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Abstract

Reliability analysis is usually a core element in engineering
design, during which reliability is predicted with physical models
(limit-state  functions).  Reliability — analysis  becomes
computationally expensive when the dimensionality of input
random variables is high. This work develops a high dimensional
reliability analysis method by a new dimension reduction
strategy so that the contributions of both important and
unimportant input variables are accommodated by the proposed
dimension reduction method. The consideration of the
contributions of unimportant input variables can certainly
improve the accuracy of the reliability prediction, especially
where many unimportant input variables are involved. The
dimension reduction is performed with the first iteration of the
first order reliability method (FORM), which identifies
important and unimportant input variables. Then a higher order
reliability analysis, such as the second order reliability analysis
and metamodeling method, is performed in the reduced space of
only important input variables. The reliability obtained in the
reduced space is then integrated with the contributions of
unimportant input variables, resulting in the final reliability
prediction that accounts for both types of input variables.
Consequently, the new reliability method is more accurate than
the traditional method, which fixes unimportant input variables
at their means. The accuracy is demonstrated by three examples.
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1. Introduction

In engineering design, physics-based reliability is
commonly used to predict the probability of failure using
physical models derived from physical principles. Such a model
is called a limit-state function and is given by

Y =gX) €Y

where X is a vector to represent random input variables, and Y
is a response that indicates the occurrence of a failure.
Physics-based reliability methods can be divided into three
categories: numerical methods [1-5], surrogate methods [6-13],
and simulation methods [14-16]. Typically, numerical methods
simplify the limit-state function (Eq. 1) using the first or second
order Taylor expansion, and the reliability approximated by the
simplified function. The surrogate methods construct an easy-
access model utilizing sensitivity analysis, Design of
Experiments (DoE), and active learning methods, etc., and the
reliability obtained by evaluating the surrogate model instead of
the original limit-state function. However, both numerical and
surrogate methods suffer from the curse of dimensionality that
makes reliability analysis computationally expensive for high-
dimensional problems. Because reliability prediction repeatedly
calls limit-state functions, which are typically complex,
resource-intensive numerical models. The number of function
call grows drastically as the increase of dimensionality of the
input variables. Although the efficiency of simulation methods,
such as Monte Carlo Simulation (MCS) [17] and importance
sampling method [18], is not affected by the dimensionality, they
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are still computationally expensive when the reliability is high
and may not be practically used in engineering design.

High-dimensional reliability analysis is encountered in
many engineering and science fields [19-23]. Current high-
dimensional analysis methods are roughly classified into three
types. The first type includes methods [24-27] using high-
dimensional model representation (HDMR), which decomposes
a high dimensional limit-state function g(X) into the sum of
several lower-dimensional functions. The moments (means,
variance, etc.) of the response can be approximated by several
low dimensional numerical integrations. However, the accuracy
of the reliability obtained by HDMR may not accurate enough if
the interaction terms are dominant. The low dimensional
functions are usually approximated by Taylor expansion, which
also introduces errors. Although the accuracy of the reliability
assessment can be improved by increasing the approximation
order, the number of function evaluations may increase
drastically. Balancing the prediction accuracy and efficiency
remains challenging for HDMR.

The second type of method [28-35] combines dimension
reduction with surrogate modeling and machine learning. Three
steps are usually involved. Step 1 is the dimension reduction
performed by sliced inverse regression (SIR) [29, 32, 36] or other
methods [24, 31] at specific training points, usually generated
through DoE [37]. Important input variables are identified. In
Step 2 a surrogate model is constructed with respect to important
input variables in the reduced dimensional space. Many
regression and machine learning methods could be used for this
purpose, including Polynomial Chaos Expansion [29], Gaussian
Process Regression [38], Support Vector Machines [39], and
Neural Network [30]. Step 3 is the surrogate model validation.
After the accuracy of the surrogate model is validated, it is used
to estimate the reliability, and MCS is usually used. A sufficient
number of training points are needed for the good accuracy of
the surrogate model. The number of training points, thereby the
number of function calls, increases greatly with the increase of
dimensionality of input variables.

The third most commonly used method is principal
component analysis (PCA) [40-42]. PCA reduces the dimension
of the input variables by making use of the correlations between
the input variables. Therefore, PCA works well for the elements
of input variables that are strongly correlated. When the input
variables are independent or only weakly correlated, PCA may
not work well for dimension reduction. Besides, PCA does not
use the information of the response Y, and it is, therefore, an
unsupervised dimension reduction technique. Although
dimension reduction is optimal in the given data space, it may be
suboptimal for the entire regression space.

Overall, despite the progress, numerous challenges remain
in the path toward routinely accommodating high dimensional
problems in reliability analysis. In most of the successful
applications, only dozens of random input variables can be
practically handled except the special cases involving functional
data [28, 29]. However, the dimension of input variables could
easily add up to hundreds or thousands in system design. For
example, the aircraft wing optimization design [43, 44] involves

structure and aerodynamics. The numbers of design variables,
random variables, and constraints could be in hundreds or
thousands. Moreover, when the reliability requirement is high,
accurately predicting the reliability is extremely computation
demand.

In real engineering applications, not all the elements of X
contribute significantly to the response Y . The majority
elements of X may have insignificant effects that are, therefore,
unimportant variables. Their total effect, however, may not
negligible because the unimportant variables may count for most
of X. Traditional dimension reduction methods usually neglect
the contribution of the unimportant variables because they are
fixed at their means, and this can lead to a large error.

In this study, we account for the total effect of unimportant
variables by fixing them at their percentiles so that the dimension
is reduced but the influence of unimportant variables is not
neglected. The proposed method does not require random
sampling for dimension reduction. Instead, it is based on a
numerical method, or the First Order Reliability Method
(FORM). After dimension reduction, any reliability method with
higher accuracy can be used to predict the reliability since the
computational effort will be reduced significantly in the reduced
space. Then the predicted reliability is combined with the
contribution of the unimportant variables to produce the final
reliability prediction.

The remainder of this paper is organized as follows. Section
2 reviews the methodologies that this study uses. Section 3
discusses the details of the proposed method, followed by three
examples in Section 4. The conclusions are provided in Section
5.

2. Review

In this section, we briefly review the basic knowledge that
is related to the proposed method, FORM, the Second Order
Reliability Method (SORM), and the Second Order Saddlepoint
Approximation (SOSPA). The rules of symbols in this paper are:
1) a capitalized letter in bold denotes a vector of random
variables (e.g., X or U), 2) a lower-case letter in bold denotes a
vector of deterministic variables (e.g., X or u), 3) an italicized
capital letter denotes a random variable (e.g., X or U), and 4)
an italicized lowercase letter of denotes a deterministic variable
(e.g., x or u).

2.1 FORM and SORM
The reliability is defined by the following probability
R =Pr{g(X) = 0} (2)
The probability of failure pf is then given by

pr=1—-R=Pr{gX) <0}=f
gX)<o

xx)<0dx (3)

where fx(x) is the joint probability density function (PDF) of
X. The limit-state function g(X) is usually a nonlinear function.
In this study, we assume all the elements in X are independent.
Directly integrating the PDF in the region of g(X) < 0 is often
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impractical and computationally expensive. It is the reason that
many approximation methods have been developed, including
FORM [1] and SORM [3], where three steps are involved.

1) Transform X into the standard normal variables U by

Fy, (X)) = @(U) 4)

where Fy, () and @(-) represent the cumulative
density function (CDF) of X; and U;, respectively.
Denote the transformation by X = T(U), and Eq. (3) is
rewritten as

Prig0 <0} =
g(T(U))<0
where fy() is the joint PDF of U.

2) Find the most probable point (MPP) which is a point
with the highest PDF on the surface of g(U) =0.
Geometrically, MPP has the shortest distance from the
surface to the origin in U-space, and then MPP u* is

fu(T(w)) <0du (5)

found by
min B = ||ull
{ u (6)
subjectto g(U) =0
where ||-|| stands for the length of a vector. 8 = ||u*||

is the reliability index because it is related to the
probability of failure as will be shown in Eq. (9).

3) Approximate the limit-state function linearly (FORM)
or quadratically (SORM) at u*. The use of u* can
minimize the error of the approximation. The two
approximations are given by

g(U) ~ g(u) + Vg(u)'(U —u) (7

9(U) = gu) + Vg(u)"(U - u)
+ % U—-u)TH@)(U —u*) (8)

where Vg(u*) and H(u*) are the gradient and the
Hessian matrix of g(T(U)) with respect to u*,
respectively.

After the three steps, FORM gives

pr = ®(=p) 9

As mentioned previously, f is called the reliability index,
and when FORM is used, S is also the magnitude of the MPP
as indicated in Eq. (6). For this reason, we call § from FORM
the FORM-reliability index throughout the paper. The solution
from SORM is in general more accurate and is obtained by
multiplying Eq. (9) with a correction term [3].

2.2 SOSPA

SOSPA [45] is also a second-order approximation method
based on SORM and saddlepoint approximation (SPA) [46, 47].
SOSPA uses the cumulant generating function (CGF) Ky (t),
which can be derived analytically from the approximated

response in Eq. (8). Once Ky (t) is available, the saddlepoint tg
is obtained by solving

Ksy(t) =0 (10)

where Kg(t) is the first derivative of the CGF. Then, py is
computed by [48]

1 1
pr = 0@ + ¢ (- -3) (1)

where ¢(-) represents the PDF of the standard normal
distribution.

o = sgn(t)2[-Ky (t)])2 (12)

v = t,[KY (6)]2 (13)

where sgn(-) is the signum function, which equals to 1, —1,
or 0 when ¢ty is positive, negative or zero, respectively;
K, (t,) is the second derivative of the CGF with respect to t.

3. Methodology

The distinctive strategy of the proposed method is to use an
accurate reliability method in the reduced space and also account
for the contributions of both important and unimportant input
variables to the reliability.

3.1 Overview

The purpose of dimension reduction is to identify important
and unimportant variables in X. We will use FORM to perform
the dimension reduction since the MPP from FORM can directly
measure the importance of input variables for two reasons. First,
the reliability is determined by the FORM-reliability index or the
magnitude of the MPP since 8 = |lu*|| = /2=, (u;)?; second,
the components of the MPP u* = (u;);=;, determine the
importance of the elements of X or their contributions to the
reliability. As shown in Fig. 1, a farther distance from the mean
(or median) means a larger value of the MPP component and,
therefore, a higher contribution. Hence, we can use the MPP
components to identify both important and unimportant input
variables. Since the MPP components of the unimportant input
variables do not change significantly during the MPP search, we
propose to use the MPP obtained from the first iteration of the
MPP search, and this can greatly reduce the computational effort.

)

Low contribution

High contribution High contribution

Fig. 1 Percentile of a random variable
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Once the MPP is obtained from the first iteration, important
and unimportant input variables are identified by their MPP
components. Then the subsequent analysis will be conducted
with only important variables, and a reliability method with
higher accuracy can be used with the unimportant input variables
fixed at their MPP components. Using a high accurate reliability
method is affordable because the number of function calls can be
reduced in the reduced space. Then the final reliability is
obtained by integrating the reliability obtained in the reduced
space and the FORM-reliability index of unimportant input
variables.

The proposed method involves three steps: 1) dimension
reduction, 2) reliability analysis in the reduced space, and 3)
reliability analysis in the original space.

3.2 Dimension reduction

The purpose of the first step is to identify important and
unimportant input variables. This step involves the first iteration
of the MPP search and starts from the origin of the U-space. Set
the initial point at the origin u, = (0,0, ...,0)T and calculate the
initial FORM-reliability index B, = [|uy]| = 0. We obtain the
gradient at Vg(u,) and approximate the limit-state function by

g(U) = g(u,) +Vg(u,)'U (14)
The unit vector o of Vg(U) at u, is given by
Vg (uo)
o="—"— 15
ZICBI as)

Then the FORM-reliability index of one-step MPP is
obtained by
g(ug) g(u,)
=Ly + = (16)
Pr=Fo g uolll ~ TgCupl
Using the fact that the MPP vector is in the opposite direction of
the gradient [49], we have the first iteration of the MPP u,.

_ g(uy)Vg(uy)
IV g (uo)ll

And it can be easily approved that B; = ||u,|| holds for Egs.
(16) and (17).

As discussed previously, the magnitude of each component
in the MPP vector indicates the importance of the input variable.
We then set up a threshold ¢ to distinguish important input
variables from unimportant ones. If u;; < ¢, U; is considered
an unimportant variable; otherwise, U; is considered an
important variable. There are several ways to determine c. For
instance, we can set ¢ = 0.1, which means 0.1 standard
deviations from the mean, below which the variable is thought
to be unimportant. Or we can use ¢ = 1%, 2%, or 3% f3;.

We group the important variables into a vector U and
group the unimportant variables into a vector U with the
dimensions of 7 and n, respectively. Then the input variables
are partitioned into two parts.

(7)

u, = —pa=

U =(T; u) (18)

Accordingly, the first-iteration MPP is also partitioned into
two parts.

u; = (ﬁﬁ El) (19)

where W; and u, are the important and unimportant elements
of u,, respectively. Therefore, we have

By = llugll = |[ug; u = ‘/nﬁluz +u)® o)

We let El and El to be the FORM-reliability index of the

important and unimportant portion of w4, respectively, which
are denoted by

B, = Il 21

B1 = ||ui| (22)
The overall FORM-reliability index is

b= (B, + (23)

The final MPP elements of the unimportant variables will be
different from wu,, but the difference will be insignificant
because the contributions of the unimportant variables are
relatively small. For this reason, we fix the unimportant variables
U at u,, but we will still consider their contributions indicated
by their FORM-reliability index f; in the final stage of the
reliability analysis. Then the limit-state function becomes a

function of U with reduced dimension. The new function is
given by

Y =G(0) = g(T;u,) (24)

For brevity, we denote the limit-state function as G (U).

3.3 Reliability analysis in the reduced space

We next perform the reliability analysis in the reduced
dimensional space (U space). Once the dimension is reduced,
the reliability can be solved either by numerical methods
(FORM, SORM, SOSPA, etc.) or surrogate methods (kriging,
PCE, machine learning, etc.).

In this study, we use SOSPA for the demonstration. SOSPA
is a second order numerical method and is used to obtain the
probability of failure of G (U). The first step of SOSPA is to find
the MPP of G(U) which is Ug by Eq. (6). The magnitude of
Ug or the FORM-reliability index is

B =| (25)

Once Ug is available, we approximate G(U) at Ug by
the second order Taylor expansion by Eq. (8) and have

—
Ug
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_ . T = 1, . =
G(0) ~ G(uy) + V6 (uy) (U -1g) + 50— ;) Ha) (U - ) (26)

Then the CGF K;(t) of G(U) is derived analytically by Eq.
(26). The detailed derivations can be found in [45]. The
Saddlepoint tg is obtained by solving K;(t) =0 . The
probability of failure of G(U) is calculated by Eq. (11), and the
solution is denoted by 5f. The reliability index from SOSPA

then is given by

Posea = |#7 (7)) @7)

If all the derivatives are evaluated by a finite difference
method, the number of function evaluations with respect to the
dimension of U is k(@ + 1)+ %ﬁ(ﬁ + 1) where k is the
number of iterations of the MPP search.

3.4 Final reliability analysis

The final step is to integrate the reliability results from Steps
1 and 2 so that the contributions of both important and
unimportant variables are accommodated. Next, we derive the
equation for the integration. We at first look at the case where
we do not do any dimension reduction. Let the MPP obtained
without any dimension reduction be u*, and it is partitioned into

u = (0 u) (28)

where W* and u® are the important and unimportant elements
of the MPP u*. According to Egs. (21), (22), and (23), we have

B=Iwl 8=

, and therefore

- 2 =2
p=lmisul’ = [FFrg @9
We now look at the case with dimension reduction. As
discussed in Step 1, we assume the MPP of unimportant
variables to be the MPP from the first iteration; namely u* =

u,. Then

B =~ [lu (30)

In Step 2, we also perform the MPP search in the reduced
space with unimportant variables fixed at u,. This produces the
MPP u; and FORM-reliability index B, = ||[ug]||. Next, we
prove that U, = ", and therefore 8 = EG. Then we can use Eq.
(29) to integrate the results in Steps 1 and 2.

Because in the original space u* is found at the limit state
g(T(U)) =0, wehave

g(T(u)) = g(T(@;u")) =0 €3
In the reduced space, for the same reason we have
G(ug) =0 (32)

Assume that the MPPs of g(T(U; U)) and G(U) are
unique, in other words, u* = (U*; u*) and ug are unique.

By substituting the MPP u* into Egs. (15) and (17), we
have

(ag (T(u*))>

ou;
I7g (T ()l

Therefore, the important elements of the MPP can be
expressed as

W= —fa=-p (33)

W= —fa=—f U= g (a—g> (34)
Vg (T@))l] au,) .| .
My
B
= (35
= eyl )
ag .
Now we relate (T) with the reduced space.
U/ 17| .
( dg ) eaucas)
v | . o,
Tu 17l
( 06 ) VG (u*) (36)
== = u
U/ %]
M
where VG(Uu*) is the gradient of G(U) at u*.
Then u* is rewritten as
u=-p'VG(u) (37)

which indicates that U* is perpendicular to G(U) = 0. Since
gu’) = g(@@;u*) =0, we have G(u*) = 0, which means that

*

u* is on the surface of G(U) =0 and is in the opposite

direction of the gradient VG (U*). Therefore, W* is the shortest
distance point from the original to the limit state surface
G(u*) = 0 in the space of U and is the MPP of G(U); namely

o =g (38)
Since ,E = |[a*||, EG = ||ﬁ’é||, we have
B =B (39)

Then Eq. (29) can be rewritten as

B =B, +p (40)

Because u; <c, = ”21” is far less than EG, namely,
B K EG, which means that EG dominates the accuracy of f.

We now replace the FORM-reliability index EG with the more
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accurate reliability index in Eq. (27), and then we

Be.spa
obtain the final reliability index

—2
Boverau = BG,SPA + EZ (41)
Then the final probability of failure is obtained by
Pfoverait = D(—Boveraun) (42)

3.5 Numerical procedure

The numerical procedure of the proposed dimension

reduction method is summarized below.

1) Dimension reduction: Perform one step of the MPP
search to obtain one-step MPP wu,, identify the
important and unimportant random variables by u,; <
¢, and partition input variables as U = (I_J; g) and
u; = (Uy; u,), then calculated FORM-reliability index
B = ||gl||; fix the unimportant variables U at u; and

obtain a new limit-state function G(U) = g(T(U;u,))
with reduced dimension.

2) Reliability analysis in U space: Use an accurate
reliability method such as SOSPA to find the
probability of failure 5f based on G(U) and

calculate the corresponding reliability index, which is
B spa if SOSPA is used.
3) Final reliability analysis: Calculate the final reliability

,_z
index by Boveran = ﬁc,sm"‘ﬁz and the final

probability of failure by Pfoveran = cb(_ﬁoverall)'

4. Examples

In this section, we use three examples to demonstrate the
proposed method. Example 1 is a mathematical problem with all
the input variables normally distributed. It is presented step by
step to show all the details of the proposed method so that an
interested reader can easily repeat the process and reproduce the
result. Example 2 involves a cantilever beam with over 200
random variables, some of which follow non-normal
distributions. Example 3 shows a truss system with 52 bars and
110 random variables, some of which follow extreme value
distributions, and the limit-state function is a black-box function.

For comparison, we use MCS, FORM, SOSPA, and DR-
SOSPA for all examples. MCS, FORM, and SOSPA are
performed without dimension reduction. DR-SOSPA is the
proposed method that employs SOSPA in the reduced
dimensional space and accounts for the effects of eliminated
variables. To evaluate the advantage of accounting for the effects
of eliminated variables, we also compare DR-SOSPA with the
method that employs SOSPA in the reduced dimensional space,
but the eliminated variables are fixed at their means. We denoted
the latter method DR-SOSPA-M. The result of MCS is served as
a reference for the accuracy comparison, and the relative error of
a non-MCS method with respect to MCS is defined by

£ = ‘w x 100% (43)

PrMcs

where py and psumcs are the probabilities of failure obtained
by a non-MCS and MCS, respectively. The number of function
calls (FC) and the coefficient of efficiency (CoE) are used to
measure the efficiency. The latter is defined by

The number of function calls

CoE = The number of random variables (44)

4.1 Example 1: a mathematical problem
The testing problem is a parabolic function given by

100

5
g(U) =20 — 32 U,(1+0.1U;) — Z ke, U, (45)
i=1 i=6

where U;,i =1,2,...,100 are all independent standard normal
random variables, namely U;~N(0,12) , and k; is the
coefficient of a linear term, k; = 0.08 for i = 6,7,...,100.
Following the procedure in Sec. 3.5, we first perform FOSM
to obtain the first-iteration MPP u;. By setting a small quantity
¢ = 0.1 and using uy; < ¢ to identify important variables, we
find that five variables are important, and they are U=
(Uy,U,, Us, Uy, Ug)T . The unimportant variables are U=
(Ug, Uy, ..., U1po)T . Then wu; is partitioned into (dy; u,),
accordingly. The reliability index of unimportant variables is
given by f§ = ||gl|| = 0.3419. It represents the contribution of

the unimportant variables to the reliability. Then, we fix U at
the u; and have

100

5
g ~ G0 =20-3) U;(1+0.10) - > kuy; (46)

Thus, the dimension is reduced to 5 from 100.

Next, we conduct reliability analysis in U space. We first
perform the MPP search for G(U), which results in the MPP
u; = (1.1770,1.1770,1.1770,1.1770,1.1770)T . We then
calculate the Hessian matrix of G(U) at u; and use SOSPA,
which results in the probability of failure p = 6.7352 x 1073,

Then the reliability index of the important variables is obtained
by B;psa = 24711 . The total reliability index, which
accommodates both important and unimportant variables, is

calculated by Boperas = /EZ,’SPA +p? =2.4946 . The final

probability of failure is given by pf overar = P(—Boveran) =
6.3044 X 1073, The results of all the methods are summarized
in Table 1.

The results in Table 1 show that SOSPA, DR-SOSPA, and
DR-SOSPA-M accurately predict the probability of failure.
Compared with the results of SOSPA with 5,555 function calls
and an error of 0.16%, the proposed method needs 146 function
calls and CoE = 1.46, only increasing the error to 0.59%.
Although DR-SOSPA-M maintains the same efficiency as the
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proposed method, the accuracy of DR-SOSPA-M is worse than
DR-SOSPA because it ignores the joint influence of the
unimportant variables. FORM do not produce an accurate result.

Table 1 Probability of failure of Example 1

Methods 12 Error FC CoE
(%)

MCS 6.3416 x 1073 - le7 10°
FORM 3.9966 x 1075 36.98 404 4.04
SOSPA 6.3515x 1073  0.16 5,555 55.55

DR-SOSPA-M  6.1501 x 1073 3.02 146 1.46
DR-SOSPA 6.3044 x 1073 0.59 146 1.46

4.2 Example 2: a cantilever beam

A cantilever is shown in Fig. 2. It is subjected to 106 random
forces on the top surface, in which six of them (F;,i = 1,2, ...,6)
are lognormally distributed, and the rest (F;,i = 7,8, ...,106)
follow normal distributions. The locations of the forces are

random variables that are normally distributed, which are
denoted by lFi,i =1,2,...,106. The width w, height h, and the
yield strength S, are normally distributed. All the random

variables are independent. The distributions are shown in Table
2.

F,,i=78,..,106 F,i=12,..,6
A1 | L
RN R 11111
h
7 I, ‘ I-u:-\
- L=5m -

Fig. 2 A cantilever beam

Table 2 Distributions of random variables in Example 2

Random variables Distribution Mean Standard deviation

S, (MPa) Normal 720 60

w (m) Normal 0.2 0.001

h (m) Normal 0.4 0.001

F,i=12,..,6 (kN) Lognormal 30 + 5i 2.4+ 0.4i

lFi,i =12,..,6 (m) Normal 4.3 4+ 0.1i 0.01
F;,i =17,8,..,106 (kN) Normal 10 1

lp,i=78,..,106 (m) Normal 0.02i 0.01

The serviceability state depends on the stress at root of the
beam. The maximal stress should not exceed the yield strength,
and then the limit-state function is given by

6 %21 Filr,
90 =5, ===t @47)

We first perform FOSM to obtain the first-step MPP uj.
Using ¢ =0.01, we obtain nine important variables U =
(Sy, w,h,F, F,, ..., F6)T and the reliability index of unimportant
variables 8 = 0.1666. Then we conduct reliability analysis in

U space using SOSPA and obtain p, = 1.9481 x 107 and

the corresponding reliability index is EG opa = 4.6168. The

total reliability index, which accommodates both important and
unimportant  variables, is calculated by = Boyeran =

’,EZ spa +£2 = 4.6199. The probability of failure for the

original limit state function is given by Pfoperau =
D (—Boveran) = 1.9201 x 107°. The results are summarized in
Table 3.

Table 3 Probabilities of failure of Example 2

Methods D Error (%) FC CoE
MCS 1.9106 x 107° - 1.6 x 10° 7.4 x 10°
FORM 1.7964 x 107 5.9 648 3.0
SOSPA 1.9200 x 107° 0.5 24,084 112.0
DR-SOSPA-M 1.8926 x 107° 1.0 301 1.4
DR-SOSPA 1.9201 x 107° 0.5 301 1.4

As the results indicate, FORM is the least accurate although
it is efficient. The most accurate method is SOSPA with an error
of 0.5%, but its efficiency is the worst with 24,084 function calls
and CoE = 112. DR-SOSPA outperforms other methods with a
slightly less accuracy (1.0%) compared with SOSPA and the
highest efficiency (FC = 301 and CoE = 1.4).

4.3 Example 3: a truss system

This example is modified from [50]. The dome truss system
is consisted of 52 bars with 21 nodes, as shown in Fig. 3. This is
truss structure is similar to the roof of a stadium that consists of
steel bars. To distinguish the difference between nodes and bars,
the numbers with a dot mean nodes and the numbers without dot
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denote bars. All the nodes lie on the imaginary hemisphere with
a radius of 240 in. The young’s moduli and the cross-sectional
areas of bars follow normal distributions. The structure is
subjected to six random forces at nodes 1-13, where F; is
applied to node 1, F, isapplied to nodes 2 and 4, F; is applied
tonodes 3 and 5, F, is applied to nodes 6 and 10, Fs is applied
to nodes 8 and 12, and Fy is applied to nodes 7, 9, 11, and 13.
The directions of all the forces point to the center of the
imaginary hemisphere. All the random variables are independent
and are shown in Table 4. The limit-state function is given in Eq.
(48) and is solved by the finite element method (FEM).

Y =6, —g(EAF) (48)

where &, is the threshold displacement of node 1. A failure
occurs when the displacement of node 1 exceeds &, = 0.7 in.
E=[E,E,, ....,Es;]T and A =[A4,,A4,,..,45,]T are vectors
of the young’s modulus and cross-sectional areas, respectively.
F = [F,F,, ..., Fg]T is the vector of the loads.

The results are summarized in Table 5. FORM produces a
large error. SOSPA produces the most accurate result, but its
efficiency is poor as it needs 6,771 function calls with CoE =
61.55. The error of DR-SOSPA is 3.38%, which is smaller than

the error of DR-SOSPA-M and is larger than SOSPA, and the
computational burden is relieved significantly with only 179
function calls and CoE = 1.63.

(b) Side view

a) Top view

Fig. 3 A 52-bars truss system

Table 4 Distributions of random variables in Example 3

Random variables Distribution Mean Standard deviation
E;, i = 1~50 (ksi) Normal 2.5 x 10* 1000
A;,i = 1~8,and 29~36 (in?) Normal 2 0.001
A;, i =9~16 (in?) Normal 1.2 0.0006
A;, i = 17~28,and 37~52 (in?) Normal 0.6 0.0003
F; (kip) Normal 45 3.6
F, (kip) Extreme 40 6.0
F; (kip) Extreme 35 5.25
F, (kip) Normal 30 4.5
Fs (kip) Normal 25 3.75
Fe (kip) Normal 20 3
Table S Estimates of probability of failure by different methods
Methods pr Error (%) FCs CoE
MCS 5.10 x 1073 - 107 9.09 x 10*
FORM 5.7658 x 1073 13.05 444 5.05
SOSPA 5.0463 x 1073 1.05 6,660 61.55
DR-SOSPA-M 4.8532 x 1073 4.84 179 1.63
DR-SOSPA 49274 x 1073 3.38 179 1.63

The univariate dimension reduction method [24] is another
efficient method for high dimension problems. Since one
univariate function usually needs at least 3 function evaluations,
for an n-dimension problem, the least function call theoretically
is 3n 4+ 1, which means the CoE for the univariate dimension
reduction method is at least 3. The results of the above three
examples show that the proposed method is more efficient than
the univariate dimension reduction method. Therefore, we do not
compare the proposed method with the univariate dimension
reduction method since we already have the theoretical results
for those three examples.

5. Conclusion

The proposed method partitions the input random variables
into two parts, important and unimportant variables. This is
achieved by using the information from the first iteration of the
First Order Reliability Method (FORM). With the unimportant
random variables fixed at their percentile values obtained from
FORM, the dimension is reduced to the number of important
input random variables. Then the probability of failure is found
by an accurate reliability method in the reduced space. The final
probability of failure is obtained by integrating the probability of
failure in the reduced space and the contributions of unimportant
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variables. Hence, the dimension is reduced, and the contributions
of all input variables are also accommodated, resulting in high
accuracy and efficiency.

The proposed method works better if fewer important input
variables are important. It cannot effectively reduce the
dimension, however, when all input variables are important. If
no dimension is reduced, the proposed dimension reduction
strategy will not affect the performance of the method used in
the second step (the high accurate reliability method in the
reduced space in Sec. 3.5). In this case, one may use other
dimension reduction methods that can reduce the dimension of
the linear combinations of the original input variables. Our future
work will improve the proposed method for the case where most
of the input variables are important.
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