistently generates similar reflections and
silhouettes, irrespective of the pose type. Also, different poses consistently generate different reflections and
silhouettes, which should allow mapping the reflections to the silhouettes. Furthermore, the IoU and MSE (in
Figure 7[b]) for volunteer pairs also show similar behavior, which should allow not only distinguishing volunteers
but also mapping reflected signals to their unique silhouettes.

3.3 Data Preprocessing
To learn only the necessary features from the reflected signals and ground truths, MiShape first preprocesses
them to remove spurious information. Data preprocessing involves two steps: (1) Silhouette images and joints
extraction by subtracting the unwanted background for high-quality ground truths, and (2) Data synchronization
and resampling to align the mmWave reflected signals with the ground truths.

3.3.1 Silhouette Images and Joints Extraction. The silhouette images from a typical RGB-D camera often
have spurious noise due to its inability to compute correct depth in the presence of background and clutters.
Besides, different human body parts have different depths from the device, so thresholding the image with a single
depth value to separate the background is infeasible. These noise and variable depths, make human silhouette
extraction from the RGB-D cameras non-trivial and error-prone. To this end, we follow [54, 55] to use the body
joint locations reported by RGB-D cameras [56] to separate the foreground human body from background noise.
These 3D locations provide the seed point of human joints and are essential to locate the region of interest. We
first use these seed points in the depth images to grow the region near the joint and cover the body parts that the
specific joint has represented, and then, merge all the regions. Extracting the human silhouette from depth image
using joint locations not only produces an accurate shape but also works well in diverse settings.

3.3.2 Data Synchronization and Resampling. Since a learning model will rely on the true relationship
between the reflected signals, silhouettes, and joints, it is critical that the model is only trained on synchronized
samples. Since hardware synchronization is currently unavailable between the mmWave device and the RGB-D
camera, we use software synchronization and process the data samples further to remove residual misalignment.
During an experiment, we find the local timestamp of subject movement by analyzing the temporal changes in
the mmWave signals and then correlate the movement from the RGB-D camera. Since the effect of movement
should appear simultaneously on RGB-D camera and mmWave device, we can calibrate their data samples by first
identifying the local timestamp of movement start and then offsetting the samples w.r.t. the timestamps. Besides,
there could be a sampling rate mismatch between the devices (e.g., mmWave device and RGB-D camera in our
setup have 25 and 30 fps sampling rates, respectively). So, we resample RGB-D silhouette images in time using
a weighted average method, similar to [57]. These preprocessed ground truths aligned with mmWave signal
reflections form the output and input pair, respectively, to the human silhouette generator network.

3.4 Human Silhouette Generation
The core purpose of the human silhouette generator network is to convert the mmWave signal reflections to high-
resolution human silhouettes and capture diverse human poses. To learn the relationship between reflections to
the silhouettes, MiShape uses Generative Adversarial Networks (GAN) and trains them with thousands of past
examples of reflections and ground truths.MiShape uses two GANs in its silhouette generator: A conditional GAN
(cGAN) and Super-Resolution GAN (SRGAN), which run in succession. The cGAN first generates low-resolution
silhouettes directly from the reflected signals, and then the SRGAN upsamples them to high-resolution. The
framework is designed in such a two-step because the size of the input reflected signals is typically very low
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Figure 8. Generator and Discriminator networks of MiShape’s cGAN.

compared to the size of output silhouette images, which makes it hard for the network to converge [58–60]. For
example, in our design and evaluations with COTS devices, the input size is only 8×256 and the output size is
512×512; so, the network does not converge well when we use only the cGAN to learn the larger output size.
Therefore, MiShape is trained in two steps. First, the cGAN is trained on low-resolution ground truth images

obtained by down-sampling the original silhouettes to learn its association with the reflected signals. This model
can be used to generate low-resolution silhouettes directly from the reflected signals. Then, the SRGAN is trained
to convert those generated low-resolution images to high-resolution. These generated images are the final outputs
fromMiShape’s human silhouette generator network. Both GANs consist of a Generator G to learn the association
between the input and ground truth, and a Discriminator D that guides G to learn better association at each
iteration. During the run-time, when both networks have been trained properly,MiShape can estimate an accurate,
high-resolution human silhouette using only the mmWave reflected signals and without using the ground truth.
We now discuss the GAN fundamentals and then describe the network components in detail.

3.4.1 GAN Fundamentals. A generative model is an unsupervised learning which automatically discovers
and learns the pattern and regularities in the input dataset to generate new datasets with similar distribution as
the input. GAN augments the concept of the generative model and improves the quality of output by training the
network with supervision via two sub-models: (1) Generator G to generate new outputs and (2) Discriminator D
to classify outputs generated by G as either real (i.e., from ground truth datasets) or fake (i.e., generated fromG)
[61]. These two sub-models are trained in an adversarial, zero-sum game, untilG is able to fool D by generating
plausible examples [61]. However, traditional GANs cannot control the modes of generated data to a particular
domain; therefore, in MiShape, we propose to restrict the generated datasets by conditionally trainingG to follow
the distribution of the ground truth silhouettes through a customized conditional GAN (cGAN) [62].

3.4.2 MiShape’s cGAN Model. Figure 8 shows the network architecture for MiShape’s cGAN. The model is
conditional on ground truth silhouettes and consists of two network blocks: Generator (G) and Discriminator (D).

Generator : The objective of the Generator G is to convert the mmWave signal reflections to a human perceivable
silhouette with complete pose information. To ensure network convergence with minimal training for any new
environment, we need correct feature representation between input and output. With traditional Convolutional
Neural Networks, such representations are directly encoded from the dense layers, and the network relies on them
to upsample and reconstruct images. However, dense layers perform a linear operation on the layer’s 1D feature
vectors and are not deep enough to capture the accurate pixel-by-pixel reconstruction. Instead, we leverage
an encoder-decoder architecture, where the encoder first extracts abstract features from the input reflections
using multiple 2D convolution layers and a flatten layer. Then, the decoder converts those features to a 2D
silhouette using multiple deconvolution layers. In our design, we use five 2D convolutional layers and five 2D

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 96. Publication date: September 2022.



96:10 • Adhikari et al.

deconvolutional layers at the encoder and the decoder, respectively (see Figure 8). We find five convolutions and
five deconvolutions to be the minimum number of operations to fit our input and output representation onto a
1D feature vector of 128. We do not want to increase this number to encode onto a feature vector of larger size as
it will create sparsity and will increase the network’s complexity for the same relevant features encoded by a
vector of size 128. Table 1 summarizes the G network parameters.

Table 1. Generator network parameters for MiShape’s cGAN. RSC: Reflected Signal Convolutional layer; RSDC: Reflected
Signal Deconvolutional layer. Act. Fcn.: Activation Function. LReLU: Leaky ReLU.

RSC1 RSC2 RSC3 RSC4 RSC5 RSDC1 RSDC2 RSDC3 RSDC4 RSDC5 Output
Filter # 4 8 16 64 128 128 64 16 8 1

Filter Size 4x3 6x6 6x6 6x6 6x6 4x4 4x4 4x4 4x4 4x4
Dilation 2x2 2x2 2x2 2x2 2x2 4x4 2x2 2x2 2x2 2x2
Act. Fcn. LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU Linear

Discriminator: The objective of the Discriminator D is to guide G to generate real-looking silhouettes via
adversarial training. D classifies the real samples and the generated samples during the training process to assist
G in learning a better association between the reflected signals and silhouettes. It takes two inputs in the forms
of the reflected signal and the 2D silhouette image, which could either be from real datasets or datasets generated
by G. Then, D outputs the probability of whether the input is real or fake. Discriminator takes input from two
sets of images. The first set of images is the output from the generator and the second set is the ground truth
images. Therefore, it needs two networks to represent images into 1D features to classify them as real or fake. To
this end, D uses two encoder networks to encode these images: (1) The first encoder with convolution operations
that encodes the reflected signals into a 1D feature vector. This encoder follows the similar encoder architecture
of G. (2) A second encoder with five 2D convolutions to encode the ground truth into an appropriate 1D feature
vector. To distinguish between the inputs, D concatenates the output feature vectors from these two encoders
and then feeds them into two fully connected dense layers and one dense layer that outputs the probability. Since
the probability values should be between 0 to 1, we use a Sigmoid activation function in D’s final dense layer. In
this adversarial training, the overall network converges when D consistently outputs a probability of 0.5, i.e.,
irrespective of the input from real datasets orG, D will assign an equal probability of input being real or fake.
Said differently, G is now trained properly to output samples indistinguishable from the ground truth silhouettes.
Then, at run-time, when we input the mmWave reflected signals toG, it can output accurate human silhouette
images. Table 2 summarizes the D network parameters.

Table 2. Discriminator network parameters for MiShape’s cGAN. RSC: Reflected Signal Convolutional layer; 2DC: 2D
Convolutional layer; FC: Fully Connected layer; Act. Fcn: Activation Function; LReLU: Leaky ReLU.

RSC1 RSC2 RSC3 RSC4 RSC5 2DC1 2DC2 2DC3 2DC4 2DC5 FC Output
Filter # 4 8 16 64 128 4 8 16 64 128 64 1

Filter Size 4x3 6x6 6x6 6x6 6x6 4x3 6x6 6x6 6x6 6x6
Dilation 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn. LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU Sigmoid

cGAN Loss Function: Loss functions are critical in the learning-based model for training as they allow the
network to tune its convolution or deconvolution weights appropriately. Intuitively,MiShape’s cGAN loss function
should account for not only how well the adversarial learning works but also the pixels and shape quality of
generated silhouettes from G. To this end, we use the vanilla GAN loss function L(G) [61] from the output of
D and G to tune and maintain the adversarial, zero-sum game. Additionally, we include the L(2) loss, which
is the L2-norm between the ground truth and generated images. L2-norm ensures that the network is able to
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generate correct human silhouettes by estimating the MSE of pixels between the images. We combine both the
loss functions with shape hyperparameters λG and λM , and the total cGAN loss function is designed as:

LcGAN = λG · L(G) + λM · L(2); where, L(2) = E∥y −G(x)∥2 (1)

Here G(x) and y are the generated and ground truth images, respectively. During training, we try to minimize
our loss function by optimizing the hyperparameters, which aims to find the best weights for the convolutional
and deconvolutional layers and ensure the model generalizability on unseen cases. We have discussed more on
the choice of these hyperparameters in Section 4.

3.4.3 MiShape’s SRGAN Model. The low-resolution human silhouette images generated by the cGAN show
the general shape and layout of the body, detect movement of arms, legs for a specific exercise, but fail to reveal
the high-resolution and minute details of specific exercises. These visual cues are necessary for machines to
predict joints accurately and to classify between various similar exercises, such as Hands on waist, Both arms Up,
Namaste, etc. (see Figure 6[b]). Besides, the high-resolution enhanced shapes could also bolster human perception
for manual activity/exercise recognition. One approach to increase the resolution would be to apply traditional
interpolation, such as Bicubic [63] or Nearest Neighbors [64], etc. However, interpolation methods only consider
the pixels in the local region to determine the intensity of new pixels for high-resolution images; hence it will
smoothen the image, and distinct features and details will be lost. Furthermore, interpolation techniques cannot
recover missing body parts on low-resolution images, even if the general human shapes are known.

We believe learning based upsampling could be better than interpolation methods since it can learn the general
shapes of human body from existing sets of images. The approach is inspired by the existing deep learning
enabled high-resolution models [65]. But the challenge here is that the available SRGAN model is trained on
millions of RGB color images from the ImageNet database [66], but MiShape tries to improve resolution on
monochrome depth images. So, the data distribution on which the existing SRGAN model is trained does not
match with MiShape’s dataset. Moreover, the existing SRGAN also generates the RGB image in the output as
resolution improved image while MiShape needs a monochrome depth image on its output layer. Therefore, we
customize the filter size of the initial convolution layer of the standard SRGAN architecture [65] to input the
monochrome depth image, customize the stride size, convolution filter size, and feature size of the convolution
blocks of the network to upsample the low-resolution images of size 64×64 to high-resolution images of size
512×512. MiShape first learns the mapping from low to high-resolution from thousands of pairs of examples:
The ground truth, high-resolution silhouettes are intentionally decimated by a factor of 8 and then paired with
the original ground truths to prepare the input-output pair for SRGAN. The generator upsamples images from
the low-resolution images into the high-resolution image by passing them through multiple convolution layers,
and the Discriminator distinguishes the images generated by the Generator is real or fake. MiShape’ SRGAN
has 16 residual blocks in the generator network G that contains the skip connection between convolution layers
with identity transformation, allowing G to preserve high frequency details on high-resolution image. While
discriminator has 7 pairs of convolution, batch normalization, and Leaky ReLU activation layers, that encode
the high-resolution input image sampled from either generated or ground truth. We then pass these 1D abstract
features into the fully connected layer (1024 neurons) and finally to the single neuron output layer to predict a
binary decision, i.e., if the input image is real or fake.

SRGAN Loss Function: SRGAN trains independently and doesn’t update other networks from its output. However,
during the inference, we use a trained SRGAN network to produce high-resolution silhouettes from low-resolution
silhouettes that are generated from cGAN. To learn the association between low-resolution and high-resolution
images, MiShape’s SRGAN uses a different combination of losses to update the network parameters. In loss
function, we include content loss (reconstruction loss) L(C) to make sure images produced are perceivable by
humans, pixel loss L(P) to learn correct depth values on the reconstructed images, and adversarial loss L(G) to
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maintain adversarial learning. We compute the content loss by calculating Mean Squared Error (MSE) between
features obtained by passing the generated (G(x)) and ground truth (y) shapes through pre-trained VGG-19 [67].
Similarly, we compute pixel loss as MSE between G(x) and y. The total SRGAN loss is then:

LSRGAN = L(G) + λC · L(C) + λP · L(P); where, L(C) = E∥VGG(y) − VGG(G(x))∥2; and L(P) = E∥y −G(x)∥2 (2)

During training, we optimize hyperparameters λC and λP to minimize LSRGAN. Optimizing hyperparameters is
essential to ensure that the network updates its parameters with proper loss function to learn the association
between input and output. Section 4 discusses the choice of these hyperparameters in detail.

3.5 3D Joint Location Estimation
The core purpose of the joint location estimator network is to predict accurate 3D locations of joints from the generated
human silhouette images. Since joint locations of major body parts, such as arms, legs, spine, head, etc., determine
the general posture of a human, accurately estimating their locations is vital. For example, if a person is performing
Lunges, we will see that the set of various joints’ locations differ than that of a person performing Squats (see
Figures 6 and 9). One approach could be to directly estimate the joints from the mmWave reflections, but reflected
signals lack the spatial features and result in poor joint location estimation. Another approach could be to use the
traditional mmWave imaging and then predict the joints, but traditional imaging suffers from low-resolution and
aliasing (Section 2.2) and thus will predict incorrect joint locations. To this end, MiShape uses the high-resolution
silhouette images generated by the silhouette generator network, pair them with the ground truth 3D locations
of joints to train a deep learning model, and predict the locations at run-time.
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Figure 9. (a) Human joints name-index pair available in our ground truth [68]. (b) Human joints parent-child hierarchy.

MiShape designs a customized deep neural network, Joint Estimator (JE), for this purpose. Instead of only
learning the relationship between silhouette images to the absolute joint locations, MiShape’s JE network also
learns the arrangements of one joint w.r.t. another. Human joints follow a well-defined kinematic chain with a
hierarchical structure ([18], Figure 9[b]). For example, the Spine Base (in Figure 9[a]) is connected to the Hip Right
or Hip Left and limits their movements; so, the Spine Base is considered a parent of the Hips in the hierarchical
structure (Figure 9[b]). Similarly, Knee Right will be a child of Hip Right, and so on. So, if we can somehow
incorporate this structure into the learning model, the network can predict better joint locations.

512x512

Input Silhouette

25x3

3D Joint Locations256x256x32 9x9x64 1x576
128x128x64

Figure 10. Joint estimator network architecture of MiShape.
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Table 3. Network parameters for MiShape’s JE. 2DC: 2D Convolutional layer; FC: Fully Connected layer; Act. Fcn: Activation
Function; PReLU: Parametric ReLU.

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 FC1 FC2 Output
Filter # 32 64 64 64 64 64 576 75 75

Filter Size 3x3 3x3 3x3 3x3 3x3 3x3
Dilation 2x2 2x2 2x2 3x3 3x3 3x3
Act. Fcn PReLU PReLU PReLU PReLU PReLU PReLU Relu Relu Linear

3.5.1 MiShape’s Joint Estimator Model. The model takes high-resolution silhouettes of size 512×512 gener-
ated from SRGAN to predict 25 three-dimensional joints of human pose/skeleton. To this end, JE first extracts the
abstract features from the images supplied at the input by using multiple convolutional layers (2DC1 - 2DC6,
see Table 3) with different filter sizes, feature sizes, dilation, and pooling. We use convolutional and pooling
layers with increasing feature size until the spatial dimension converges to multi-channel 1×1 features; this is
needed to extract not only the local spatial relationship but also the global relationships between the image pixels.
Finally, we supply the abstract features to the fully connected layers (FC1 and FC2), which predicts the X, Y, Z
coordinates of the 25 joint locations (i.e., 75 real values). We observe that the JE network with only MSE loss of
absolute joint locations is insufficient; thus, we exploit the hierarchical structure of joints and enforce them in
the model through loss function and hyperparameters. Figure 10 shows the JE network architecture, and Table 3
shows the network parameters in more detail.

JE Loss Function: The loss function for JE combines both the MSE loss, LMSE, between the predicted and ground
truth joint locations and the parent-child distance loss, LPC, following the joint hierarchy. The parent-child
distance loss keeps track of the parent’s 3D joint location while simultaneously predicting the child’s 3D joint
location, and the total loss function is defined as:

LJE = λ J · LMSE + λD · LPC; where, LMSE =

N∑
i=1

MSE(Z i
p ,Z

i
д); and LPC =

N∑
i=1

|dip − diд | (3)

Where N is the total number of joints, Z i
p and Z i

д represent the predicted and ground truth i th joint locations,
respectively, and dip and diд are the predicted and ground truth distances between i th joint and its parent joint.
Note that for the joint with no parent (i.e., Spine Base), both dp and dд are zero, and we enforce this explicitly in
the model. We will discuss the choice of the hyperparameters λ J and λD in more detail in Section 4.

In summary, MiShape first generates a low-resolution human silhouette from the mmWave reflected signals with
cGAN, improves its quality through SRGAN, and finally predicts the 3D joint locations with the JE network.

3.6 Gait Monitoring Application of MiShape
Both the high-resolution silhouettes and 3D joint locations can facilitate continuous, privacy non-invasive
monitoring applications at-home. In this work, we design and evaluate a Gait monitoring application.
Approximately 90% of patients with chronic stroke ambulate with impaired coordination: Their gait is slow,

endurance is poor, and walking pattern has diminished quality and adaptability [69, 70]. But they exhibit
improvements with physical therapy interventions [71, 72]. Thus, knowing a stroke survivor’s gait in their home,
and more importantly, knowing when it gets worse, could be a strong indicator to intervene with more therapy or
physical activity. The benefit of monitoring walking steps has also been linked with the early detection of strokes
and Alzheimer’s [73, 74]. To assist the user in monitoring their gait, MiShape generates a real-time silhouette
of the user during a regular walk, predicts their body joints, and records their gait. MiShape can also facilitate
experts remotely tracking the gait of a patient and providing feedback. Gait is comprised of two phases: A Stance
phase that begins when the foot first touches the ground and ends when the same foot leaves the ground, and a
Swing phase that begins when the foot first leaves the ground and ends when the same foot touches the ground.
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A complete gait cycle for healthy individuals consists of ∼60% of Stance and ∼40% of Swing [75], and they can be
quantified using the following standard gait parameters ([76–79], see Figure 11): (a) Step length is the distance
between different feet at their Stance; (b) Stride length is the distance covered by the same foot after one Swing,
and ; (c) Cadence is the measure of the total number of steps taken within a minute. We customize MiShape to
enable gait monitoring application and present the prediction results of these parameters in Section 5.2.

R
ight

R
ight

Right Stride Length

Step Length

Left

Left

Left Stride Length

Figure 11. Gait parameters.

4 IMPLEMENTATION
Hardware Platform: Due to the unavailability of open-source datasets of mmWave signal reflections, silhouette
images, and joint locations, we train and test MiShape with real data collected from a customized hardware
platform. Since existing 5G mmWave routers do not provide raw signal reflections yet, we design a setup
integrating COTS mmWave transceivers and an RGB-D camera for data collection. The mmWave transceiver is a
77–81 GHz device, TI IWR1443BOOST [40], and the RGB-D camera is a Microsoft Kinect Xbox One [41] (see
Figure 12). The mmWave device has one transmit and four receive antennas on a linear axis, and in its horizontal
orientation, it can resolve reflection points in azimuth and depth only. To resolve the points in elevation as well,
we use two of these devices with one rotated 90◦ counter-clockwise w.r.t. another, so the resultant setup has two
antenna arrays arranged in 1×4 and 4×1 configurations. With this approach, we can resolve the reflections in
depth, azimuth, and elevation with a resolution of 9.4 cm, 28◦, 56◦, respectively. We apply traditional Frequency

mmWave 
 Devices

Depth Sensor

  RGB 
Camera

Figure 12. Ground truth data collection setup with two 77-81 GHz devices and a Kinect Xbox One.

Modulated Continuous Wave (FMCW) processing on the received signals, with the following signal parameters:
Ramp start frequency – 77 GHz; frequency ramp slope – 70.3 MHz/µS; baseband sampling rate – 5 Msps; number
of ADC samples – 256; chirp sweep duration – 60 µS; pulse repetition rate – 1 kHz; and maximum antenna gain –
10.5 dBi. We also attach a data capture module, TI DCA1000EVM [80], to each IWR1443BOOST device to capture
the signals in real-time. The DCA1000EVM module can temporarily store 2 GB of data in its FPGA buffer and
then transfer it via an Ethernet cable to a host laptop. The Kinect is co-located with our mmWave devices and
can collect the silhouette images and joint locations at 30 fps, whereas mmWave device collects signals at 25 fps.
Recall that the data collected from the mmWave device and Kinect cannot be fed directly into MiShape’s learning
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model without sanitizing the input-output pairs due to the differences in the sampling rate, background, spurious
noise, and software delays. To this end, we follow the preprocessing method discussed in Section 3.3 to calibrate
the recorded datasets. We implement MiShape in Matlab and Python environments running on a host PC, which
uses the mmWave reflected signals as input and generates human silhouette and 3D joint locations as output.

Table 4. Information about poses.

Pose # Exercise name Pose # Exercise name Pose # Exercise name
1 Lunges 2 Zoom in-out 3 Arm stretch
4 Arm extension 5 Alternate toe touch 6 Alternate arms up
7 Both arms up 8 Arms up and down 9 Hands on waist
10 Leg extension 11 Namaste 12 Squat
13 Standing 14 Stretch 15 Walk fast
16 Walk normal 17 Walk slow

Table 5. Information about volunteers.

Characteristics Number
Total number of volunteers 10

Age range (years) 12 - 52
Male/Female (%) 80/20
Height range (cm) 152 - 183

Real Data Collection: For our microbenchmark evaluations, we collect datasets from a single subject performing
17 diverse poses. Table 4 shows the high-level information about these poses. We have selected these 17 poses
that are found to be common in physiotherapy for patients and elderly [81, 82], post orthopedic-surgery [83],
and home exercises [84], and involve various ranges of motion of arms, legs, and body. For example, we have
included Pose 7, “Both arms up,” where the user only moves arms keeping both leg and body at rest. Different
from Pose 7, Pose 10, “Leg extension,” involves only legs’ motion keeping body and arms at rest. In addition to
these categories involving separate body parts, we have also included several poses, such as Pose 5, “Alternate
toe touch,”, that involve complex simultaneous motions of arms, legs, and body. Including such variations of
motions in individual and multiple body parts in our training dataset makes MiShape easily generalizable to
different exercises that may not have been included in the training process. For each pose, the subject stands
at approximately 2 m distance (except for poses 15, 16, and 17, which involve walking around) from the setup
during the data collection. The subject wears a similar outfit during the experiments, and the background is
drywall without any clutters. A single experiment takes approximately 12 seconds to complete and generates
a dataset for a given pose, and a trial involves all 17 poses. We collect data for over 14 days, where the subject
is asked to repeat each trial 10 times. After preprocessing the dataset, pruning for noise, etc., we have 26,796
input-output pairs of mmWave reflections, human silhouette images, and 3D joint locations.

To study the performance variations and understand the generalizability of MiShape, we also conduct experi-
ments involving 9 additional volunteers and collect the data following similar processes as above. Table 5 shows
the information about the volunteers in more detail. We ask each volunteer to perform diverse exercises (poses 2,
4, 6, 7, and 11 in Table 4). All experiments involving the additional volunteers are conducted within a single trial
for about an hour, and the total duration for data collection was 9 hours spanning one week. After preprocessing
the datasets, we have a new set of 65,502 input-output pairs. Furthermore, to evaluate MiShape’s performance
in facilitating applications, such as at-home gait monitoring, we collect data from an individual volunteer for
three different walking speeds (see poses 15, 16, and 17 in Table 4). So, in total, we have collected and analyzed
nearly 100 K input-output pairs with a data size of over 14 GB involving different activities from 10 volunteers
with diverse ages, gender, height, and somatotype. This data diversity and scale allow us to evaluate MiShape’s
robustness as well as verify its generalizability across multiple, diverse conditions.

Network Training: MiShape requires training of three independent models: (1) cGAN, (2) SRGAN, and (3) JE
network. First, to train the cGAN,MiShape explores different network parameter settings to ensure a near-optimal
model convergence. We set the initial value of our total epochs to be 1200, and then, monitor the loss function
from cGAN and stop its training when the model shows little to no improvement for consecutive 30 epochs.
We also explore different optimizers, such as, Adam, Rmsprop, etc., and observe that Rmsprop performs the
best with a learning rate of 5×10−4. We also explore different combination of the hyperparameters λG and λM
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(Equation 1) and found that the network performs the best when λM is approximately 10× λG , e.g., (λG , λM )
= (0.1, 1). This ensures cGAN pays extra attention towards reconstructing the actual shape of humans along
with adversarial learning. To train the SRGAN, we follow a similar strategy as above, and find that the Adam
optimizer performs the best with a learning rate of 1×10−4. We add pixel and content loss to our adversarial loss
with hyperparameters of λP and λC , respectively, and we observe that the model performs better when the ratio
between λP and λC is ∼100, e.g., (λC , λP ) = (0.01, 1). Said differently, the model converges better when the network
gives more weightage to shape reconstruction. To train our JE network, we use the loss function in Equation
3 and optimize the hyperparameters λ J and λD that balances the weights between MSE loss and parent-child
distance loss, respectively. We observe that the setting with equal weights on λ J and λD provides the minimum
loss in JE network. This is intuitive since it is equally important to optimize for absolute joint locations as well
as maintain an accurate parent-child joint relationship in the prediction. All our networks are implemented in
Python with TensorFlow 2.4 [85] using Spyder IDE [86] and Anaconda version 4.10.3 distribution [87] in a PC
with Intel Xeon CPU @3.5 GHz, 32 GB RAM, and NVIDIA’s GeForce GTX 1070 GPU. Our training time varies
across models and requires between 24 hours to 72 hours for completion, but it can be reduced significantly by
using powerful GPUs or cloud TPUs [88, 89].

5 PERFORMANCE EVALUATION
We evaluate MiShape’s silhouette generator network performance using 2 metrics commonly used to compare
the quality of images and another metric to evaluate the joint location estimation and application performance.
Intersection of Union (IoU): IoU measures the extent of overlapping between two images [42], and inMiShape,
we use it to measure the overlapping between generated and ground truth images. IoU ranges from 0 to 1, and 1
indicates the generated image is a perfect replica of the ground truth.
Multi-Scale Structural Similarity IndexMeasure (MS-SSIM): MS-SSIM is a perceptual metric that quantifies
image degradation in terms of shape, resolution, pixel intensity, and orientation w.r.t. ground truth [43]. It ranges
from 0 to 1, and a value near 1 indicates that the generated image quality is near reference image quality.
Mean Square Error (MSE): MSE of joint locations measures the Euclidean distance between the ground truth
joint location and predicted joint location. Lower MSE indicates that the prediction is close to the ground truth.

Evaluation Summary: (1) MiShape’s cGAN model generates human silhouette images of size 64 × 64 from the
mmWave reflected signals with a median and 90th percentile IoU of 0.72 and 0.84, respectively, and median and
90th percentile MS-SSIM of 0.96 and 0.98, respectively. Furthermore, MiShape’s SRGAN upsamples the cGAN
output by 8×, but preserves the finer texture in the silhouettes with image sharpness almost 2× as compared to
the traditional interpolation methods. We observe that SRGAN generates high-resolution silhouettes with median
and 90th percentile MS-SSIM of 0.91 and 0.93, respectively. (2) MiShape’s joint location estimator can localize
joints in 3D with a mean error of ∼10 cm across most critical joints, and the accuracy is consistent across all poses.
(3) MiShape also performs well across diverse mmWave antenna configurations and consistently achieves more
than 0.70 in median IoU, outperforming traditional imaging and an existing deep learning technique. Moreover,
MiShape’s base model requires little fine-tuning, and with only 2 randomly selected volunteers’ data samples,
it can achieve a median IoU of 0.60 across all 10 volunteers. (4) Finally, for at-home gait monitoring, MiShape
can estimate the Step length and Stride length with median errors of 0.19 m and 0.20 m, respectively, and nearly
accurate Cadence across different types of walking.

5.1 Microbenchmark Results
5.1.1 SilhouetteGeneration from cGAN. To evaluate the effectiveness ofMiShape’s cGAN, we use the single
volunteer’s dataset collected for 17 different poses. First, we preprocess the dataset to generate the input-output
pairs of mmWave reflected signals and silhouette images, and then, randomly select the training and testing
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Figure 13. MiShape’s performance distribution comparison with traditional imaging and cGAN on imaging on two metrics:
(a) IoU and (b) MS-SSIM.

Ground Truth cGAN on ImagingTraditional Imaging(a) (b) (c) (d) MiShape

Figure 14. (a) Ground truth silhouette of a person performing a Squat (top row) and standing tilted to right (bottom row).
Silhouette images using mmWave reflected signals: (b) Traditional imaging. (c) cGAN on traditional imaging. (d) MiShape.

samples. For training, we select ∼3300 samples, and for testing, we select another ∼3300 samples; both sets of
samples are distributed evenly among all poses. After training, we feed the mmWave reflected signals from the
test samples to the Generator of cGAN to generate the silhouette images. To find the efficacy of MiShape, we also
compare and contrast it with two other approaches. In the first approach, we use the reflected signals to generate
the silhouettes directly using a traditional imaging algorithm (Section 2.1). Since these images could suffer from
fundamental aliasing and low-resolution issues, we seek to improve their quality using existing deep learning
models. So, in the second approach, we use the 3D voxel generated by the traditional imaging, and then feed
it through the existing cGAN model proposed in [13] to generate the silhouette images. The learning model is
trained and tested with the same datasets used for training and testingMiShape, and we tune its hyperparameters
for best network convergence. Finally, we estimate both the IoU and MS-SSIM between the ground truth and the
generated images for traditional imaging, cGAN on traditional imaging, and MiShape.
Figure 14 shows a visual example of silhouette images generated by the three approaches and compares

them with the ground truth. Clearly, traditional imaging cannot generate any shapes due to the low-resolution
and aliasing issues (Section 2.2). While applying an existing deep learning model makes the silhouette more
human-like, the resultant pose is far from the ground truth. This is because, the learning model when trained on
aliased images couldn’t distinguish between samples, and thus, produces random poses from its training dataset.
In contrast, MiShape is trained with raw mmWave reflected signals and learns to overcome the aliasing effects to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 96. Publication date: September 2022.



96:18 • Adhikari et al.

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

C
D

F

Multi Scale SSIM (MS-SSIM)

MiShape’s SRGAN
Bicubic

Nearest Neighbor

(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
D

F

Sharpness Score

MiShape’s SRGAN
Bicubic

Nearest Neighbor

Figure 15. Comparison of the image quality upsampled by MiShape with two traditional interpolation methods: Bicubic and
Nearest neighbor using two metrics: (a) MS-SSIM and (b) Sharpness Score.
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Bicubic
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Figure 16. Silhouette comparison of MiShape, Bicubic, and Nearest Neighbor: (a) Leg extension; (b) Squat; and (c) Stretch.

generate a similar pose to the ground truth. Figures 13(a–b) further show the Cumulative Distributive Function
(CDF) of the IoU and MS-SSIM across all test samples for the three approaches. Under traditional imaging, the
median and 90th percentile IoU is only 0.06 and 0.07, respectively, and median and 90th MS-SSIM is 0.11 and 0.14,
respectively, which are extremely low. Applying existing deep learning over these images improves their quality,
and the median IoU and MS-SSIM increase to 0.4 and 0.94, respectively. However, these improvements still do not
help generating accurate silhouettes (Figure 14[c]). MiShape outperforms both these approaches significantly:
The median and 90th percentile for IoU are 0.72 and 0.84, respectively, and for MS-SSIM, they are of 0.96 and 0.98,
respectively, and the generated poses are consistent with the ground truth obtained from the RGB-D camera
based system. These results show that MiShape’s silhouette generator network is well generalizable for multiple poses
for a single subject, and it generates human silhouettes similar to the ground truth consistently.

5.1.2 Resolution Improvement by SRGAN. While cGAN produces the general shape and layout of the body,
its resolution is far from the high-quality silhouettes produced by RGB-D cameras. MiShape aims to improve
the silhouette resolutions by employing a customized deep learning model, SRGAN. To this end, we evaluate its
performance using the same volunteer dataset as in cGAN. For each low-resolution silhouette image (64×64)
generated by cGAN, we pair it with the ground truth high-resolution image (512×512) and train the SRGAN. We
also use the same training and testing samples as in cGAN, and after training, we feed ∼3300 low-resolution test
samples to SRGAN. To evaluate the efficacy of SRGAN, we implement two interpolation based methods: Bicubic
[63] and Nearest Neighbor [64], that interpolate the silhouette pixel-by-pixel without the knowledge of human
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shapes, and evaluate them on the same set of test samples. We then find the MS-SSIM between the high-resolution
ground truth and the generated images. Finally, to understand the overall image resolution improvement in
addition to the shape, we also measure the Sharpness Score [90, 91] for the generated images.
Figure 15 shows the CDF of both MS-SSIM and Sharpness Score for the three approaches. While both the

interpolation methods can produce reasonable shapes with median MS-SSIM around 0.86, the final results are
blurry (see Figure 16 for a visual example). This is expected since traditional interpolation methods apply weighted
filters to local pixels on the neighborhood and do not take into account the global relationship among pixels.
This is also visible in the Sharpness Score, where the 90th scores are only, 1.37 and 2.54, respectively. In contrast,
MiShape improves the quality of the images, even when they are upsampled by 8×, the median and 90th percentile
for Sharpness Score are 3.49 and 5.56, respectively, and the median and 90th percentile for MS-SSIM values are of
0.91 and 0.93, respectively. Figures 28 and 29 in the Appendix A further show multiple examples of static and
dynamic poses generated by MiShape. In sum, MiShape’s SRGAN maintains the silhouette quality even when the
images are upsampled by 8×, and the generated shapes are similar to the ground truth.
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Figure 17. (a) MiShape’s prediction errors for 3D locations of 25 joints across 17 poses. (b) Ground truth and predicted joint
examples of an individual performing different poses.

5.1.3 Effectiveness of 3D Joint Estimator. Apart from silhouette images, accurate joint location estimation
is also vital for many tracking applications. To evaluate the effectiveness of the MiShape’s JE network, we use
the same training and testing dataset as before, and pair the high-resolution images predicted by SRGAN with
the ground truth 3D locations for 25 joints to train JE. Then, we test ∼3300 samples distributed across the 17
different poses and find the MSE between the ground truth and predicted joint locations.
Figure 17(a) shows the result, where we observe that most of the joint locations could be predicted with a

mean error of less than 10 cm. However, for joint numbers 7, 8, 22, 23, 24, and 25 (wrist left, hand left, hand
tip left, thumb left, hand tip right, thumb right, Figure 9[b]), the prediction error is high, around 15 cm on
average. These joints are the limb edges of the upper body, and are very difficult to recognize at a distance even
with RGB-D cameras [92], and thus could be erroneous for MiShape too. However, a majority of the tracking
applications involving critical joints in legs, feet, arms, spine, etc., can still be accurately enabled by MiShape.
Figure 17(b) shows different skeletons of human poses predicted by MiShape in comparison to the ground truth.
In all examples, we see that leg joints are predicted more accurately than arm joints, and we believe this is due to
very weak reflections from the human arms. The result shows that MiShape is generalizable across multiple poses,
and it can predict 3D locations of joints with low errors for most of the critical joint locations.

5.1.4 Effect of Human Motion. We now demonstrateMiShape’s joint prediction error under different human
walking speeds. We test MiShape with ∼600 additional samples collected with the same volunteer walking at
3 different speeds: slow walking (< 1 mph), normal walking (2-4 mph), and fast walking (5-10 mph). For each
case, we use the output from MiShape joint predictor and find the Euclidean distance of each predicted joint from
its ground truth. Figure 18 shows that MiShape can predict all joint locations with a median error of 10 cm for
static case, and the error increases to 17 cm when user starts walking with less than 1 mph speed. Even though
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median error reaches to 23.5 cm when user starts to walk normally but it doesn’t exceed 24 cm even when user is
walking faster (i.e. 10 mph). Ability of MiShape to predict joints accurately at higher speeds suggest that we can
predict different exercises without sacrificing accuracy.
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Figure 19. MiShape generates significantly better silhouettes with only a little fine-tuning.

5.1.5 Effect of Model Fine-Tuning. So far, we have evaluatedMiShape’s performance with a single volunteer
performing diverse poses. We now evaluate the generalizability of MiShape’s cGAN to generate silhouettes for a
diverse set of volunteers. This evaluation is useful in understanding the amount of fine-tuning required to deploy
MiShape in a new environment. To this end, we randomly select a set of 1300 data samples from the volunteer
datasets, with each volunteer contributing 130 samples. MiShape’s baseline cGAN has never been trained on
these samples before. We then create five sets of samples, each created by randomly selecting two volunteers and
adding their samples. We first testMiShape’s base cGAN model without training any samples from these sets, and
then we progressively add volunteers data to fine-tune the base model and test samples from all 10 volunteers.
Figure 19 shows the performance with different levels of fine-tuning. Without fine-tuning, the generated

images from MiShape has very poor quality with a median IoU of only 0.04. This is expected since 90% of the
datasets are from completely unseen volunteers, with varying heights and somatotypes, and the base cGANmodel
has been trained with one volunteer only. However, fine-tuning MiShape with 2 additional volunteers for only 10
epochs improves the generalization of network [93] and median IoU increases to 0.60. This is because by adding
additional volunteers with potentially different physical features, the fine-tuned cGAN is able to capture the
underlying correlation between physical features and mmWave reflections. By further increasing the number of
volunteers for fine-tuning, we see image quality improves consistently, but the improvements show diminishing
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Figure 20. MiShape’s cGAN prediction on indoor scenario with multiple objects shows that it works well even with the
presence of multiple object in surrounding.

return. These results show that MiShape adapts very well for a large set of volunteers with minimal fine-tuning
samples from a small set.

5.1.6 Effect of Different Objects in the Surroundings. To validate the performance of MiShape in the
presence of different objects of non-interest, we conduct additional experiments in two different environments.
In the Environment 1 as shown in Figure 21(a), we collect data from a volunteer in presence of different objects in
indoor setting. We collect total data of 842 samples that are measured for ∼60 seconds. We ask a volunteer to stay
∼ 2.2 m from the experimental setup and perform pose 3 (see Table 4). This environment includes objects like
chair, ladder, cluttered boxes, and a bed similar to an at-home setting. In the Environment 2 (Figure 21[e]), we ask
the same volunteer to perform same pose and collect data in a similar way. This environment setting is similar to
our old setting where there are no objects in the surrounding. We first test MiShape’s base cGAN model without
finetuning on Environment 1, we observe that MiShape can generate a rough silhouette as in Figure 21(c). We
see that MiShape gives reasonable silhouette even when we do not do any finetuning. Futhermore, with little
finetuning i.e. for 10 epochs using 100 samples, prediction improves as evident in Figure 21(d). This confirms that
MiShape can infer signatures associated with a pose in a new environment but little finetuning can help improve
the prediction in generating accurate human silhouette.

2.2m

Bed

ChairLadder

Ground TruthEnvironment 1 cGAN without Finetuning cGAN with Finetuning cGAN without Finetuning Environment 2 (b)(a) (c) (d) (e) (f)
2.2m

Figure 21. (a) A volunteer in Environment 1 doing pose 3 in presence of different objects of non interest. (b) Ground truth
obtained from Kinect. (c) cGAN’s output without finetuning. (d) cGAN’s output with finetuning for 10 epochs. (e) Same
volunteer in Environment 2 doing pose 3. (f) cGAN’s output without finetuning.

Further, we testMiShape’s prediction on Environment 2 without finetuning, and observe thatMiShape generates
accurate human silhouette in Figure 21(e). This suggests thatMiShape needs no finetuning in a similar environment
for accurate prediction but, for change in environment, it can make a prediction but with very little finetuning,
we can obtain highly accurate silhouette. Figure 20 shows the performance ofMiShape in the presence of different
objects of non-interest with finetuning and without finetuning. We observe that MiShape can predict human
silhouette with median IoU of 0.43 and 90th percentile IoU of 0.47. But with finetuning for 10 epochs that takes ∼
10 minutes , we see improvement in median and 90th percentile of 0.85 and 0.89, respectively. These results show

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 96. Publication date: September 2022.



96:22 • Adhikari et al.

Normal Scene Same Scene w occlusioncGAN on Normal Scene Signal Reflections cGAN on Occlusion (b)(a) (c) (d) (e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

S
ig

na
l S

tr
en

gt
h

Distance of the Signal Reflector (m)

mmWave Signal

2.2m

Human

Figure 22. (a) A volunteer performing pose 3 in normal environment. (b) cGAN’s output without finetuning. (c) A volunteer
performing pose 3 in occluded environment. (d) cGAN’s output with finetuning for 10 epochs. (e) Signal reflection during
occlusion show that highest reflection comes from human standing 2.2m behind the occlusion. (f) cGAN’s output without
finetuning for occluded environment.

that MiShape can generate silhouettes similar to ground truth consistently even in a new environment with many
objects of non-interest.

5.1.7 Effect of Occlusion and Low Light. We now evaluate the effect of occlusion and low-light conditions
on MiShape’s performance. To experiment with occlusion, we put a thin sheet of clothing (bed sheet) at ∼1.1 m,
in front of our experimental scene in Figure 22(a), in line-of-sight with our experimental setting (Figure 22[c]). A
volunteer is present behind the occlusion at ∼2.2 m from our experimental setup doing a similar pose as in Figure
22(a). Figure 22(e) shows the reflection signal strength from the occluded scene. We see that human present at
∼2.2 m reflects the signal with a higher strength compared to other reflections. We also see a little bit of reflection
coming from the occlusion at ∼1.1 m. Even with occlusion around human, we observe a distinct strong reflections
coming from human. Thus, we can generate human silhouette by feeding these reflections to MiShape’s cGAN
without finetuning. We observe in Figure 22(f) that MiShape can predict human silhouette even in the presence
of occlusion. We couldn’t make a comparison against ground truth as we rely on Kinect for our ground truth and
it cannot penetrate through the occlusion.

Full Light Condition

Low Light Condition

cGAN on Full Light Condition (b)(a)

(c) (d) cGAN on Low Light Condition 

Figure 23. (a) A volunteer performing pose 3 in full light condition. (b) cGAN’s output on full light condition. (c) Same
volunteer performing same pose in low light condition. (d) cGAN’s output.

To evaluate MiShape’s performance in low light conditions, we conduct two experiments at night when the
source of the light is fluorescent tube lights present in indoor setting. First, we turn on all fluorescent lights and
the setting looks like Figure 23(a). Then, we collect data from a volunteer present at ∼2.2 m performing a pose.
Second, we turn off all lights to replicate low light conditions typical to an indoor setting, causing the scene to
look like Figure 23(c). As before, we collect data from a volunteer present at ∼2.2 m performing the same pose. To
make a comparison between full light condition and low light condition, we use our pre-trained model from this
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experimental setting and generate human silhouette from MiShape’s cGAN without finetuning. Ideally, MiShape
should perform same even with no finetuning as low light conditions do not have any impact on reflection signals
coming from a human. Figure 23(b) and 23(d) show that MiShape produces highly accurate human silhouette and
has no impact in low light conditions. These results confirm that MiShape’s cGAN can process mmWave reflection
signal to generate human silhouettes even in the presence of occlusion and in low light conditions at night.
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Figure 24. MiShape generates high-quality images consistently across diverse antenna configurations, outperforming
traditional imaging and an existing deep learning model.

5.1.8 Effect of Different mmWave Antenna Configurations. In all our analyses thus far, we have used a
COTS mmWave device with a specific antenna configuration (two arrays of size 1×4 and 4×1). Recall that, future
COTS devices could be equipped with larger antenna arrays, and the array size directly influences the performance
of an imaging system (Section 2.2). So, we now evaluate the effect of different antenna configurations onMiShape.
Due to the unavailability of real devices with different configurations, we evaluate the performance of MiShape
on different configurations through emulation. To this end, we emulate six additional antenna configurations
with the following sizes: 1×4, 2×4, 2×8, 4×8, 8×8, and 16×16. For each configuration, we use 1556 ground truth
silhouette images and follow a ray-tracing method similar to [13, 94] to generate synthetic mmWave reflections
from the human body. Then, we divide the dataset into 1356 samples for training and 200 samples for testing.
We implement a traditional imaging algorithm to generate the 3D voxel and train the existing deep learning
model [13], and use the reflected signals directly to train MiShape. We customize the encoder in MiShape’s cGAN
architecture based on the size of the reflection profile for each antenna configuration to map input representation
onto 1D feature vector of 128 as shown in Figure 8. Finally, we use the test samples and generate the silhouettes
from traditional imaging, cGAN on traditional imaging, and MiShape. For each antenna configuration, and for
each of the three approaches, we estimate the IoU of the generated image w.r.t. the ground truth.
Figure 24 shows the performance of the three approaches for different configurations. As expected, the

traditional imaging performs poorly, and its generated silhouettes show little to no improvement even with
a larger array of size 16×16: The median and 90th percentile IoU are 0.06 and of 0.07, respectively, across all
configurations. Employing existing deep learning techniques on these images can improve their quality, but
the generated silhouettes are similar to the ground truth only in case of larger array sizes, such as 8×8 and 16
×16. In contrast, MiShape’s median IoU is consistently near 0.8, irrespective of the antenna configuration. Thus,
it outperforms both these approaches for smaller array sizes (up to 4×8), and achieves a similar performance
to the existing deep learning method for larger arrays (8×8 and 16×16). More importantly, MiShape can match
the imaging performance of the existing deep learning based method with a larger array of size 16×16 (median
IoU = 0.81) using only a small array of size 1×4 (median IoU = 0.78). In summary, MiShape is generalizable to
different antenna configurations, achieves consistently high imaging quality, and can approximate the performance
of expensive hardware with cheaper hardware and intelligent software.
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Figure 25. Strength comparison between 60 GHz and 77 GHz reflections from the human body. Median strength of 60 GHz
is lower across all distances because it is absorbed more by the body. Still, the strength is much higher than the device noise
floor, allowing for accurate silhouette generation and joint location predictions.

5.1.9 Human Reflection Strength Comparison between 77 GHz and 60 GHz. MiShape has been evalu-
ated using a pair of 77 GHz mmWave transceivers; however, next-generation mmWave networking devices,
such as the home wireless routers, could operate at various frequencies, including the most popular 60 GHz
mmWave band following the IEEE 802.11ad standard [95]. Since 60 GHz signals could be absorbed more by the
human body compared to the 77 GHz signals, the body silhouette generation and joint location prediction could
be challenging for 60 GHz mmWave devices. Therefore, a comparative study on the effects of reflections from
human body for 60 GHz w.r.t. 77 GHz is critical. To this end, we use a 60 GHz transceiver, TI IWR6843ISK [96]
and measure the reflection strengths from human body at various distances from the device. We have a volunteer
in front of our set up at different distances, from 1 m to 5 m with an increment of 0.5 m, and for each distance, we
locate the range bin corresponding to the location of the human in the signal reflection profile, and then find the
reflected signal strength. We then calculate the median strength across 3000 frames for each distance. Since the
60 GHz device uses a 3.07 GHz bandwidth, it can resolve reflections in range with a resolution of 4.84 cm. To
minimize the effect of multipath, we ensure that the line-of-sight between the device and the body is open, and
the other objects and walls are at least 5 m away from the human body. We also repeat the experiments for the 77
GHz mmWave transceiver under identical conditions. Finally, we calibrate the 77 GHz reflection strengths to
account for the known transmit power difference between the 60 and 77 GHz transceivers. Figure 25 shows the
comparative results of the reflection strengths for 60 and 77 GHz, and the strength is consistently lower at 60 GHz
across all distances. This is because 60 GHz signals are absorbed more by the human body compared the 77 GHz
signals. At a higher distance, such as 5 m, this difference could be even higher due to the effect of the multipath.
However, we observe that the absolute signal strength is still very high, irrespective of the distance: Even at 5 m,
60 GHz reflection strength from the human body is 28.48 dB higher than the average device noise floor. These
results demonstrate that, although 60 GHz signals could have higher absorption by the human body compared to the
77 GHz signals, the absolute signal strength is strong enough to produce good quality silhouettes and joint locations.

5.2 Application Results with MiShape
We now evaluate MiShape’s ability to enable gait monitoring applications with COTS mmWave devices. To this
end, we collect datasets from a young, healthy volunteer for three walking speeds: fast, normal, and slow (poses
15, 16, and 17 in Table 4). We ask the volunteer to walk around the room and capture the reflected signals and
the ground truth body joint locations at 25 fps. Then, we feed the reflected signals to MiShape, which outputs
silhouettes and 25 joint locations frame-by-frame. Finally, we measure the three gait parameters, Step length,
Stride length, and Cadence (Section 3.6) from the ground truth and MiShape’s predicted joint locations. Figures
26(a–c) show the results for fast, normal, and slow walking trajectories, respectively. We see that for all walking
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Figure 26. MiShape follows ground truth walking trajectories well for three walking types: (a) Fast; (b) Normal; (c) Slow.

Table 6. MiShape’s Cadence prediction (steps/minute).

Type Ground Truth MiShape Acceptable range
Fast walk 148.2 156.9 > 135

Normal walk 129.7 129.7 120-135
Slow walk 115 114 <120

trajectories, MiShape can follow the ground truth reasoably well. Further, Figures 27(a–b) show the absolute
Step length and Stride length prediction errors in MiShape. It predicts the Step length with a median absolute
error of 0.19 m, 0.22 m, and 0.13 m for fast walk, normal walk, and slow walk, respectively. Furthermore, it can
predict the Stride length with a median absolute error of 0.2 m, 0.25 m, and 0.1 m, respectively, which are tolerable
in practice. By improving MiShape’s JE network performance with fine-tuning, we can minimize potentially
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Figure 27. MiShape’s gait parameters’ prediction errors for 3 walking speeds: (a) Step length error. (b) Stride length error.

minimize these errors. Table 6 also shows the predicted Cadence results from MiShape. For both normal and slow
walk, the predicted Cadence values match with the ground truth. The predicted Cadence for fast walk is higher
than the ground truth; still, MiShape can classify the type of walk accurately since the predicted value is greater
than the acceptable range (>135 for a fast walk). In summary, MiShape can potentially enable gait monitoring
applications from COTS mmWave devices and works well for different walking types.

6 RELATED WORK
Human Pose Estimation: Vision-based systems achieve excellent performance in human motion estimation
using optical cameras, depth sensors, and LiDARs. The approaches in these systems can be broadly classified into
top-down and bottom-up: In top-down, these systems first identify each person in an image and then performs
aggregation to obtain key points, and in the bottom-up, they first detect all key points in an image and then
map these points to the same person. Both these approaches are popular in industry and research [97, 98]. Apart
from RGB-D cameras, LiDARs have been used to improve accuracy in human pose estimation [12, 99], and
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state-of-the-art systems have achieved almost 99% accuracy in correctly estimating pose for real-time tracking
[100]. But these systems are limited by poor lighting and occlusion, and they are privacy-invasive.

RF imaging can overcome these limitations and has achieved reasonable accuracy in estimating human poses.
They mostly use Wi-Fi signals either in the form of spatial heatmap or CSI information from multiple receivers
[18–20, 31] and generate key points for humans in a 2D or 3D space, but their image quality is far from existing
vision-based approaches. To match the quality of vision-based systems, RF imaging systems need to learn features
in the RF signal and correlate with the visual images. To this end, [101] formulated the problem of 3D pose
estimation as identifying the locations of 14 anatomical key points on the body from RF signals. It follows a similar
approach as in [19] but decomposes RF signals into two 3D heatmaps and incorporates temporal information.
Furthermore, [18] predicts 3D location from CSI by implementing RNNs. Such tracking is useful in enabling
healthcare applications, such as gait or exercise monitoring. RFID or IMU based tracking can also enable these
applications [102, 103], but these systems require extra hardware to be attached to the body, which could be
cumbersome. [25, 26, 104, 105] have also explored predicting key points of humans from mmWave signals. For
example, [26] takes the 3D point clouds generated from mmWave signals, similar to [106], learns the key points
from those points, and then passes the points through an open-source human-mesh generator to create general
body shapes [32]. However, due to variable reflectivity and specularity, the performance could be poor. MiShape
aims to improve the quality of the mmWave images by employing deep learning models, that not only produce
correct silhouettes on par with existing vision-based systems but also work consistently across multiple subjects.

Enhancing Resolution with Learning: To improve the resolution, traditional approaches, such as Bicubic,
Nearest Neighbor, Sparse Coding, etc., use interpolation and fixed models to upsample the images [63, 64,
107]. These methods mostly generate blurry images, which lack finer details, and they are unable to remove
image artifacts. Recently, super-resolution deep learning models promise to improve the quality by training
with thousands of examples of low-resolution and high-resolution images as input-output pairs [108, 109].
Unfortunately, such methods could not be applied to mmWave images directly since the images are either aliased
with spurious information or have poor resolutions with many missing body parts. Existing cGAN models
have been able to successfully enhance the mmWave image resolution through adversarial learning [13, 26, 94].
However, they work with a specific mmWave antenna configuration and do not address the challenges with
aliasing problems in COTS mmWave devices. In contrast,MiShape is designed to generate high-resolution human
silhouettes and 3D joint locations using mmWave reflected signals from commodity devices, and it works well
across many practical antenna configurations under real environmental conditions.

7 DISCUSSION AND FUTURE WORKS
In this work, we have designed and evaluated MiShape on a COTS mmWave Radar; however, for at-home
monitoring, we need to deploy MiShape on a typical mmWave networking device, such as routers/access points.
The standard Commercial-Off-The-Shelf (COTS) mmWave networking devices, such as those following the IEEE
802.11ad standard [95], already have the capability to resolve the reflections from multiple directions and operate
on a 2 GHz bandwidth; thus, they can achieve range resolutions on the order 7.5 cm. In contrast, the mmWave
devices used in MiShape evaluation operate on a lower bandwidth, 1.62 GHz, and can achieve a range resolution
of 9.26 cm only. Higher range resolution means a device can distinguish reflections from two different points
with more confidence. So, we expect the performance of MiShape would be even better on COTS mmWave
communication devices. Furthermore, the networking devices can measure the channel response, which carries
the amplitude and phase information of the reflected signals at different range, from each standard packet using
the Channel Estimation (CE) header field [95]. They will not require any modifications to the communications
protocols or packet formats. However, to capture the reflected signals from a transmitted packet, a COTS mmWave
networking device needs to switch between Tx and Rx mode within nanoseconds. Such capability might be too
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stringent for low-cost COTS mmWave devices [95, 110], and may require device firmware or antenna hardware
modifications. Besides, the COTS mmWave networking devices do not provide raw signal reflections yet. So,
we have designed a custom setup integrating COTS mmWave Radars for data collection, test, and evaluation.
In the future, we propose to extend MiShape to work with COTS networking devices, such as [45]. One option
could be to find avenues for switching between Tx and Rx mode quickly by modifying the device firmware.
Another option could be to use networking device with multiple phased-array antennas [51], and use one as Tx
and another as Rx. We will thoroughly investigate the issues that arise and benefits that accrue from designing
and implementing MiShape on a COTS mmWave networking device.

8 CONCLUSION
In this work, we present MiShape, an imaging system that can generate high-quality human silhouettes and
predicts 3D locations of body joints on par with existing vision-based systems. The system employs customized
deep learning models to overcome the challenges of poor image resolution, specularity of signal reflections, and
image aliasing in the COTS mmWave system. The experimental results demonstrate that MiShape generalizes to
multiple subjects with little fine-tuning and works well for systems with different mmWave hardware capabilities.
We have customized MiShape for gait monitoring applications, but the system can be adapted to facilitate other
tracking and monitoring applications. We believe MiShape can unlock the potential of 5G mmWave systems,
such as home wireless routers, in facilitating privacy-noninvasive, high-quality imaging.
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Figure 28. Examples of static human silhouettes generated by MiShape: (a) Leg extension; (b) Lunges; (c) Arm extension; (d)
Toe touchdown; (e) One arm up; (f) Both arms up.
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Figure 29. Examples of dynamic human silhouettes generated by MiShape for a video frame of 5 seconds.
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