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Abstract—Radio Frequency (RF) sensors present distinct ad-
vantages over cameras or wearables for hand gesture recognition
providing high resolution radial range and velocity measurement,
being able to operate in dark and through the objects with high
temporal and frequency resolutions. Moreover, the flexibility of
the complex formatted data allows users to develop their own
algorithms to generate various data representations such as time-
frequency (Micro-Doppler - µD) maps, or range-Doppler or -
angle as a function of time. However, conventional µ-D generation
does not regard the angular information of the multiple targets
existing in the RF data. Hence, multiple targets with different
µ-D signatures at various angular positions create a mixed spec-
trogram output reducing recognition performance. This paper
proposes an angular projection approach on radar data cubes
(RDCs) to generate raw radar data for defined angular subspaces.
Hence multiple µ-D spectrograms for each angular subspace can
be constructed from the projected data. The proposed approach
has been tested on RF data for gross body movement and
American Sign Language (ASL) recognition. It has been showed
that the utilization of angular projected spectrograms increases
classification accuracy for ASL and achieves recognition accuracy
of 92.6% for 20 word ASL signs.

Index Terms—Micro-Doppler spectrogram, American Sign
Language, RF sensors, deep neural networks

I. INTRODUCTION

Recognition of human activities, hand gestures and Amer-
ican Sign Language (ASL) signs have gained an enormous
interest in the research community with the development of
low cost, low power and small size sensors. RGB [1] and
RGB-D cameras [2], motion capture (MOCAP) systems [3],
sensor augmented gloves [4] and radars [5], [6] can be listed as
most suitable and commonly used sensor types for these sort
of applications. Although sensor augmented gloves yield high
recognition rates for hand gesture classification tasks, their
restrictive nature raises concerns about usability of them in a
daily living scenario [7]. Video based applications, on the other
hand, offer non-contact sensibility of the environment in a 2-
D plane. Addition of extracting depth information capability
to the optical cameras provide 3-D localization of the key
points on the body or the hands. However, video-based systems
inherently invades the privacy of the users as they collect
visual imagery of the scene and people around when they are
used for indoor sensing applications. Radio Frequency (RF)
sensing started to serve as a new, non-invasive, high resolution
(in terms of range, velocity, angle, and time) modality which
can accurately capture human kinematics [8], and transitional
features of moving targets such as hand gestures [9]. RF
sensing has also been proven to be very effective in various

tasks such as fall detection [10], heart rate [11] and respiration
measurement [12], [13], gait abnormality detection [14], [15],
and extraction of linguistic features of sign languages [16].

Classical RF based activity recognition utilizes time-
frequency representations such as spectrograms. This approach
generally assumes existence of a single target/activity class
to be recognized. When there are multiple targets present at
different ranges or angles, their signatures are generally mixed
reducing classification performance. Multiple targets can be
separated on range-Angle or range-Doppler maps however
these representations don’t directly result each targets time-
frequency representation. Being able to create spectograms
of each target at various angles creates additional capability
for recognition of the activity. For example for ALS based
applications extraction of linguistic features is a significant
task in a sense that they can reveal crucial information about
characteristics of the signs described in the ASL-LEX database
[17] such as major and minor location, movement type,
one/two handedness, and empirical angle of arrival (AoA).
While majority of these features can be learned from different
RF data representations by training a sophisticated learning
model for the task of interest without performing a separate
angle estimation step, embedding of the angle information into
the input to be used in the learning model can contribute to
creation of a more enriched features space, hence resulting in
more accurate estimations. In this end, this paper proposes a
projection based method to project the raw radar datacube
to various angular subspaces resulting specific radar data
cubes for each angular subspace. By this way micro-Doppler
(µ-D) spectrograms [18] for each angle subspace can be
computed, which puts more emphasis (i.e., strengthens) on
the µ-D signatures of the targets located within the projected
angle interval, and fades out (i.e., weakens) the µ-D signature
components of the targets located outside the projected angle
interval. In this way, AoA information is being embedded to
newly generated µ-D spectrograms besides velocity and time
that will enhance classification accuracy for each target or for
an activity distributed in angle.

Deep neural networks (DNNs) have been demonstrated
to be quite successful in a wide range of tasks from ob-
ject detection [19] to natural language processing [20]. One
important characteristic of DNNs is that they heavily rely
on amount and diversity of the presented data to learn the
underlying relationships between inputs and outputs. For this
reason, designing a customized architecture for a given task
is very common and needed. In this work, in order to take



TABLE I: Selected 20 ASL Words

YOU HELLO WALK DRINK FRIEND
KNIFE WELL CAR ENGINEER MOUNTAIN

LAWYER HOSPITAL HEALTH EARTHQUAKE BREATHE
HELP PUSH GO COME WRITE

advantage of the projection method in the classification stage,
two spectrograms are generated from each RF data, for two
angular subspace projections, and fed into a multi-branch DNN
model.

This paper introduces an angular projection approach to
embed the angular information captured by the multiple
input multiple output (MIMO) radar system into the µ-D
spectrograms without requiring computationally intense super-
resolution angle estimation methods. In addition a multi-
branch DNN model is designed to fuse the feature spaces
of left and right projected spectrograms. It is shown that the
proposed method can classify 20 ASL signs with over 92%
accuracy. In § II, experiment design and testing environment is
described along with the acquired dataset. While § III explains
the projection method and presents the similarity results of
projected spectrograms, § IV describes the DNN model used
for training and presents the classification results along with
the recognition rates of each sign. Finally § V concludes the
paper and discusses the future work.

II. DATA COLLECTION AND EXPERIMENTAL SETUP

In this work, Texas Instrument’s AWR1642BOOST 77
GHz frequency modulated continuous wave (FMCW) MIMO
automotive radar is coupled with a DCA1000EVM raw data
capture card for data acquisition. As an initial study of the
proposed projection method, a few samples of human walking
and hand moving data is acquired. In the main dataset,
20 high frequency ASL words are selected from the ASL-
LEX database while preserving the phonological diversity.
A complete listing of the selected words are provided in
Table I. 6 non-native (i.e., hearing) participants were hired
to conduct the experiment, and in total 945 samples were
collected for 20 words (i.e., ∼45 samples per class). Although
the participants were not native ASL users, they were trained
with native signers’ videos before the data collection until
they are comfortable to enact all the signs. The participants
were seated on a bar stool located 1.5m away from the radar
within the direct line of sight. The signs were prompted to
the participants through a monitor facing towards them. The
dataset is split into 80% and 20% portions for training and
testing, respectively.

III. PROJECTION OF RADAR DATA CUBES

The raw data acquired by each channel of the RF sensor are
in the format of in-phase (I) and quadrature (Q) samples in
a time stream. Having multiple receive and transmit channels
allows users to extract angular information (i.e. direction of
arrival) in addition to range and velocity.

(a) Building a virtual ULA with 8
receivers.

(b) Configuration of the chirps for
BPM.

Fig. 1: Illustration of the working principle and configuration
of BPM.

A. Binary Phase Modulation Configuration

The employed 77 GHz FMCW MIMO radar hosts 2 trans-
mitter (TX) and 4 equally spaced receiver (RX) antennas,
which forms a uniform linear array (ULA). In order to increase
the number of RX channels, hence to have a better angular
resolution, one can apply different modulation techniques on
the chirp configuration of the transmitted waveform such as
time-division multiplexing (TDM) or binary phase modulation
(BPM) which enables users to create a virtual array with 1 TX
and 2×4=8 RX antennas.

Although TDM-MIMO scheme is easy to implement it
does not benefit the complete transmission capabilities of the
device, since only one TX is being active at a time. BPM, on
the other hand, is centered on modulating the phases of the
chirps in a coherent processing interval (CPI), which enables
simultaneous transmission from multiple TX antennas while
still maintaining separation of these signals. To create the
aforementioned virtual array, two different chirp configurations
are defined. In the first chirp, Ca, both TX antennas (i.e. TX1
and TX2) transmit the chirp with phase of φ°, while in the
second chirp, Cb, TX2 transmits with phase of 180°. The
chirps transmitted by both antennas can then be retrieved by
C1 = (Ca + Cb)/2 and C2 = (Ca − Cb)/2 for TX1 and
TX2, respectively. While Figure 1a depicts the actual and the
obtained virtual array, Figure 1b shows the chirp configuration
of the BPM scheme for each TX antenna.

The angular resolution, θres, of the system can be computed
by:

θres =
λ

M × d× cos(θ)
(1)

where λ is the wavelength, M is the number of channels, and
d is the distance between consecutive RX antenna elements.
Thus, increasing M from 4 (real) to 8 (virtual) yields doubly
finer angular resolution.

The phase difference, ω, between RX channels for a target
located at θ° can then be computed as:

ω =
2πdsin(θ)

λ
⇒ θ = sin−1(

λω

2πd
) (2)



(a) Walking towards radar. (b) Walking away from radar.

Fig. 2: µ-D spectrograms of RF data.

B. Steering Matrix

A steering vector, a, which represents the set of phase
delays for an incoming ray at each virtual RX element, can
be constructed as follows:

a(θ) = [1 e−j(2πfcd sin (θ)/c) ... e−j(2πfc(M−1)d sin (θ)/c)]T

(3)
where fc is the center frequency and c is the speed of light.
Repeating a for each θi where θi ∈ [-90° 90°], one can obtain
a M×N steering matrix, A, where N=181.

C. Projection of Radar Data Cube

After the raw data is acquired, it can be reshaped into a
3D (number of ADC samples × number of chirps ×
number of channels) complex array (i.e., radar data cube).
Projection of each channel vector, ~xij , where i is the fast time
and j is the slow time index, onto an angular subspace of A
can be computed as:

~̂xij = (B(BTB)−1BT)~xij (4)

where B is the angular subspace defined as a subset of A
containing the angle interval to be projected on, and ~̂xij is
the projected channel vector. A new projected radar data cube
(RDC) can be constructed by repeating ~̂xij for each i and j.

D. Micro-Doppler Spectrogram Generation

Micro-Doppler (µ-D) spectrogram is a time-frequency rep-
resentation of RF data, and it can be calculated from any
channel of RDC by taking the square modulus of the short-
time Fourier Transform (STFT) across slow-time. A sample
spectrogram for walking towards and away from radar are
shown in Figure 2.

E. Similarity of Projected Spectrograms

Projection of an RDC on B greatly affects the resulting new
RDC by introducing more emphasis on the targets located in
the angle interval spanned by B, and fading out the signatures
of targets located outside the projected interval. In order to
quantitatively assess the quality of the newly generated RDCs,
the following steps are followed:

• Step 1: Generate RDC1 and RDC2 which are recorded
from two different angles (i.e., left and right, respectively)
and their corresponding µ-D spectrograms.

• Step 2: Merge two RDCs by adding them up to create a
combined RDC, RDC3, which contains the data of both
RDCs.

• Step 3: Project each channel vector of RDC3 onto
Bleft and Bright to obtain left and right projected RDCs,
RDC4 and RDC5, respectively, and their µ-D spectro-
grams.

• Step 4: Compute the similarity of the spectrograms
between RDC1-RDC4 vs. RDC1-RDC5, and RDC2-
RDC4 vs. RDC2-RDC5.

It is expected to see that the spectrograms generated from
RDC1 and RDC4 should have higher similarity than those
RDC1 and RDC5. Similarly, RDC2 and RDC5 should have
higher similarity than RDC2 and RDC4.

Figure 3 visually illustrates the aforementioned steps and
µ-D spectrograms of each RDC. In Figure 3a, a person is
walking towards and away from radar from -40° (left) and 40°
(right), in RDC1 and RDC2, respectively. While RDC3 is the
resulting RDC after merging of RDC1 and RDC2, RDC4 and
RDC5 are the RDCs generated after projection of RDC3 onto
B[−60° −30°] and B[30° 60°], respectively. As can be seen, while
RDC4 put more emphasis on the target approaching from left
and fading out the target approaching from right, RDC5 put
more emphasis on the target approaching from right and fading
out the target approaching from left. In order to verify the
effectiveness of the method on the ASL data, RF recordings of
a hand moving towards and away from radar from negative and
positive angles are also observed. Figure 3b, shows a similar
process for the hand motion data. While RDC4 strengthens the
signature of the target approaching from left and weakens the
target approaching from right, RDC5 strengthens the signature
of the target approaching from right and weakens the target
approaching from left. Although the separation is visually not
very distinct, it can still give us information about the arrival
direction of a target only by looking at the µ-D signature.

Figure 4 shows the spectrograms after projection of the
words YOU, HELLO, WALK, DRINK onto the angle interval
of [±30° ±60°]. It can be observed that for the word HELLO,
original spectrogram has almost equal signal power for each
positive and negative peak. On the other hand, after projection
of RDC to the left, signal power of first negative and second
positive peaks increases, while those of first positive and last
negative decreases. This imperfection is stemming from non-
orthogonality of the steering angles.

Figure 5 shows the auto-correlation matrix RAA = AAT . As
can be seen, the correlation between opposing angles are not
exactly 0, and this phenomenon causes leftover µ-D signatures
in the projected spectrograms from the opposing angles.

Table II presents the similarity results of the spectrogram
matrices of the walking data in terms of structural similarity
index (SSI) and mean squared error (MSE) for three different
angle intervals, namely, 0 to ±30, ±30 to ±60, and ±60 to
±90. It can be observed that the rows in which the original



TABLE II: Similarity Results for the Walking Data

Original
Target Angle Projected Angle Interval SSI MSE

Left (-40°) Left (-30° to 0°) 0.08 8.59e16
Right (0° to 30°) 0.056 8.99e16

Right (40°) Left (-30° to 0°) 0.013 5.12e19
Right (0° to 30°) 0.1242 8.16e16

Left (-40°) Left (-60° to -30°) 0.0088 2.56e17
Right (30° to 60°) 0.0036 6.6e17

Right (40°) Left (-60° to -30°) 0.0074 5.9e17
Right (30° to 60°) 0.1301 8.41e15

Left (-40°) Left (-90° to -60°) 0.1408 3.098e17
Right (60° to 90°) 0.0113 1.87e19

Right (40°) Left (-90° to -60°) 0.0026 1.53e20
Right (60° to 90°) 0.0713 3.12e18

target angle and the projected angle interval matches (i.e., left
to left or right to right) have higher SSI and lower MSE
than the opposing projected angle interval. Similarly, Table
III presents the similarity results for the hand moving data.
Hand moving results are also consistent with what has been
observed in the walking data except for one case where MSE
between the original left and the projected left is higher than
those between the original left and the projected right, which
is highlighted in red in the table. This can potentially occur
due to the ambiguity and spread of the target angle across
positive and negative angles as it gets closer to the radar.

IV. CLASSIFICATION

Impact of the projection method on the classification of the
ASL signs are evaluated by comparing the classification ac-
curacies of two convolutional neural network (CNN) models.
While the first model is a 4 layer single input CNN followed
by fully connected layers, the second model takes left and right
spectrograms as separate inputs and parallelly processes in two
branches. The CNN blocks are followed by a concatenation
layer to fuse the feature spaces of two spectrograms and
encode them into a single latent space for prediction. However,

TABLE III: Similarity Results for the Hand Moving Data

Original
Target Angle Projected Angle Interval SSI MSE

Left (-40°) Left (-30° to 0°) 0.1788 9.36e15
Right (0° to 30°) 0.1123 6.6e15

Right (40°) Left (-30° to 0°) 0.0117 5.13e17
Right (0° to 30°) 0.1297 7.17e15

Left (-40°) Left (-60° to -30°) 0.1396 0.86e16
Right (30° to 60°) 0.0802 1.42e16

Right (40°) Left (-60° to -30°) 0.0074 1.11e18
Right (30° to 60°) 0.1279 1.46e16

Left (-40°) Left (-90° to -60°) 0.2576 3.74e15
Right (60° to 90°) 0.0293 1.45e17

Right (40°) Left (-90° to -60°) 0.0019 3.77e18
Right (60° to 90°) 0.0452 9.43e17

using two branches doubles the number of parameters to train,
and this causes over-fitting in the trained model. In order to
mitigate this problem, weights across two branches are shared,
hence the number of parameters to train stays the same with
the baseline model.

The overall architecture of the proposed network is depicted
in Figure 6. Table IV presents the classification results of 20
ASL words with and without the projection method. Each
model is trained for five times to obtain consistent results.
As can been seen from the table, multi-branch networks
(rightmost 3 column) which take projected spectrograms as
inputs outperform the baseline method with no projection.

Figure 7 presents the confusion matrix of the best perform-
ing model with 92.6% accuracy for 20 signs. As can be seen,
the words HELLO and KNIFE have the highest error rate of
33.3%. This can potentially be due to the amount of variance
in the way of signing among participants (e.g., inconsistent
number of hand strokes, signing duration and speed etc.). It
can also be noticed that while the signs with high radial motion
(YOU, WELL, HEALTH, EARTHQUAKE, BREATHE, GO) have
the highest recognition rate of 100%, the signs with low radial
motion (LAWYER, HELP) and self-occlusion (WRITE) have

(a) Walking towards and away from radar from. (b) Hand moving towards and away from radar.

Fig. 3: Original, merged and projected spectrograms generated from RDC1 to RDC5.



Fig. 4: Projection of the words YOU, HELLO, WALK, DRINK
onto the angle interval of [±30° ±60°]

Fig. 5: Auto-correlation matrix RAA.

Fig. 6: Proposed multi-branch CNN model architecture where
Wi denotes the weights belonging ith layer of each branch.

lower recognition rates.

V. CONCLUSION

This work presents the initial work on projection of RF data
onto a certain angle interval using a subset of the steering ma-
trix. Although the proposed method cannot completely isolate

TABLE IV: Classification Accuracy (%) Comparison Results.

Projection Angle IntervalExperiment
ID

No
Projection 0 to ±30 ±30 to ±60 ±60 to ±90

1 87.8 92.1 91 90.5
2 89.4 91.5 89.4 91.5
3 88.4 91.5 91.5 89.4
4 91.5 92.1 90.5 91
5 90.5 92.6 89.4 91

Mean 89.5 92 90.4 90.7

Fig. 7: Confusion matrix of the multi-branch CNN model for
20 ASL words.

the targets located in opposing angles, it does not require any
super resolution algorithm with high computational cost. It is
shown that the spectrograms generated from projected RDCs
can partially recover the original RDCs before the merging
operation. The quantitative results are presented in terms of
SSI and MSE metrics.

A multi-branch network with shared weights across parallel
layers is proposed to encode the information from positive and
negative angles jointly. A mean classification accuracy of 92%
is achieved for the classification of 20 ASL signs. Our future
work is going to be to implement the proposed method in a
multi-person scenario, and enhance the separation capability
of the method, perhaps by designing more sophisticated neural
networks which can extract the angular features in an online
fashion.
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