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Abstract

Multinucleate cells occur in every biosphere and across the kingdoms of life, including in the
human body as muscle cells and bone-forming cells. Data from filamentous fungi suggest
that, even when bathed in a common cytoplasm, nuclei are capable of autonomous behav-
iors, including division. How does this potential for autonomy affect the organization of cellu-
lar processes between nuclei? Here we analyze a simplified model of circadian rhythm, a
form of cellular oscillator, in a mathematical model of the filamentous fungus Neurospora
crassa. Our results highlight a potential role played by mRNA-protein phase separation to
keep mRNAs close to the nuclei from which they originate, while allowing proteins to diffuse
freely between nuclei. Our modeling shows that syncytism allows for extreme mRNA effi-
ciency—we demonstrate assembly of a robust oscillator with a transcription rate a thou-
sand-fold less than in comparable uninucleate cells. We also show self-organized division of
the labor of MRNA production, with one nucleus in a two-nucleus syncytium producing at
least twice as many mRNAs as the other in 30% of cycles. This division can occur spontane-
ously, but division of labor can also be controlled by regulating the amount of cytoplasmic
volume available to each nucleus. Taken together, our results show the intriguing richness
and potential for emergent organization among nuclei in multinucleate cells. They also high-
light the role of previously studied mechanisms of cellular organization, including nuclear
space control and localization of mMRNAs through RNA-protein phase separation, in regulat-
ing nuclear coordination.

Author summary

Circadian rhythms are among the most researched cellular processes, but limited work
has been done on how these rhythms are coordinated between nuclei in multinucleate
cells. In this work, we analyze a mathematical model for circadian oscillations in a multi-
nucleate cell, motivated by frequency mRNA and protein data from the filamentous fun-
gus Neurospora crassa. Our results illuminate the importance of mRNA-protein phase
separation, in which mRNAs are kept close to the nucleus in which they were transcribed,
while proteins can diffuse freely across the cell. We demonstrate that this phase separation
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allows for a robust oscillator to be assembled with very low mRNA counts. We also inves-
tigate how the labor of transcribing mRNAs is divided between nuclei, both when nuclei
are evenly spaced across the cell and when they are not. Division of this labor can be regu-
lated by controlling the amount of cytoplasmic volume available to each nucleus. Our
results show that there is potential for emergent organization and extreme mRNA effi-
ciency in multinucleate cells.

Introduction

Syncytia, or multinucleate cells, are present throughout the human body, as muscle cells and
bone forming cells, as well as in embryos [1-3]. They also occur in every biosphere and across
the kingdoms of life, including fungi, slime molds, and water molds [4-7]. Yet, despite their
ubiquity in nature, we do not know how closely cellular processes within syncytia, such as
nuclear division, growth, or secretion of enzymes, resemble or diverge from processes in uni-
nucleate cells [8]. In particular, even when bathed in a common cytoplasm, the nuclei of syncy-
tial fungi are capable of dividing autonomously, migrating independently across the
syncytium, and expressing different genes [4]. There are many possible ways for a syncytium
to divide the labor of making mRNAs among its nuclei. Does coordination of mRNA produc-
tion require top-down control of nuclei by the organism, or can it emerge spontaneously even
when nuclei respond autonomously to cues from the cell’s environment?

The genetics of circadian rhythms are among the most throughly dissected of cellular pro-
cesses [9], and we will use them as a paradigm for how labor of producing mRNAs may be
divided between nuclei. The rhythms are fundamental to the life of the cell, regulating timing
of the cell cycle and sleep-wake cycle, while also influencing cell physiology, metabolism, and
behavior [10-13]. Circadian clocks can be entrained by external cues such as light and temper-
ature, but are also capable of persisting in the absence of these cues [14]. Many circadian
rhythms are characterized by biochemical oscillations (such as fluctuations in mRNA and pro-
tein concentrations) with period ~ 24 h, and circadian clocks are typically regulated by tran-
scription-translation feedback loops [14-16].

The filamentous fungus Neurospora crassa alternates between growth during the day and
spore production at night [16, 17]. Circadian timekeeping is regulated by the clock gene frq
(frequency) and its interactions with WCC (White Collar Complex). Interlocking positive
and negative feedback loops drive oscillations of the frq gene: in the positive feedback loop,
WCC enters the nucleus and activates frg transcription. frg mRNA is then translated to FRQ
protein, which promotes the accumulation of WC-1 and WC-2, the proteins that comprise
the White Collar Complex. In the negative feedback loop, FRQ promotes phosphorylation of
WCC, which inactivates the complex, thereby preventing it from activating frq transcription
[13, 18].

Ordinary differential equation models have shown that the known interactions between
FRQ and WCC mRNAs and proteins are sufficient to drive Neurospora’s circadian rhythm.
Tseng et al. [18] developed a comprehensive model of the Neurospora circadian clock, includ-
ing every key clock component. The authors showed that their model is capable of reproducing
a wide variety of clock characteristics, including a consistent period under constant light con-
ditions, as well as entrainment to photoperiods. They then isolated the crucial components
that influence the period and amplitude of oscillations. Dovzhenok et al. [13] formulated a
simpler model to study glucose compensation of the Neurospora circadian clock, and also to
investigate the effect of molecular noise on the robustness of FRQ protein oscillations. Bellman
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et al. [19] showed that a Neurospora model including only equations for frg mRNA and pro-
tein, WCC, and WCC:FRQ complex can accurately simulate light-dependent circadian
rhythm phase shifts.

These models are capable of producing qualitatively correct time-varying amounts of FRQ
and WCC proteins. However, recent data, in which single molecule Fluorescence In-Situ
Hybridization (smFISH) was used to map distribution of frg mRNAs, indicate that the
mRNAs that drive the circadian rhythm are at far lower densities than can support oscillations
in the existing ODE models. Remarkably, these data show that at peak transcription, there
may be only 6 copies of mRNA per nucleus (Brad Bartholomai, personal communication,
2019). Moreover, low abundance mRNAs are likely to be strongly affected by Poisson noise;
do fluctuations in mRNA density affect the precision of the clock?

Prior modeling of Neurospora’s circadian rhythm has also omitted the syncytial context,
treating the fungal nuclei as a single compartment and the cytoplasm as a second compartment
[13, 18-20]. The models are therefore silent on how the elements of the oscillator are assem-
bled across tens, hundreds, or possibly even thousands of nuclei. Indeed, competing hypothe-
ses can be advanced: averaging mRNA and protein abundances in many nuclei may reduce
the effect of fluctuations, or, if different oscillators interfere, it may lead to less tightly con-
trolled oscillations.

Although models directly addressing Neurospora’s circadian rhythm qualitatively capture
its clock components, there are too many unmeasured parameters in these models to use them
to make quantitative predictions. For this reason, we analyze the syncytial version of a simpler
rhythm, which uses a single negative feedback loop to time its clock. In using this model, we
limit ourselves to making only semi-quantitative predictions about the real clock. Nonetheless,
our model resolves the interplay of Poisson noise, the need to synchronize multiple nuclei, and
differential sharing of mRNAs and proteins between nuclei based on their different mobilities
within the cytoplasm.

Our syncytial cell model is adapted from Wang and Peskin’s [21] single cell model for the
mammalian circadian rhythm, which is based on the abundance of PER (PERIOD) proteins.
In this model, a single negative feedback loop maintains the clock, driving circadian oscillation
of Per mRNA and protein levels. The circadian oscillation manifests as a limit cycle, which is
attained only above a critical rate of mRNA transcription. Wang and Peskin [21] considered
the destabilizing effect of Poisson noise on this limit cycle, as well as showing how the model
can be modified to incorporate entrainment by light. In this work, we ask whether stable oscil-
lations can be achieved with lower mRNA costs in a syncytial organism. Along the way, our
model signals the existence of a potential general benefit to syncytial organization by allowing
predictable protein abundances to emerge from mRNAs with low and fluctuation-affected
transcription rates because of the pooling of proteins between nuclei. Mathematically, we must
go beyond existing models, which incorporate only temporally varying protein and mRNA
concentrations, to model the distribution of mRNAs and proteins within the cell. Our model
operates in a regime dominated by the effects of Poisson noise, with mRNA copy numbers,
matched to experiments, one or two orders of magnitude smaller than those in previous
models.

We begin by describing our mathematical model for circadian rhythms in a syncytial cell.
We then run stochastic simulations of our model (using the Gillespie algorithm [22]) for a sin-
gle nuclear compartment with transcription rates several orders of magnitude below the
parameter value used by Wang and Peskin [21], matching the mRNA abundances seen in real
fungal cells. We show that stochastic transcription can maintain quasi-periodic limit cycles for
transcription rates far below the deterministic threshold at which Wang and Peskin [21] first
see limit cycles emerging. We develop a quantitative measure for evaluating the quality of
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model circadian limit cycles, and measure this “quality factor” for a wide range of transcription
rates. Subsequently, we turn to a syncytial context, and show that protein diffusion between
nuclear compartments regulates circadian rhythms in a syncytium by demonstrating that limit
cycles are more “organized” (i.e., have a higher quality factor) in a model syncytium than in a
uninucleate cell with the same mRNA and protein expression levels. Finally, we demonstrate
that protein diffusion also has an “entrainment” effect on our model syncytial cell by compar-
ing protein oscillations in linked nuclear compartments to oscillations in independent nuclei.

Mathematical model

How is the circadian clock coordinated between nuclei in a multinucleate cell such as Neuros-
pora? To address this question, we adapt for syncytial cells the single negative feedback model
formulated by Wang and Peskin [21], which was originally proposed for the mammalian circa-
dian oscillator. Our model represents a simplified form of the timing machinery in real Neu-
rospora cells since it incorporates only a negative feedback loop, so our predictions will be
semi-quantitative at best. Nonetheless, our model allows us to incorporate the elements that
are most important for this analysis: stochastic fluctuations and very small mRNA copy
numbers.

Our model syncytium is a line of length L, divided into N compartments of equal length
(later, we will consider non-uniform compartment lengths). Each compartment (index i =1,
2, ..., N) consists of a nucleus () at its center and a surrounding cytoplasm (c), with volumes
V, and V,, respectively. There are four state variables, mRNA M and protein P, each present in
the nucleus and cytoplasm. Only proteins within the boundaries of a compartment (i.e., in the
local cytoplasm) can be imported into that compartment’s nucleus. Our notation is

M) = concentration of nuclear mRNA in compartment i,
M) = concentration of cytoplasmic mRNA in compartment i,

PY = concentration of cytoplasmic protein in compartment i,

c

P% = concentration of nuclear protein in compartment i.

n

Nuclear mRNAs are transcribed at maximum rate ¢; this transcription is inhibited by nuclear
protein. Nuclear mRNAs are also exported out of the nucleus and into their local cytoplasm
(at rate y,,,), where they translate protein (at rate ) and decay (at rate d,,). Diffusion of cyto-
plasmic mRNAs is limited due to their relatively large molecular size [23] and is potentially
further reduced by specific interactions between mRNAs and proteins that confine mRNAs
within high viscosity RNP droplets that limit their mobilities within the cell [24]. Hence, we
assume that cytoplasmic mRNAs remain in the compartment containing the nucleus from
which they originated. Within each compartment, our ODEs for M,, and M, are the same as in

[21]:
aM" o K Y "
— = l=—=5) .M
dt V, \K + P —— (1)
S——— expor
transcription port
()
M ()M 5,0
dt V. N (2)
decay

export

For the derivation of the term for nuclear mRNA transcription, see [21].
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Cytoplasmic proteins are imported into their local nucleus (at rate y,), where they decay (at
rate 6,). The ODE for cytoplasmic protein in each compartment is
(i)
dpc — ﬁM(l’) —y pi
dt NN e (3 )

translation import

In contrast to cytoplasmic mRNAs, cytoplasmic proteins can also move between compart-
ments via diffusion. We make the simplifying assumption that diffusion of proteins is “fast”
relative to the rates of protein translation and import (for details on this assumption and its
implications for our model, see the analysis in S1 Appendix). Hence, following either one of
these reactions, the distribution of cytoplasmic proteins in our syncytium instantaneously
reaches equilibrium (i.e., a uniform concentration of proteins across the entire cell). This is
achieved by averaging the concentration of cytoplasmic proteins across all compartments at
each time step of numerical simulations, and then assigning this average concentration to each
compartment:

N
= > PO, (4)
i=1

In our stochastic simulations, we impose that whenever the total number of proteins in the
cytoplasm py changes (via translation or import into the nucleus), the proteins are redistrib-
uted so that each compartment contains | pi/N| proteins, with the remaining proteins (if any)
randomly assigned to separate compartments. We use the same equation as [21] for protein
concentrations in each nucleus:

(i)
P _, (V) Pl _ g pl
P c pn
dt vV, NG (5)

- decay
import

Most of our analysis in the next section will discuss mRNA and protein counts rather than

concentrations—we use m and p, respectively, to denote these counts. See Fig 1 for a schematic

of our model.

Results

Stochastic transcription maintains limit cycles below the threshold for
deterministic oscillations

Wang and Peskin [21] showed that their deterministic model produces sustained (rather than
damped) oscillations only above a critical peak rate of transcription:
KV,
ﬁ )

where, for simplicity, ¥, ¥p» 0, and J,, are all set equal to v. With the default parameter values
used by [21] (v =2n/22 WL v,=0.1 pL, V.=2pL,f=10 WL K= 200/pL, r = 5), (6) predicts
that a limit cycle will be maintained for & > 2039 h™". While the authors ran many stochastic
simulations using their default transcription rate (a = 180000 /"), they did not explore the
behavior of the stochastic model when ¢ is below the deterministic threshold for a limit cycle.
Using the Gillespie algorithm [22], we ran trials of the Wang and Peskin [21] model (i.e., our

mathematical model with N = 1 compartment) for values of a three and four orders of magni-
tude below the default rate (¢ = 180 h *and ¢ = 18 b}, respectively). Both of these rates are in

o>4-5 2

(6)
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i—1 i+ 1

Fig 1. Schematic of the syncytial circadian rhythm model. mRNA is indicated by blue ovals and protein by red rectangles. Flows to the empty set () indicate decay
and dotted arrows indicate movement, including import, export, and diffusion. Only proteins move between compartments. Dynamics are the same within each
compartment—a single compartment (i) is illustrated here.

https://doi.org/10.1371/journal.pcbi.1008828.9001

a regime where the deterministic model displays damped oscillations. Interestingly, while
oscillations of protein and mRNA levels in the deterministic model rapidly decay, oscillations
are maintained indefinitely in the stochastic model (Fig 2).

In Fig 3, we display time course data from a single stochastic simulation for o= 18 4", the
lowest transcription rate we tested, and for o = 180000 ', the default parameter value used
by Wang and Peskin [21]. On average, we find that mRNA counts are about an order of mag-
nitude higher for a = 180000 /', and that counts for & = 18 h~" are much closer to

(A) (B)

Deterministic vs. stochastic results for « = 180 h~!

Deterministic vs. stochastic results for a = 18 h™!

300 400

. < 350
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wn 2}
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S 100 s
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Fig 2. Stochastic transcription preserves limit cycles. Deterministic (thick blue curve) vs. stochastic (thin red curve) time
course for nuclear protein for a = 18 h' (A) and o = 180 A" (B). In (A) and (B), & values are two and one orders of magnitude,
respectively, below the critical transcription rate derived from (6), so under the deterministic model, oscillations are damped.
However, stochastic realizations of the same model support sustained, albeit noisy, oscillations.

https://doi.org/10.1371/journal.pchi.1008828.g002
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Fig 3. mRNA oscillations are still evident even at a very low transcription rate. Time course of number of mRNA copies in the nucleus from
individual stochastic simulations using two extremal values of the transcription rate a.

https://doi.org/10.1371/journal.pchi.1008828.g003

experimental data from Neurospora. Remarkably, periodic oscillations are still evident in the
a =18 h™" case, even with peak mRNA counts in the single digits.

Measuring the quality of limit cycles

To compare different conditions, we develop a quantitative measure of the “quality” of limit
cycles in the stochastic circadian rhythm model. To begin, we find the power spectrum for
nuclear protein count p,, over 1000 h of simulated time, averaged over N = 100 trials. The
power spectrum of a time series gives the power of each frequency component in the signal,
computed using Fourier analysis [25]. The peak in the power spectrum indicates the dominant
frequency of the signal; a noisy signal that does not have a limit cycle will have a peak of zero.
A reliable circadian oscillator should have a consistent period; accordingly, we define the
“quality factor” q of our oscillator to be the proportion of the total power that is within a
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(A) (B)

Power spectrum for 100 trials with oo = 18 ™! Power spectrum for 100 trials with o = 180000 h~*
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Fig 4. Power spectrum can be used to measure the periodicity of the circadian rhythm. We average the power spectrum
for nuclear protein over 100 trials, with a low transcription rate (A) and a high transcription rate (B). The quality factor is the
fraction of the power spectrum in the interval [w_, w,] (shaded areas) to the total area under the curve. Red asterisks indicate
the peak frequency. Quality factors are g = 0.192 in (A) and q = 0.370 in (B).

https://doi.org/10.1371/journal.pcbi.1008828.9004

certain time 7 of the peak period T%, i.e.,

/. P(w)dw

q="Fx— (7)
/ P(w)dw
0
where P = power, w = frequency, and
1 1
= = . 8
Ty T o (8)

For all subsequent measures of quality factor, we use 7 = 2 h. In Fig 4, we show examples of
evaluating quality factor for a = 18 k™" and & = 180000 k™",

We compute the quality factor for five orders of magnitude of the transcription rate ¢, rang-
ing from a = 18 1" to a = 180000 4~*. We find that quality factor increases with & (see
Table 1) since mRNA and protein counts are generally higher for larger values of o, making
oscillations of nuclear protein less susceptible to Poisson noise. So, although we predict that
circadian oscillations can be maintained even when transcription rate is low, oscillations will
be more regular in amplitude and period when transcription rate is high. However, gains are
modest: quality factor g increases only by a factor of 2 for a 10*-fold increase in a. We also
observe from Fig 4 that changing o has a small, but discernible, effect on the dominant

Table 1. Maximum transcription rate & vs. quality factor g of nuclear protein oscillations.

a ™) Quality factor (gq)
18 0.192
180 0.227
1800 0.251
18000 0.304
180000 0.370

https://doi.org/10.1371/journal.pchi.1008828.1001
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frequency w* of nuclear protein oscillations. w* increases from 0.0360 ™" (T* = 27.8 h) for a =
18 h ' t0 0.0397 h™" (T* = 25.2 h) for o = 180000 ', and generally increases as a increases.

Limit cycle quality in a model syncytium

Uniform compartment sizes. We now evaluate the quality factor of nuclear protein oscil-
lations for multiple nuclear compartments (N = 2, 4, 8, and 16 compartments) of equal length
(i.e., each nucleus contains the same volume of surrounding cytoplasm). As before, we find the
power spectrum for 1000 4 of simulated time, averaged over 100 trials. Since we expect quality
factor to be consistent across compartments, and we would like to compare with the one com-
partment case, we evaluate the quality factor for a single compartment in each case, rather
than for the entire cell. We find that quality factor increases with number of compartments in
the syncytium (Fig 5). This is likely because the redistribution of cytoplasmic proteins has an
averaging effect on the model, removing some of the noise. As the number of compartments
increases, this averaging effect becomes more robust. In fact, the quality factor with 8 or 16

Quality factor vs. number of nuclear compartments

I I I I I

# of nuclei i
-1
-0 2

4 X

Qo
O
|

et e
(0)) ~ oo
| T T

QO
&)
T

Quality factor g
o
N

o
w
T

o
N
T

o
—
T
!

1

18 180 1800 18000 180000
Maximum transcription rate o (h™!)

Fig 5. Quality factor increases with transcription rate and number of compartments. Quality factor for 1, 2, 4, 8, and 16 nuclear compartments,
over five orders of magnitude of the maximum transcription rate a.

https://doi.org/10.1371/journal.pchi.1008828.g005
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Table 2. Peak frequency w* for nuclear protein oscillations (obtained from the power spectrum), with maximum

transcription rate o = 18 k™', for various numbers of nuclear compartments.

Number of nuclei Peak frequency w* () Peak period T* (h)
1 0.0360 27.8
2 0.0372 26.9
4 0.0391 25.6
8 0.0409 24.5
16 0.0415 24.1

https://doi.org/10.1371/journal.pchi.1008828.t002

nuclear compartments and o = 18 1" is comparable to the quality factor for a single compart-
ment with a transcription rate 1000 times higher. We also find that the dominant frequency w*
increases with number of compartments (Table 2). This agrees with mathematical modeling
results from [26] and [27] (confirmed experimentally in [28]), which showed that frequency
increases with coupling strength in a Hill-type repression model for circadian rhythm (the
same type of model we study here). In the context of our model, number of nuclear compart-
ments serves as a proxy for coupling strength.

Sharing transcription-inhibiting proteins evenly between nuclear compartments of uniform
size results in roughly equal average transcription rates in each nucleus, leading to an improve-
ment of limit cycle quality. But how is the labor of transcribing mRNAs divided between nuclei
over each circadian day? To investigate, we ran a stochastic simulation of our model for a
model syncytium with two compartments of equal length and with the minimal transcription
rate & = 18 1", and counted the number of mRNAs transcribed in each compartment over
each circadian period. (We define a circadian period as the time interval between troughs in
nuclear protein abundances.) The simulation was run for 10000 4 (approximately 400 peri-
ods). We find that the labor of producing mRNAs often skews strongly toward a single com-
partment over individual periods (Fig 6). In fact, in nearly 30% of periods, one nucleus
produces more than twice the number of mRNAs as the other.

(A) (B)
1:1 1:1

30 8 0.3 ‘ :
~ 7
% 25 "é 0.25 B
g ¢

=" L

g 20 ’ £ 02
= K
g 3
Z 15 4 € 0.15 .
= | 3
< o 3 =
Z 10 B a § o041 ]
& ] £
g u 1 = 2 3
i b =
#1 5 m BJES 1 0.05 - 1

0 0 0

0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1

# of mRNAs transcribed (comp. 1) Fraction of total mRNAs transcribed in comp. 1

Fig 6. mRNA production in a model syncytium with uniform compartments. (A) Number of mRNAs transcribed in
each nuclear compartment for approximately 400 circadian periods for a two-nucleus syncytium with uniform
compartment sizes (1:1 size ratio). The red line represents equal numbers of mRNAs being produced by each nucleus. (B)
Histogram of the results from (A) indicates that one compartment often dominates mRNA production over a single
period.

https://doi.org/10.1371/journal.pchi.1008828.g006
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Our model shows that asymmetries in mRNA production can emerge spontaneously from
the circadian dynamics. Controlling division of labor may confer selective benefits upon fungi:
if one nucleus makes the majority of circadian mRNAs, the other nuclei may be able to devote
more time to expressing other mRNAs, potentially boosting overall mRNA outputs. The feed-
back strength depends on the number of proteins a nucleus encounters, and thus depends on
the volume of cytoplasm in that nucleus’ compartment. What happens to circadian cycles
when these cytoplasmic volumes are not equal (i.e., nuclear compartments are not of uniform
size)? We address this question in the next section.

Non-uniform compartment sizes. In general, nuclear compartment sizes are not exactly
uniform in a syncytial cell (though in some syncytial cells, cytoskeletal elements closely regu-
late internuclear spacing [29]). In Neurospora, nuclear movement and rearrangement con-
stantly modify compartment sizes [30]. For simplicity, we assume that compartment sizes
remain constant over time: our model is designed to identify trends in how labor is divided
between nuclei, rather than to quantitatively model the real Neurospora circadian clock.
Because proteins are uniformly distributed in the cytoplasm in our model, the expected num-
ber of cytoplasmic proteins in compartment i at time ¢ in our stochastic model is

| !
E[PE)(t)] = mptot(t)v (9)

where J; is the length of compartment i. By examining Eqs (1), (5) and (9), we can infer the
effect of compartment size on mRNA transcription. Since larger compartments generally con-
tain more cytoplasmic proteins than smaller ones, it follows that more proteins are imported
into nuclei contained within larger compartments. Thus, transcription rates are inhibited
more in larger compartments, meaning that mRNA levels should decrease as compartment
size increases. To verify this hypothesis, we ran simulations of a two compartment syncytium
in which the larger compartment was double the length of the smaller. We find that the smaller
compartment contains dramatically more mRNAs than the larger, in both the nucleus and sur-
rounding cytoplasm (Fig 7). Hence, labor of transcription is unevenly divided between com-
partments, and nuclei in small compartments carry more of the burden of producing mRNAs.
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Fig 7. Nuclei in smaller compartments do more labor of producing mRNAs. mRNA time courses for nucleus (A) and
cytoplasm (B) from a stochastic simulation of a two-nucleus syncytium in which one compartment is twice the length of the
other, fora =180 17",

https://doi.org/10.1371/journal.pchi.1008828.g007
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Fig 8. Compartment size differences skew the relative number of mRNAs transcribed by each nucleus. Number of
mRNAs transcribed in each nuclear compartment for approximately 400 circadian periods in two different two-
nucleus syncytia (panel titles indicate size ratios). The red line represents equal numbers of mRNAs being produced by
each nucleus.

https://doi.org/10.1371/journal.pchi.1008828.9008

To further study division of labor for unequal compartment sizes, we repeated the simula-
tion from the previous section, this time for a variety of two-compartment model syncytia, in
which the larger compartment was 1.1, 1.2, . . ., 1.5 times the length of the smaller compart-
ment. As before, simulations were run for 10000 4, with transcription rate a« = 18 k™", In Fig 8,
we display scatter plots for the 1.1x and 1.5x cases. We focus specifically on the skew in the
number of transcribed mRNAs—i.e., the fraction of mRNAs that are transcribed by the
nucleus in the smaller compartment. Although we find that mRNA product is unevenly dis-
tributed between nuclei from cycle to cycle, uneven compartment sizes consistently bias
mRNA production from cycle to cycle. Mean mRNA production skews slightly towards the
smaller compartment in the 1.1x case, and dramatically towards the smaller compartment in
the 1.5x case (data on mean transcription fractions is shown for all cases in Table 3).

Is limit cycle quality substantially reduced when mRNA production asymmetries are
induced by changing compartment sizes? To answer this question, we ran 100 realizations of
our stochastic model for each of the two-compartment model syncytia outlined above; each
realization was run for 1000 . Since quality factor varies with compartment size, we compute
the quality factor for the entire cell in each case (i.e. we find the quality factor for the total
number of nuclear proteins) rather than for a single compartment. We then compare this set
of quality factors to the factor for an entire cell composed of two compartments of equal
length. We find that increasing variability in compartment length has a very minimal effect on

Table 3. Ratio of compartment lengths I,/1,, along with fraction of total cytoplasmic volume occupied by compart-
ment 2, vs. fraction of total mRNAs transcribed in compartment 2 (the smaller compartment).

L/, L/l +1,) mean fraction of mRNAs transcribed in comp. 2
1.1 0.476 0.559
1.2 0.455 0.600
1.3 0.435 0.654
1.4 0.417 0.688
1.5 0.400 0.731

https://doi.org/10.1371/journal.pcbi.1008828.t003
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Fig 9. Quality factor (across the entire cell) is close to uniform for a variety of two-nucleus syncytia. We varied the asymmetry of compartment
sizes and measured the mean quality of the oscillator over 1000 simulated hours, with & = 18 1", Quality factor varies little and consistently exceeds the
value for a uninucleate cell (0.192).

https://doi.org/10.1371/journal.pchi.1008828.g009

limit cycle quality (Fig 9). Our results show that even with extreme division of labor between
nuclei, a high quality oscillator can be assembled. The nucleus in the larger compartment,
though it produces the minority of the cell’'s mRNAs, contributes enough to ensure that the
quality factor remains consistently larger than the factor for a uninucleate cell (0.192 for the
parameter values assayed here).

Limit cycle consistency in a model syncytium. Lastly, we wish to examine whether pro-
tein sharing supports consistency of circadian timekeeping in a model syncytium when tran-
scription rate is very low (@ = 18 h™"). We return to uniform compartment sizes and consider
two different scenarios: (i) eight nuclear compartments that share proteins via diffusion and
(ii) eight independent nuclear compartments, with each compartment containing only the
mRNAs and proteins produced by its nucleus. In both scenarios, every compartment is given
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the same initial mMRNA and protein counts, i.e.,

where y,, 4., p» and p,, are integer constants. Starting from these initial conditions, we simulate
five circadian “days” for the two different scenarios outlined above. In this context, a “day”
refers to the time period between peaks in total nuclear protein expression (i.e., the total
nuclear protein count for the entire cell). We are interested in evaluating the consistency in the
timing of these peaks. We therefore ran 100 stochastic simulations for each scenario, with the
same initial conditions for every trial, and recorded the time that each peak occurred for each
simulation.

In Fig 10, we display histograms for the times that peaks occurred, where time 0 h indicates
the time for the first peak. Unsurprisingly, we find that the timing of peaks becomes more
unpredictable over time. However, since the nuclei from scenario (i) share proteins, oscilla-
tions for nuclear protein in each compartment remain roughly in-phase from their initially
synchronized states. On the other hand, in scenario (ii), nuclei have no means to “communi-
cate,” s0, even though they begin synchronized, nuclear protein oscillations drift quickly out of
phase. Hence, timing of peaks in total nuclear protein is considerably more unpredictable in
scenario (ii) than in scenario (i), as indicated by larger standard deviations for peak times in
scenario (ii) (Fig 10). This shows that protein diffusion can help regulate circadian timekeep-
ing in a syncytial cell, and that circadian rhythms quickly break down in a syncytial cell with
no communication between its nuclei. In the absence of external cues such as light, circadian
rhythms tend to deteriorate after several days [16, 31]. However, we’ve shown that, like light,
protein sharing between nuclei can have an entraining (synchronizing) effect on the cell’s
rhythms, helping maintain reliable rhythms for a longer period of time.

Peak times for 8 nuclei with protein sharing 20 Peak times for 8 nuclei without protein sharing
20 - op =3.03 Day 1 B n Day 1
Day 2 Day 2
Day 3 o =425 Day 3
Day 4 15+ Day 4
15 Day 5 Day 5
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Fig 10. Protein sharing supports a consistent circadian rhythm. Times of peaks of total nuclear protein expression, for
eight nuclear compartments that share proteins (A) and eight independent nuclear compartments (B). We ran 100
simulations in each case, with & = 18 1. In each figure, we also indicate the standard deviation o; of peak time for each
circadian “day” (i=1, 2, ..., 5). Expected times for peaks (i.e., average circadian day lengths) are indicated with blue
diamonds.

https://doi.org/10.1371/journal.pcbi.1008828.9010
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Discussion

We have formulated and simulated a mathematical model for circadian rhythms in a syncytial
cell, adapted from the uninucleate model of Wang and Peskin [21]. The motivation for devel-
oping our model was to better understand division of labor (i.e., partitioning of mRNA tran-
scription) between nuclei in Neurospora crassa. Our results indicate that, by “sharing” proteins
between nuclei via molecular diffusion, nuclei within a syncytial cell such as Neurospora can
achieve a robust, reliable circadian rhythm with minimal mRNA production. For example, we
found that a model syncytium with eight nuclei can achieve nuclear protein oscillations of
comparable “quality” to a uninucleate cell while reducing transcription rates by a factor of one
thousand. This is because protein sharing has an averaging effect on the model, removing
much of the consequences of random mRNA fluctuations. While our model is undoubtedly
simplified, it offers a potential explanation of recent experimental results, which suggest that
Neurospora achieves a robust circadian rhythm with very small mRNA counts (Brad Bartholo-
mai, personal communication, 2019).

Many of the simulations in this paper were run below the deterministic threshold for a
Hopf bifurcation derived in [21] (see the inequality (6)). We selected this regime of the
model because we wanted to test whether oscillations could be achieved at the very low tran-
scription rates that are consistent with smFISH measurements of mRNA in Neurospora
crassa (Brad Bartholomai, personal communication, 2019). Remarkably, we found that, even
in uninucleate systems, quasi-periodic limit cycles are attained in stochastic simulations
when the transcription rate is two orders of magnitude lower than this threshold and mRNA
counts are in the single digits. However, absolute quantification of proteins is very difficult
in syncytial cells [32], so the actual translation rates in Neurospora may be considerably
higher than the parameter value we used. A high translation rate 8 could potentially push
the system back into the regime where a deterministic limit cycle exists. Regardless, it is
notable that random transcription events can potentially maintain limit cycles for very low
transcription rates, allowing a cell to achieve a robust circadian rhythm with minimal labor
upon its nuclei.

Extreme mRNA efficiency may confer fitness advantages upon fungal cells. These cells are
often regarded as enzyme factories—capable of expressing vast quantities of potentially useful
proteins [33]. Although the energetic cost of mRNA transcription is not large, the physical
rearrangements needed to access a particular gene may create interference when a nucleus
must access multiple different regions of its genome to express multiple genes [34]. Reducing
transcription rates on each gene may therefore allow a nucleus to transcribe a larger set of
genes. In Zaslaver et al. [34], the authors highlight that organisms may benefit from minimiz-
ing the rates of transcription, while keeping protein abundances constant. The super-secretory
abilities and rapid growth of fungi may emerge from their ability to push transcription rates to
extremely low rates while using protein sharing to suppress stochastic fluctuations in the abun-
dances of the proteins produced.

Many previous mathematical models have addressed the synchronization of coupled circa-
dian oscillators [26, 35-38]. These studies have shown that intercellular coupling leads to a
more consistent, noise-resistant, and robust circadian rhythm [26, 37, 38] and that coupled cir-
cadian oscillators are capable of entrainment to light-dark cycles [35-37]. Liu et al. [39] used
bioluminescence imaging to show that intercellular coupling in the suprachiasmatic nucleus is
essential to synchronize cellular oscillators and provide robustness against genetic mutations.
Our model is notable because it demonstrates that coupling of nuclei (via protein sharing)
within a cell can provide similar benefits: namely, it can increase the consistency of period
length and the robustness of oscillations, while reducing the detrimental effects of noise.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008828  August 2, 2021 15/18


https://doi.org/10.1371/journal.pcbi.1008828

PLOS COMPUTATIONAL BIOLOGY Modeling circadian rhythm in multinucleate cells

In constructing our syncytial cell model, we made the simplifying assumption that protein
diffusion is “fast” relative to protein import and decay. Hence, we imposed that protein levels
are constantly uniformized between compartments. While this assumption may be fairly rea-
sonable across a small number of nuclear compartments, it breaks down for a larger cell with
many nuclear compartments. So, while our model predicts that limit cycle quality increases
with number of nuclei (Fig 4), is there a trade-off that occurs in a larger cell, as communication
between nuclei becomes more limited? A model that includes more accurate diffusive mechan-
ics could help answer this question, and better predict how spacing of nuclei across the cell
affects the quality of circadian rhythms.

In future, it may be valuable to adapt our syncytial model to more closely describe circadian
rhythms in Neurospora. frg mRNA and protein oscillations in Neurospora are driven by inter-
locking positive and negative feedback loops, while our model involves only a negative feed-
back loop. A minimal differential equation model to study Neurospora circadian rhythm
would likely need to include frg mRNA and protein, White Collar mRNA and protein, the pro-
tein interactions to produce the FRQ-White Collar complex (whose formation inhibits frg
transcription), and measured values for the transcription and export rates of mRNAs to quan-
titatively match to the emerging data streams on real mRNA and protein abundances [40, 41].
At the same time, Neurospora’s ability to generate heterokaryotic syncytia—that is, syncytia
from genetically divergent nuclei—allows for thorough probing of the roles of nuclear interac-
tions in circadian timing, by comparing syncytial performance when all nuclei participate in
frq transcription with syncytia in which only some fraction of nuclei can transcribe the requi-
site mRNAs.

Supporting information

S1 Appendix. Fast protein diffusion justifies treating compartmental protein concentra-
tions as uniform.
(PDF)
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