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ABSTRACT 
Predicting system reliability is often a core task in systems 

design. System reliability depends on component reliability and 

dependence of components. Component reliability can be 

predicted with a physics-based approach if the associated 

physical models are available. If the models do not exist, 

component reliability may be estimated from data. When both 

types of components coexist, their dependence is often unknown, 

and the component states are therefore assumed independent by 

the traditional method, which can result in a large error. This 

work proposes a new system reliability method to recover the 

missing component dependence, thereby leading to a more 

accurate estimate of the joint probability density (PDF) of all the 

component states. The method works for series systems whose 

load is shared by its components that may fail due to excessive 

loading. For components without physical models available, the 

load data are recorded upon failure, and equivalent physical 

models are created; the model parameters are estimated by the 

proposed Bayesian approach. Then models of all component 

states become available, and the dependence of component 

states, as well as their joint PDF, can be estimated. Four 

examples are used to evaluate the proposed method, and the 

results indicate that the proposed method can produce more 

accurate predictions of system reliability than the traditional 

method that assumes independent component states. 

Keywords: Reliability; System; Bayesian method; 

Uncertainty; Optimization 

 

1. INTRODUCTION 
For many system design problems, it is crucial to predict the 

reliability of the system under design. The reliability prediction 

can help not only evaluate and select design concepts, but also 

produce a design that satisfies the reliability requirement. Doing 

so in the design stage is more effective than addressing any 

reliability issues after the system is already in operation.  

The system designer usually quantifies system reliability by 

the probability that a system works properly without failures. 

The reliability may be estimated either by a physics-based 

approach [1-4] or a statistics-based approach [5, 6]. A physics-

based approach predicts the reliability using computational 

models derived from physics principles, and the computational 

models are called limit-state functions. On the other hand, a 

statistics-based approach estimates the reliability using data from 

fields or experiments.  

When the dependence between component states is 

unknown, the states of components are usually assumed 

independent. Under this assumption, the system reliability  of 

a series system is given by [6] 

 =  


 1 

where    is the reliability of component  , and   is the 

number of components. The independence assumption may 

result in a significant error if component states are strongly 

dependent [7].  

Many statistics-based methods for component reliability are 

available in reliability engineering [6]. Physics-based methods 

for component reliability have also been extensively 

investigated. The most widely used component reliability 

methods include the First Order Reliability Method (FORM) [8-

10], the Second Order Reliability (SORM) [11-13], Monte Carlo 

simulation (MCS) methods [14, 15], Saddlepoint 

approximations (SPA) [16-19], and metamodeling methods [20-

22]. 

Physics-based component reliability methods can be easily 

extended to system reliability analysis when all component limit-
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state functions are available. In principle, the joint PDF of all the 

component states can be derived from the limit-state functions 

by FORM, SORM, SPA, MCS, and other methods [2, 7, 21-24].  

If some of the limit-state functions, however, are not 

available, the joint PDF of all component states will be unknown. 

For example, if some of the components are outsourced, their 

limit-state functions are proprietary to the component suppliers 

and are unknown to the system designer. If the reliability of some 

components is estimated from field data by a statistics-based 

approach, their limit-state functions are also unknown. Either 

case causes difficulties in accurately predicting the system 

reliability.  

Several methods have been developed to address the above 

problem. The system reliability method in [7] deals with 

unknown details of outsourced components, and it assumes that 

the reliability function of an outsourced component with respect 

to various levels of component load is provided by the 

component supplier. The feasibility of integrating both physical- 

and statistics- approaches is investigated with some unknown 

limit-state functions for systems whose load is shared by its 

components and whose failure is due to excessive loading. In this 

area, two studies have been conducted for situations where some 

component parameters are recorded upon failure [5], or only the 

load parameters upon failure are collected [25]. The two- and 

one-class Support Vector Machine methods [7, 25] are used for 

the two cases. Similar work has been performed for the re-

evaluation of component reliability for a component when it is 

used in a new system with a different load [26]. These methods 

assume that the system load is shared by the components of the 

system and that the component loads have a linear relationship 

with the system load[27].  

 The objective of this work is to develop a new system 

reliability method for a system whose load is shared by its 

components. Different from the existing method, the component 

load can be a nonlinear function of the system load. For the 

components not having limit-state functions, the component load 

is recorded once the component fails. The proposed method is 

more general than the existing methods because it does not 

assume a linear relationship between the component and system 

loads and it requires less data.  

The rest of this paper is organized as follows. Sec. 2 reviews 

FORM, and Sec. 3 discusses the proposed method, followed by 

examples in Sec. 4. Sec. 5 provides conclusions and suggests 

future work. 

 

2. REVIEW OF FIRST-ORDER RELIABILITY METHOD 
(FORM) 
FORM is a physics-based reliability method, which relies on 

a limit-state function defined by  =  2 

where   is a response or state variable. If  < 0 , a failure 

occurs; otherwise, the component is safe.  is a vector of input 

random variables. The component reliability is calculated by  = Pr ≥ 0 3 

Let the joint probability density function (PDF) of   be  . The associated probability of failure is obtained by 

integrating the PDF in the failure region  < 0 and is given 

by 

 = 1 −   =  Pr ≤ 0 =    
  4 

FORM approximates the integral in Eq. (4) by linearizing 

the failure boundary  = 0  using the first-order Taylor 

expansion. FORM involves the following three steps. 

Step 1: Transform random variables into independent 

standard normal variables  = , , … ,   in the X-space is transformed into 

independent standard normal variables  = , , … ,  in 

the U-space. If the components of   are independent, the 

transformation is given by [28]  = Φ 5 

where ⋅ and Φ⋅ are the cumulative distribution function 

(CDF) of  and , respectively.    

The transformation gives  = Φ 6 

We denote the transformation by ⋅. 

Step 2: Search for the most probable point (MPP) 

The limit-state function is now   =  =  =  7 

At the limit state hypersurface  =  0 , the point with 

the highest PDF is called the most probable point (MPP), 

denoted by ∗. The MPP is obtained by 

∗ = arg min  , subject to  = 0 8 

Then the limit-state function is linearized at the MPP, whose 

magnitude  = ∗∗  is called the reliability index. The 

probability of failure is computed by  = − 9 

3. Methodology 
3.1 Overview 

The proposed method is based on the concept of FORM. As 

discussed previously, this study deals with series systems, and 

the results can be easily extended to parallel systems. In this 

study, a component refers to a failure mode. A physical 

component may also be considered as a system because it may 

have multiple failure modes. For the purpose of system 

reliability analysis, a system may be a physical system or a 

physical component. For a series system, the system fails if any 

of its component fails or any of its failure mode occurs.  

In this study, we assume that components fail due to 

excessive loading. The system load  is shared by components, 

and the load acting on the i-th component is denoted by .  

There are two types of components in the systems.  

1) Components with predictable responses 
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The state of the component can be predicted by a limit-state 

function, which is defined by   =  ,  10 

where   is the response of component ,  = 1,2, … ,  , in 

which   is the number of predictable components.    is a 

vector of random variables (except  for the component, such 

as material properties and dimensions of the component. If  < 0 , a failure occurs. The probability of failure can be 

predicted by a physics-based reliability method such as FORM. 

The relationship between  and  is determined by a function ⋅; namely  =  11 ⋅ may be a nonlinear function.  

2) Components with observable responses 

The state of the component  ,  = 1,2, … ,  , with   being the number of observable responses, is observed in 

field or experiments, and the probability of failure is estimated 

by data collected. No limit-state function is available due to the 

lack of understanding of the physics of failure or outsourcing.  

In this study, we assume both types of components coexist 

in a system. The system designer has the following information. 

 The component reliability  ,  = 1,2, … ,  .   is 

predicted by its limit-state function with a predictable 

response or is estimated by data with an observable 

response. 

 Distribution of the system load  with PDF  and 

CDF . 

 The data of component load upon failure. For a 

component with an observable response, the component 

load is collected when the component fails.  

 Limit-state functions and their input variables for 

components with predictable responses. 

Instead of using the independence assumption in Eq. (1), the 

proposed method helps the system designer recover the missing 

dependence between all the component responses and their joint 

PDF, resulting in a more accurate system reliability prediction.  

The key to the proposed method is to reconstruct equivalent 

limit-state functions for observable responses. We use FORM so 

that an equivalent limit-state function in the U-space is linear 

with respect to the component load and another random variable, 

which is a linear combination of all random input variables 

except the component load. Then all the responses can be 

modeled by a multivariate normal distribution. The correlations 

of all the responses can then be found since only the component 

loads contribute to the correlations. 

 

3.2 Reliability prediction for components with 
observable responses 
Suppose the true limit-state function of an observable 

response is   =  ,  =  ,  12 

where  is a vector of all the input random variables, except 

the component load, and the relationship between  and  is 

determined by a function ⋅  in Eq. (11). The limit-state 

function is not available to the system designer. Data of the 

component load are collected from experiments or field. The 

recorded component load data are in a dataset  =1, 2, … ,  , where   is the size of the dataset. The 

probability of failure  is estimated from the data.  

We rebuild the equivalent limit-state function as  =  −  13 

where   is the general strength (capacity) of the component 

and is a function of .  and  are independent. If  < 0, 

or  < , a failure occurs. Eq. (13) is based on the well-known 

stress and strength interference theory [29, 30], which applies to 

the systems whose failure is due to excessive loading.   

With FORM, the limit-state function in the U-space 

becomes  =      14 

where the reliability index  is derived from Eq. (9) as follows:  = Φ− 15 

When  =      < 0, a failure occurs. 

The reconstructed limit-state function is illustrated in Fig. 1. 

 
 

Fig. 1 Reconstructed limit-state function 

 

The failure region is determined by     < 0. Let the random variables of the load  and capacity  in the failure region be ′  and ′ , respectively. They are 

conditional random variables given      < 0, 

or  < − 1   . 

The joint PDF of    and   is  , where ⋅ 

is the PDF of a standard normal variable. The joint distribution 
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of ′  and ′  are truncated by the safe region, and their joint 

PDF (defined in the failure region) is given by 

′ ,′ ,  =  if      < 0 
0                   otherwise 16 

The joint PDF is plotted in Fig. 2. 

 

 
 

Fig. 2 Reconstructed equivalent limit-state function 

 

Then the PDF of  ′  is given by 

  =   , ,  =
    


                                                             = 1 Φ −            17 

 

Using 2  2 = 1, we have  

  = 1 Φ
⎝
⎛−   

1 −  ⎠
⎞ 18 

where ′  is the conditional PDF of the component load in 

the failure region, and   is the unknown parameter. From the 

perspective of the Bayesian Theorem [31, 32], ′   is the 

posterior PDF of the component load given that a failure has 

occurred, and its unknown parameter   can be estimated from 

the observations or the sample of the component load. 

Transforming the load data  = 1,, 2 , … ,   into the U-

space, we obtain the sample of ′ ,   = 1, 2 , … , . 

The likelihood function is defined by 

 =  Φ
⎝
⎛−   

1 −  ⎠
⎞

 19 

Maximizing the likelihood function, we obtain  . 

 = arg min≤0   Φ
⎝
⎛−   

1 −  ⎠
⎞

 20 

For computational convenience, we use the natural 

logarithm of the likelihood function, known as the log-likelihood 

function, as follows: 

 = arg min≤0   log   Φ log
⎝
⎛−   

1 −  ⎠
⎞

 21 

After   is found, the equivalent limit-state function in Eq. 

(14) is fully defined. Then the dependence between any two 

observable responses can be recovered. For example, for 

observable components i and j, the equivalent limit-state 

functions are  

 =      =     
22 

Their covariance is 

,  =  ,  23 

where  stands for covariance. 

Recall that  =  and  = .    

  = Φ  = Φ  
 = Φ   = Φ    24 

Let  be the transformation of  in the U-space.  = Φ  25 

Assume that the component load   increases as system 

load   increases. Then ⋅  is an increasing function. The 

CDF of  is at given by   = Pr <  = Pr <  = Pr <               =  =  26 

where −1⋅  is the inverse of ⋅ , and  =  . 

Transforming  into  , we obtain 
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 = Φ   =  Φ 27 

Using Eq. (24), we know that  = . Similarly, we have  = . As a result,   ,  = 1, and  

 ,  =  28 

Eq. (27) indicates that how component loads are related to 

the system load does not affect the covariance between two 

observable responses. This conclusion also holds for two 

predictable responses and a pair of observable and predictable 

responses. As a result, the proposed method can deal with any 

relationships between component and system loads if the 

function between the two types of loads is monotonically 

increasing.  

 

3.3 Verifying correlation covariance of two 
conservative responses 
We now verify the conclusion in Sec. 3.2 with a linear case 

and a nonlinear case. 

Case 1: Linear relationship between normally distributed 

component and system loads 

Assume ~ ,  , which means that   is normally 

distributed with a mean of  and a standard deviation of . 

Also assume  =   and  =  , where   and   are 

positive constants. Transforming  and  into   and  , 
we have  

⎩⎪⎨
⎪⎧ =  −  =  −  =  −  =  − 

29 

This verifies   ,  =  ,  = 1. 

Case 2: Nonlinear relationship between a component and the 

system load 

 The verification is given in Example 1 in Sec. 4. 

 

3.4 System reliability prediction 
After the equivalent limit-state functions of observable 

responses are constructed, the limit-state functions of all the 

components will be available to the system designer. With the 

use of FORM, all the limit-state functions in the U-space are 

given by  =      ,  = 1,2, … ,  =      ,  = 1,2, … ,   30 

Then all the responses are assembled into  = ,  , 

where  = 1, 2, … ,    and  = 1, 2, … ,   . It 

can be shown that   follows a n-dimensional multivariate 

normal distribution ~,  , where  =    ,   is 

the mean vector, and  is the covariance matrix. 

 = ,  = 1 , 2 , … ,  , 1, 2, … ,   31 

where   =  , , … ,   32 

and   = ,  , … ,   33 

The covariance matrix is  

 =    34 

with sizes of  ×   ×  ×   × . 

 =  , ,,,…, 35 

 =  , ,,,…, 36 

 = , ,,…,,,,…, 37 

The elements of the covariance matrix are given by  ,  =  38 

 ,  =  39 

 ,  =  40 

The system reliability is then calculated by 

 = Pr   > 0
  = Pr  − < 0

  41 

The joint PDF and CDF of −  be ; −,   and Φ; −, , respectively; then  

 = Φ; −,  =  ⋯  ; −, 



  42 

Numerical methods [33-36] or MCS can be used to calculate 

the multivariate integral in Eq. (42).  

 

4. Examples 
In this section, four examples are used to demonstrate the 

proposed methods. Example 1 verifies that the covariance 

between two component loads in the U-space is equal to 1 as 

discussed in Sec. 3.2. Example 2 provides a step-by-step 

demonstration to show how the unknown covariance between 

two observable responses is recovered by the Bayesian approach. 

Example 3 shows how to calculate the probability of system 

failure in a mechanical system with two types of components. 

Example 4 involves a mechanical system with more components 

and random variables.  
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4.1 Example1: Estimation and verification of 
covariance between two component loads 

   A system load  follows a lognormal distribution, denoted 

by ~ ,  , with a mean and a standard deviation of  =  6.9027 and  = 0.09975, respectively. The component 

loads of two components are given by 

1 = 1 = 2/3  1 2 = 2 = 30.5 − 1 43 

We now use MCS to demonstrate that the covariance 

between component loads, , and , is 1, even though the 

functions in Eq. (43) are nonlinear.  

We first generate samples of  with a sample size of 10. 

By plugging the samples of  into Eq. (43), we get the samples 

of   and  . The empirical CDF of   and  , denoted by  and , respectively, are estimated and are shown 

in Figs. 3 and 4. Then transforming the load data  and  into 

the U-space by  = Φ,  = 1, 2, we obtain samples  and . We then use the samples to estimate the covariance 

of  and . The flowchart is given in Fig. 5. 

The covariance of    and    is found to be  ,   = 1.0077, which is close to the true value of 1. 

Note that the two standard normal variables, their covariance 

cannot exceed 1.  ,  is slightly greater than due to 

an accumulative numerical error. 

 

4.2 Example 2: A mathematical problem        
The limit-state function of a component with an observable 

response in the U-space is given by  =           44 

where  is the component load, and    = 1, 2, 3 are other 

random variables, and  = 3.5. The unit vector is given by  =, , ,  = 0.8165, 0.1361, −0.1361, −0.5443 , and 

the last component is for the component load; namely,  =−0.5443.  

 

 
Fig. 3 Empirical CDF of  

 

 
Fig. 4 Empirical CDF of  

 

 
Fig. 5 Flow chart of estimating the covariance 

 
Now we use the proposed method to estimate   and 

compare it with the true value −0.5443. To mimic the physical 

experiment, we conduct the experiment on computer. In other 

words, we use MCS and the true limit-state function to generate 

samples of the component load   in the failure region. The 

details are as follows. We at first generate samples of , , , and , and calculate the responses   using Eq. (44). We 

randomly pick 30 samples of   when  < 0 in the failure 

region. We then use the maximum likelihood method in Eq. (19) 

to estimate  .  

Since the above process involves random sampling and the 

result contains variation, we repeat the same process 30 times. 

The estimated  from the 30 runs are given in Table 1.  

The mean and standard deviation of   are  =−0.5372  and  = 0.0580 , respectively. Comparing  =−0.5372 with the true value −0.5443, we see that they are in 

good agreement.  

Load  

Load  

Step 1: Estimate CDFs of  

and  

Generate samples of  

Obtain samples of  and  

Estimate CDF of  and   

Transform samples of  

and  in U-space 

  

Obtain samples of  and  

Calculate the covariance of  and  

  

Step 2: Estimate covariance of  and  
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Table 1 Estimates of  

-0.6199 -0.6293 -0.5561 -0.5468 -0.5769 

-0.5160 -0.6190 -0.5438 -0.6216 -0.5575 

-0.5655 -0.5569 -0.5378 -0.5866 -0.5391 

-0.5417 -0.6255 -0.6037 -0.4839 -0.4825 

-0.5876 -0.5617 -0.4753 -0.6197 -0.5441 

-0.5859 -0.4413 -0.5473 -0.5473 -0.5920 

 

4.3 Example 3: A system with two shafts 
A system consists of two shafts as shown in Fig. 6. Both 

shafts share the system load  =  .   follows a normal 

distribution 2500, 600  N. The component loads of the 

shafts 1 and 2 are given by 1 = 0.7  and 2 = 0.3 , 

respectively.   

 
Fig. 6 A system with two shafts 

 

Shaft 1 has a predictable response, and its limit-state 

function is available and is given by 

 = ,  =  − 16 4   3 45 

where 1  is the yield strength of the shaft, 1  is the torque 

applied to the shaft, 1 = 39 mm is the diameter of the shaft, 

and  = 400 mm is the length of the shaft. 1 =  1, 1.  

The distributions of 1  and 1  are 200, 13  MPa 

and 450,25 Nm, respectively. The system designer uses 

FORM to perform the reliability analysis, which yields the 

reliability index 1  =  2.6995 and the limit-state function in 

the U-space 1 = 111  121  1 1 − 1 , where 1 = 11, 12, 1 = −0.0444, −0.4341, −0.8997. 
The limit-state function of shaft 2 is unknown, and the shaft 

has an observable response. Its reliability is estimated by 

experiment. The true limit-state function is given by 

 = ,  =  − 16 4    3 46 

where 2  is the yield strength of the shaft, 2  is the torque 

applied to the shaft, and 1 = 39  mm is the diameter of the 

shaft, and  = 600  mm is the length of the shaft. 2 =2, 2 . The distributions of 2  and 2  are 120, 7 

MPa and 450,25  Nm, respectively. The reliability of 

shaft 2 is estimated by experimental data. We use MCS to mimic 

the experiment by using the true limit-state function in Eq. (46) 

and the true distribution. The reliability index obtained is  = 3.1224 . The system designer then reconstructs an equivalent 

limit-state function 2 = 2 2  2 2 − 2 . The system 

designer uses the proposed Bayesian approach with 17 samples 

of 2  in the failure region (in the U-space) to estimate the 

unknown coefficient 2  , and the result is  2 = −0.7172 . 

The true coefficient from the true limit-sate function in Eq. (46) 

is 2 =  −0.7871. 

The system designer now has the following information: 

The mean vector  = ,  = −2.1313, −3.1224, and the 

covariance  ,  =   = 0.7170, which results in 

the covariance matrix  =   1 0.71700.7170 1 . This indicates 

a strong correlation between the two responses. The system 

probability of failure estimated by the system designer using Eq. 

(42) is  = 1 −  = 1 − Φ2; −,  = 0.0168 . The 

result from the independent component assumption and the true 

value are given in Table 2. The sample size of MCS is 106 and 

the true value is obtained from MCS using all the limit-state 

functions. The results show that the proposed method is more 

accurate than the traditional method. 

 

Table 2 The probabilities of system failure  

Method   % 

Proposed method 0.0168 0.507 

Independence assumption method 0.0174 3.237 

MCS 0.0169 N/A 

       

4.4 Example 4: An assembly 
A system consists of a rectangular steel bar and a steel 

channel is assembled by four identical bolts at points , ,  

and  as shown in Fig. 7 [37]. The external load , which is 

the system load , acts at the end of the bar.  

There are seven physical components in the system, where 

the steel bar and the channel are in-house designed and 

manufactured, and the four bolts are purchased from a 

component supplier. The reliability of the in-house components 

is predicted by a physics-based approach, and the reliability of 

the outsourced bolts is estimated by experiments. Hence the 

responses of the three former components are predictable, and 

the responses of the latter four components are observable.  

The distributions of random variables known to the system 

designer are given in Table 3, and they include the distributions 

of  and those associated with the in-house components. The 

limit-state functions of the two in-house components are derived 

below. 

 

 
  

 
Shaft 1 

Shaft 2 

 

  
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Fig. 7 An assembly 

 

Table 3 Distributions associated with predictive responses 

Variable Description Distribution  (N) External force 1.8 × 10, 3.36 ×  10   (m) 
Channel hole D 

inner diameter 
1.6 × 10, 3.2 ×  10 

 (m) 
Bar hole D 

inner diameter  
1.6 × 10, 3.2 ×  10 

 (Pa) 
Channel yield 

strength 
300 ×  10, 24 ×  10 

 (Pa) 
Bar yield 

strength 
300 ×  10, 24 ×  10 

 (Pa) 
Channel 

thickness 
1.0 ×  10, 2.0 ×  10  (Pa) Bar thickness 1.0 ×  10, 2.0 ×  10  (m) See Fig. 7 3.2 × 10, 6.4 ×  10  (m) See Fig. 7 5.0 × 10, 1.0 ×  10  (m) Bar width 2.0 × 10, 4.0 × 10 

 (m) 

Distance 

between bolts A 

and D; and B 

and C  

7.5 × 10, 1.5 ×  10 

 (m) 

Distance 

between bolts A 

and B; and C 

and D  

6.0 × 10, 1.2 ×  10 

 

Since the four bolts are symmetrically installed and are 

equally distanced from the centroid point , the distance from 

each bolt to the centroid is  = 0.5  . The shear reaction   and moment reaction   at   are given by  =   and  =        , respectively. The primary shear load per 

bolt is ′ = , and the secondary shear forces are equal and are 

given by ′′ = 42 =  4. By applying the parallelogram rule, we 

obtain the magnitudes of the primary and the secondary shear 

forces as follows.   

 =  =    ′′ − 2 47 

 =  =     − 2 48 

where  =    arctan , and 2 =  2 − arctan 45. 
The channel has one failure mode caused by excessive 

bearing stress. The bearing area of the channel is 1 = 11 , 

where 1 is the inner diameter of the hole  in the channel. 1 =  and 1 = 1. The limit-state function is given by 

 = ,   =  −  49 

The bar is another in-house component. It has two failure 

modes. The first one is due to an excessive bearing stress, and 

the associated limit-state function is given by 

 = ,   =   −  50 

in which 2 = 22, where 2 is the inner diameter of hole  

of the bar, 2 is the yield strength. 2 = , and 2 = 2. 

The second failure mode occurs due to the excessive bending 

stress at the cross section -, whose moment of inertia of the 

cross section is given by 

 =   − 2ℎ  2 = 22312 − 2 2312   534 2   51 

and the limit-state function is defined by 

 =  ,   = / −   52 

in which  /  is the section modulus,  = /2 , and 1 =1  2 is the bending moment.  

We now discuss the outsourced components. Bolts , ,  

and   are components with observable responses, and the 

system designer does not know their failure modes and limit-

state functions. Experiments on the individual bolts are 

performed until the bolts fail, and the values of the force  are 

recorded upon failure. Their reliability is estimated from the 

experimental results. To mimic the actual physical experiments 

and simulate the experiments. we use their true limit-state 

functions, which are given by  

 =   ,   =  −    53 

 =  ,   =  −   54 

where  and  are the areas subject to shear stresses, and   and   are the allowable shear stresses of bolt   and  , 

respectively.  = ,  , 4 =  .  = ,  , 5 = . 
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6 =  6, 6  =  −   55 

 =  ,   =  −    56 

where  and  are areas subject to shear stresses, and  

and   are the allowable shear stresses of bolt   and  , 

respectively. 6 = ,  , 6 =  . 7 = ,  , 7 = . We also use the true distributions associated with the 

outsourced variables to simulate the experiments. The 

distributions are given in Table 4. 

 

Table 4 Distributions associated with observable responses 

 m 

Bolt A 

shear-

stress area 
1.44 × 10, 2.88 ×  10 

  

Bolt B 

shear-

stress area 

1.44 × 10, 2.88 ×  10 

   

Bolt C 

shear-

stress area 

1.15 × 10, 2.88 ×  10 

  

Bolt D 

shear-

stress area 

1.15 × 10, 2.88 ×  10 

  

Bolt A 

allowable 

shear stress 

310 ×  10, 24.8 ×  10 

   

Bolt B 

allowable 

shear stress 

310 ×  10, 24.8 ×  10 

   

Bolt C 

allowable 

shear stress 

310 ×  10, 24.8 ×  10 

   

Bolt D 

allowable 

shear stress 

310 ×  10, 24.8 ×  10 

   
Bolt A 

diameter 
1.6 × 10, 6.4 ×  10 

  
Bolt B 

diameter 
1.6 × 10, 6.4 ×  10 

   
Bolt C 

diameter 
1.6 × 10, 3.2 ×  10 

   
Bolt D 

diameter 
1.6 × 10, 3.2 ×  10 

 

With the above true limit-state functions, we use MCS to 

generate samples of all the random variables in Table 4 and 

estimate the reliability of the four components. The reliability of 

each of the bolts is assumed from the experiments. We also pick 

17 random samples of the force   in the failure region and 

assume that they are the recorded samples from the experiments.  

From the estimated reliability, the system designer 

calculates the reliability indexes and reconstructs the equivalent 

limit-state functions as follows. 

 =       = 4, … ,7 

in which   = 3.4914 , 5 =  3.4914 , 6 = 4.1971 , 7 =4.1971.  

Using    = 4, … ,7) and the proposed Bayesian approach, 

the system designer estimates the unknown coefficients   and 

obtain  = −0.8316 ,  = −0.8475 ,  = −0.7675 ,  = −0.8536. Their true values from the assumed true limit-

state function are  =   −0.8229 ,  =  −0.8229 ,  =  −0.7980 and  =  −0.7980. The results show 

that the estimated coefficients are close to the true ones. 

Using the estimated coefficients, the system designer 

obtains the covariance matrix as follows.  

 =
⎣⎢⎢
⎢⎡ 1.00.6134⋮0.59660.6618

   
0.61341.0⋮0.62630.6948

      
⋯⋯⋱⋯⋯

       
0.59660.6263⋮1.00.6789

          
0.66180.6948⋮0.67891.0

   
⎦⎥⎥
⎥⎤

×
 

The mean vector is 

  = , , … ,  =3.8461, 3.8461, 3.7545, 3.4914, 3.4914, 4.1971, 4.1971 

Plugging   and   into Eq. (42), the system designer 

predicts the probability of system failure, and the result is given 

in Table 5. The result from the independence assumption method 

is also provided in the table. MCS is used to produce a true 

prediction with the assumption that all the limit-state functions ⋅  = 1, 2, 3  and ⋅  = 4, 5, 6, 7  are known. 

The sample size of MCS is 106 . The error of the proposed 

method is 5.9%, much smaller than the error from the 

independence assumption method, which is approximately 

20.0%.  

Table 5 The probabilities of system failure  

Method   % 

Proposed method 5.6263 × 10 5.8519 

Independence 

assumption method 

7.1418 × 10 19.5077 

MCS 5.9760 × 10 N/A 

 

CONCLUSIONS 
This study considers the reliability prediction for series 

systems with both predictable and observable component 

responses. The proposed method is applicable for systems whose 

load is shared by its components and whose failure is due to 

excessive loading. The results demonstrate that it is possible to 

reconstruct an equivalent limit-state function for an observable 

component response if the load that causes a failure is recorded 

upon failure with a set of samples. The unknown coefficient of 

the component load in the equivalent limit-state function can be 
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obtained by the maximum likelihood estimate with the proposed 

Bayesian approach. The joint PDF of all the component 

responses is then obtainable with the availability of all the limit-

state functions of predictable and observable components 

responses, thereby leading to a more accurate system reliability 

prediction than the traditional method that assumes independent 

component states. The other advantage of the proposed method 

is that it can deal with any relationships between system and 

component loads, including nonlinear relationships. 

The method is limited to systems with only one system load 

and the component load data collected are truly from the 

distribution of the component load. The future work will focus 

on the extension to systems with multiple system loads and other 

types of load data. 
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