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ABSTRACT

Predicting system reliability is often a core task in systems
design. System reliability depends on component reliability and
dependence of components. Component reliability can be
predicted with a physics-based approach if the associated
physical models are available. If the models do not exist,
component reliability may be estimated from data. When both
types of components coexist, their dependence is often unknown,
and the component states are therefore assumed independent by
the traditional method, which can result in a large error. This
work proposes a new system reliability method to recover the
missing component dependence, thereby leading to a more
accurate estimate of the joint probability density (PDF) of all the
component states. The method works for series systems whose
load is shared by its components that may fail due to excessive
loading. For components without physical models available, the
load data are recorded upon failure, and equivalent physical
models are created; the model parameters are estimated by the
proposed Bayesian approach. Then models of all component
states become available, and the dependence of component
states, as well as their joint PDF, can be estimated. Four
examples are used to evaluate the proposed method, and the
results indicate that the proposed method can produce more
accurate predictions of system reliability than the traditional
method that assumes independent component states.

Keywords: Reliability; System; Bayesian method;
Uncertainty; Optimization

1. INTRODUCTION

For many system design problems, it is crucial to predict the
reliability of the system under design. The reliability prediction
can help not only evaluate and select design concepts, but also
produce a design that satisfies the reliability requirement. Doing

so in the design stage is more effective than addressing any
reliability issues after the system is already in operation.

The system designer usually quantifies system reliability by
the probability that a system works properly without failures.
The reliability may be estimated either by a physics-based
approach [1-4] or a statistics-based approach [5, 6]. A physics-
based approach predicts the reliability using computational
models derived from physics principles, and the computational
models are called limit-state functions. On the other hand, a
statistics-based approach estimates the reliability using data from
fields or experiments.

When the dependence between component states is
unknown, the states of components are usually assumed
independent. Under this assumption, the system reliability Ry of
a series system is given by [6]

Rs = ﬁRi €Y
i=1

where R; is the reliability of component i, and n is the
number of components. The independence assumption may
result in a significant error if component states are strongly
dependent [7].

Many statistics-based methods for component reliability are
available in reliability engineering [6]. Physics-based methods
for component reliability have also been extensively
investigated. The most widely used component reliability
methods include the First Order Reliability Method (FORM) [8-
10], the Second Order Reliability (SORM) [11-13], Monte Carlo
simulation (MCS) methods [14, 15], Saddlepoint
approximations (SPA) [16-19], and metamodeling methods [20-
22].

Physics-based component reliability methods can be easily
extended to system reliability analysis when all component limit-
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state functions are available. In principle, the joint PDF of all the
component states can be derived from the limit-state functions
by FORM, SORM, SPA, MCS, and other methods [2, 7, 21-24].

If some of the limit-state functions, however, are not
available, the joint PDF of all component states will be unknown.
For example, if some of the components are outsourced, their
limit-state functions are proprietary to the component suppliers
and are unknown to the system designer. If the reliability of some
components is estimated from field data by a statistics-based
approach, their limit-state functions are also unknown. Either
case causes difficulties in accurately predicting the system
reliability.

Several methods have been developed to address the above
problem. The system reliability method in [7] deals with
unknown details of outsourced components, and it assumes that
the reliability function of an outsourced component with respect
to various levels of component load is provided by the
component supplier. The feasibility of integrating both physical-
and statistics- approaches is investigated with some unknown
limit-state functions for systems whose load is shared by its
components and whose failure is due to excessive loading. In this
area, two studies have been conducted for situations where some
component parameters are recorded upon failure [5], or only the
load parameters upon failure are collected [25]. The two- and
one-class Support Vector Machine methods [7, 25] are used for
the two cases. Similar work has been performed for the re-
evaluation of component reliability for a component when it is
used in a new system with a different load [26]. These methods
assume that the system load is shared by the components of the
system and that the component loads have a linear relationship
with the system load[27].

The objective of this work is to develop a new system
reliability method for a system whose load is shared by its
components. Different from the existing method, the component
load can be a nonlinear function of the system load. For the
components not having limit-state functions, the component load
is recorded once the component fails. The proposed method is
more general than the existing methods because it does not
assume a linear relationship between the component and system
loads and it requires less data.

The rest of this paper is organized as follows. Sec. 2 reviews
FORM, and Sec. 3 discusses the proposed method, followed by
examples in Sec. 4. Sec. 5 provides conclusions and suggests
future work.

2. REVIEW OF FIRST-ORDER RELIABILITY METHOD
(FORM)
FORM is a physics-based reliability method, which relies on
a limit-state function defined by

Y =9&X) ()

where Y is a response or state variable. If Y < 0, a failure
occurs; otherwise, the component is safe. X is a vector of input
random variables. The component reliability is calculated by

R = Pr{g(X) = 0} (3

Let the joint probability density function (PDF) of X be
fx(x). The associated probability of failure is obtained by
integrating the PDF in the failure region g(X) < 0 and is given

by
p=1-R=Pg®=0)= [ f@ix @
gx)<o0

FORM approximates the integral in Eq. (4) by linearizing
the failure boundary g(X) =0 using the first-order Taylor
expansion. FORM involves the following three steps.

Step 1: Transform random variables into independent
standard normal variables

X = (X1, X5, ..., X)) in the X-space is transformed into
independent standard normal variables U = (U, U,, ...,Up,) in
the U-space. If the components of X are independent, the
transformation is given by [28]

Fi(X;) = @(U;) (5)

where F;(-) and ®(:) are the cumulative distribution function
(CDF) of X; and Uj;, respectively.
The transformation gives

X, = F Y (@U))) (6)

We denote the transformation by T(-).
Step 2: Search for the most probable point (MPP)
The limit-state function is now

Y =gX) =g(TW) =) (7

At the limit state hypersurface G(U) = 0, the point with
the highest PDF is called the most probable point (MPP),
denoted by u*. The MPP is obtained by

u* = arg min+/uu’, subjecttoG(u) =0 (8)
u

Then the limit-state function is linearized at the MPP, whose

magnitude B =/ u*(u*)T is called the reliability index. The
probability of failure is computed by

pr = P(=h) 9

3. Methodology
3.1 Overview

The proposed method is based on the concept of FORM. As
discussed previously, this study deals with series systems, and
the results can be easily extended to parallel systems. In this
study, a component refers to a failure mode. A physical
component may also be considered as a system because it may
have multiple failure modes. For the purpose of system
reliability analysis, a system may be a physical system or a
physical component. For a series system, the system fails if any
of its component fails or any of its failure mode occurs.

In this study, we assume that components fail due to
excessive loading. The system load L is shared by components,
and the load acting on the i-th component is denoted by L;.

There are two types of components in the systems.

1) Components with predictable responses
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The state of the component can be predicted by a limit-state
function, which is defined by

Y = 9:(X;, L) (10)

where YiP is the response of component i,i = 1,2,...,np, in
which np is the number of predictable components. X; is a
vector of random variables (except L;) for the component, such
as material properties and dimensions of the component. If
YP <0, a failure occurs. The probability of failure can be
predicted by a physics-based reliability method such as FORM.
The relationship between L and L; is determined by a function
H;(-); namely

Ly = H;y(L) (11

H;(-) may be a nonlinear function.

2) Components with observable responses

The state of the component Yio, i=12,..,ny, with
ny being the number of observable responses, is observed in
field or experiments, and the probability of failure is estimated
by data collected. No limit-state function is available due to the
lack of understanding of the physics of failure or outsourcing.

In this study, we assume both types of components coexist
in a system. The system designer has the following information.

e The component reliability R;, i =1,2,..,n. R; is
predicted by its limit-state function with a predictable
response or is estimated by data with an observable
response.

e Distribution of the system load L with PDF f; (I) and
CDF F, (D).

e The data of component load upon failure. For a
component with an observable response, the component
load is collected when the component fails.

e Limit-state functions and their input variables for
components with predictable responses.

Instead of using the independence assumption in Eq. (1), the
proposed method helps the system designer recover the missing
dependence between all the component responses and their joint
PDF, resulting in a more accurate system reliability prediction.

The key to the proposed method is to reconstruct equivalent
limit-state functions for observable responses. We use FORM so
that an equivalent limit-state function in the U-space is linear
with respect to the component load and another random variable,
which is a linear combination of all random input variables
except the component load. Then all the responses can be
modeled by a multivariate normal distribution. The correlations
of all the responses can then be found since only the component
loads contribute to the correlations.

3.2 Reliability prediction for components with
observable responses
Suppose the true limit-state function of an observable
response is

YO = g:(Xi, L) = g:(Xi, Hi(L)) (12)

where X; is a vector of all the input random variables, except
the component load, and the relationship between L and L; is

determined by a function H,(-) in Eq. (11). The limit-state
function is not available to the system designer. Data of the
component load are collected from experiments or field. The

recorded component load data are in a dataset [, =
(L, ligy s lig) » where d; is the size of the dataset. The
probability of failure p.. is estimated from the data.
fi
We rebuild the equivalent limit-state function as

YiO =C -1 (13)

where C; is the general strength (capacity) of the component
and is a function of X;. C; and L; are independent. If Y? < 0,

or C; < L;,afailure occurs. Eq. (13) is based on the well-known
stress and strength interference theory [29, 30], which applies to
the systems whose failure is due to excessive loading.

With FORM, the limit-state function in the U-space
becomes

YI:O = aCiUCi + aLiULi + ﬁi (14)
where the reliability index f; is derived from Eq. (9) as follows:
Bi = @7 (—ps1) (15)

0 .
When Y; = acUc, +a, U, + B, <0, a failure occurs.
The reconstructed limit-state function is illustrated in Fig. 1.

A
Us

b ;
N

acUc, +ay,Uy,, + ;i =0

L b Iz ol U

acUc, + ay, Uy, + B <0
Failure Region

Fig. 1 Reconstructed limit-state function

The failure region is determined by a;Uc, +a, U, +
B; < 0. Let the random variables of the load U, and capacity
U, in the failure region be U Lz and U ,Ci’ respectively. They are

conditional random variables given a. U¢, + a, U, + B, <0,
1
U <——\a, .U ).
or Yg, flci( L= L +ﬁ1)

The joint PDF of U, and U, is ¢(c)¢p(l), where ¢()
is the PDF of a standard normal variable. The joint distribution
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of U C and U L are truncated by the safe region, and their joint
PDF (defined in the failure region) is given by

pp)
- lfaCiUCi-l_aLiULi-l_ﬁi < 0
fUIbUIC(l' C) = pf (16)
0 otherwise
The joint PDF is plotted in Fig. 2.

Ue,

_ Joint PDF of U, and Uy,

SO aqUo tayUy +Bi=0

acUc, +a,Uy, + 5 <0
Failure Region

Fig. 2 Reconstructed equivalent limit-state function

Then the PDF of U; is given by

3 +00 B _aLCi(aLiULi+ﬁi) ¢(C)¢(l)
fup, O = f forun e = f 200

=i¢(l)<1>( ful ﬁ‘) %)
Pri ac;

Using ai, + a%i = 1, we have
(18)

where f v, (D) is the conditional PDF of the component load in

the failure region, and a;, is the unknown parameter. From the
perspective of the Bayesian Theorem [31, 32], f U'L.(l) is the

posterior PDF of the component load given that a failure has
occurred, and its unknown parameter «;, can be estimated from
the observations or the sample of the component load.

Transforming the load data l; = (ly;, l;5, ..., lig,) into the U-

space, we obtain the sample of ULi, u,
The likelihood function is defined by

= (uLil'uLiz' ey Ugg,)-

VLi — 1_[ ¢(uLi]_)q> _w (19)

au;.i + p;
a,, = argmin ﬂq’)(uw)cb —Lﬁl (20)

—ISaLi§O

For computational convenience, we use the natural
logarithm of the likelihood function, known as the log-likelihood
function, as follows:

au
a;, = argmin Zlogq’)(um) + Plog| —

—-1<ay.<0 £
i j=

After a;, isfound, the equivalent limit-state function in Eq.

(14) is fully defined. Then the dependence between any two
observable responses can be recovered. For example, for
observable components i and j, the equivalent limit-state
functions are

~0
Yi = aS_U(:. + aL'UL' +ﬁ

R L L i i L (22)
Their covariance is
cov(@, 7)) = a,a, COV(U,,U,) (23)

where COV(-) stands for covariance.
Recall that L; = Hy(L) and L; = H;(L).

Uy, = @7 (F (L)) = @7 (F(H,1))

Uy, =~ (FL(L,-)) = o1 (FL (Hj(L)))
Let U, be the transformation of L in the U-space.
U, = ot (FL(L)) (25)

(24)

Assume that the component load L; increases as system
load L increases. Then Hl-(-) is an increasing function. The
CDF of L; is at given by

Fp, (1) = Pr{l; < I;} = Pr{H;(L) < I;} = Pr{L < H7* (1)}

=FH'UW) =FO (26)
where Hl-_l(-) is the inverse of H,(-), and [ = H;(l).
Transforming L; into U, , we obtain
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U, = o7 (F, L)) = o7 (F.M)) (27)
Using Eq. (24), we know that U; = U,. Similarly, we have
Uy, = Uy Asaresult, COV (ULl., ULJ.) =1, and

covye,v0) = a,ay; (28)

Eq. (27) indicates that how component loads are related to
the system load does not affect the covariance between two
observable responses. This conclusion also holds for two
predictable responses and a pair of observable and predictable
responses. As a result, the proposed method can deal with any
relationships between component and system loads if the
function between the two types of loads is monotonically
increasing.

3.3 Verifying correlation covariance of two
conservative responses

We now verify the conclusion in Sec. 3.2 with a linear case
and a nonlinear case.

Case 1: Linear relationship between normally distributed
component and system loads

Assume L~N(u,0?), which means that L is normally

distributed with a mean of y, and a standard deviation of a;.
Also assume L; = k;L and L; = k;L, where k; and k; are
positive constants. Transforming L; and L; into U;, and U Ly
we have

=kiL_kiﬂL=L_liL

L.
‘ kio, g3

_kL—ku _L—w
Ly ko, oy,

(29)

This verifies COV (Uy,Uy,) = = COV(L,L) = 1.
L

Case 2: Nonlinear relationship between a component and the
system load
The verification is given in Example 1 in Sec. 4.

3.4 System reliability prediction

After the equivalent limit-state functions of observable
responses are constructed, the limit-state functions of all the
components will be available to the system designer. With the
use of FORM, all the limit-state functions in the U-space are
given by

?iP = aciUci + aLiULi + ﬁl'l = 1,2, ...,np

Y}O = aCjUCj + (,ZL].UL]. + ﬁ],l = 1,2, ...,no

(30)

Then all the responses are assembled into ¥ = (?P, ?0),
AP AP

where ?P = (Y, Y, ...,?ip) and ?0 = (?(1),17(2), ...,?SP). It
can be shown that Y follows a n-dimensional multivariate

normal distribution ?~Nn(u, X), where n=np+ny, n is
the mean vector, and X is the covariance matrix.

w= (w0 = (B85 B BOBY - B0)) (31

where

W = (B, BS, . Brp) (32)
and
no = (B2, B9, ... BY) (33)
The covariance matrix is
_ zPP zPO
L= (zOP 200) (34)
s c np Xnp MNp XNy
with sizes o (no Xnp ny X no).
PP = (cov(YF,vP 35
( ( b ))i,j:Lz,...,np (35)
x99 = (cov (Yo, 1P 36
( ( vy ))i,jzl,z,...,no (36)
xP0 = (cov(YF, 1P 37
( ( L ] ))i=1,2,...,np,j=1,2,...,no ( )
The elements of the covariance matrix are given by
cov(yr,vo) = aay; (38)
COV(?LP' on) = aLiaL)' (39)
cov(ye,v0) = L, (40)

The system reliability is then calculated by

RS=Pr<ﬁ2>o>=Pr<ﬁ—Yi<0) (41)

i=1
The joint PDF and CDF of —Y be ¢ (¥;—w Z) and
D, (¥; —m, ), respectively; then

R5=<bn(0:—u,z)=f f Sui-wE)dy  (42)

Numerical methods [33-36] or MCS can be used to calculate
the multivariate integral in Eq. (42).

4. Examples

In this section, four examples are used to demonstrate the
proposed methods. Example 1 verifies that the covariance
between two component loads in the U-space is equal to 1 as
discussed in Sec. 3.2. Example 2 provides a step-by-step
demonstration to show how the unknown covariance between
two observable responses is recovered by the Bayesian approach.
Example 3 shows how to calculate the probability of system
failure in a mechanical system with two types of components.
Example 4 involves a mechanical system with more components
and random variables.
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4.1 Example1: Estimation and verification of
covariance between two component loads
A system load L follows a lognormal distribution, denoted
by L~LN(u;,0,2%), with a mean and a standard deviation of
u; = 6.9027 and g, = 0.09975, respectively. The component
loads of two components are given by

Ly =H,(L) =1** +1
{1 1() 05 (43)
L, = Hy(L) =3L°° -1

We now use MCS to demonstrate that the covariance
between component loads, UL,» and UL, is 1, even though the
functions in Eq. (43) are nonlinear.

We first generate samples of L with a sample size of 10°.
By plugging the samples of L into Eq. (43), we get the samples
of L; and L,. The empirical CDF of L; and L,, denoted by
F, (1) and Fy (1), respectively, are estimated and are shown
in Figs. 3 and 4. Then transforming the load data L, and L, into
the U-space by U,; = CIJ_I(FLi(lL-)),i = 1, 2, we obtain samples
U, and U,,. We then use the samples to estimate the covariance
of Uy, and Up,. The flowchart is given in Fig. 5.

The covariance of U, and U;, is found to be
cov(Uy,,U,,) = 1.0077, which is close to the true value of 1.
Note that the two standard normal variables, their covariance
cannot exceed 1. C OV(ULl, ULZ) is slightly greater than due to
an accumulative numerical error.

4.2 Example 2: A mathematical problem
The limit-state function of a component with an observable
response in the U-space is given by

?=a1U1+a2U2+(X3U3+ (XLUL+ﬁ (4‘4‘)

where U, is the component load, and U; (i = 1,2,3) are other
random variables, and f = 3.5. The unit vector is givenby a =
(aq,ay,as,a;) = (0.8165,0.1361,—0.1361, —0.5443) , and
the last component is for the component load; namely, a; =
—0.5443.

0.9 1

081
0.7 -
06 r
051
04r
03 r
0.2r

0.1 1

70 80 90 100 110 120 130 140

Load L,
Fig. 3 Empirical CDF of L;

1

— Sample L2

09

08

0.7

06

051

0.4 r

03

0.2

0.1F

0 f . . . . . .
75 80 85 90 95 100 105 110 115 120

Load L,

Fig. 4 Empirical CDF of L,

Step 1: Estimate CDFs of L, Step 2: Estimate covariance of
and L, UL1 and UL2

Transform samples of L;
and L, in U-space

A 4 l

s N
t Obtain samples of L, and

t Generate samples of L

Obtain samples of U, and
L, U,
< N J

y

A 4
- Calculate the covariance of
‘ Estimate C]i)F of L, and Uy, and Uy,
2

Fig. 5 Flow chart of estimating the covariance

Now we use the proposed method to estimate «; and
compare it with the true value —0.5443. To mimic the physical
experiment, we conduct the experiment on computer. In other
words, we use MCS and the true limit-state function to generate
samples of the component load L in the failure region. The
details are as follows. We at first generate samples of U;, U,,
U,, and U, and calculate the responses ¥ using Eq. (44). We
randomly pick 30 samples of U, when ¥ < 0 in the failure
region. We then use the maximum likelihood method in Eq. (19)
to estimate «;.

Since the above process involves random sampling and the
result contains variation, we repeat the same process 30 times.
The estimated «; from the 30 runs are given in Table 1.

The mean and standard deviation of a; are g =
—0.5372 and g,, = 0.0580, respectively. Comparing u,, =
—0.5372 with the true value —0.5443, we see that they are in
good agreement.
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Table 1 Estimates of «;

-0.6199 -0.6293 -0.5561 -0.5468 -0.5769
-0.5160 -0.6190 -0.5438 -0.6216 -0.5575
-0.5655 -0.5569 -0.5378 -0.5866 -0.5391
-0.5417 -0.6255 -0.6037 -0.4839 -0.4825
-0.5876 -0.5617 -0.4753 -0.6197 -0.5441
-0.5859 -0.4413 -0.5473 -0.5473 -0.5920

4.3 Example 3: A system with two shafts

A system consists of two shafts as shown in Fig. 6. Both
shafts share the system load L =F. L follows a normal
distribution N(2500,600%) N. The component loads of the
shafts 1 and 2 are given by L; = 0.7L and L, = 0.3L,
respectively.

Fig. 6 A system with two shafts

Shaft 1 has a predictable response, and its limit-state
function is available and is given by

16 ,
Yl = gl(Xl, Ll) = Sl - m 4’L§lz + 3T12 (45)
1

where S; is the yield strength of the shaft, T; is the torque

applied to the shaft, d; = 39 mm is the diameter of the shaft,

and [ = 400 mm is the length of the shaft. X; = (S,,T,).
The distributions of S; and T, are N(200,13?) MPa

and N(450,25%) N-m, respectively. The system designer uses
FORM to perform the reliability analysis, which yields the

reliability index B, = 2.6995 and the limit-state function in

the U-space Y% = ay Us, + ayUp +a;, U, — B, , where
a; = [ay, ap, @] = [-0.0444, -0.4341, —0.8997].

The limit-state function of shaft 2 is unknown, and the shaft
has an observable response. Its reliability is estimated by
experiment. The true limit-state function is given by

{true 16 272 2
Yz = gZ(XZ' Lz) = SZ - —T[d3 4‘Lzl + 3T2 (4‘6)
2

where S, is the yield strength of the shaft, T, is the torque
applied to the shaft, and d; = 39 mm is the diameter of the

shaft, and [ =600 mm is the length of the shaft. X, =
(S,,T,). The distributions of S, and T, are N(120,72)
MPa and N(450,25%) N-m, respectively. The reliability of
shaft 2 is estimated by experimental data. We use MCS to mimic
the experiment by using the true limit-state function in Eq. (46)

and the true distribution. The reliability index obtained is [ =
3.1224. The system designer then reconstructs an equivalent
limit-state function Y9 = ag,Us, + a;,U;, — B,. The system
designer uses the proposed Bayesian approach with 17 samples
of L, in the failure region (in the U-space) to estimate the
unknown coefficient «;,, and the result is «a;, = —0.7172.
The true coefficient from the true limit-sate function in Eq. (46)
is a'® = —0.7871.

The system designer now has the following information:
The mean vector p = (uq, 1) = (—2.1313,—-3.1224), and the
covariance cov(¥f, V) = a;, a;, = 0.7170, which results in

1 07170\ . o
0.7170 1 ) This indicates

a strong correlation between the two responses. The system
probability of failure estimated by the system designer using Eq.
(42) is ppg=1-R=1- ®,(0; -, Z) = 0.0168 . The
result from the independent component assumption and the true
value are given in Table 2. The sample size of MCS is 10° and
the true value is obtained from MCS using all the limit-state

functions. The results show that the proposed method is more
accurate than the traditional method.

the covariance matrix X = (

Table 2 The probabilities of system failure

Method Drs %
Proposed method 0.0168 | 0.507
Independence assumption method | 0.0174 | 3.237
MCS 0.0169 | N/A

4.4 Example 4: An assembly

A system consists of a rectangular steel bar and a steel
channel is assembled by four identical bolts at points 4, B, C
and D as shown in Fig. 7 [37]. The external load F, which is
the system load L, acts at the end of the bar.

There are seven physical components in the system, where
the steel bar and the channel are in-house designed and
manufactured, and the four bolts are purchased from a
component supplier. The reliability of the in-house components
is predicted by a physics-based approach, and the reliability of
the outsourced bolts is estimated by experiments. Hence the
responses of the three former components are predictable, and
the responses of the latter four components are observable.

The distributions of random variables known to the system
designer are given in Table 3, and they include the distributions
of F and those associated with the in-house components. The
limit-state functions of the two in-house components are derived
below.
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i3

Fig. 7 An assembly

Table 3 Distributions associated with predictive responses

Variable Description Distribution
F (N) External force N(1.8 x 10%3.36 x 10%)
Channel hole D 3 4
d; (m) inner diameter N(1.6 x107°,3.2 x 107%)
Bar hole D 3 4
d, (m) inner diameter N(1.6 x107°,3.2 x 107%)
Channel yield 6 6
S (Pa) strength N(300 x 10°,24 x 10°)
Bar yield 6 6
S, (Pa) strength N(300 x 10°,24 x 10°)
Channel 3 _5
t; (Pa) thickness N(1.0 x 107°,2.0 x 107>)

t, (Pa) Bar thickness

l; (m) See Fig. 7

l, (m) See Fig. 7

l; (m) Bar width

Distance

L, (m) between bolts A

4 and D; and B

and C

Distance

ls (m) between bolts A
and B; and C

and D

N(1.0 x 1073,2.0 x 1075)
N(3.2 x1071,6.4 x 107%)
N(5.0 x10~1,1.0 x 107%)
N(2.0 x10"1,4.0 x 107%)

N(7.5 x107%,1.5 x 107%)

N(6.0 x107%,1.2 x 107%)

Since the four bolts are symmetrically installed and are
equally distanced from the centroid point O, the distance from

each bolt to the centroid is r = 0.5,/1f + [2. The shear reaction
V and moment reaction M at O are given by V =F and

M=F (ll +1, + l;"), respectively. The primary shear load per

boltis F' = E, and the secondary shear forces are equal and are

oM M
givenby F = 4—2 = By applying the parallelogram rule, we
T T

obtain the magnitudes of the primary and the secondary shear
forces as follows.

Fy=Fz = J(F)?+ (F")? — 2F'F""cosd,  (47)

Fe=Fy= J(F)? + (F")2 —2F'F"cosf,  (48)

. ; .

where 8, = % + arctan (;—4), and 0, = % — arctan (1—4)
5 5

The channel has one failure mode caused by excessive

bearing stress. The bearing area of the channel is A; = t;dy,

where d; is the inner diameter of the hole D in the channel.

L, = F, and X; = (§,). The limit-state function is given by

Fy
Y1 =9:Xy,Ly) = A_l

-5 (49)

The bar is another in-house component. It has two failure
modes. The first one is due to an excessive bearing stress, and
the associated limit-state function is given by

F
A_s, (50)

Y, = 9.(Xz,Ly) = 2
2

in which A, = t,d,, where d, is the inner diameter of hole B
of the bar, S, is the yield strength. L, = F,, and X, = (S,).
The second failure mode occurs due to the excessive bending
stress at the cross section A-B, whose moment of inertia of the
cross section is given by

—2 tl tdy 13
1= Iy — 2(Ippes + d°4) = - 2 { o thda| (51)
and the limit-state function is defined by
Y3 = g3(X3,L3) = & -5 (52)
I/c

in which [/c is the section modulus, ¢ = l3/2, and M; =

F(l; +1,) is the bending moment.

We now discuss the outsourced components. Bolts A, B, C
and D are components with observable responses, and the
system designer does not know their failure modes and limit-
state functions. Experiments on the individual bolts are
performed until the bolts fail, and the values of the force F are
recorded upon failure. Their reliability is estimated from the
experimental results. To mimic the actual physical experiments
and simulate the experiments. we use their true limit-state
functions, which are given by

Fy

Fime = gt (X La) = 7=~ Ta (53)
sa

ptrue — gtruery 1) = Fg _ 54

5 gs ““(Xs, Ls) A Tp (54)
sb

where A,, and A, are the areas subject to shear stresses, and
7, and 7, are the allowable shear stresses of bolt A and B,
respectively. X, = (4,,7,) , Ly =F, . X5 = (Ay,1p) ,

Ls = Fp.
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F

atrue C

Yo = g;’“e(xs. L) =——71, (55)
ASC

?true —  true X- L _F_D_ 56

7 = 97X, Ly) = Tq (56)

Asd

where A, and A, are areas subject to shear stresses, and 7,
and t; are the allowable shear stresses of bolt C and D,
respectively. Xg = (4, 7.), Lg = Fc. X3 = (A,0,74), Ly =
Fp. We also use the true distributions associated with the

outsourced variables to simulate the experiments. The
distributions are given in Table 4.

Table 4 Distributions associated with observable responses
Bolt A
Ay, (m?) | shear-
stress area
Bolt B
Ag, (m?) | shear-
stress area
Bolt C
Age (m?) | shear-
stress area
Bolt D
Agq (m?) | shear-
stress area
Bolt A
allowable
shear stress
Bolt B
allowable
shear stress
Bolt C
allowable
shear stress
Bolt D
allowable
shear stress
Bolt A
diameter
Bolt B
diameter
Bolt C
diameter
Bolt D
diameter

N(1.44 x 107%,2.88 x 1079)

N(1.44 x 107%,2.88 x 1079)

N(1.15 x 107%,2.88 x 107°)

N(1.15 x 107%,2.88 x 1079)

7, (Pa) LN(310 x 106,24.8 x 10°)

1, (Pa) LN(310 x 106,24.8 x 10°)

1. (Pa) LN(310 x 10°,24.8 x 10°)

14 (Pa) LN(310 x 10°,24.8 x 10°)

d, (m) N(1.6 X 1072,6.4 x 107%)

d, (m) N(1.6 X 1072,6.4 x 107%)

d, (m) N(1.6 X 1072,3.2 x 107%)

dy (m) N(1.6 X 1072,3.2 x 107%)

With the above true limit-state functions, we use MCS to
generate samples of all the random variables in Table 4 and
estimate the reliability of the four components. The reliability of
each of the bolts is assumed from the experiments. We also pick
17 random samples of the force F in the failure region and
assume that they are the recorded samples from the experiments.

From the estimated reliability, the system designer
calculates the reliability indexes and reconstructs the equivalent
limit-state functions as follows.

a0
Yi = C(SL_USi + C(LL_ULi + ﬁl’ (l = 4’, ...,7)

in which f, =3.4914, B = 34914, B = 41971, f, =

4.1971.

Using f; (i = 4, ...,7) and the proposed Bayesian approach,
the system designer estimates the unknown coefficients «;; and
obtain «;, =—0.8316, a, = —-0.8475, «, =—-0.7675,
a;, = —0.8536. Their true values from the assumed true limit-
state function are aiime) = —0.8229, a&me) = —0.8229,

('™ = ~0.7980 and a{"™ = —0.7980. The results show

that the estimated coefficients are close to the true ones.
Using the estimated coefficients, the system designer
obtains the covariance matrix as follows.

1.0 0.6134 0.5966  0.6618
06134 1.0 06263  0.6948

X = : : I : :
0.5966 0.6263 1.0 0.6789
0.6618 0.6948 0.6789 10 1,

The mean vector is
= (B P2 -, B7) =
(3.8461,3.8461,3.7545,3.4914,3.4914,4.1971,4.1971)
Plugging p and X into Eq. (42), the system designer
predicts the probability of system failure, and the result is given
in Table 5. The result from the independence assumption method
is also provided in the table. MCS is used to produce a true
prediction with the assumption that all the limit-state functions

gi(-) (i=1,2,3) and g}t.me() (j =4,5,6,7) are known.

The sample size of MCS is 10°. The error of the proposed
method is 5.9%, much smaller than the error from the
independence assumption method, which is approximately
20.0%.

Table 5 The probabilities of system failure

Method 12 &%
Proposed method 5.6263 x 1074 5.8519
Independence 7.1418 x 10™* 19.5077
assumption method
MCS 5.9760 x 10~* N/A
CONCLUSIONS

This study considers the reliability prediction for series
systems with both predictable and observable component
responses. The proposed method is applicable for systems whose
load is shared by its components and whose failure is due to
excessive loading. The results demonstrate that it is possible to
reconstruct an equivalent limit-state function for an observable
component response if the load that causes a failure is recorded
upon failure with a set of samples. The unknown coefficient of
the component load in the equivalent limit-state function can be

9 © 2021 by ASME



obtained by the maximum likelihood estimate with the proposed
Bayesian approach. The joint PDF of all the component
responses is then obtainable with the availability of all the limit-
state functions of predictable and observable components
responses, thereby leading to a more accurate system reliability
prediction than the traditional method that assumes independent
component states. The other advantage of the proposed method
is that it can deal with any relationships between system and
component loads, including nonlinear relationships.

The method is limited to systems with only one system load
and the component load data collected are truly from the
distribution of the component load. The future work will focus
on the extension to systems with multiple system loads and other
types of load data.
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