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ABSTRACT

Predicting system reliability is often a core task in systems design. System reliability depends
on component reliability and dependence of components. Component reliability can be predicted
with a physics-based approach if the associated physical models are available. If the models do
not exist, component reliability may be estimated from data. When both types of components
coexist, their dependence is often unknown, and the component states are therefore assumed
independent by the traditional method, which can result in a large error. This work proposes a new
system reliability method to recover the missing component dependence, thereby leading to a more
accurate estimate of the joint probability density (PDF) of all the component states. The method
works for series systems whose load is shared by its components that may fail due to excessive
loading. For components without physical models available, the load data are recorded upon
failure, and equivalent physical models are created; the model parameters are estimated by the
proposed Bayesian approach. Then models of all component states become available, and the
dependence of component states, as well as their joint PDF, can be estimated. Four examples are

used to evaluate the proposed method, and the results indicate that the method can produce more



accurate predictions of system reliability than the traditional method that assumes independent
component states.
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1. INTRODUCTION

For many system design problems, it is crucial to predict the reliability of the system under
design. The reliability prediction can help not only evaluate and select design concepts, but also
produce a design that satisfies the reliability requirement. Doing so in the design stage is more
effective than addressing any reliability issues after the system is already in operation.

The system designer usually quantifies system reliability by the probability that a system works
properly without failures. The reliability may be estimated either by a physics-based approach [1-
4] or a statistics-based approach [5, 6]. A physics-based approach predicts the reliability using
computational models derived from physics principles, and the computational models are called
limit-state functions. On the other hand, a statistics-based approach estimates the reliability using
data from fields or experiments.

When the dependence between component states is unknown, the states of components are
usually assumed independent. Under this assumption, the system reliability R; of a series system

is given by [6]

R, = ﬁRi (1

where R; is the reliability of component i, and n is the number of components. The independence

assumption may result in a significant error if component states are strongly dependent [7].



Many statistics-based methods for component reliability are available in reliability engineering
[6]. Physics-based methods for component reliability have also been extensively investigated. The
most widely used component reliability methods include the First Order Reliability Method
(FORM) [8-10], the Second Order Reliability (SORM) [11-13], Monte Carlo simulation (MCS)
methods [14, 15], Saddlepoint approximations (SPA) [16-19], and metamodeling methods [20-22].

Physics-based component reliability methods can be easily extended to system reliability
analysis when all component limit-state functions are available. In principle, the joint PDF of all
the component states can be derived from the limit-state functions by FORM, SORM, SPA, MCS,
and other methods [2, 7, 21-24].

If some of the limit-state functions, however, are not available, the joint PDF of all component
states will be unknown. For example, if some of the components are outsourced, their limit-state
functions are proprietary to the component suppliers and are unknown to the system designer. If
the reliability of some components is estimated from field data by a statistics-based approach, their
limit-state functions are also unknown. Either case causes difficulties in accurately predicting the
system reliability.

Several methods have been developed to address the above problem. The system reliability
method in [7] deals with unknown details of outsourced components, and it assumes that the
reliability function of an outsourced component with respect to various levels of component load
is provided by the component supplier. The feasibility of integrating both physical- and statistics-
approaches is investigated with some unknown limit-state functions for systems whose load is
shared by its components and whose failure is due to excessive loading. In this area, two studies
have been conducted for situations where some component parameters are recorded upon failure

[5], or only the load parameters upon failure are collected [25]. The two- and one-class Support



Vector Machine methods [7, 25] are used for the two cases. Similar work has been performed for
the re-evaluation of component reliability for a component when it is used in a new system with a
different load [26]. These methods assume that the system load is shared by the components of the
system and that the component loads have a linear relationship with the system load [27].

The objective of this work is to develop a new system reliability method for a system whose
load is shared by its components. Different from the existing method, the component load can be
a nonlinear function of the system load. For the components without limit-state functions, the
component load is recorded once the component fails. The proposed method is more general than
the existing methods because it does not assume a linear relationship between the component and
system loads, and it requires less data.

The rest of this paper is organized as follows. Sec. 2 reviews FORM, and Sec. 3 discusses the
proposed method, followed by examples in Sec. 4. Sec. 5 provides conclusions and suggests future

work.

2. REVIEW OF FIRST-ORDER RELIABILITY METHOD (FORM)
FORM is a physics-based reliability method, which relies on a limit-state function defined by

Y = g(X) (2)

where Y is a response or state variable. If Y < 0, a failure occurs; otherwise, the component is

safe. X is a vector of input random variables. The component reliability is calculated by
R =Pr{g(X) = 0} (3)

Let the joint probability density function (PDF) of X be fx(x). The associated probability of

failure is obtained by integrating the PDF in the failure region g(X) < 0 and is given by



pr=1-R=Prlg(x) <0} = | @ @
g(x)<0

FORM approximates the integral in Eq. (4) by linearizing the failure boundary g(X) = 0 using
the first-order Taylor expansion. FORM involves the following three steps.

Step 1: Transform random variables into independent standard normal variables

X = (X1, X3, ..., Xpn) in the X-space is transformed into independent standard normal variables
U = (Uy, Uy, ..., Up,) in the U-space. If the components of X are independent, the transformation
is given by [28]

Fi(X;) = &) (5)

where F;(-) and ®(-) are the cumulative distribution function (CDF) of X; and U;, respectively.

The transformation gives
X; = F7H(@(U) (6)

We denote the transformation by T'(+).
Step 2: Search for the most probable point (MPP)

The limit-state function is now
Y =9gX) =g(T)) =6(0) (7

At the limit state hypersurface G(U) = 0, the point with the highest PDF value is called the

MPP, denoted by u*. The MPP is obtained by
u* = argmin+/uu’, subject to G(u) = 0 (8)
u

Then the limit-state function is linearized at the MPP, whose magnitude f = /u*(u*)T is

called the reliability index. The probability of failure is computed by



pr = P(=h) (9)

3. METHODOLOGY
3.1 Overview

The proposed method is based on FORM. As discussed previously, this study deals with series
systems, and the results can be easily extended to parallel systems. In this study, a component
refers to a failure mode. A physical component may also be considered as a system because it may
have multiple failure modes. For the purpose of system reliability analysis, a system may be a
physical system or a physical component. For a series system, the system fails if any of its
component fails or any of its failure mode occurs.

In this study, we assume that components fail due to excessive loading. The system load L is
shared by components, and the load acting on the i-th component is denoted by L;.

There are two types of components in the systems.

1) Components with predictable responses

The state of the component can be predicted by a limit-state function, which is defined by
v = g:(X;, L) (10)

where Y/ is the response of component i, i = 1,2, ..., np, in which 7, is the number of predictable
components. X; is a vector of random variables (except L;) for the component, such as material
properties and dimensions of the component. If Y;” < 0, a failure occurs. The probability of failure
can be predicted by a physics-based reliability method such as FORM. The relationship between

L and L; is determined by a function H;(+); namely
Li = H(L) (11)

H;(-) may be a nonlinear function.



2) Components with observable responses

The state of the component Y9, i = 1,2,...,n,, with n, being the number of observable
responses, is observed in field or experiments, and the probability of failure is estimated from data
collected. Common reliability engineering methodologies can be used to estimate the probability
of failure. No limit-state function is available due to the lack of understanding of the physics of
failure or outsourcing.

This study considers the most general problem where both types of components coexist in a

system. The system designer has the following information.

e The component reliability R;, i = 1,2, ..., n. R; is predicted by its limit-state function with
a predictable response or is estimated by data with an observable response.

e Distribution of the system load L with PDF f; (1) and CDF F,(l).

e The failure data of the component load of an observable component. For a component with
an observable response, the component load is collected or recorded when once the
component fails.

e Limit-state functions and their input variables for components with predictable responses.

Instead of using the independence assumption in Eq. (1), the proposed method helps the system

designer recover the missing dependence between all the component responses and their joint PDF,
resulting in a more accurate system reliability prediction.

The key to the proposed method is to reconstruct equivalent limit-state functions for observable

responses. We use FORM so that an equivalent limit-state function in the U-space is linear with
respect to the component load and another random variable, which is a linear combination of all

random input variables except the component load. Then all the responses can be modeled by a



multivariate normal distribution. The correlations of all the responses can then be found since only
the component loads contribute to the correlations.
3.2 Reliability prediction for components with observable responses

Suppose the true limit-state function of an observable response is
v? = g:(Xy, L) = g:(Xy, Hy (L)) (12)
where X; is a vector of all the input random variables, except the component load, and the
relationship between L and L; is determined by a function H;(:) in Eq. (11). The limit-state
function is not available to the system designer. Data of the component load are collected from
experiments or field. The recorded component load data are in a dataset l; = (i1, liz, -, Lig,) >
where d; is the size of the dataset. The probability of failure py; is estimated from the data.
At the limit state Y? = g;(X;, L;) = 0, we solve for the component load L, and we have L; =
g7 (X, Y°), where g;1(+) is the inverse function of g;(-). The failure condition becomes

g;1() — L; < 0, where we consider g; *(-) the general strength (capacity) of the component. As

a result, we rebuild the equivalent limit-state function as
v =C - L (13)

where C; is the general strength of the component g; * (+) and is a function of X;.

C; and L; are independent. If Y,° < 0, or C; < L;, a failure occurs. Eq. (13) is based on the well-
known stress and strength interference theory [29, 30], which applies to the systems whose failure
is due to excessive loading.

With FORM, the limit-state function in the U-space becomes
?iO = aCiUCi + aLiULi + ﬂi (14)

where the reliability index £; is derived from Eq. (9) as follows:



Bi = @7 (—psi) (15)

When Y0 = ac,Uc, + a, Uy, + B; <0, afailure occurs. The reconstructed limit-state function

is illustrated in Fig. 1.
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Fig. 1 Reconstructed limit-state function

The failure region is determined by a¢,U¢, + @, Uy, + B; < 0. Let the random variables of the

load Uy, and capacity U in the failure region be U; and Ug,, respectively. They are conditional

random variables given a¢ Uc, + a, Uy, + B; <0, 0r Ug, < —ai(aLiULi + ﬂi).
Cy

The joint PDF of U¢, and Uy, is ¢(c), where ¢(-) is the PDF of a standard normal variable.

The joint distribution of U and U] is truncated by the safe region, and their joint PDF (defined in

the failure region) is given by

¢()p)
fULi,Ugi(l' 0) = > ifac,Uc, + a, Uy, + B <

(16)

L
0 otherwise



The joint PDF is plotted in Fig. 2.

Joint PDF of U, and U,

acUe, + a,U,, + B <0

Failure Region

Fig. 2 Reconstructed equivalent limit-state function

Then the PDF of U; is given by

+ o0 _ai(;. aLiULi+Bi
fULi = f fUL,Ué(l, c)dc :f l( )Mdc

—o Dri
1 a.l+ B;
=—¢()P (—L‘—ﬁl> (17)
pfi aCi
Using af, + a, = 1, we have
a,l+pB

1
fu ) =—¢L®| - (18)
i Dri

/1—afi

where f UL.(I) is the conditional PDF of the component load in the failure region, and a;, is

unknown. From the perspective of the Bayesian Theorem [31, 32], f vl (1) is the posterior PDF of

10



the component load given that a failure has occurred, and its unknown parameter ;; can be
estimated from the observations or the samples of the component load. Transforming the load data
l; = (lyi) Liz, -, Lig,) into the U-space, we obtain the sample of U; , u;, = (uLil'uLiz' s Uig, )

The likelihood function is defined by
agur.;i + b
v =] [plu)e| -—2== (19)

Maximizing the likelihood function, we obtain a,.

au.;i + b
a;, = argmin 1_[¢(uLu) — (20)
—1<CZL <0
For computational convenience, we use the natural logarithm of the likelihood function, known

as the log-likelihood function, as follows:

d;

o
a;, = argmin z gblog(uLij) +log|P | —

—-1=< <0 n
L

(21

Eq. (21) presents a one-dimensional nonlinear optimization problem, and an analytical solution
does not exist. A nonlinear programming algorithm can be used to solve it. In this work, we use
the sequential quadratic programming method. To make sure a true optimal solution is found, we

may use different starting points for ;. If different answers are obtained, we should use the one

aLuLl]-l_Bl

’_2
1aLi

that has the minimum objective function or Zj.iil 0] log(uLi j) +log|®| —

11



After a;, is found, the equivalent limit-state function in Eq. (14) is fully defined. Then the

dependence between any two observable responses can be recovered. For example, for observable

components 7 and j, the equivalent limit-state functions are

{E?io = as,Uc, + a, Uy, + B; 22)
YO = as,Uc; + ay, Uy, + B;
Their covariance is
cov(ype,vPl) = a,,,COV(UL,UL) (23)
where COV () stands for covariance.
Recall that L; = H;(L) and L; = H;(L).
Uy, = @71 (F(L)) = o (F(H,(1)))
Uy, = &7 (FL(Lj)) — o1 <FL (H,-(L))) @
Let U, be the transformation of L in the U-space.
U, =o' (F.)) (25)

Assume that the component load L; increases as system load L increases. Then H;(-) is an

increasing function. The CDF of L; is given by

FLi(li) = Pr{Li < ll} = Pr{Hl(L) < ll} = Pr{L < Hi_l(li)}
=F,H'(ID) = F.(D (26)

where H; 1 (-) is the inverse of H;(+), and I = H; *(l;). Transforming L; into U 1;» We obtain

Uy, = @7t (L)) = o (F(1)) @7)

4

12



Using Eq. (24), we know that U;, = U, . Similarly, we have UL]. = U, . As a result,

cov (ULi, UL],) =1, and
Cov(ye,v9) = ayay, (28)

Eq. (28) indicates how the relationship between component and system loads does not affect
the covariance between two observable responses. This conclusion also holds for two predictable
responses and a pair of observable and predictable responses. As a result, the proposed method can
deal with any relationships between component and system loads if the function between the two

types of loads is monotonically increasing.

3.3 Verifying covariance of two conservable responses
We now verify the conclusion in Sec. 3.2 with a linear case and a nonlinear case.
Case 1: Linear relationship between normally distributed component and system loads
Assume L~N(u;,07), which means that L is normally distributed with a mean of y; and a
standard deviation of g, . Also assume L; = k;L and L; = k;L, where k; and k; are positive

constants. Transforming L; and L; into U;, and UL]., we have

:kiL_kiHL:L_#L

L.
' kioy, oL
29
:kjL_ijL:L_#L (29)
Ly kjoy, oy

This verifies COV (ULi, ULj) = = COV(L,L) = 1.
L

Case 2: Nonlinear relationship between a component and the system load

The verification is given in Example 1 in Sec. 4.

13



3.4 System reliability prediction
After the equivalent limit-state functions of observable responses are constructed, the limit-
state functions of all the components will be available to the system designer. With the use of

FORM, all the limit-state functions in the U-space are given by

?iP = aCiUCi + OlLiULi + ﬁili = 1,2, ...,np

. ) (30)
vo = acUc; +ay,Uy, + B, i =12,..,n9

Then all the responses are assembled into Y = (Y7, Y?), where Y* = (Y/,¥7, ..., ¥}) and
YO = (Y2, 72, ...,?,?P). It can be shown that Y follows a n-dimensional multivariate normal

distribution Y~N,,(u, ), where n = np +n,, n is the mean vector, and X is the covariance

matrix.
w= (", u0) = (BF,B5, . BRo B, BS, e BE,) (31)
where
W= (B85, .. BEy) (32)
and
no = (82,83, ... %) (33)

The covariance matrix is

zpp zPO
2= (ZOP 200) o
oy MpXMp  Tp XM
with sizes of(no Xnp Ny X no)'
PP _ YP,vr
yPP — (COV(Yi Y ))i,j=1,2,...,np >

14



% = (cov(72,7°)) (36)

i,j=1,2,..,np

xP0 = (cov(77,7°)) (37)

i=1,2,..1p,j=12,..M0

The elements of the covariance matrix are given by

CovV(Yr,v0) = aay, (38)
CovV(Yr,v0) = aay, (39)
Cov(ye,v9) = aya, (40)

The system reliability is then calculated by
n n
Rszpr(ﬂz>o>=Pr(ﬂ—Yi<o> (41)
i=1 i=1

The joint PDF and CDF of —Y be ¢,,(¥; —, Z) and ®,,(§; —p, ), respectively; then

Re=0,0-nD) = [ | dui-wDay 42)

Numerical methods [33-36] or MCS can be used to calculate the multivariate integral in Eq.
(42).

The accuracy of the reliability prediction can be improved if a more accurate component
reliability method such as MCS is used. This can be achieved with a more accurate component
reliability prediction for predictable responses. If we have a more accurate result of the probability

of failure ps; of the j-th component with a predictable response, we can use py; to obtain reliability

index B; with higher accuracy in Eq. (30) using Eq. (15); namely, 8; = @~ (—py;).

15



4. EXAMPLES

In this section, four examples are used to demonstrate the proposed methods. Example 1
verifies that the covariance between two component loads in the U-space is equal to 1 as discussed
in Sec. 3.2. Example 2 provides a step-by-step demonstration to show how the unknown
covariance between two observable responses is recovered by the Bayesian approach. Example 3
shows how to calculate the probability of system failure in a mechanical system with two types of
components. Example 4 involves a mechanical system with more components and random

variables.
4.1 Examplel: Estimation and verification of covariance between two component loads

A system load L follows a lognormal distribution, denoted by L~LN(u,, 6,%), with a mean and
a standard deviation of u; = 6.9027 and o;, = 0.09975, respectively. The component loads of

two components are given by

{Ll =H,(L)=1*°*+1 (43)

L, = H,(L) =3L%° -1

We now use MCS to demonstrate that the covariance between component loads Uy, and U,
is 1 even though the functions in Eq. (43) are nonlinear.

We first generate samples of L with a sample size of 10°. By plugging the samples of L into
Eq. (43), we get the samples of L; and L,. The empirical CDF of L, and L,, denoted by F;_(l;)
and Fy, (1,), respectively, are estimated and are shown in Figs. 3 and 4. Then transforming the load
data L, and L, into the U-space by U, = CD_l(FLi(li)),i = 1,2, we obtain samples Uy, and U, ,.
We then use the samples to estimate the covariance of U, and U, ,. The flowchart is given in Fig.

S.

16
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Fig. 4 Empirical CDF of L,
The covariance of U, and U, is found to be COV(ULI, ULz) = 1.0077, which is close to the

true value of 1. Note that the covariance cannot exceed 1. C OV(U 1 U Lz) is slightly greater than 1

due to an accumulative numerical error.
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Step 1: Estimate CDFs of L, Step 2: Estimate covariance of
and L, Uy, and Uy,

N
Transform samples of L, and
Generate samples of L L, in U-space
J
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Obtain samples of L, and Obtain samples of U, and
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A
v e N
; Calculate the covariance of
‘ Estimate CII?F of Lyand | | U, and Uy,
2

Fig. S Flow chart of estimating the covariance
4.2 Example 2: A mathematical problem
The limit-state function of a component with an observable response in the U-space is given

by
?=a1U1+0l2U2 +0l3U3 + OlLUL-}-ﬁ (44’)

where U}, is the component load, and U; (i = 1, 2, 3) are other random variables, and f = 3.5. The
unit vector is given by a = (aq, @y, a3, a;) = (0.8165,0.1361,—0.1361,—0.5443), and the last
component is for the component load; namely, a; = —0.5443.

Now we use the proposed method to estimate a; and compare it with the true value —0.5443.
To mimic the physical experiment, we conduct the experiment on computer. In other words, we
use MCS and the true limit-state function to generate samples of the component load L in the
failure region. The details are as follows. We generate 30 random samples of all the random
variables U,, U,, Us, and Uy; at these sample points, we have response ¥ < 0. This mimics the
component failure. Then the 30 samples of U;, represent the data of component load recorded when

the component failed. We then use the maximum likelihood method in Eq. (19) to estimate «;.

18



Since the above process involves random sampling and the result contains variation, we repeat
the same process 30 times. The estimated a; from the 30 runs are given in Table 1.

The mean and standard deviation of @ are y,, = —0.5372 and g,, = 0.0580, respectively.
Comparing u,, = —0.5372 with the true value —0.5443, we see that they are in good agreement.

Table 1 Estimates of «;,

-0.6199 -0.6293 -0.5561 -0.5468 -0.5769
-0.5160 -0.6190 -0.5438 -0.6216 -0.5575
-0.5655 -0.5569 -0.5378 -0.5866 -0.5391
-0.5417 -0.6255 -0.6037 -0.4839 -0.4825
-0.5876 -0.5617 -0.4753 -0.6197 -0.5441
-0.5859 -0.4413 -0.5473 -0.5473 -0.5920

4.3 Example 3: A system with two shafts

A system consists of two shafts as shown in Fig. 6. Both shafts share the system load L = F. L
follows a normal distribution N(3000,6602) N. The component loads of the shafts 1 and 2 are
given by L; = 0.7L and L, = 0.3L, respectively.

Shaft 1 has a predictable response, and its limit-state function is available and is given by

16 f
Yl == gl(Xl, Ll) == Sl - W 4L?llz + 3T12 (45)
1

where S; is the yield strength of the shaft, T; is the torque applied to the shaft, d; = 39 mm is the

diameter of the shaft, and [ = 600 mm is the length of the shaft. X; = (§;, Ty).

19



Shaft 1

Fig. 6 A system with two shafts

The distributions of S; and T; are N(250, 62) MPa and N (450,202) N-m, respectively. The
system designer uses FORM to perform the reliability analysis, which yields the reliability index
f; = 2.9873 and the limit-state function in the U-space Y{ = a4 Us, + a;,Ur, +a, Uy, — By,
where a; = [ay;, 45, @] =1[0.192752, —0.02602, —0.9809)].

The limit-state function of shaft 2 is unknown, and the shaft has an observable response. Its

reliability is estimated by data. Assume the true limit-state function is given by

X 16
prrue = g (X, Ly) = S, — — 41212 + 3T2 (46)
2

where S, is the yield strength of the shaft, T, is the torque applied to the shaft, d; = 39 mm is the
diameter of the shaft, and [ = 600 mm is the length of the shaft. X, = (S,, T,). The distributions
of S, and T, are N(130,8%) MPa and N(450,20%) N-m, respectively. The reliability of shaft 2 is
estimated by experimental data. We use MCS to mimic the experiment by using the true limit-state

function in Eq. (46). The reliability index obtained is , = 2.9642. The system designer then

20



reconstructs an equivalent limit-state function Y? = as,Us, + a,, U, — B,. The system designer

uses the proposed Bayesian approach with 17 samples of L, in the failure region (in the U-space)

to estimate the unknown coefficient @;,, and the result is a;, = —0.8062. The true coefficient
from the true limit-sate function in Eq. (46) is a;’*® = —0.8028.

The system designer now has the following information: The mean vector p = (g, tz) =
(—2.1313,-3.1224), and the covariance cov(?lp,?zo) = ay,a;, = 0.80, which results in the

1 080

080 1 ) This indicates a strong correlation between the two

covariance matrix X = (

responses. The system probability of failure estimated by the system designer using Eq. (42) is
Prs =1—R=1-®,(0;—p,X) = 2.534 x 1073. The result from the independent component
assumption and the true value are given in Table 2. The true probability of failure is estimated from
MCS using all the limit-state functions with a sample size of 10°. The results show that the
proposed method is more accurate than the traditional method.

Table 2 The probabilities of system failure

Method Dfs %

Proposed method 2.5348 x 1073 0.9
Independence assumption method | 2.9227 x 1073 14.2
MCS 2.5580 x 1073 N/A

In this example, Y; is a predictable response, whose reliability is calculated numerically with
FORM. The number of limit-state function calls is usually used as a measure of computational
efficiency. The number of function calls for Y; is 16.

We now use this example to discuss possible errors in the system reliability prediction. The
errors are from 1) the use of FORM, 2) the limited failure data for observable responses, and 3)

the ignorance of the dependence between components.
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To show the first error due to the use of FORM, we compare the result from FORM using the
true  correlation  coefficient with  the accurate solution. The solution s
2.5347x 107 | and the error is 0.9% compared to the accurate
2.5580 x 1073, The error from FORM in this problem is therefore small.

To examine the second error due to the random data, we ran the problem 30 times with different
random failure data with the same sample size 17. The average solution is 2.5282 X 1073 with an
average error 1.2%. The standard deviation is 8.3677 X 10~°, which is small, indicating the
relatively small error due to the randomness of the failure data.

For the third error due to the ignorance of the dependence between components, we have
already provided the results in Table 2. The table indicates that the error from the independence
assumption method is large.

4.4 Example 4: A connector assembly

A connector assembly system consists of a rectangular steel bar, and a steel channel is
assembled by four identical bolts at points A, B, C and D as shown in Fig. 7 [37]. The external
load F, which is the system load L, acts at the end of the bar.

There are six physical components in the system, where the steel bar and the channel are in-
house designed and manufactured, and the four bolts are purchased from a component supplier.
The reliability of the in-house components is predicted by a physics-based approach, and the
reliability of the outsourced bolts is estimated by data. Hence the responses of the three former
components are predictable, and the responses of the latter four components are observable.

The distributions of random variables known to the system designer are given in Table 3, and
they include the distributions of F and those associated with the in-house components. The limit-

state functions of the two in-house components are derived below.
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Fig. 7 A connector assembly

Table 3 Distributions associated with predictive responses

Variable Description Distribution
F(N) External force N(1.8 x10%3.36 x 103)
d, (m) Channel hole D inner diameter N(1.6 x1073,32 x 10
d, (m) Bar hole D inner diameter N(1.6 x1073,3.2 x 107
S (Pa) Channel yield strength N(300 x 10%24 x 109
S, (Pa) Bar yield strength N(300 x 10°%24 x 109
t; (Pa) Channel thickness N(1.0 x 1073,2.0 x 107°)
t, (Pa) Bar thickness N(1.0 x 1073,2.0 x 107°)
I, (m) See Fig. 7 N(32 x 107,64 x 107%)
L, (m) See Fig. 7 N(5.0 x 1071, 1.0 x 107%)
L, (m) Bar width N(2.0 x 107, 4.0 x 1073)
I, (m) {a)ri(sitallgnaclﬁ(‘fgween bolts 4 and D; N(75 x 1072,1.5 x 10-%)
Is (m) ngt?;flg’%ween boltsdand B, | 60 % 107412 x 10-3)

Since the four bolts are symmetrically installed and are equally distanced from the centroid

point 0, the distance from each bolt to the centroid is 7 = 0.54/1Z + [Z. The shear reaction V and
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moment reaction M at O are givenby V = Fand M = F (11 + 1, + l;‘*), respectively. The primary

shear load per boltis F' = %, and the secondary shear forces are equal and are given by F"' = 2/172 =

:lr. By applying the parallelogram rule, we obtain the magnitudes of the primary and the secondary

shear forces as follows.

Fy=Fy = (F)2+ (F")2 — 2F'F"cosb, (47)

Fe=Fp= J(F)2+ (F")2—2F'F"cos#, (48)

, z , z

where 0; = % + arctan (1_4)’ and 6, = % — arctan (1_4)
5 5

The channel has one failure mode caused by excessive bearing stress. The bearing area of the

channel is A; = t;d;, where d; is the inner diameter of the hole D in the channel. L; = F, and

X; = (8;). The limit-state function is given by

F
Y, =9:Xy,L1) = A_A -5 (49)
1

The bar is another in-house component. It has two failure modes. The first one is due to an

excessive bearing stress, and the associated limit-state function is given by

Fy

a, S (50)

Y, =9,X3,L,) =

in which A, = t,d,, where d, is the inner diameter of hole B of the bar, S, is the yield strength.
L, = F,, and X, = (S,). The second failure mode occurs due to the excessive bending stress at

the cross section A-B, whose moment of inertia of the cross section is given by

— t, 13 t,d3 13
I'= Lyay — 2(Inotes + d?4) = == =2 ot thda (51)

12
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and the limit-state function is defined by

M
Yo = 93(Xa L) = 70= S, (52)

in which I/c is the section modulus, ¢ = [3/2, and M; = F(l; + l,) is the bending moment.

We now discuss the outsourced components. Bolts A, B, C and D are components with
observable responses, and the system designer does not know their failure modes and limit-state
functions. Experiments on the individual bolts are performed until the bolts fail, and the values of
the force F are recorded upon failure. Their reliability is estimated from the experimental results.
To mimic the actual physical experiments and simulate the experiments. we use their true limit-

state functions, which are given by

-~ F

Pire = gie(Xa,Ly) =4~ 14 (53)
sa
Fy

?Strue — gérue(XS;Ls) —

Asb —Tp (54)

where Ag, and Ag, are the areas subject to shear stresses, and 7, and 7, are the allowable shear

stresses of bolt A and B, respectively. Xy = (Asq,To), Ly = Fy. X5 = (Agp, Tp), Ls = Fp.

~

Fe

Ygre = g¢*(Xe Le) = T, (55)
Asc

. Fp

pirue = girue(Xy,Ly) = > —Tq (56)
Asd

where Ag. and Ag, are areas subject to shear stresses, and 7, and 7, are the allowable shear
stresses of bolts C and D, respectively. X¢ = (Ase,Tc), Lg = Fe. X7 = (Asq,T4), L7 = Fp. We
also use the true distributions associated with the outsourced variables to simulate the experiments.
The distributions are given in Table 4.
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With the above true limit-state functions, we use MCS to generate samples of all the random
variables in Table 4 and estimate the reliability of the four components. The reliability of each of
the bolts is assumed from experiments. We also pick 17 random samples of the force F in the
failure region and assume that they are the recorded samples from the experiments.

Table 4 Distributions associated with observable responses

Ay (m?) Bolt A shear-stress area N(1.44 x107%2.88 x 107°)
Agp (m?) Bolt B shear-stress area N(1.44 x107%2.88 x 107°)
As (m?) Bolt C shear-stress area N(1.15 x107%,2.88 x 107°)
Ay (M?) Bolt D shear-stress area N(1.15 x107%,2.88 x 107°)
7, (Pa) Bolt A allowable shear stress LN(310 x 10%24.8 x 10°)
7, (Pa) Bolt B allowable shear stress LN(310 x 10%24.8 x 10°)
7. (Pa) Bolt C allowable shear stress LN(310 x 10%24.8 x 10°)
74 (Pa) Bolt D allowable shear stress LN(310 x 10%24.8 x 10°)
d, (m) Bolt A diameter N(1.6 x 1072,6.4 x 10~%)
d, (m) Bolt B diameter N(1.6 x 1072,6.4 x 10~%)
d. (m) Bolt C diameter N(1.6 x107%,3.2 x 107%)
dyg (m) Bolt D diameter N(1.6 x107%,3.2 x 107%)

From the estimated reliability, the system designer calculates the reliability indexes and

reconstructs the equivalent limit-state functions as follows.
Y2 = a5 Us, + a, Uy, + B; (i = 4,...,7)

in which S, = 3.4914, f5 = 3.4914, f, = 4.1971, , = 4.1971.
Using f; (i = 4, ...,7) and the proposed Bayesian approach, the system designer estimates the

unknown coefficients @;; and obtain a;, = —0.8316, @, = —0.8475, a; = —0.7675, a; =

—0.8536. Their true values from the assumed true limit-state function are ag}me) = —0.8229,
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—0.7980 and a(true) = —0.7980. The results show that the

(true) __ (true) __
ar, = —0.8229, «a = L,

Lg
estimated coefficients are close to the true ones.

Using the estimated coefficients, the system designer obtains the covariance matrix as follows.

1.0 0.6134 0.5966  0.6618
0.6134 1.0 0.6263  0.6948
I=| : - s :
0.5966 0.6263 = 1.0 0.6789
0.6618 0.6948 0.6789 1.0 Ly

The mean vector is
n= (B, P2 ...,B7) = (3.8461,3.8461,3.7545,3.4914,3.4914,4.1971,4.1971)

Plugging p and X into Eq. (42), the system designer predicts the probability of system failure,
and the result is given in Table 5. The result from the independence assumption method is also
provided in the table. MCS is used to produce a true prediction with the assumption that all the
limit-state functions g;(-) (i = 1,2,3) and gfr”e(-) (j = 4,5, 6,7) are known. The sample size of
MCS is 10°. The error of the proposed method is 4.3%, much smaller than the error from the
independence assumption method, which is approximately 19.5%.

Table 5 The probabilities of system failure

Method 12 %

Proposed method 5.7179 x 10~* 4.3
Independence assumption method 7.1418 x 10~* 19.5
MCS 5.9760 x 10~ N/A

Table 6 The number of function evaluations

Limit-state function Function calls
Y 100
Y, 100
Y, 125
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In this example, Y;, Y,, and Y; are predictable responses. Their reliability is calculated
numerically with FORM. The number of function calls for Y}, Y5, and Y; are 100, 100, and 125,
respectively.

5. CONCLUSIONS

This study considers the reliability prediction for series systems with both predictable and
observable component responses. The proposed method is applicable for systems whose load is
shared by its components and whose failure is due to excessive loading. The results demonstrate
that it is possible to reconstruct an equivalent limit-state function for an observable component
response if the load that causes a failure is recorded upon failure with a set of samples. The
unknown coefficient of the component load in the equivalent limit-state function can be obtained
by the maximum likelihood estimate with the proposed Bayesian approach. The joint PDF of all
the component responses is then obtainable with the availability of all the limit-state functions of
predictable and observable components responses, thereby leading to a more accurate system
reliability prediction than the traditional method that assumes independent component states. The
other advantage of the proposed method is that it can deal with any relationships between system
and component loads, including nonlinear relationships.

The method is limited to systems with only one system load. If multiple system loads exist, the
equivalent limit-state function should include multiple component loads that correspond to the
system loads, and there will be multiple unknown coefficients for the component loads. Our future
work will focus on estimating the unknown coefficients by the proposed Bayesian approach. Once
the coefficients are available, the joint distribution of all the components can then be obtained

using the same approach developed in this study.
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