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ABSTRACT 

HVAC systems account for majority of energy consumption in buildings and play a vital role in 
energy efficiency and occupants’ comfort. Efficient control of HVAC systems could reduce energy 
consumption while maintaining occupants’ comfort at an acceptable level. Predictive control 
strategies that leverage the thermal capacity of buildings have been shown to be an effective 
approach in decreasing the energy consumption of buildings. One of the conventional methods in 
representing comfort in the formulation of predictive controllers is to consider a fixed temperature 
range as a constraint. However, this method does not account for differences in occupants’ thermal 
preferences. Therefore, in this paper, we have compared the performance of two model-predictive 
controllers in terms of energy consumption and thermal satisfaction: the first one is a conventional 
controller constrained by a fixed temperature range and the second proposed controller is 
constrained by information from personal comfort profiles. The controllers were formulated as 
optimization problems using multivariate regression for predictive modeling and genetic algorithm 
for optimization. To represent human thermal preferences, probabilistic comfort profiles of 
occupants were developed by utilizing real-world thermal votes. The performance of these 
controllers was evaluated in a residential building through EnergyPlus simulations for different 
multi-occupancy scenarios of one, two, and four occupants. The proposed MPC controller 
improves thermal satisfaction by 15% while increasing energy consumption by 4% on average.  
 
INTRODUCTION 

Efficient control of HVAC systems results in reducing energy consumption and improving 
occupants’ thermal comfort (West, Ward et al. 2014). In the literature, two main paradigms of 
reactive and predictive control of HVAC systems have been investigated (Shaikh, Nor et al. 2014). 
In these paradigms, building systems’ control logic centers around taking actions (e.g., adjusting 
the thermostat setpoint) according to the states (e.g., the indoor temperature) of a system. In the 
reactive paradigm, control is based on the current state of a building for taking actions. However, 
in the predictive paradigm, future states of the system are considered in taking an action at the 
current time. Previous studies have demonstrated the efficacy of the predictive paradigm in 
reducing cost and energy consumption (Drgoňa, Arroyo et al. 2020). Predictive controllers employ 
the thermal capacity of buildings by precooling or preheating (Killian and Kozek 2016). To 
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account for occupants’ perspective in the predictive control paradigm, different approaches have 
been used. The most commonly used approach relies on a fixed temperature range to provide 
satisfactory thermal conditions. Several examples of this approach could be found in the literature. 
Hu et al. (2019) have developed a predictive controller for a floor heating system and presumed 
fixed temperature ranges (20˚C to 24˚C during off-peak hours and 22˚C to 25˚C during on-peak 
hours) as thermal comfort constraints in their model. Huang et al. (2021) have evaluated the 
sensitivity of model-predictive control (MPC) techniques to different parameters and similarly 
constrained their MPC formulation with a fixed temperature range from 20˚C to 24˚C. 
Alternatively, generalized thermal comfort indices, such as Predicted Mean Vote (PMV) have been 
adopted in other studies. Examples of using PMV-based constraints in improving energy efficiency 
through predictive control paradigm could be found in the studies by Yang et al. (2020) and Carli 
et al. (2020) to name a few. 

Studies have shown that occupants have varied ranges of thermal preferences and different 
levels of sensitivities to temperature variations for different modes of thermal conditioning based 
on age, gender, and other physiological factors (Liu, Schiavon et al. 2019) . Therefore, considering 
these differences in thermal needs, algorithmic constraints of fixed temperature ranges could 
potentially result in occupants’ discomfort. Relying on generic models, such as the PMV index, 
could not accurately represent the individual thermal needs as studies have shown (Van Hoof 
2008). The advancement of sensors and Information and Communications Technologies, as 
reflected in modern smart thermostats that are capable of learning user preferences, has paved the 
way for integration of a more refined representation of occupants’ need in the control formulation. 
Considering varied occupants’ characteristics could result in improved energy efficiency and 
flexibility (Jung and Jazizadeh 2019). Accordingly, in this study, we have compared two MPC 
formulations with different human-related constraints: (1) an MPC formulation based on the 
conventional fixed temperature range to account for occupants’ comfort, and (2) a proposed MPC 
framework with the integration of occupants' thermal comfort profiles. These controllers have been 
formulated as optimization problems, for which the objective function addresses the trade-off 
between energy consumption and occupants’ comfort. We have used genetic algorithm (GA) to 
solve the optimization problems considering that GA has been widely used for MPC-based 
optimizations (Shaikh, Nor et al. 2014). 

Different methods including white-box, black-box, and grey-box modeling could be used 
to develop models of building dynamics (Yao and Shekhar 2021). White-box models are physics-
based and are developed based on the thermodynamic behavior of major components in a building. 
These models could be tuned to represent a building’s dynamic with high accuracy. White-box 
models have been used in development and evaluation of HVAC control techniques (Huang, Lin 
et al. 2021). Black-box models are completely data-driven, and are used to develop a mapping 
between a number of independent variables and a dependent variable such as energy use in a 
building. Grey box models rely on a mixture of white-box and black-box models. A lower-fidelity 
physics-based model of a building is developed and its parameters are identified through data-
driven methods. In this paper, using the black-box modeling approach and multivariate linear 
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regression analysis, we have developed two predictive models for cooling energy use and indoor 
temperature in a typical residential building for our analysis. Previous studies have shown that 
black-box models can be effectively used for predicting the thermodynamic behavior of buildings 
(Yoon, Baldick et al. 2014).  Figure 1 shows the framework for the MPC-based controllers in this 
study including the independent variables used in developing predictive models. To simulate the 
learning process of thermal comfort profiles, real-world thermal comfort votes and their associated 
ambient conditions for several occupants have been used. The two controllers have been compared 
in terms of energy consumption and occupant comfort.  

 

Figure 1 - The main framework for the investigation of MPC-based controllers 
 

METHODOLOGY 

In this section, we have described the details of the MPC formulation, the predictive modeling for 
thermodynamic response of the building, and thermal comfort modeling. 

MPC formulation. As noted, MPC-based HVAC operations seek to optimize for energy 
efficiency over a future prediction horizon. The general MPC formulation, in this study, is as set 
in the following optimization problem: 

 

min ∑ 𝐸(𝑢𝑡) + ɳ ∗ 𝐷(𝑢𝑡)𝑡=𝑘+𝑁
𝑡=𝑘        

𝑠. 𝑡.           20˚𝐶 ≤ 𝑢𝑡 ≤ 30˚𝐶 
 

where E  and D denote energy and discomfort, respectively. In this equation, ut represents an action 
at time step t. Actions include changes in setpoints that are constrained between 20˚C and 30˚C 
and N is the number of time steps on the prediction horizon for identifying an action at the current 
time step. Given the control logic in residential settings, thermostat setpoints could be effectively 
used as an action (control) variable as also commonly used in previous studies (Yoon, Baldick et 
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al. 2016, Ding, Du et al. 2020). The objective function is the summation of energy consumption 
and occupants’ discomfort. Adjusting the value of ɳ  changes the trade-off between occupant 
comfort and energy consumption. For the two controllers in our study, the energy component of 
the objective function is the same but the discomfort component is different. For the conventional 
controller based on a fixed temperature range, discomfort at time t due to the action u is defined 
as follows: 

𝐷(𝑢𝑡) = {
𝑇𝑡 − 24       𝑖𝑓 𝑇𝑡 > 24
20 − 𝑇𝑡       𝑖𝑓 𝑇𝑡 < 20

                           
 

where 𝑇𝑡 is indoor temperature at time t. Discomfort at time t for the controller is defined 
based on occupants’ comfort profiles as follows: 

 

𝐷(𝑢𝑡) = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = ∑ |𝑇𝑡 − 𝑇𝑃𝑜𝑐𝑐.|

𝑂𝑐𝑐.

 

  

where 𝑇𝑃𝑜𝑐𝑐. is the preferred indoor temperature for each occupant that is learned from 
their comfort profiles. Thermal comfort profiles are probabilistic distributions of comfort with 
respect to indoor temperature that are generated from the user-provided data. Therefore, preferred 
temperature is the temperature with the highest likelihood of comfort. Thermal error is the absolute 
value of the difference between the room temperature and the preferred indoor temperature for 
each occupant. The pseudo-code for the MPC is as presented in Figure 2 (a). The controller at 
time 𝑡 = 𝑘 considers the next N steps and calculates the optimal set of actions from 𝑡 = 𝑘 to 𝑡 =

𝑘 + 𝑁. It stores the current optimal action (𝑢𝑡) in U∗ and recedes to the next horizon. U∗is the set 
of optimal actions over the whole simulation process. Figure 2 (b) shows the process of MPC-
based operations. As an example, at 𝑡 = 0 and in step 1, the controller calcualtes the optimal set 
of actions from time 0 to 5. The optimal action at time 0 (𝑢0) is stored in U∗ and the state (indoor 
temperature of the building) is updated based on 𝑢0. This process repeats for the next setps.  

We have used 15-min intervals for simulation and control purposes. The prediction horizon 
was set to 𝑁 = 6 time steps for 90 minutes. The MPC-based operations have been evaluated for 
August 1st and over 24 hours (96 time steps). For the GA algorithm, the initial population size of 
chromosomes was 100, mutation probability was 0.1, the crossover probability was 0.5, the 
parents' portion was 0.3, and the elite ratio was 0.01. The genetic algorithm explores the possible 
solutions by calculating the best answers at each time step, but it does not guarantee global 
optimum and might trap into a local optimum (Ramos Ruiz, Lucas Segarra et al. 2018). To address 
that limitation, we repeated the optimization 50 times to decrease the chance of trapping in local 
optima. Based on these parameters, the genetic algorithm runs took one minute for each MPC step.  

Building dynamics predictive modeling. The building, in this study, is a single-family residential 
unit from Residential Prototype Building Models developed by Pacific Northwest National 
Laboratory (PNNL) based on the 2021 International Energy Conservation Code (IECC). The 
building area is 3565.64 ft2 (~330 m2) with two thermal zones of living zone and attic zone. The 
HVAC system only conditions the living zone. To prepare a dataset for developing the models, 
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the cooling setpoints were randomly changed and several simulations were run in EnergyPlus to 
create different scenarios of operation (Hong, Chen et al. 2020). 

 
Figure 2 - (a) The pseudo-code for MPC, and (b) the process of MPC-based operations 

 
These simulations were repeated for weather conditions in different geographical locations 

including Austin, Albuquerque, and Houston to capture a wider range of thermodynamic response 
of the building (Ding, Du et al. 2020). We only focused on the cooling mode during a warm season 
for these analyses. A multivariate regression model was developed for prediction of HVAC 
system's cooling energy at the next time step according to the current state of the building:  

𝐸(𝑡 + 1) = −0.101 ∗ 𝑇𝑠(𝑡) + 0.032 ∗ 𝑇(𝑡) + 0.029 ∗ 𝑇𝑜(𝑡) + 0.006 ∗ 𝑤𝑠(𝑡) − 0.001 ∗ 𝑟𝑠(𝑡)

+ 0.001 ∗ 𝑜𝑐𝑐(𝑡) 

where  𝑇𝑠 ,  𝑇 , and 𝑇𝑜  are setpoint, room temperature, and outdoor temperature in  ˚𝐶 , 
respectively, and 𝑤𝑠 , 𝑟𝑠 , and 𝑂𝑐𝑐 are wind speed  (𝑚/𝑠), solar radiation in (𝑊/𝑚2), and the 
number of occupants, respectively. The coefficient of determination (𝑅2) of this model is 0.78. 
Similarly, a second model for predicting the next time step indoor temperature was developed with 
an  𝑅2 of 0.92: 

𝑇(𝑡 + 1) = 0.53 ∗ 𝑇𝑠(𝑡) + 0.39 ∗ 𝑇(𝑡) + 0.05 ∗ 𝑇𝑜(𝑡) 

Thermal comfort modeling. To simulate the process of learning from interactions of occupants 
with thermostats, we have adopted a probabilistic comfort profile development approach that relies 
on thermal votes and their corresponding ambient conditions. The comfort data from (Daum, Haldi 
et al. 2011) and (Jazizadeh, Ghahramani et al. 2014) were used in this study. The probabilistic 
comfort profiles are generated by combining probabilistic profiles of being comfortable, 
uncomfortably warm, and uncomfortably cool by employing Bayesian network modeling. More 
details of this probabilistic modeling approach could be found in (Jung and Jazizadeh 2019). Figure 
3 shows an example profile, in which the preferred temperature is 23.05˚C (with a 100% likelihood 
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of being comfortable). As the temperature moves from the preferred temperature, the likelihood 
of comfort drops with different rates depending on the direction of temperature variation. In this 
study, in the MPC formulation, we have used thermal error index, which is the difference between 
temperature at time t and thermal preference for each occupant, which is the temperature with 
highest probability of comfort. For multi-occupancy scenarios, thermal error has been aggregated 
across different occupants at each temperature which is noted as 𝐷(𝑢𝑡). The lower values of 𝐷(𝑢𝑡) 
are associated with higher thermal satisfaction. 

 
Figure 3 – An example thermal comfort profile for one occupant 

Simulation scenarios and evaluation metrics. Fifteen thermal comfort profiles from real-world 
data have been generated. For one, two and four multi-occupancy scenarios, there are 𝐶(15,1) =

15 ,𝐶(15,2) = 105  and 𝐶(15,3) = 1365  different number of combinations, respectively. We 
randomly selected four sample for each scenario. Upon identification of action vector by using the 
predictive models, the building performance from these control strategies has been simulated in 
EnergyPlus. Different scenarios have been compared for their energy usage and total thermal 
satisfaction. In addition, we have proposed to use Energy Productivity (EP) index that measure 
how each unit of energy use has contributed to thermal comfort of occupants. The unit of this index 
is (1/kWh). 

𝐸𝑃 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

Through a sensitivity analysis for ɳ = [1,10, 100] we set ɳ = 10 for running the MPC 
simulations to keep a balance in the trade-off between energy and comfort. Increasing the value of 
ɳ leads to prioritizing comfort over energy. 
 
RESULTS 

Performance analysis of MPC-based operations. The performance of the controllers was 
evaluated on different multi-occupancy scenarios consisting of one, two, and four occupants for a 
summer day in Austin, Texas. Figure 4 (a) shows the outdoor temperature, cooling setpoint, and 
indoor temperature for an example comfort profile on August 1st – the simulated day as a sample 
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warm day. In this graph, we have used hourly values of each variable. The outdoor temperature 
started increasing at round 6 am and reaches the peak at 3 pm. Since MPC controllers use future 
information, precooling of a building starts at around 7 am by decreasing the morning setpoint (as 
shown in Figure 4 (b)). 

 
Figure 4 – The MPC results for one human subject (#6) during August 1st  

Figure 5 (a) compares the energy usage of the controller with a temperature range from 
20˚C to 24˚C and the proposed MPC controller for two human subjects (#14 and #2) in single 
occupancy scenarios. The thermal preferences of subjects #14 and #2 are 21.74˚C and 24.69˚C, 
respectively (Figure 5 (b)). The total energy usage of the conventional MPC controller and 
proposed comfort-driven MPC controller for subject #2 and subject #14 were 29.02 kWh, 26.70 
kWh and 35.95 kWh, respectively. Higher preferred temperature values results in reduction of 
energy consumption. In terms of thermal satisfaction, the proposed controller considerably 
outperforms the conventional controller. In evaluating the comfort consequences of these 
controllers, we have used average thermal satisfaction during the simulation day. For subject #14, 
the average thermal satisfaction for the conventional MPC controller was 19, and 73 for the 
proposed MPC controller. The thermal satisfaction of subject #2 has been increased from 91 for 
the conventional MPC controller to 97 for the proposed MPC controller. The EP index for subject 
#14 for the proposed MPC controller is 2.03 (1/ kWh) and for the conventional MPC controller is 
0.65 (1/kWh). This index for subject #2 has increased for the proposed MPC controller compared 
the conventional MPC controller from 3.21 (1/kWh) to 3.63 (1/kWh), respectively. In other words, 
for both subjects, the proposed controller increases the productivity of the controller. During the 
peak outdoor temperature from 2 to 5 pm, the energy usage of the conventional MPC controller 
and the proposed MPC controller were the same. The main reason is that the HVAC system of the 
building model is for all US regions and we used this model to identify the cooling load of a 
building during summer time in Austin, Texas that is a hot climate. In this extreme case, the HVAC 
system uses its maximum capacity to cool down the building and keep an acceptable indoor 
temperature. 

Energy-saving and thermal satisfaction potential. The above examples show the performance 
variations for occupants with different comfort preferences. To evaluate the overall performance, 
the average performance from four simulations for different multi-occupancy scenarios were as 
presented in Table 1. In terms of thermal satisfaction, the proposed MPC controller outperformed 
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Precooling
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the conventional one in all scenarios. Thermal satisfaction for one-, two-, and four-occupant 
scenarios has increased by 32%, 7%, and 7%, respectively. 

 
Figure 5 – (a) comparing the energy consumption of the conventional MPC controller (with 

fixed temperature range) and the proposed MPC controller for subject #14 and #2 (b) 
Thermal comfort profiles for subject #14 and #2 

 
In terms of energy usage, the conventional MPC controller consumes 29.02 kWh, while 

the proposed MPC controller have used more energy for scenarios with one and four occupants. 
In scenarios with two occupants, the energy consumption of the proposed MPC controller is 
however reduced. Increase in the number of occupants has led to less standard deviation of energy 
consumption reflecting reduced flexibility in the operations. The EP indices for one, two, and four 
occupants are as calculated in Table 1. As the EP Index Ratios show the use of comfort-driven 
MPC has been shown to be more energy efficient compared to the conventional MPC. 

Table 1 - Energy consumption and thermal satisfaction for different simulated scenarios 

Number of 
occupants 

Energy use – 
Comfort-

driven MPC 
(kWh) (std) 

Thermal 
satisfaction for 
proposed MPC 

(%) 

EP Index – 
Comfort-

driven 
MPC 

Thermal 
satisfaction – 
Conventional 

MPC 

EP Index – 
Conventional 

MPC 

EP 
Index  
Ratio 

1 31.42 (5.06) 86 2.74 65 2.24 1.22 
2 28.47 (4.50) 64 2.25 60 2.07 1.09 
4 30.73 (1.81) 60 1.95 56 1.93 1.01 

 

 In this study, there are a number of limitations that should be addressed in future 
investigations. We assumed that the residential unit in the simulation is fully occupied. Although 
this assumption could be valid for some households, future analysis could account for the effect 
of dynamic occupancy on the performance of MPC controllers. In this paper, we used black-box 
modeling for updating the state of the system at each time step. Black box models are simple 
representations of the building and physics-based modeling could be adopted to improve accuracy. 
Moreover, co-simulation with EnergyPlus at each MPC step could increase the accuracy of the 
analyses. Finally, using thermal error as the strategy for integrating personal comfort models could 
limit the benefit from comfort-driven MPC and other more effective techniques could be used to 
improve the efficiency (Jung and Jazizadeh 2019). 

Peak time

Precooling
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CONCLUSION 

In this paper, the performance of two model-predictive controllers (MPC) has been compared. The 
first controller is constrained by a conventional assumption of comfort in predictive controllers, 
which is a fixed temperature range. Preferred temperatures from occupants' comfort profiles 
constrain the second controller that was proposed in this study. Fifteen actual comfort profiles of 
occupants have been created by using actual thermal votes and used in evaluations of these 
controllers. Both controllers were formulated as optimization problems. Black-box modeling of a 
residential building thermodynamic response through multivariate linear regression was adopted 
for predictive modeling and genetic algorithm was used as the heuristic to optimize the operations. 
The performance of the controllers were evaluated on different multi-occupancy scenarios 
consisting of one, two, and four occupants for a summer day in Austin, Texas. In terms of energy 
consumption, using a controller that fixes setpoint on 23˚C consume 34.52 kWh. However, the 
conventional MPC controller consumes 29.02 kWh and the proposed MPC controller uses 30.20 
kWh on average. Thermal satisfaction has been increased by 15% by using the proposed MPC 
controller over the conventional MPC controller across the multi-occupancy scenarios. In addition, 
a new index for evaluating energy productivity (EP) has been introduced to measure how each unit 
of energy use has contributed to thermal comfort of occupants. Our results indicate that the 
proposed MPC controller has a higher value of energy productivity compared to the conventional 
MPC controller. 
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