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Abstract—In the past decade, there has been a great research in
the developments of American Sign Language (ASL) enabled user
interfaces and smart environments, especially using wearables,
RGB and RGB-D video cameras , and radio frequency (RF)
sensors. Each sensor modality provides distinct advantages and
suffer from various problems. Although each sensor modality
is studied for ASL recognition a comparison of video and RF
based sensing performance in terms of ASL recognition is not
available. This study aims to compare word level ASL recognition
performance over the same 100 ASL glosses data from both
RF and video sensors. A top-5 accuracy of 93% was achieved
while using the RF micro-Doppler spectrogram representation
in a convolutional neural network (CNN) classifier, whereas with
video ASL data for the same 100 words, a top-5 accuracy of 90%
was achieved. This shows that radar has comparable recognition
performance to video for ASL recognition.

Index Terms—American Sign Language, video, radar, RF
sensors, deep neural networks

I. INTRODUCTION

Technologies for human-computer interaction (HCI) are
mostly driven by human voice, hence exclude the people from
the Deaf community as they use sign language as their medium
of communication. To address this, various studies have been
conducted worldwide and two approaches namely, camera-
based and wearable devices based sign language recognition
techniques are widely adopted. The camera-based approaches
[1]–[3] utilize an RGB camera and depth sensor and applies
computer vision algorithms to analyze the hand gestures along
with the body and facial expressions from images to recognize
sign language. However, video cameras require adequate light
and a direct line-of-sight to be effective. On the other hand,
wearable approaches [4], [5] derive finger and hand moving
patterns from multiple sensors that are attached to the user’s
hands or body. Although sensor-augmented wearable gloves
have been reported to typically yield higher gesture recognition
rates than camera-based systems, they cannot capture the
information conveyed through head and body movements
during signing. Also they interfere with the daily activities
of a human being.

Hence, another sensing modality with the capability of non-
contact sensing and work-ability in the dark, especially in a
situation when camera and warbles are ineffective, is highly

desirable. RF sensors can fill that void as they offer unique
advantages of being non-contact, not restrictive or invasive,
operate at a distance, protect the privacy of the user and
personal spaces, and are effective in the dark, regardless of
what the individual is wearing. In recent years, it has been
shown that [6]–[10], the RF sensors can be deployed as a
sign language processing technology for HCI applications.
RF sensors cannot perceive hand shapes or facial expressions,
but they can provide a direct measure of distance, angle and
velocity as a function of time. Velocity can be obtained via
the micro-Doppler [11] effect.The micro-Doppler signature is
comprised of unique patterns directly related to the kinematics
of the underlying motion, and hence capture the trajectories of
hands and fingers movements during signing [12], [13], and
gesturing [14], [15].

Each of the different modalities, so far discussed, have
their individual advantages and limitations. None of them
can be considered as the only good-to-go modality for ASL
recognition. While camera and wearable systems have been
compared [16], a systematic comparison of performance for
RF and video based ASL recognition over a shared dataset
is not available. In addition, a comprehensive approach to
ASL recognition requires the integration of information from
multiple data sources with different spatial and temporal
scales, along with the application of linguistic knowledge
about both the manual (hand motions) and the non-manual
(facial expressions and body-language) aspects of ASL. A
comparison of individual sensor performance also helps for
developing sensor fusion techniques for this purpose.

In this work, we compare the performance of video and
RF based ASL recognition over the same 100 ASL signs
using state-of-the-art deep neural networks (DNNs). RF data
were collected from fluent signers in a laboratory setting
with an FMCW radar. The raw RF data were processed
using time− frequency analysis to generate micro-Doppler
spectrograms for individual signs. These spectrogram images
were then used to train convolutional neural networks (CNNs).
However, recruiting human test subject is difficult and costly,
and can result in an undue burden on Deaf participants. On the
other hand, the limitation in the amount of available real train-
ing data limits the depth and accuracy of CNNs. Therefore, we



TABLE I: Listing of the 100 ASL signs utilized in experiments.

proposed synthesising micro-Doppler ASL signatures with the
limited real samples. A kinematically enhanced multi Discrim-
inator branch GAN [17] architecture is proposed to generate
synthetic ASL signs. Once a large datasets were generated, the
Deep CNNs were trained on synthesized signatures and tested
on real signer’s signatures.

For the video dataset we have extracted video samples for
the same glosses as in RF case from an existing ASL video
dataset; Word-LevelAmerican Sign Language (WLASL) [18].
The video samples are RGB videos with a total of 1566 video
samples. Details on the extracted 100-gloss video dataset and
the utilized processing is detailed in Sections II and III. Our
initial results show that comparable classification accuracy
levels can be achieved for both RF and video over the tested
100-glosses.

This paper is organized as follows: Section II describes the
compilation of RF and video datasets for the same 100 ASL
gloss. Section III describes the RF data processing and ASL
recognition strategies with RF data. In section IV, video based
ASL recognition methodologies are illustrated. The results of
RF and video based recognition are discussed and compared
in Section V. Conclusions and future research directions are
discussed in Section VI.

II. RF AND VIDEO DATASETS

A. RF Data Collection and Experimental Setup

The RF sensor used in this work is a TI IWR1443 77 GHz
automotive short-range radar, which transmits linear frequency
modulated continuous wave (FMCW) signals. The transmitted

signal illuminates an ASL signer who sits 1.5 meters in front
of the sensor and signs in ASL. The radar receives backscatter
from the moving arms and hands, as well as reflection from
static parts of the body and the environment. Thus, the signal
received by the receiver is a weighted summation of time-
delayed, frequency-shifted versions of the transmitted signal
given by the the superposition of returns from M points on
the body [19]. Thus,

xrec(t) =
M∑
i=1

aiexp

{
− j

4πfc
c

Rt,i

}
, (1)

where Rt,i is the range to the ith body part at time t, fc is
the transmit center frequency, c is the speed of light, and the
amplitude ai is the square root of the power of the received
signal as given by the radar range equation [20]. Thus, RF
sensors provide a complex-time series of measurements in the
form x[t] = I[t] + jQ[t].

The data were collected in a laboratory setting, where the
sensor was placed on a table at an elevation of 0.91 m
from the ground. Participants sat on a chair directly facing
a computer monitor, which was placed immediately behind
the radar system. The monitor was used to relay prompts
indicating the signs to be articulated. The radar system was
positioned at a distance of 1.5 meters in front of the participant.

Four fluent ASL signers took part in the IRB-approved
study, of whom 2 were Deaf and 2 were CODAs. The
experiments included 100 ASL signs, as shown in Table 1,
which were selected from the ASL-LEX2 [21] database to



Fig. 1: Some example video frames from WLASL dataset.

include signs of high frequency, but not phonologically related
to ensure a diverse dataset in terms of both handshapes and
sign kinematics. The participants repeated each sign 5 times.
A total of 2000 fluent sign samples were collected over 100
ASL words [22].

B. Video Dataset

Due to the nature of the sign language problem, it is
hard to collect a dataset that satisfies both quantity and
quality expectations. For example, a dataset needs to contain
enough videos for training, testing, and validation processes
while including a variety of signers and glosses. Word-Level
American Sign Language (WLASL) dataset which is intro-
duced in [18] is an RGB video dataset that consists of 2000
different glosses including approximately 21k videos collected
from 119 different signers. As can be seen from Figure 1,
this dataset provides only close frontal views with different
backgrounds and illuminations.

Although WLASL dataset provides a 2000 gloss dataset, in
order to make a comparison with the RF data, glosses given
in Table 1 are matched with the glosses provided in WLASL
dataset. To the best knowledge of the authors the 100 gloss
RF dataset in [22] is currently the largest RF ALS dataset.
The videos corresponding to glosses provided in Table I are
extracted from the WLASL dataset, this 100-gloss subset of
WLASL dataset is used in our comparison analysis. Extracted
video dataset consists of a total 1566 videos. As can be seen
from the histogram given in Figure 2, this subset includes at
least 7 videos per gloss and 15 videos in average.

III. RF DATA PROCESSING AND CLASSIFICATION

A. Data Processing

The kinematic properties of signing results in a time-varying
pattern of Micro-motions [11], e.g. rotations and vibrations,
result in micro-Doppler frequencies. Each sign generates its

Fig. 2: Histogram of 100-gloss subset of WLASL dataset.

Fig. 3: Example of Micro-Doppler signatures acquired from
fluent signers.

own unique patterns, which can be revealed through time-
frequency analysis. The micro-Doppler signature, or spectro-
gram, is found from the square modulus of the Short-Time
Fourier Transform (STFT) of the continuous-time input signal
x(t) and can be expressed in terms of the window function,
h(t), as

S(t, ω) =
∣∣∣ ∫ ∞

−∞
h(t− u)x(u)e−jωtdu

∣∣∣2. (2)

Ground clutter from stationary objects, such as furniture
and the walls, will appear in the micro-Doppler signature as
a band centered around 0 Hz. At 77 GHz, elimination of
low-speed signal components during clutter filtering results
in performance degradation [23], therefore no filtering was
applied on the data. Samples of the micro-Doppler signatures
for glosses ’evening’, ’coffee’ and ’read’ are shown in Figure
3.



Compilation of large datasets for training state-of-the-art
DNNs is difficult when human subjects are involved, due to
the time spent in measuring numerous iterations of each class.
As an initial attempt to classify the 100 ASL words, a 6 layer
convolutional neural network (CNN) is utilized, and a top-
1 accuracy of 56.00% were observed. The limitations in the
amount of available training data limit the depth and accuracy
of the DNNs utilized. Therefore, to achieve high recognition
accuracy, the problem of limited training data is addressed here
through generating synthetic samples from a small amount of
fluent ASL signs samples using GANs.

B. Synthesis of ASL sign signatures

In general, the architecture of GANs consists of two
competing neural networks i.e., generator and discriminator
playing a min-max game [24].The generator network samples
a predefined latent space and upsamples via transposed or
deconvolutional layers to produce a synthetic image whereas
the discriminator network takes that synthetic images as input
and attempts to classify them as being real or fake. In our prior
work [17], [25], several different types of architectures have
been explored for synthetic data synthesis, including auxiliary-
conditional GANs (ACGANs), conditional variational autoen-
coders (CVAE) and WGANs, but all were found to generate
data that exhibits significant discrepancies from that of real RF
signatures. While these erroneous components may not seem
significant visually, they ultimately correspond to kinemati-
cally impossible articulations, which, when used as training
data, incorrectly trains the DNN and significantly degrades
classification accuracy.

One way to mitigate such problems is to design the GAN
so as to enable greater emphasis on preservation of the shape
of the envelope. The envelopes correspond to the maximum
velocity towards/away from the radar; so, from the standpoint
of hand kinematics, the synthetic signatures should conform
to, and not exceed the envelope profiles of source data. In
prior work [17], [22], [26], a multi-branch GAN (MBGAN)
architecture with an additional auxiliary branch in the WGAN
discriminator, which took as input the upper envelope, was
proposed as a means of ensuring kinematic accuracy when
synthesizing micro-Doppler signatures of different ambula-
tory gaits, such as walking, limping, or taking short steps.
However, during production of sign language, the hands may
move towards or away from the radar, so both the upper
and lower envelopes are important for maintaining critical
kinematic features. Hence, in this work, we incorporated two
additional auxiliary branches in the discriminator: one that
takes the upper envelope as input, and a second that takes
the lower envelope as input. The resulting MBGAN with 3-
branch discriminator is shown in Figure 4. The generator is
comprised of 10 convolutional layers; each layer is followed
by batch normalization with 0.9 momentum and a Rectified
Linear Unit (ReLU) activation function. The main branch of
the discriminator is an 8-layer CNN, where each layer is
followed by a Leaky-ReLU activation function. Each auxiliary
branch is comprised of three 1D-convolutional layers. The

Fig. 4: Proposed 3-branch discriminator MBGAN.

outputs of the dense layers are concatenated with the flattened
output of the main discriminator. The MBGAN was trained
with 80% of real spectrogram samples and a total of 50000
synthetic samples were generated over 100 ASL signs classes.

IV. VIDEO BASED PROCESSING AND CLASSIFICATION

For sign language recognition, various different approaches
have been applied in the literature such as 2D CNN with
recurrent neural networks (RNN), 3D CNNs, and pose estima-
tion based graph convolutional neural network (GCN)s [18],
[27]. Each of these approaches have shown different levels of
performance on video sets but as one of the highly performing
approach for video based ASL recognition and as an initial
attempt we developed a GCN. Without doubt, GCNs draw
more attention since human skeleton can also be considered
a graph. In this manner, the 100-gloss dataset drawn from
WLASL was tested with two GCN architectures. The first
architecture is the Temporal Graph Convolutional Network
(TGCN) which is introduced in [18] combined with the human
pose estimation algorithm OpenPose published in [28]. The
second architecture is the Sign Language Graph Convolutional
Network (SLGCN) which is introduced in [29] combined with
the human pose estimation algorithm HRNet published in [30].

The OpenPose algorithm which uses a bottom-up approach
provides joint information for the whole body. However, since
sign language is generally about upper-body movements, not
all the joints were utilized. In our test, the chosen 55 keypoints
in [18] were used. These keypoints consists of 21 joints for
each hands and 13 joints for other parts of upper-body. HRNet
also provides whole body joint information for an image. Like
in the case of OpenPose, just a portion of this joint information
is used. The chosen 27 keypoints in the [29] taken into the
account for this article. There were 10 keypoints for each
hands and 7 keypoints for the other upper-body joints.

The GCN, which describes the architecture about the con-
nections between the features, is constructed by using a simple
adjacency matrix defining the skeleton structure. For a basic
GCN, the equation can be given as,

xout = σ(AxinW ), (3)



Fig. 5: Constructed graph for SLGCN architecture.

where A is the adjacency matrix, W is the trainable weight
matrix, xin and xout are input and output features respectively.
The main discrimination of two GCN methods used in this
article is interpretation to graph structure of human body.
While TGCN architecture considers human body as a fully
connected graph, SLGCN architecture claims that a keypoint
is connected with other keypoint if it is also connected in
human body. The constructed graph for SLGCN is given in
Figure 5. In addition to graph structure, SLGCN uses different
type of features which are extracted from key points. Those
extracted features are joint, bone, joint motion, and bone
motion. Derivation of these features is explained in [29].

V. RESULTS

A. RF Classification Results

The classification accuracy of 100 ASL signs for the RF data
were acquired by using an deep convolutional auto-encoder
(CAE) as a classifier. CAEs [31] were shown to be effective
when small, yet reasonable, amounts of real data are available
for training, outperforming transfer learning from weights
pre-trained using ImageNet [32] for VGG [33] and Resnet
[34]. Consequently, in this work, a four-blocks convolutional
autoencoder (CAE) has been utilized to classify the 100-sign
fluent ASL dataset. In each block, there are two convolution
layers followed by a concatenation and a max-pooling layers.
The filter concatenation technique concatenated a filter size
of 3 × 3 and 9 × 9 to take advantage of multilevel feature
extraction. CAEs use unsupervised pre-training to initialize the
network near a good local minima. After training the CAE
model, the decoder was removed, and two fully connected
layers with 256 neurons followed by a dropout of 0.55 were
added after flattening the output of the encoder. At the output, a
softmax layer with 100 nodes was employed for classification.
During training, an ADAM [35] optimizer was utilized, along
with a batch size of 16, learning rate of 0.0005 and 30 epochs.
The hyper-parameters were optimized through grid search. The
classification accuracies obtained using the CAE trained on the
real and synthetic data are compared in Table II with top-1,-3
and -5 cases. While using only the collected real RF dataset
56.4% average top-1 accuracy is obtained, this performance

TABLE II: 100 ASL Signs Recognition Using RF Data.

TABLE III: 100 ASL Signs Recognition Using Video Data.

increases to 77.5% for training with the MBGAN synthesized
data.

B. Video Classification Results

Table III shows the obtained results of video based data.
TGCN and SLGCN results with four different features are
provided. We also provide an ensemble result that combines
the four features used in SLGCN. This ensemble is made
by weighting results of previously given features and the
weights are obtained from [29]. One can see that from the
table III, the best accuracy is obtained from SLGCN which
utilizes joint features with an accuracy level of 59.9%. While
other features did not provide as high accuracy as bone and
joint, the ensemble of all features provided an accuracy of
58.3%. Comparable classification accuracy is obtained for
the developed approaches to the ones provided in [18] for
a different 100-gloss dataset which consists of glosses with
highest number of video samples from WLASL dataset.

VI. CONCLUSIONS

In this paper an initial attempt to compare RF and video
based ASL recognition performance over the same 100-gloss
set is presented. Both datasets are comparable in size with a
total of 2000 RF and 1566 video data samples. It is observed
that while a CNN trained on only the experimental RF data
inputs such as the spectrogram images provides a 56.4%
accuracy, a skeleton pose estimation based GCN with joint
features provide 59.9% accuracy. Hence RF and video shows
comparable top-1 accuracy results when trained on only on
real data. It was also shown that if training is performed for the
RF data over a MBGAN based synthetically generated dataset
and tested over the real experimental data, the classification
accuracy increases to 77.5%.

While this study is an initial attempt to compare RF and
video based classification performance for ASL recognition,
for the final version of the paper our goal is to provide
results on dependence of this comparison to the number of



data samples for both RF and video. In addition, we will
include comparisons from similar parameter size deep learning
approaches.
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