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Figure 1: (a) A mmWave device captures reflected signals from a sleeping person using multiple antennas; (b) Experimental set up for
mmSleep; (c) System design for mmSleep; (d) Output from mmSleep.

ABSTRACT

We propose mmSleep, a millimeter-wave (mmWave) wireless signal
based sleep posture monitoring system that can assist in tracking
3D location of body joints of a person during sleep. mmSleep over-
comes the limitations of existing vision-based sleep monitoring and
can work under low-light without being privacy-invasive. mmSleep
uses a customized Convolutional Neural Network to learn diverse
sleep postures, and our preliminary results show that mmSleep can
consistently predict 3D joint locations with high accuracy.

CCS CONCEPTS

* Human-centered computing — Ubiquitous and mobile comput-
ing systems and tools; * Computing methodologies — Machine
learning approaches.
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1 INTRODUCTION

Sleep is essential and critical for the proper functioning of the hu-
man body, and sleep deprivation has been linked with different
chronic diseases, such as Diabetes, Obesity, Stroke, Depression, and
Alzheimer’s disease [1]. Due to the well-recognized importance of
sleep, monitoring its quality continuously and non-intrusively in a
privacy-noninvasive manner has become an important research area.
One way to monitor sleep is by estimating the sleep posture of a
person [2].

We sleep in different postures throughout the night, such as fetal,
lateral, supine, efc. [2]. To avoid fatal consequences of improper
sleep posture and facilitate physicians in monitoring a patient, fine-
grained sleep posture monitoring system is required. Current in-
clinic monitoring approaches require a patient to stay overnight,
ask them to wear sensors on the body, and embed sensors on the
bed, which could be costly and cumbersome. So, there is a need for
an at-home monitoring system that can record fine-grained spatio-
temporal changes of the body throughout the night.

Existing at-home solutions are based on either wearables or vision
or low-frequency wireless signals. Wearable-based approaches bring
discomfort to sleep, and many people may forget to wear them
before sleep, whereas vision-based approaches are privacy-invasive
and are limited by the dark bedroom conditions and occlusion due
to the blanket. Wireless-based solutions can provide only broad
coarse-grained categories of postures, and are unable to provide the
fine-grained 3D location of body joints due to the fundamental limit
of resolution in low-frequency wireless devices. High-frequency
millimeter-wave (mmWave) wireless signals in ubiquitous 5G-and-
beyond commodity devices can offer a higher-resolution and could
potentially provide fine-grained information.

However, monitoring sleep postures with mmWave signals is
challenging for two reasons: (1) Due to the problems of signal
specularity, high signal absorption, and presence of clothing, most
of the transmitted mmWave signals do not reach back to the receiver.
So, the device will have inadequate information about the body parts.
(2) Compared to the vision-based systems, images generated by the
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mmWave system have extremely low-resolution. Due to the limited
number of antennas and bandwidth on commodity devices, there will
be a large point spread in the mmWave images, which eliminates
higher frequency components critical for posture monitoring, such
as joints and body contour.

To this end, we propose mmSleep, a deep learning based approach
that models the relationship between sleep postures and mmWave
signals using a data-driven approach, and overcomes the fundamen-
tal challenges to enabling fine-grained sleep posture monitoring.
mmSleep has two design components: (1) A cross-correlation based
toss-turn detection module to classify the sleeping period as either
rest or toss-turn states; and (2) A deep learning framework that
predicts the 3D location of body joints during the rest state. Our pre-
liminary results show that mmSleep predicts the 3D joint locations
for a different sleeping postures with a median error of 6.22 cm and
90" percentile error of 12.12 cm, and consistently outputs ground
truth looking sleep postures.

2 MMSLEEP SYSTEM DESIGN

mmsSleep first identifies toss-turn events during a sleeping period
by analyzing the reflected mmWave signals, and then, predicts the
sleep posture only under the rest conditions. This is critical since
predicting postures during a fast movement under a toss-turn event
not only is challenging but also is less useful since toss-turn events
span only a few seconds. Intuitively, a toss-turn event is associated
with a high-frequency spatio-temporal change in the reflected signal
and can be separated from almost static rest states by applying a
cross-correlation between successive reflected signals. Once mm-
Sleep identifies the start of a rest state, it aims to predict the 3D
location of body joints from the mmWave signals. mmSleep trains a
customized CNN with thousands of input-output pairs to map the re-
lationship between the mmWave signals with the true joint locations.
We design the CNN by incorporating the known height and gender
of a person to generalize for variations in skeletal structure across
multiple persons. At run-time, when the network is fully trained,
mmSleep can predict the 3D joint locations with only the received
mmWave signals (see Figures 1[c—d]).

CNN to Learn Input-Output Representation: CNN maps the
relevant spatial features in the input mmWave signals and outputs
the joint locations by using non-linear filters with convolution opera-
tions. To this end, we leverage multiple antennas from two mmWave
devices to capture the reflected signals and gather coarse 3D environ-
mental information. The devices are placed orthogonal to each other
with 3 transmitters and 4 receivers on each of the horizontal and ver-
tical axes, and can capture signals from 24 virtual channels (2x3x4).
Thus, with a total of 256 range-reflection bins, we collect an input of
size 24x256 corresponding to an instant of posture, which encom-
passes the signal reflections from the azimuth, elevation, and depth.
Then, we design a multi-layered stacked CNN with S stacking in
each layer, and explore a different number of layers, S, and network
parameters to find the optimal network convergence. Furthermore,
we increase the number of convolution filters from 8, 16, 32, 64, and
128 in each subsequent layer, and apply batch normalization and
Leaky ReLU activation to ensure regularization and learn complex
patterns. Then, we flatten the output and pass it through two dense
layers of sizes 128 and 64 with ReLU activation. Finally, the output

Adhikari, et al.

T

g A Vel \)&
E o ! ' 08 L ; - #% 1 90th %-ile Error: 12.12 cm
© I ‘ A ] A / \ s s : ; ;
= ¢ ! \ : : : : :
3 &) | | ° (O i at e S b
<t 1 1 X
O ° : : LQL + Median Error: 6.22cm
----------- e SE R TR T S TY S| S e
b ' ' §
En A A e !
2 . i s s s s s
3 ! P : \ olwdii i i
a . . 3 0 5 10 15 20 25 30
| |
1 1

Figure 2: (a) Top view of 3 sleeping postures. (b) CDF of absolute
errors in joint localization.

layer uses a linear activation with a layer size of 63 to predict the 21
key body joint locations (i.e., 21 [X, y, z] values).

Loss Function: To ensure the optimal convergence of the network,
we design the loss function as the sum of Euclidean distance, Lgp,
between predicted and ground truth joint locations, defined as: Lgp =

\/Zl{\il( rieal - F;;red)z’ where N is the total number of joints, and
Frieal and F[’;m 4 represent the real and predicted ith joint location,
respectively.

3 PRELIMINARY RESULTS

We evaluate the performance of mmsSleep by training with data
collected from a single volunteer performing 5 different sleeping
postures. We select 6500 frames for training and validation and test
mmSleep on another 2000 frames. Each frame includes 3D loca-
tion of 21 joints and multi-antenna mmWave signals. Furthermore,
through hyperparameter tuning, we find that mmSleep works well
with Adam optimizer, with a learning rate of 2x10™%, batch size of
4, and epochs of 2000. Figure 2(a) shows some visual examples of
predicted body joints, and statistical results in Figure 2(b) shows
that mmSleep can predict the joint locations with a median and 90t
percentile errors of 6.22 cm and 12.12 cm, respectively, which are
tolerable in practice.

4 CONCLUSION AND FUTURE DIRECTIONS

We propose mmSleep, a sleep monitoring system that can predict
accurate sleep postures using commodity mmWave devices. We
believe mmSleep can reliably assist physicians with richer, fine-
grained information about sleep posture. In the future, we plan to
improve the accuracy of our preliminary result by incorporating
knowledge about joint hierarchy and conduct end-to-end field trials
with multiple volunteers.
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