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Abstract 

Reliability analysis is usually a core element in engineering 

design, during which reliability is predicted with physical models 

(limit-state functions). Reliability analysis becomes 

computationally expensive when the dimensionality of input 

random variables is high. This work develops a high dimensional 

reliability analysis method by a new dimension reduction 

strategy so that the contributions of both important and 

unimportant input variables are accommodated by the proposed 

dimension reduction method. The consideration of the 

contributions of unimportant input variables can certainly 

improve the accuracy of the reliability prediction, especially 

where many unimportant input variables are involved. The 

dimension reduction is performed with the first iteration of the 

first order reliability method (FORM), which identifies 

important and unimportant input variables. Then a higher order 

reliability analysis, such as the second order reliability analysis 

and metamodeling method, is performed in the reduced space of 

only important input variables. The reliability obtained in the 

reduced space is then integrated with the contributions of 

unimportant input variables, resulting in the final reliability 

prediction that accounts for both types of input variables. 

Consequently, the new reliability method is more accurate than 

the traditional method, which fixes unimportant input variables 

at their means. The accuracy is demonstrated by three examples.  
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1. Introduction 
In engineering design, physics-based reliability is 

commonly used to predict the probability of failure using 

physical models derived from physical principles. Such a model 

is called a limit-state function and is given by  =  1 

where  is a vector to represent random input variables, and  

is a response that indicates the occurrence of a failure.  

 Physics-based reliability methods can be divided into three 

categories: numerical methods [1-5], surrogate methods [6-13], 

and simulation methods [14-16]. Typically, numerical methods 

simplify the limit-state function (Eq. 1) using the first or second 

order Taylor expansion, and the reliability approximated by the 

simplified function. The surrogate methods construct an easy-

access model utilizing sensitivity analysis, Design of 

Experiments (DoE), and active learning methods, etc., and the 

reliability obtained by evaluating the surrogate model instead of 

the original limit-state function. However, both numerical and 

surrogate methods suffer from the curse of dimensionality that 

makes reliability analysis computationally expensive for high-

dimensional problems. Because reliability prediction repeatedly 

calls limit-state functions, which are typically complex, 

resource-intensive numerical models. The number of function 

call grows drastically as the increase of dimensionality of the 

input variables. Although the efficiency of simulation methods, 

such as Monte Carlo Simulation (MCS) [17] and importance 

sampling method [18], is not affected by the dimensionality, they 
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are still computationally expensive when the reliability is high 

and may not be practically used in engineering design.  

 High-dimensional reliability analysis is encountered in 

many engineering and science fields [19-23]. Current high-

dimensional analysis methods are roughly classified into three 

types. The first type includes methods [24-27] using high-

dimensional model representation (HDMR), which decomposes 

a high dimensional limit-state function   into the sum of 

several lower-dimensional functions. The moments (means, 

variance, etc.) of the response can be approximated by several 

low dimensional numerical integrations. However, the accuracy 

of the reliability obtained by HDMR may not accurate enough if 

the interaction terms are dominant. The low dimensional 

functions are usually approximated by Taylor expansion, which 

also introduces errors. Although the accuracy of the reliability 

assessment can be improved by increasing the approximation 

order, the number of function evaluations may increase 

drastically. Balancing the prediction accuracy and efficiency 

remains challenging for HDMR.  

 The second type of method [28-35] combines dimension 

reduction with surrogate modeling and machine learning. Three 

steps are usually involved. Step 1 is the dimension reduction 

performed by sliced inverse regression (SIR) [29, 32, 36] or other 

methods [24, 31] at specific training points, usually generated 

through DoE [37]. Important input variables are identified. In 

Step 2 a surrogate model is constructed with respect to important 

input variables in the reduced dimensional space. Many 

regression and machine learning methods could be used for this 

purpose, including Polynomial Chaos Expansion [29], Gaussian 

Process Regression [38], Support Vector Machines [39], and 

Neural Network [30]. Step 3 is the surrogate model validation. 

After the accuracy of the surrogate model is validated, it is used 

to estimate the reliability, and MCS is usually used. A sufficient 

number of training points are needed for the good accuracy of 

the surrogate model. The number of training points, thereby the 

number of function calls, increases greatly with the increase of 

dimensionality of input variables.  

 The third most commonly used method is principal 

component analysis (PCA) [40-42]. PCA reduces the dimension 

of the input variables by making use of the correlations between 

the input variables. Therefore, PCA works well for the elements 

of input variables that are strongly correlated. When the input 

variables are independent or only weakly correlated, PCA may 

not work well for dimension reduction. Besides, PCA does not 

use the information of the response , and it is, therefore, an 

unsupervised dimension reduction technique. Although 

dimension reduction is optimal in the given data space, it may be 

suboptimal for the entire regression space. 

 Overall, despite the progress, numerous challenges remain 

in the path toward routinely accommodating high dimensional 

problems in reliability analysis. In most of the successful 

applications, only dozens of random input variables can be 

practically handled except the special cases involving functional 

data [28, 29]. However, the dimension of input variables could 

easily add up to hundreds or thousands in system design. For 

example, the aircraft wing optimization design [43, 44] involves 

structure and aerodynamics. The numbers of design variables, 

random variables, and constraints could be in hundreds or 

thousands. Moreover, when the reliability requirement is high, 

accurately predicting the reliability is extremely computation 

demand.  

 In real engineering applications, not all the elements of  

contribute significantly to the response  . The majority 

elements of  may have insignificant effects that are, therefore, 

unimportant variables. Their total effect, however, may not 

negligible because the unimportant variables may count for most 

of . Traditional dimension reduction methods usually neglect 

the contribution of the unimportant variables because they are 

fixed at their means, and this can lead to a large error.   

 In this study, we account for the total effect of unimportant 

variables by fixing them at their percentiles so that the dimension 

is reduced but the influence of unimportant variables is not 

neglected. The proposed method does not require random 

sampling for dimension reduction. Instead, it is based on a 

numerical method, or the First Order Reliability Method 

(FORM). After dimension reduction, any reliability method with 

higher accuracy can be used to predict the reliability since the 

computational effort will be reduced significantly in the reduced 

space. Then the predicted reliability is combined with the 

contribution of the unimportant variables to produce the final 

reliability prediction.  

 The remainder of this paper is organized as follows. Section 

2 reviews the methodologies that this study uses. Section 3 

discusses the details of the proposed method, followed by three 

examples in Section 4. The conclusions are provided in Section 

5.  

 

2. Review  

In this section, we briefly review the basic knowledge that 

is related to the proposed method, FORM, the Second Order 

Reliability Method (SORM), and the Second Order Saddlepoint 

Approximation (SOSPA). The rules of symbols in this paper are: 

1) a capitalized letter in bold denotes a vector of random 

variables (e.g.,  or ), 2) a lower-case letter in bold denotes a 

vector of deterministic variables (e.g.,  or ), 3) an italicized 

capital letter denotes a random variable (e.g.,  or ), and 4) 

an italicized lowercase letter of denotes a deterministic variable 

(e.g.,  or ). 

 

2.1 FORM and SORM 
The reliability is defined by the following probability   = Pr ≥ 0 2 

The probability of failure  is then given by  

 = 1 −  = Pr < 0 =   < 0  3 

where  is the joint probability density function (PDF) of . The limit-state function  is usually a nonlinear function. 

In this study, we assume all the elements in  are independent. 

Directly integrating the PDF in the region of  < 0 is often 
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impractical and computationally expensive. It is the reason that 

many approximation methods have been developed, including 

FORM [1] and SORM [3], where three steps are involved. 

1) Transform  into the standard normal variables  by   = Φ 4 

where ∙  and Φ∙  represent the cumulative 

density function (CDF) of   and  , respectively. 

Denote the transformation by  = , and Eq. (3) is 

rewritten as 

Pr < 0 =   < 0  5 

where ∙ is the joint PDF of . 

2) Find the most probable point (MPP) which is a point 

with the highest PDF on the surface of  = 0 . 

Geometrically, MPP has the shortest distance from the 

surface to the origin in U-space, and then MPP ∗ is 

found by 

min    = ‖‖subject to  = 0 6 

where ‖∙‖ stands for the length of a vector.  = ‖∗‖ 

is the reliability index because it is related to the 

probability of failure as will be shown in Eq. (9).  

3) Approximate the limit-state function linearly (FORM) 

or quadratically (SORM) at ∗ . The use of ∗  can 

minimize the error of the approximation. The two 

approximations are given by   ≈ ∗ + ∇∗ − ∗ 7 

 ≈ ∗ + ∇∗ − ∗+ 12  − ∗∗ − ∗ 8 

where ∇∗  and ∗  are the gradient and the 

Hessian matrix of   with respect to ∗ , 

respectively.  

After the three steps, FORM gives  = Φ− 9 

As mentioned previously,  is called the reliability index, 

and when FORM is used,  is also the magnitude of the MPP 

as indicated in Eq. (6). For this reason, we call  from FORM 

the FORM-reliability index throughout the paper. The solution 

from SORM is in general more accurate and is obtained by 

multiplying Eq. (9) with a correction term [3].   

 

2.2 SOSPA 
SOSPA [45] is also a second-order approximation method 

based on SORM and saddlepoint approximation (SPA) [46, 47]. 

SOSPA uses the cumulant generating function (CGF)   , 

which can be derived analytically from the approximated 

response in Eq. (8). Once  is available, the saddlepoint  

is obtained by solving   = 0 10 

where  is the first derivative of the CGF. Then,   is 

computed by [48] 

 = Φ +  1 − 1 11 

where ∙  represents the PDF of the standard normal 

distribution.  

 = sgn2− 12 

 =  13 

where sgn∙ is the signum function, which equals to 1, −1, 

or 0  when   is positive, negative or zero, respectively;  is the second derivative of the CGF with respect to .  

 

3. Methodology 
The distinctive strategy of the proposed method is to use an 

accurate reliability method in the reduced space and also account 

for the contributions of both important and unimportant input 

variables to the reliability. 

 

3.1 Overview 
The purpose of dimension reduction is to identify important 

and unimportant variables in . We will use FORM to perform 

the dimension reduction since the MPP from FORM can directly 

measure the importance of input variables for two reasons. First, 

the reliability is determined by the FORM-reliability index or the 

magnitude of the MPP since  = ‖∗‖ = ∑ ∗ ; second, 

the components of the MPP ∗ = ∗,  determine the 

importance of the elements of  or their contributions to the 

reliability. As shown in Fig. 1, a farther distance from the mean 

(or median) means a larger value of the MPP component and, 

therefore, a higher contribution. Hence, we can use the MPP 

components to identify both important and unimportant input 

variables. Since the MPP components of the unimportant input 

variables do not change significantly during the MPP search, we 

propose to use the MPP obtained from the first iteration of the 

MPP search, and this can greatly reduce the computational effort.  
 

 
Fig. 1 Percentile of a random variable 
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Once the MPP is obtained from the first iteration, important 

and unimportant input variables are identified by their MPP 

components. Then the subsequent analysis will be conducted 

with only important variables, and a reliability method with 

higher accuracy can be used with the unimportant input variables 

fixed at their MPP components. Using a high accurate reliability 

method is affordable because the number of function calls can be 

reduced in the reduced space. Then the final reliability is 

obtained by integrating the reliability obtained in the reduced 

space and the FORM-reliability index of unimportant input 

variables. 

The proposed method involves three steps: 1) dimension 

reduction, 2) reliability analysis in the reduced space, and 3) 

reliability analysis in the original space. 

 

3.2 Dimension reduction 
The purpose of the first step is to identify important and 

unimportant input variables. This step involves the first iteration 

of the MPP search and starts from the origin of the U-space. Set 

the initial point at the origin  = 0,0, … ,0 and calculate the 

initial FORM-reliability index  = ‖‖ = 0. We obtain the 

gradient at ∇ and approximate the limit-state function by  ≈  + ∇ 14 

The unit vector  of ∇ at  is given by 

 = ‖‖ 15 

Then the FORM-reliability index of one-step MPP is 

obtained by  

 =  + ‖‖ = ‖‖ 16 

Using the fact that the MPP vector is in the opposite direction of 

the gradient [49], we have the first iteration of the MPP .  

 = − = − ‖‖ 17 

And it can be easily approved that  = ‖‖ holds for Eqs. 

(16) and (17).  

As discussed previously, the magnitude of each component 

in the MPP vector indicates the importance of the input variable. 

We then set up a threshold   to distinguish important input 

variables from unimportant ones. If  ≤ ,  is considered 

an unimportant variable; otherwise,   is considered an 

important variable. There are several ways to determine . For 

instance, we can set  = 0.1 , which means 0.1 standard 

deviations from the mean, below which the variable is thought 

to be unimportant. Or we can use  = 1%, 2%, or 3% .   

We group the important variables into a vector   and 

group the unimportant variables into a vector   with the 

dimensions of  and , respectively. Then the input variables 

are partitioned into two parts. 

 = ;  18 

Accordingly, the first-iteration MPP is also partitioned into 

two parts.   = ;   19 

where  and  are the important and unimportant elements 

of , respectively. Therefore, we have 

 = ‖‖ = ;   = ‖‖ +  20 

We let  and  to be the FORM-reliability index of the 

important and unimportant portion of  , respectively, which 

are denoted by  = ‖‖ 21 

 =  22 

The overall FORM-reliability index is 

 =  +  23 

The final MPP elements of the unimportant variables will be 

different from  , but the difference will be insignificant 

because the contributions of the unimportant variables are 

relatively small. For this reason, we fix the unimportant variables  at , but we will still consider their contributions indicated 

by their FORM-reliability index   in the final stage of the 

reliability analysis. Then the limit-state function becomes a 

function of   with reduced dimension. The new function is 

given by  =  = ;  24 

For brevity, we denote the limit-state function as . 

 

3.3 Reliability analysis in the reduced space 
We next perform the reliability analysis in the reduced 

dimensional space ( space). Once the dimension is reduced, 

the reliability can be solved either by numerical methods 

(FORM, SORM, SOSPA, etc.) or surrogate methods (kriging, 

PCE, machine learning, etc.).   

In this study, we use SOSPA for the demonstration. SOSPA 

is a second order numerical method and is used to obtain the 

probability of failure of . The first step of SOSPA is to find 

the MPP of  which is ∗  by Eq. (6). The magnitude of ∗  or the FORM-reliability index is   = ∗  25 

Once ∗  is available, we approximate   at ∗  by 

the second order Taylor expansion by Eq. (8) and have 
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 ≈ ∗  + ∇∗  − ∗  + 12  − ∗ ∗  − ∗  26
Then the CGF  of  is derived analytically by Eq. 

(26). The detailed derivations can be found in [45]. The 

Saddlepoint   is obtained by solving   = 0 . The 

probability of failure of  is calculated by Eq. (11), and the 

solution is denoted by  . The reliability index from SOSPA 

then is given by  , =  Φ  27 

If all the derivatives are evaluated by a finite difference 

method, the number of function evaluations with respect to the 

dimension of   is  + 1 +   + 1  where   is the 

number of iterations of the MPP search. 

 

3.4 Final reliability analysis 
The final step is to integrate the reliability results from Steps 

1 and 2 so that the contributions of both important and 

unimportant variables are accommodated. Next, we derive the 

equation for the integration. We at first look at the case where 

we do not do any dimension reduction. Let the MPP obtained 

without any dimension reduction be ∗, and it is partitioned into ∗ = ∗;  ∗ 28 

where ∗ and ∗ are the important and unimportant elements 

of the MPP ∗. According to Eqs. (21), (22), and (23), we have  = ‖∗‖,  = ∗, and therefore 

 = ‖∗‖ + ∗ =  +  29 

We now look at the case with dimension reduction. As 

discussed in Step 1, we assume the MPP of unimportant 

variables to be the MPP from the first iteration; namely ∗ =. Then  ≈  30 

In Step 2, we also perform the MPP search in the reduced 

space with unimportant variables fixed at . This produces the 

MPP ∗  and FORM-reliability index  = ∗ . Next, we 

prove that ∗ = ∗, and therefore  = . Then we can use Eq. 

(29) to integrate the results in Steps 1 and 2. 

Because in the original space ∗ is found at the limit state  = 0,  we have  ∗ = ∗; ∗ = 0 31 

In the reduced space, for the same reason we have ∗  = 0 32 

Assume that the MPPs of ;   and  are 

unique, in other words, ∗ = ∗;  ∗ and ∗  are unique.  

By substituting the MPP ∗  into Eqs. (15) and (17), we 

have  

∗ = − = − ∗∗ ,,…,‖∗‖ 33 

Therefore, the important elements of the MPP can be 

expressed as 

∗ = − = −  ,∗‖∇∗‖ = −  ,∗ 34 

 = ‖∇∗‖ 35 

Now we relate  ,∗  with the reduced space. 

 ,∗ =  ; ∗ 
,


∗

 
=  ,∗ = ∇∗ 36 

where ∇∗ is the gradient of  at ∗.  

Then ∗ is rewritten as  ∗ = −∇∗ 37 

which indicates that ∗  is perpendicular to  = 0. Since ∗ = ∗; ∗ = 0, we have ∗ = 0, which means that ∗  is on the surface of  = 0  and is in the opposite 

direction of the gradient ∇∗. Therefore, ∗ is the shortest 

distance point from the original to the limit state surface ∗ = 0 in the space of  and is the MPP of ; namely  ∗ = ∗ 38 

Since  = ‖∗‖,  = ∗ , we have  =  39 

Then Eq. (29) can be rewritten as 

 =  +  40 

Because  ≤ ,  =  is far less than  , namely,  ≪  , which means that   dominates the accuracy of . 

We now replace the FORM-reliability index   with the more 
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accurate reliability index  ,  in Eq. (27), and then we 

obtain the final reliability index  

 = , +  41 

Then the final probability of failure is obtained by , = Φ− 42 

 

3.5 Numerical procedure 
The numerical procedure of the proposed dimension 

reduction method is summarized below. 

1) Dimension reduction: Perform one step of the MPP 

search to obtain one-step MPP  , identify the 

important and unimportant random variables by  ≤ , and partition input variables as  = ;   and  = ;  , then calculated FORM-reliability index  = ; fix the unimportant variables  at  and 

obtain a new limit-state function  = ;  

with reduced dimension.  

2) Reliability analysis in   space: Use an accurate 

reliability method such as SOSPA to find the 

probability of failure   based on   and 

calculate the corresponding reliability index, which is  , if SOSPA is used.  

3) Final reliability analysis: Calculate the final reliability 

index by  = , +   and the final 

probability of failure by , = Φ−.  

 

4. Examples 
In this section, we use three examples to demonstrate the 

proposed method. Example 1 is a mathematical problem with all 

the input variables normally distributed. It is presented step by 

step to show all the details of the proposed method so that an 

interested reader can easily repeat the process and reproduce the 

result.  Example 2 involves a cantilever beam with over 200 

random variables, some of which follow non-normal 

distributions. Example 3 shows a truss system with 52 bars and 

110 random variables, some of which follow extreme value 

distributions, and the limit-state function is a black-box function.  

For comparison, we use MCS, FORM, SOSPA, and DR-

SOSPA for all examples. MCS, FORM, and SOSPA are 

performed without dimension reduction. DR-SOSPA is the 

proposed method that employs SOSPA in the reduced 

dimensional space and accounts for the effects of eliminated 

variables. To evaluate the advantage of accounting for the effects 

of eliminated variables, we also compare DR-SOSPA with the 

method that employs SOSPA in the reduced dimensional space, 

but the eliminated variables are fixed at their means. We denoted 

the latter method DR-SOSPA-M. The result of MCS is served as 

a reference for the accuracy comparison, and the relative error of 

a non-MCS method with respect to MCS is defined by   

 =  − ,,  × 100% 43 

where  and , are the probabilities of failure obtained 

by a non-MCS and MCS, respectively. The number of function 

calls (FC) and the coefficient of efficiency (CoE) are used to 

measure the efficiency. The latter is defined by 

CoE = The number of function callsThe number of random variables 44 

 

4.1 Example 1: a mathematical problem 
The testing problem is a parabolic function given by  

 = 20 − 3  1 + 0.1
 −  


 45 

where  ,  = 1,2, … ,100 are all independent standard normal 

random variables, namely ~0,1 , and   is the 

coefficient of a linear term,  = 0.08 for  = 6,7, … ,100.   

Following the procedure in Sec. 3.5, we first perform FOSM 

to obtain the first-iteration MPP . By setting a small quantity  = 0.1 and using  ≤  to identify important variables, we 

find that five variables are important, and they are  =, , , ,  . The unimportant variables are  =, , … ,  . Then   is partitioned into ;   , 

accordingly. The reliability index of unimportant variables is 

given by  =  = 0.3419. It represents the contribution of 

the unimportant variables to the reliability. Then, we fix  at 

the  and have 

 ≈  = 20 − 3  1 + 0.1
 −  


 46 

Thus, the dimension is reduced to 5 from 100.  

Next, we conduct reliability analysis in  space. We first 

perform the MPP search for , which results in the MPP ∗ = 1.1770, 1.1770, 1.1770,1.1770, 1.1770 . We then 

calculate the Hessian matrix of  at ∗  and use SOSPA, 

which results in the probability of failure  = 6.7352 × 10. 

Then the reliability index of the important variables is obtained 

by , = 2.4711 . The total reliability index, which 

accommodates both important and unimportant variables, is 

calculated by  = , +  = 2.4946 . The final 

probability of failure is given by , = Φ− =6.3044 × 10. The results of all the methods are summarized 

in Table 1.  

The results in Table 1 show that SOSPA, DR-SOSPA, and 

DR-SOSPA-M accurately predict the probability of failure. 

Compared with the results of SOSPA with 5,555 function calls 

and an error of 0.16%, the proposed method needs 146 function 

calls and CoE = 1.46 , only increasing the error to 0.59%. 

Although DR-SOSPA-M maintains the same efficiency as the 
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proposed method, the accuracy of DR-SOSPA-M is worse than 

DR-SOSPA because it ignores the joint influence of the 

unimportant variables. FORM do not produce an accurate result. 

 

Table 1 Probability of failure of Example 1 

Methods  Error 

(%) 

FC CoE 

MCS 6.3416 × 10 - 1e7 10 

FORM 3.9966 × 10 36.98 404 4.04 

SOSPA 6.3515 × 10 0.16 5,555 55.55 

DR-SOSPA-M 6.1501 × 10 3.02 146 1.46 

DR-SOSPA 6.3044 × 10 0.59 146 1.46 

 

4.2 Example 2: a cantilever beam 
A cantilever is shown in Fig. 2. It is subjected to 106 random 

forces on the top surface, in which six of them ( ,  = 1,2, … ,6) 

are lognormally distributed, and the rest (,  = 7,8, … ,106 ) 

follow normal distributions. The locations of the forces are 

random variables that are normally distributed, which are 

denoted by  ,  = 1,2, … ,106. The width , height ℎ, and the 

yield strength   are normally distributed. All the random 

variables are independent. The distributions are shown in Table 

2.  
 

 
Fig. 2 A cantilever beam 

 

 

Table 2 Distributions of random variables in Example 2 

Random variables Distribution Mean Standard deviation  (MPa) Normal 720 60  (m) Normal 0.2 0.001 ℎ (m) Normal 0.4 0.001  ,  = 1,2, … ,6 (kN) Lognormal 30 + 5 2.4 + 0.4  ,  = 1,2, … ,6 (m) Normal 4.3 + 0.1 0.01  ,  = 7,8, … ,106 (kN) Normal 10 1  ,  = 7,8, … ,106 (m) Normal 0.02 0.01 

The serviceability state depends on the stress at root of the 

beam. The maximal stress should not exceed the yield strength, 

and then the limit-state function is given by  

 =  − 6 ∑ ℎ 47 

We first perform FOSM to obtain the first-step MPP . 

Using  = 0.01 , we obtain nine important variables  = , , ℎ, , , … ,  and the reliability index of unimportant 

variables  = 0.1666. Then we conduct reliability analysis in 

  space using SOSPA and obtain  = 1.9481 × 10  and 

the corresponding reliability index is , = 4.6168 . The 

total reliability index, which accommodates both important and 

unimportant variables, is calculated by  =, +  = 4.6199 . The probability of failure for the 

original limit state function is given by , =Φ− = 1.9201 × 10. The results are summarized in 

Table 3. 

Table 3 Probabilities of failure of Example 2 

Methods  Error (%) FC CoE 

MCS 1.9106 × 10 - 1.6 × 10 7.4 × 10 

FORM 1.7964 × 10 5.9 648 3.0 

SOSPA 1.9200 × 10 0.5 24,084 112.0 

DR-SOSPA-M 1.8926 × 10 1.0 301 1.4 

DR-SOSPA 1.9201 × 10 0.5 301 1.4 

As the results indicate, FORM is the least accurate although 

it is efficient. The most accurate method is SOSPA with an error 

of 0.5%, but its efficiency is the worst with 24,084 function calls 

and CoE = 112. DR-SOSPA outperforms other methods with a 

slightly less accuracy (1.0%) compared with SOSPA and the 

highest efficiency (FC = 301 and CoE = 1.4). 

4.3 Example 3: a truss system 
This example is modified from [50]. The dome truss system 

is consisted of 52 bars with 21 nodes, as shown in Fig. 3. This is 

truss structure is similar to the roof of a stadium that consists of 

steel bars. To distinguish the difference between nodes and bars, 

the numbers with a dot mean nodes and the numbers without dot 
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denote bars. All the nodes lie on the imaginary hemisphere with 

a radius of 240 in. The young’s moduli and the cross-sectional 

areas of bars follow normal distributions. The structure is 

subjected to six random forces at nodes 1-13, where   is 

applied to node 1,  is applied to nodes 2 and 4,  is applied 

to nodes 3 and 5,  is applied to nodes 6 and 10,  is applied 

to nodes 8 and 12, and  is applied to nodes 7, 9, 11, and 13. 

The directions of all the forces point to the center of the 

imaginary hemisphere. All the random variables are independent 

and are shown in Table 4. The limit-state function is given in Eq. 

(48) and is solved by the finite element method (FEM).  =  − ; ;  48 

where   is the threshold displacement of node 1. A failure 

occurs when the displacement of node 1 exceeds  = 0.7 in.  = , , … ,   and  = , , … ,   are vectors 

of the young’s modulus and cross-sectional areas, respectively.  = , , … ,  is the vector of the loads.  

The results are summarized in Table 5. FORM produces a 

large error. SOSPA produces the most accurate result, but its 

efficiency is poor as it needs 6,771 function calls with CoE =61.55. The error of DR-SOSPA is 3.38%, which is smaller than 

the error of DR-SOSPA-M and is larger than SOSPA, and the 

computational burden is relieved significantly with only 179 

function calls and CoE = 1.63. 

 

 
Fig. 3 A 52-bars truss system 

 

 

 

Table 4 Distributions of random variables in Example 3 

Random variables Distribution Mean Standard deviation  ,  = 1~50 (ksi) Normal 2.5 × 10 1000  ,  = 1~8, and 29~36 (in) Normal 2 0.001  ,  = 9~16 (in) Normal 1.2 0.0006  ,  = 17~28, and 37~52 (in) Normal 0.6 0.0003  (kip) Normal 45 3.6  (kip) Extreme 40 6.0  (kip) Extreme 35 5.25  (kip) Normal 30 4.5  (kip) Normal 25 3.75  (kip) Normal 20 3 

 

Table 5 Estimates of probability of failure by different methods 

Methods  Error (%) FCs CoE 

MCS 5.10 × 10 - 10 9.09 × 10 

FORM 5.7658 × 10 13.05 444 5.05 

SOSPA 5.0463 × 10 1.05 6,660 61.55 

DR-SOSPA-M 4.8532 × 10 4.84 179 1.63 

DR-SOSPA 4.9274 × 10 3.38 179 1.63 

The univariate dimension reduction method [24] is another 

efficient method for high dimension problems. Since one 

univariate function usually needs at least 3 function evaluations, 

for an -dimension problem, the least function call theoretically 

is 3 + 1, which means the CoE for the univariate dimension 

reduction method is at least 3. The results of the above three 

examples show that the proposed method is more efficient than 

the univariate dimension reduction method. Therefore, we do not 

compare the proposed method with the univariate dimension 

reduction method since we already have the theoretical results 

for those three examples. 

5. Conclusion 
The proposed method partitions the input random variables 

into two parts, important and unimportant variables. This is 

achieved by using the information from the first iteration of the 

First Order Reliability Method (FORM). With the unimportant 

random variables fixed at their percentile values obtained from 

FORM, the dimension is reduced to the number of important 

input random variables. Then the probability of failure is found 

by an accurate reliability method in the reduced space. The final 

probability of failure is obtained by integrating the probability of 

failure in the reduced space and the contributions of unimportant 
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variables. Hence, the dimension is reduced, and the contributions 

of all input variables are also accommodated, resulting in high 

accuracy and efficiency.  

The proposed method works better if fewer important input 

variables are important. It cannot effectively reduce the 

dimension, however, when all input variables are important.  If 

no dimension is reduced, the proposed dimension reduction 

strategy will not affect the performance of the method used in 

the second step (the high accurate reliability method in the 

reduced space in Sec. 3.5). In this case, one may use other 

dimension reduction methods that can reduce the dimension of 

the linear combinations of the original input variables. Our future 

work will improve the proposed method for the case where most 

of the input variables are important.  
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