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ABSTRACT 

Predicting system reliability is often a core task in systems design. System reliability depends 

on component reliability and dependence of components. Component reliability can be predicted 

with a physics-based approach if the associated physical models are available. If the models do 

not exist, component reliability may be estimated from data. When both types of components 

coexist, their dependence is often unknown, and the component states are therefore assumed 

independent by the traditional method, which can result in a large error. This work proposes a new 

system reliability method to recover the missing component dependence, thereby leading to a more 

accurate estimate of the joint probability density (PDF) of all the component states. The method 

works for series systems whose load is shared by its components that may fail due to excessive 

loading. For components without physical models available, the load data are recorded upon 

failure, and equivalent physical models are created; the model parameters are estimated by the 

proposed Bayesian approach. Then models of all component states become available, and the 

dependence of component states, as well as their joint PDF, can be estimated. Four examples are 

used to evaluate the proposed method, and the results indicate that the method can produce more 
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accurate predictions of system reliability than the traditional method that assumes independent 

component states. 

Keywords: Reliability; System; Bayesian method; Uncertainty; Optimization 

 

1. INTRODUCTION 

For many system design problems, it is crucial to predict the reliability of the system under 

design. The reliability prediction can help not only evaluate and select design concepts, but also 

produce a design that satisfies the reliability requirement. Doing so in the design stage is more 

effective than addressing any reliability issues after the system is already in operation.  

The system designer usually quantifies system reliability by the probability that a system works 

properly without failures. The reliability may be estimated either by a physics-based approach [1-

4] or a statistics-based approach [5, 6]. A physics-based approach predicts the reliability using 

computational models derived from physics principles, and the computational models are called 

limit-state functions. On the other hand, a statistics-based approach estimates the reliability using 

data from fields or experiments.  

When the dependence between component states is unknown, the states of components are 

usually assumed independent. Under this assumption, the system reliability 𝑅𝑅𝑠𝑠 of a series system 

is given by [6] 

𝑅𝑅𝑠𝑠 = �𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(1) 

where 𝑅𝑅𝑖𝑖 is the reliability of component 𝑖𝑖, and 𝑛𝑛 is the number of components. The independence 

assumption may result in a significant error if component states are strongly dependent [7].  
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Many statistics-based methods for component reliability are available in reliability engineering 

[6]. Physics-based methods for component reliability have also been extensively investigated. The 

most widely used component reliability methods include the First Order Reliability Method 

(FORM) [8-10], the Second Order Reliability (SORM) [11-13], Monte Carlo simulation (MCS) 

methods [14, 15], Saddlepoint approximations (SPA) [16-19], and metamodeling methods [20-22]. 

Physics-based component reliability methods can be easily extended to system reliability 

analysis when all component limit-state functions are available. In principle, the joint PDF of all 

the component states can be derived from the limit-state functions by FORM, SORM, SPA, MCS, 

and other methods [2, 7, 21-24].  

If some of the limit-state functions, however, are not available, the joint PDF of all component 

states will be unknown. For example, if some of the components are outsourced, their limit-state 

functions are proprietary to the component suppliers and are unknown to the system designer. If 

the reliability of some components is estimated from field data by a statistics-based approach, their 

limit-state functions are also unknown. Either case causes difficulties in accurately predicting the 

system reliability.  

Several methods have been developed to address the above problem. The system reliability 

method in [7] deals with unknown details of outsourced components, and it assumes that the 

reliability function of an outsourced component with respect to various levels of component load 

is provided by the component supplier. The feasibility of integrating both physical- and statistics- 

approaches is investigated with some unknown limit-state functions for systems whose load is 

shared by its components and whose failure is due to excessive loading. In this area, two studies 

have been conducted for situations where some component parameters are recorded upon failure 

[5], or only the load parameters upon failure are collected [25]. The two- and one-class Support 
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Vector Machine methods [7, 25] are used for the two cases. Similar work has been performed for 

the re-evaluation of component reliability for a component when it is used in a new system with a 

different load [26]. These methods assume that the system load is shared by the components of the 

system and that the component loads have a linear relationship with the system load [27].  

 The objective of this work is to develop a new system reliability method for a system whose 

load is shared by its components. Different from the existing method, the component load can be 

a nonlinear function of the system load. For the components without limit-state functions, the 

component load is recorded once the component fails. The proposed method is more general than 

the existing methods because it does not assume a linear relationship between the component and 

system loads, and it requires less data.  

The rest of this paper is organized as follows. Sec. 2 reviews FORM, and Sec. 3 discusses the 

proposed method, followed by examples in Sec. 4. Sec. 5 provides conclusions and suggests future 

work. 

 

2. REVIEW OF FIRST-ORDER RELIABILITY METHOD (FORM) 

FORM is a physics-based reliability method, which relies on a limit-state function defined by 

𝑌𝑌 = 𝑔𝑔(𝐗𝐗) (2) 

where 𝑌𝑌 is a response or state variable. If 𝑌𝑌 < 0, a failure occurs; otherwise, the component is 

safe. 𝐗𝐗 is a vector of input random variables. The component reliability is calculated by 

𝑅𝑅 = Pr{𝑔𝑔(𝐗𝐗) ≥ 0} (3) 

Let the joint probability density function (PDF) of 𝐗𝐗 be 𝑓𝑓𝐗𝐗(𝒙𝒙). The associated probability of 

failure is obtained by integrating the PDF in the failure region 𝑔𝑔(𝑿𝑿) < 0 and is given by 
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𝑝𝑝𝑓𝑓 = 1 −  𝑅𝑅 =  Pr{𝑔𝑔(𝐗𝐗) < 0} = � 𝑓𝑓𝐗𝐗(𝒙𝒙)
  

𝑔𝑔(𝒙𝒙)<0
𝑑𝑑𝒙𝒙 (4) 

FORM approximates the integral in Eq. (4) by linearizing the failure boundary 𝑔𝑔(𝑿𝑿) = 0 using 

the first-order Taylor expansion. FORM involves the following three steps. 

Step 1: Transform random variables into independent standard normal variables 

𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚) in the X-space is transformed into independent standard normal variables 

𝐔𝐔 = (𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑚𝑚) in the U-space. If the components of 𝐗𝐗 are independent, the transformation 

is given by [28] 

𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖) = Φ(𝑈𝑈𝑖𝑖) (5) 

where 𝐹𝐹𝑖𝑖(⋅) and Φ(⋅) are the cumulative distribution function (CDF) of 𝑋𝑋𝑖𝑖 and 𝑈𝑈𝑖𝑖, respectively.    

The transformation gives 

𝑋𝑋𝑖𝑖 = 𝐹𝐹𝑖𝑖−1�Φ(𝑈𝑈𝑖𝑖)� (6) 

We denote the transformation by 𝑇𝑇(⋅). 

Step 2: Search for the most probable point (MPP) 

The limit-state function is now  

𝑌𝑌 = 𝑔𝑔(𝐗𝐗) = 𝑔𝑔(𝑇𝑇(𝐔𝐔)) = 𝐺𝐺(𝐔𝐔) (7) 

At the limit state hypersurface 𝐺𝐺(𝑼𝑼) =  0, the point with the highest PDF value is called the 

MPP, denoted by 𝐮𝐮∗. The MPP is obtained by 

𝐮𝐮∗ = arg min
𝐮𝐮
�𝐮𝐮𝐮𝐮𝑇𝑇 , subject to𝐺𝐺(𝐮𝐮) = 0 (8) 

Then the limit-state function is linearized at the MPP, whose magnitude 𝛽𝛽 = �𝐮𝐮∗(𝐮𝐮∗)T  is 

called the reliability index. The probability of failure is computed by 
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𝑝𝑝𝑓𝑓 = 𝛷𝛷(−𝛽𝛽) (9) 

3. METHODOLOGY 

3.1 Overview 

The proposed method is based on FORM. As discussed previously, this study deals with series 

systems, and the results can be easily extended to parallel systems. In this study, a component 

refers to a failure mode. A physical component may also be considered as a system because it may 

have multiple failure modes. For the purpose of system reliability analysis, a system may be a 

physical system or a physical component. For a series system, the system fails if any of its 

component fails or any of its failure mode occurs.  

In this study, we assume that components fail due to excessive loading. The system load 𝐿𝐿 is 

shared by components, and the load acting on the i-th component is denoted by 𝐿𝐿𝑖𝑖.  

There are two types of components in the systems.  

1) Components with predictable responses 

The state of the component can be predicted by a limit-state function, which is defined by  

𝑌𝑌𝑖𝑖𝑃𝑃 = 𝑔𝑔𝑖𝑖(𝐗𝐗𝑖𝑖 ,𝐿𝐿𝑖𝑖) (10) 

where 𝑌𝑌𝑖𝑖𝑃𝑃 is the response of component 𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑃𝑃, in which 𝑛𝑛𝑃𝑃 is the number of predictable 

components. 𝐗𝐗𝑖𝑖 is a vector of random variables (except 𝐿𝐿𝑖𝑖) for the component, such as material 

properties and dimensions of the component. If 𝑌𝑌𝑖𝑖𝑃𝑃 < 0, a failure occurs. The probability of failure 

can be predicted by a physics-based reliability method such as FORM. The relationship between 

𝐿𝐿 and 𝐿𝐿𝑖𝑖 is determined by a function 𝐻𝐻𝑖𝑖(⋅); namely 

𝐿𝐿𝑖𝑖 = 𝐻𝐻𝑖𝑖(𝐿𝐿) (11) 

𝐻𝐻𝑖𝑖(⋅) may be a nonlinear function.  
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2) Components with observable responses 

The state of the component 𝑌𝑌𝑖𝑖𝑂𝑂 , 𝑖𝑖 = 1,2, … , 𝑛𝑛𝑂𝑂 , with 𝑛𝑛𝑂𝑂   being the number of observable 

responses, is observed in field or experiments, and the probability of failure is estimated from data 

collected. Common reliability engineering methodologies can be used to estimate the probability 

of failure. No limit-state function is available due to the lack of understanding of the physics of 

failure or outsourcing.  

This study considers the most general problem where both types of components coexist in a 

system. The system designer has the following information. 

• The component reliability 𝑅𝑅𝑖𝑖, 𝑖𝑖 = 1,2, … , 𝑛𝑛. 𝑅𝑅𝑖𝑖 is predicted by its limit-state function with 

a predictable response or is estimated by data with an observable response. 

• Distribution of the system load 𝐿𝐿 with PDF 𝑓𝑓𝐿𝐿(𝑙𝑙) and CDF 𝐹𝐹𝐿𝐿(𝑙𝑙). 

• The failure data of the component load of an observable component. For a component with 

an observable response, the component load is collected or recorded when once the 

component fails.  

• Limit-state functions and their input variables for components with predictable responses. 

Instead of using the independence assumption in Eq. (1), the proposed method helps the system 

designer recover the missing dependence between all the component responses and their joint PDF, 

resulting in a more accurate system reliability prediction.  

The key to the proposed method is to reconstruct equivalent limit-state functions for observable 

responses. We use FORM so that an equivalent limit-state function in the U-space is linear with 

respect to the component load and another random variable, which is a linear combination of all 

random input variables except the component load. Then all the responses can be modeled by a 
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multivariate normal distribution. The correlations of all the responses can then be found since only 

the component loads contribute to the correlations. 

3.2 Reliability prediction for components with observable responses 

Suppose the true limit-state function of an observable response is  

𝑌𝑌𝑖𝑖𝑂𝑂 = 𝑔𝑔𝑖𝑖(𝐗𝐗𝑖𝑖, 𝐿𝐿𝑖𝑖) = 𝑔𝑔𝑖𝑖(𝐗𝐗𝑖𝑖,𝐻𝐻𝑖𝑖(𝐿𝐿)) (12) 

where 𝐗𝐗𝑖𝑖  is a vector of all the input random variables, except the component load, and the 

relationship between 𝐿𝐿  and 𝐿𝐿𝑖𝑖  is determined by a function 𝐻𝐻𝑖𝑖(⋅)  in Eq. (11). The limit-state 

function is not available to the system designer. Data of the component load are collected from 

experiments or field. The recorded component load data are in a dataset 𝒍𝒍𝑖𝑖 = (𝑙𝑙𝑖𝑖1, 𝑙𝑙𝑖𝑖2, … , 𝑙𝑙𝑖𝑖𝑑𝑑𝑖𝑖) , 

where 𝑑𝑑𝑖𝑖 is the size of the dataset. The probability of failure 𝑝𝑝𝑓𝑓𝑓𝑓 is estimated from the data.  

At the limit state 𝑌𝑌𝑖𝑖𝑂𝑂 = 𝑔𝑔𝑖𝑖(𝐗𝐗𝑖𝑖, 𝐿𝐿𝑖𝑖) = 0, we solve for the component load 𝐿𝐿, and we have 𝐿𝐿𝑖𝑖 =

𝑔𝑔𝑖𝑖−1(𝐗𝐗𝑖𝑖,𝑌𝑌𝑖𝑖𝑂𝑂) , where 𝑔𝑔𝑖𝑖−1(⋅)  is the inverse function of 𝑔𝑔𝑖𝑖(⋅) . The failure condition becomes 

𝑔𝑔𝑖𝑖−1(⋅) − 𝐿𝐿𝑖𝑖 < 0, where we consider 𝑔𝑔𝑖𝑖−1(⋅) the general strength (capacity) of the component. As 

a result, we rebuild the equivalent limit-state function as 

𝑌𝑌𝑖𝑖𝑂𝑂 = 𝐶𝐶𝑖𝑖 − 𝐿𝐿𝑖𝑖 (13) 

where 𝐶𝐶𝑖𝑖 is the general strength of the component 𝑔𝑔𝑖𝑖−1(⋅) and is a function of 𝐗𝐗𝑖𝑖.  

𝐶𝐶𝑖𝑖 and 𝐿𝐿𝑖𝑖 are independent. If 𝑌𝑌𝑖𝑖𝑂𝑂 < 0, or 𝐶𝐶𝑖𝑖 < 𝐿𝐿𝑖𝑖, a failure occurs. Eq. (13) is based on the well-

known stress and strength interference theory [29, 30], which applies to the systems whose failure 

is due to excessive loading.   

With FORM, the limit-state function in the U-space becomes 

𝑌𝑌�𝑖𝑖𝑂𝑂 = 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 (14) 

where the reliability index 𝛽𝛽𝑖𝑖 is derived from Eq. (9) as follows: 
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𝛽𝛽𝑖𝑖 = Φ−1(−𝑝𝑝𝑓𝑓𝑓𝑓) (15) 

When 𝑌𝑌�𝑖𝑖𝑂𝑂 = 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 < 0, a failure occurs. The reconstructed limit-state function 

is illustrated in Fig. 1. 

 
 

Fig. 1 Reconstructed limit-state function 

The failure region is determined by 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 < 0. Let the random variables of the 

load 𝑈𝑈𝐿𝐿  and capacity 𝑈𝑈𝐶𝐶  in the failure region be 𝑈𝑈𝐿𝐿𝑖𝑖
′  and 𝑈𝑈𝐶𝐶𝑖𝑖

′ , respectively. They are conditional 

random variables given 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 < 0, or 𝑈𝑈𝐶𝐶𝑖𝑖 < − 1
𝛼𝛼𝐶𝐶𝑖𝑖

�𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖�. 

The joint PDF of 𝑈𝑈𝐶𝐶𝑖𝑖 and 𝑈𝑈𝐿𝐿𝑖𝑖  is 𝜙𝜙(𝑐𝑐), where 𝜙𝜙(⋅) is the PDF of a standard normal variable. 

The joint distribution of 𝑈𝑈𝐶𝐶′  and 𝑈𝑈𝐿𝐿′  is truncated by the safe region, and their joint PDF (defined in 

the failure region) is given by 

𝑓𝑓𝑈𝑈𝐿𝐿𝑖𝑖
′ ,𝑈𝑈𝑐𝑐𝑖𝑖

′ (𝑙𝑙, 𝑐𝑐) = �
𝜙𝜙(𝑐𝑐)𝜙𝜙(𝑙𝑙)

𝑝𝑝𝑓𝑓𝑖𝑖
if 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 < 0 

0                   otherwise
(16) 

𝛽𝛽𝑖𝑖 

𝛼𝛼𝑐𝑐𝑖𝑖𝑈𝑈𝑐𝑐𝑖𝑖 +  𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 = 0 

𝑙𝑙1   𝑙𝑙2    𝑙𝑙3 . . .  𝑙𝑙𝑚𝑚𝑖𝑖 
𝑈𝑈𝐿𝐿 

𝛼𝛼𝑐𝑐𝑖𝑖𝑈𝑈𝑐𝑐𝑖𝑖 +  𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 +  𝛽𝛽𝑖𝑖 < 0 
   
    Failure Region 

𝑈𝑈𝑐𝑐  

0 
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The joint PDF is plotted in Fig. 2. 

 

Fig. 2 Reconstructed equivalent limit-state function 

Then the PDF of 𝑈𝑈𝐿𝐿′  is given by 

𝑓𝑓𝑈𝑈𝐿𝐿𝑖𝑖
′ (𝑙𝑙) = � 𝑓𝑓𝑈𝑈𝐿𝐿′ ,𝑈𝑈𝐶𝐶

′ (𝑙𝑙, 𝑐𝑐)𝑑𝑑𝑑𝑑 =
+∞

−∞
�

𝜙𝜙(𝑐𝑐)𝜙𝜙(𝑙𝑙)
𝑝𝑝𝑓𝑓𝑓𝑓

𝑑𝑑𝑑𝑑
− 1
𝛼𝛼𝐶𝐶𝑖𝑖

�𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖+𝛽𝛽𝑖𝑖�

−∞

                                                      =
1
𝑝𝑝𝑓𝑓𝑓𝑓 

𝜙𝜙(𝑙𝑙)Φ�−
𝛼𝛼𝐿𝐿𝑖𝑖𝑙𝑙 + 𝛽𝛽𝑖𝑖
𝛼𝛼𝐶𝐶𝑖𝑖

� (17)
 

Using 𝛼𝛼𝐿𝐿𝑖𝑖
2 + 𝛼𝛼𝐶𝐶𝑖𝑖

2 = 1, we have  

𝑓𝑓𝑈𝑈𝐿𝐿𝑖𝑖
′ (𝑙𝑙) =

1
𝑝𝑝𝑓𝑓𝑓𝑓

𝜙𝜙(𝑙𝑙)Φ

⎝

⎛−
𝛼𝛼𝐿𝐿𝑖𝑖𝑙𝑙 + 𝛽𝛽

�1− 𝛼𝛼𝐿𝐿𝑖𝑖
2
⎠

⎞ (18) 

where 𝑓𝑓𝑈𝑈𝐿𝐿𝑖𝑖
′ (𝑙𝑙)  is the conditional PDF of the component load in the failure region, and 𝛼𝛼𝐿𝐿𝑖𝑖   is 

unknown. From the perspective of the Bayesian Theorem [31, 32], 𝑓𝑓𝑈𝑈𝐿𝐿𝑖𝑖
′ (𝑙𝑙) is the posterior PDF of 

Joint PDF of 𝑈𝑈𝑐𝑐𝑖𝑖 and 𝑈𝑈𝐿𝐿𝑖𝑖 

𝛼𝛼𝑐𝑐𝑖𝑖𝑈𝑈𝑐𝑐𝑖𝑖 +  𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 +  𝛽𝛽𝑖𝑖 = 0 

𝛼𝛼𝑐𝑐𝑖𝑖𝑈𝑈𝑐𝑐𝑖𝑖 +  𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 +  𝛽𝛽𝑖𝑖 < 0     

      Failure Region 

𝑈𝑈𝐿𝐿𝑖𝑖 

𝑈𝑈𝑐𝑐𝑖𝑖 

𝛽𝛽𝑖𝑖 
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the component load given that a failure has occurred, and its unknown parameter 𝛼𝛼𝐿𝐿𝑖𝑖   can be 

estimated from the observations or the samples of the component load. Transforming the load data 

𝒍𝒍𝑖𝑖 = (𝑙𝑙1𝑖𝑖,, 𝑙𝑙𝑖𝑖2, … , 𝑙𝑙𝑖𝑖𝑑𝑑𝑖𝑖) into the U-space, we obtain the sample of 𝑈𝑈𝐿𝐿𝑖𝑖
′ , 𝒖𝒖𝐿𝐿𝑖𝑖  = (𝑢𝑢𝐿𝐿𝑖𝑖1,𝑢𝑢𝐿𝐿𝑖𝑖2 , … , 𝑢𝑢𝑖𝑖𝑑𝑑𝑖𝑖). 

The likelihood function is defined by 

𝑉𝑉𝐿𝐿𝑖𝑖 = �𝜙𝜙�𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗�Φ

⎝

⎛−
𝛼𝛼𝐿𝐿𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗 + 𝛽𝛽𝑖𝑖

�1− 𝛼𝛼𝐿𝐿𝑖𝑖
2
⎠

⎞
𝑑𝑑𝑖𝑖

𝑗𝑗=1

(19) 

Maximizing the likelihood function, we obtain 𝛼𝛼𝐿𝐿𝑖𝑖 . 

𝛼𝛼𝐿𝐿𝑖𝑖 = arg min
−1≤𝛼𝛼𝐿𝐿𝑖𝑖≤0  

�𝜙𝜙�𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗�Φ

⎝

⎛−
𝛼𝛼𝐿𝐿𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗 + 𝛽𝛽𝑖𝑖

�1− 𝛼𝛼𝐿𝐿𝑖𝑖
2
⎠

⎞
𝑑𝑑𝑖𝑖

𝑗𝑗=1

(20) 

For computational convenience, we use the natural logarithm of the likelihood function, known 

as the log-likelihood function, as follows: 

𝛼𝛼𝐿𝐿𝑖𝑖 = arg min
−1≤𝛼𝛼𝐿𝐿𝑖𝑖≤0  

�

⎩
⎨

⎧
𝜙𝜙 log�𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗� + log

⎣
⎢
⎢
⎡
Φ

⎝

⎛−
𝛼𝛼𝐿𝐿𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗 + 𝛽𝛽𝑖𝑖

�1 − 𝛼𝛼𝐿𝐿𝑖𝑖
2
⎠

⎞

⎦
⎥
⎥
⎤

⎭
⎬

⎫𝑑𝑑𝑖𝑖

𝑗𝑗=1

(21) 

Eq. (21) presents a one-dimensional nonlinear optimization problem, and an analytical solution 

does not exist. A nonlinear programming algorithm can be used to solve it. In this work, we use 

the sequential quadratic programming method. To make sure a true optimal solution is found, we 

may use different starting points for 𝛼𝛼𝐿𝐿𝑖𝑖 . If different answers are obtained, we should use the one 

that has the minimum objective function or ∑ �𝜙𝜙 log�𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗� + log �Φ�−
𝛼𝛼𝐿𝐿𝑢𝑢𝐿𝐿𝑖𝑖𝑗𝑗+𝛽𝛽𝑖𝑖

�1−𝛼𝛼𝐿𝐿𝑖𝑖
2
���𝑑𝑑𝑖𝑖

𝑗𝑗=1 . 
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After 𝛼𝛼𝐿𝐿𝑖𝑖  is found, the equivalent limit-state function in Eq. (14) is fully defined. Then the 

dependence between any two observable responses can be recovered. For example, for observable 

components i and j, the equivalent limit-state functions are  

�
𝑌𝑌�𝑖𝑖𝑂𝑂 = 𝛼𝛼𝑆𝑆𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖
𝑌𝑌�𝑗𝑗𝑂𝑂 = 𝛼𝛼𝑆𝑆𝑗𝑗𝑈𝑈𝐶𝐶𝑗𝑗 + 𝛼𝛼𝐿𝐿𝑗𝑗𝑈𝑈𝐿𝐿𝑗𝑗 + 𝛽𝛽𝑗𝑗

(22) 

Their covariance is 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌�𝑖𝑖𝑂𝑂 ,𝑌𝑌�𝑗𝑗𝑂𝑂) = 𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐿𝐿𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶(𝑈𝑈𝐿𝐿𝑖𝑖 ,𝑈𝑈𝐿𝐿𝑗𝑗) (23) 

where 𝐶𝐶𝐶𝐶𝐶𝐶(·) stands for covariance. 

Recall that 𝐿𝐿𝑖𝑖 = 𝐻𝐻𝑖𝑖(𝐿𝐿) and 𝐿𝐿𝑗𝑗 = 𝐻𝐻𝑗𝑗(𝐿𝐿).    

�
𝑈𝑈𝐿𝐿𝑖𝑖 = Φ−1 �𝐹𝐹𝐿𝐿(𝐿𝐿𝑖𝑖)� = Φ−1  �𝐹𝐹𝐿𝐿�𝐻𝐻𝑖𝑖(𝐿𝐿)��

𝑈𝑈𝐿𝐿𝑗𝑗 = Φ−1  �𝐹𝐹𝐿𝐿�𝐿𝐿𝑗𝑗�� = Φ−1  �𝐹𝐹𝐿𝐿 �𝐻𝐻𝑗𝑗(𝐿𝐿)��
(24) 

Let 𝑈𝑈𝐿𝐿  be the transformation of 𝐿𝐿 in the U-space. 

𝑈𝑈𝐿𝐿 = Φ−1 �𝐹𝐹𝐿𝐿(𝐿𝐿)� (25) 

Assume that the component load 𝐿𝐿𝑖𝑖  increases as system load 𝐿𝐿  increases. Then 𝐻𝐻𝑖𝑖(⋅)  is an 

increasing function. The CDF of 𝐿𝐿𝑖𝑖 is given by  

𝐹𝐹𝐿𝐿𝑖𝑖(𝑙𝑙𝑖𝑖) = Pr{𝐿𝐿𝑖𝑖 < 𝑙𝑙𝑖𝑖} = Pr{𝐻𝐻𝑖𝑖(𝐿𝐿) < 𝑙𝑙𝑖𝑖} = Pr{𝐿𝐿 < 𝐻𝐻𝑖𝑖−1(𝑙𝑙𝑖𝑖)}
              = 𝐹𝐹𝐿𝐿(𝐻𝐻𝑖𝑖−1(𝑙𝑙𝑖𝑖)) = 𝐹𝐹𝐿𝐿(𝑙𝑙) (26)

 

where 𝐻𝐻𝑖𝑖−1(⋅) is the inverse of 𝐻𝐻𝑖𝑖(⋅), and 𝑙𝑙 = 𝐻𝐻𝑖𝑖−1(𝑙𝑙𝑖𝑖). Transforming 𝐿𝐿𝑖𝑖 into 𝑈𝑈𝐿𝐿𝑖𝑖, we obtain 

𝑈𝑈𝐿𝐿𝑖𝑖 = Φ−1  �𝐹𝐹𝐿𝐿𝑖𝑖(𝐿𝐿𝑖𝑖)� =  Φ−1�𝐹𝐹𝐿𝐿(𝐿𝐿)� (27) 
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Using Eq. (24), we know that 𝑈𝑈𝐿𝐿𝑖𝑖 = 𝑈𝑈𝐿𝐿  . Similarly, we have 𝑈𝑈𝐿𝐿𝑗𝑗 = 𝑈𝑈𝐿𝐿  . As a result, 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝑈𝑈𝐿𝐿𝑖𝑖 ,𝑈𝑈𝐿𝐿𝑗𝑗� = 1, and  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌�𝑖𝑖𝑂𝑂 ,𝑌𝑌�𝑗𝑗𝑂𝑂) = 𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐿𝐿𝑗𝑗 (28) 

Eq. (28) indicates how the relationship between component and system loads does not affect 

the covariance between two observable responses. This conclusion also holds for two predictable 

responses and a pair of observable and predictable responses. As a result, the proposed method can 

deal with any relationships between component and system loads if the function between the two 

types of loads is monotonically increasing.  

 

3.3 Verifying covariance of two conservable responses 

We now verify the conclusion in Sec. 3.2 with a linear case and a nonlinear case. 

Case 1: Linear relationship between normally distributed component and system loads 

Assume 𝐿𝐿~𝑁𝑁(𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿2), which means that 𝐿𝐿 is normally distributed with a mean of 𝜇𝜇𝐿𝐿  and a 

standard deviation of 𝜎𝜎𝐿𝐿 . Also assume 𝐿𝐿𝑖𝑖 = 𝑘𝑘𝑖𝑖𝐿𝐿  and 𝐿𝐿𝑗𝑗 = 𝑘𝑘𝑗𝑗𝐿𝐿 , where 𝑘𝑘𝑖𝑖  and 𝑘𝑘𝑗𝑗  are positive 

constants. Transforming 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 into 𝑈𝑈𝐿𝐿𝑖𝑖 and 𝑈𝑈𝐿𝐿𝑗𝑗 , we have  

⎩
⎪
⎨

⎪
⎧𝑈𝑈𝐿𝐿𝑖𝑖 =

𝑘𝑘𝑖𝑖𝐿𝐿 − 𝑘𝑘𝑖𝑖𝜇𝜇𝐿𝐿
𝑘𝑘𝑖𝑖𝜎𝜎𝐿𝐿

=
𝐿𝐿 − 𝜇𝜇𝐿𝐿
𝜎𝜎𝐿𝐿

𝑈𝑈𝐿𝐿𝑗𝑗 =
𝑘𝑘𝑗𝑗𝐿𝐿 − 𝑘𝑘𝑗𝑗𝜇𝜇𝐿𝐿

𝑘𝑘𝑗𝑗𝜎𝜎𝐿𝐿
=
𝐿𝐿 − 𝜇𝜇𝐿𝐿
𝜎𝜎𝐿𝐿

(29) 

This verifies 𝐶𝐶𝐶𝐶𝐶𝐶 �𝑈𝑈𝐿𝐿𝑖𝑖 ,𝑈𝑈𝐿𝐿𝑗𝑗� = 1
𝜎𝜎𝐿𝐿
2 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝐿𝐿) = 1. 

Case 2: Nonlinear relationship between a component and the system load 

 The verification is given in Example 1 in Sec. 4. 
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3.4 System reliability prediction 

After the equivalent limit-state functions of observable responses are constructed, the limit-

state functions of all the components will be available to the system designer. With the use of 

FORM, all the limit-state functions in the U-space are given by 

𝑌𝑌�𝑖𝑖𝑃𝑃 = 𝛼𝛼𝐶𝐶𝑖𝑖𝑈𝑈𝐶𝐶𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑃𝑃
𝑌𝑌�𝑗𝑗𝑂𝑂 = 𝛼𝛼𝐶𝐶𝑗𝑗𝑈𝑈𝐶𝐶𝑗𝑗 + 𝛼𝛼𝐿𝐿𝑗𝑗𝑈𝑈𝐿𝐿𝑗𝑗 + 𝛽𝛽𝑗𝑗 , 𝑖𝑖 = 1,2, … , 𝑛𝑛𝑂𝑂 

(30) 

Then all the responses are assembled into 𝐘𝐘� = (𝐘𝐘�𝑃𝑃 ,𝐘𝐘�𝑂𝑂) , where 𝐘𝐘�𝑃𝑃 = (𝑌𝑌�1𝑃𝑃 ,𝑌𝑌�2𝑃𝑃 , … ,𝑌𝑌�𝑛𝑛𝑃𝑃
𝑃𝑃 )  and 

𝐘𝐘�𝑂𝑂 = (𝑌𝑌�1𝑂𝑂,𝑌𝑌�2𝑂𝑂 , … ,𝑌𝑌�𝑛𝑛𝑃𝑃
𝑂𝑂 ) . It can be shown that 𝐘𝐘�  follows a n-dimensional multivariate normal 

distribution 𝐘𝐘�~𝑁𝑁𝑛𝑛(𝛍𝛍,𝚺𝚺) , where 𝑛𝑛 = 𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑂𝑂 , 𝛍𝛍  is the mean vector, and 𝚺𝚺  is the covariance 

matrix. 

𝛍𝛍 = (𝛍𝛍𝑃𝑃 ,𝛍𝛍𝑂𝑂) = �𝛽𝛽1𝑃𝑃 ,𝛽𝛽2𝑃𝑃 , … ,𝛽𝛽𝑛𝑛𝑃𝑃
𝑃𝑃 ,𝛽𝛽1𝑂𝑂 ,𝛽𝛽2𝑂𝑂 , … ,𝛽𝛽𝑛𝑛𝑂𝑂

𝑂𝑂 � (31) 

where  

𝛍𝛍𝑃𝑃 = �𝛽𝛽1𝑃𝑃 ,𝛽𝛽2𝑃𝑃 , … ,𝛽𝛽𝑛𝑛𝑃𝑃
𝑃𝑃 � (32) 

and  

𝛍𝛍𝑂𝑂 = �𝛽𝛽1𝑂𝑂,𝛽𝛽2𝑂𝑂, … ,𝛽𝛽𝑛𝑛𝑂𝑂
𝑂𝑂 � (33) 

The covariance matrix is  

𝚺𝚺 = �𝚺𝚺
𝑃𝑃𝑃𝑃 𝚺𝚺𝑃𝑃𝑃𝑃

𝚺𝚺𝑂𝑂𝑂𝑂 𝚺𝚺𝑂𝑂𝑂𝑂
� (34) 

with sizes of �
𝑛𝑛𝑃𝑃 × 𝑛𝑛𝑃𝑃  𝑛𝑛𝑃𝑃 × 𝑛𝑛𝑂𝑂
𝑛𝑛𝑂𝑂 × 𝑛𝑛𝑃𝑃 𝑛𝑛𝑂𝑂 × 𝑛𝑛𝑂𝑂

�. 

𝚺𝚺𝑃𝑃𝑃𝑃 = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌�𝑖𝑖𝑃𝑃 ,𝑌𝑌�𝑗𝑗𝑃𝑃��𝑖𝑖,𝑗𝑗=1,2,…,𝑛𝑛𝑃𝑃
(35) 
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𝚺𝚺𝑂𝑂𝑂𝑂 = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌�𝑖𝑖𝑂𝑂,𝑌𝑌�𝑗𝑗𝑂𝑂��𝑖𝑖,𝑗𝑗=1,2,…,𝑛𝑛𝑂𝑂
(36) 

𝚺𝚺𝑃𝑃𝑃𝑃 = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌�𝑖𝑖𝑃𝑃 ,𝑌𝑌�𝑗𝑗𝑂𝑂��𝑖𝑖=1,2,…,𝑛𝑛𝑃𝑃,𝑗𝑗=1,2,…,𝑛𝑛𝑂𝑂
(37) 

The elements of the covariance matrix are given by 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌�𝑖𝑖𝑃𝑃 ,𝑌𝑌�𝑗𝑗𝑂𝑂) = 𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐿𝐿𝑗𝑗 (38) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌�𝑖𝑖𝑃𝑃 ,𝑌𝑌�𝑗𝑗𝑂𝑂) = 𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐿𝐿𝑗𝑗 (39) 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌�𝑖𝑖𝑂𝑂 ,𝑌𝑌�𝑗𝑗𝑂𝑂) = 𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐿𝐿𝑗𝑗 (40) 

The system reliability is then calculated by 

𝑅𝑅𝑆𝑆 = Pr��𝑌𝑌𝚤𝚤� > 0
𝑛𝑛

𝑖𝑖=1

� = Pr��−𝑌𝑌𝑖𝑖 < 0
𝑛𝑛

𝑖𝑖=1

� (41) 

The joint PDF and CDF of −𝐘𝐘� be 𝜙𝜙𝑛𝑛(𝐲𝐲�;−𝛍𝛍,𝚺𝚺) and Φ𝑛𝑛(𝐲𝐲�;−𝛍𝛍,𝚺𝚺), respectively; then  

𝑅𝑅𝑆𝑆 = Φ𝑛𝑛(𝟎𝟎;−𝛍𝛍,𝚺𝚺) = � ⋯� 𝜙𝜙𝑛𝑛(𝒚𝒚;−𝛍𝛍,𝚺𝚺)
0

−∞

0

−∞
𝑑𝑑𝒚𝒚 (42) 

Numerical methods [33-36] or MCS can be used to calculate the multivariate integral in Eq. 

(42).  

The accuracy of the reliability prediction can be improved if a more accurate component 

reliability method such as MCS is used. This can be achieved with a more accurate component 

reliability prediction for predictable responses. If we have a more accurate result of the probability 

of failure 𝑝𝑝𝑓𝑓𝑓𝑓 of the j-th component with a predictable response, we can use 𝑝𝑝𝑓𝑓𝑓𝑓 to obtain reliability 

index 𝛽𝛽𝑗𝑗 with higher accuracy in Eq. (30) using Eq. (15); namely, 𝛽𝛽𝑗𝑗 = Φ−1(−𝑝𝑝𝑓𝑓𝑓𝑓). 

 



16 
 

4. EXAMPLES 

In this section, four examples are used to demonstrate the proposed methods. Example 1 

verifies that the covariance between two component loads in the U-space is equal to 1 as discussed 

in Sec. 3.2. Example 2 provides a step-by-step demonstration to show how the unknown 

covariance between two observable responses is recovered by the Bayesian approach. Example 3 

shows how to calculate the probability of system failure in a mechanical system with two types of 

components. Example 4 involves a mechanical system with more components and random 

variables.  

4.1 Example1: Estimation and verification of covariance between two component loads 

   A system load 𝐿𝐿 follows a lognormal distribution, denoted by 𝐿𝐿~𝐿𝐿𝐿𝐿(𝑢𝑢𝐿𝐿,𝜎𝜎𝐿𝐿2), with a mean and 

a standard deviation of 𝑢𝑢𝐿𝐿 =  6.9027 and 𝜎𝜎𝐿𝐿 = 0.09975, respectively. The component loads of 

two components are given by 

�𝐿𝐿1 = 𝐻𝐻1(𝐿𝐿) = 𝐿𝐿2/3 + 1 
𝐿𝐿2 = 𝐻𝐻2(𝐿𝐿) = 3𝐿𝐿0.5 − 1

(43) 

We now use MCS to demonstrate that the covariance between component loads 𝑈𝑈𝐿𝐿1 and 𝑈𝑈𝐿𝐿2 

is 1 even though the functions in Eq. (43) are nonlinear.  

We first generate samples of 𝐿𝐿 with a sample size of 105. By plugging the samples of 𝐿𝐿 into 

Eq. (43), we get the samples of 𝐿𝐿1 and 𝐿𝐿2. The empirical CDF of 𝐿𝐿1 and 𝐿𝐿2, denoted by 𝐹𝐹𝐿𝐿1(𝑙𝑙1) 

and 𝐹𝐹𝐿𝐿2(𝑙𝑙2), respectively, are estimated and are shown in Figs. 3 and 4. Then transforming the load 

data 𝐿𝐿1 and 𝐿𝐿2 into the U-space by 𝑈𝑈𝐿𝐿𝑖𝑖 = Φ−1�𝐹𝐹𝐿𝐿𝑖𝑖(𝑙𝑙𝑖𝑖)�, 𝑖𝑖 = 1, 2, we obtain samples 𝑈𝑈𝐿𝐿1 and 𝑈𝑈𝐿𝐿2. 

We then use the samples to estimate the covariance of 𝑈𝑈𝐿𝐿1 and 𝑈𝑈𝐿𝐿2. The flowchart is given in Fig. 

5. 
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Fig. 3 Empirical CDF of 𝐿𝐿1 

 

 

Fig. 4 Empirical CDF of 𝐿𝐿2 

The covariance of 𝑈𝑈𝐿𝐿1  and 𝑈𝑈𝐿𝐿2  is found to be 𝐶𝐶𝐶𝐶𝐶𝐶�𝑈𝑈𝐿𝐿1 ,𝑈𝑈𝐿𝐿2�  = 1.0077, which is close to the 

true value of 1. Note that the covariance cannot exceed 1. 𝐶𝐶𝐶𝐶𝐶𝐶�𝑈𝑈𝐿𝐿1 ,𝑈𝑈𝐿𝐿2� is slightly greater than 1 

due to an accumulative numerical error. 

Load 𝐿𝐿1 

Load 𝐿𝐿2 
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Fig. 5 Flow chart of estimating the covariance 

4.2 Example 2: A mathematical problem        

The limit-state function of a component with an observable response in the U-space is given 

by 

𝑌𝑌� = 𝛼𝛼1𝑈𝑈1 + 𝛼𝛼2𝑈𝑈2 + 𝛼𝛼3𝑈𝑈3 + 𝛼𝛼𝐿𝐿𝑈𝑈𝐿𝐿 + 𝛽𝛽 (44) 

where 𝑈𝑈𝐿𝐿  is the component load, and 𝑈𝑈𝑖𝑖  (𝑖𝑖 = 1, 2, 3) are other random variables, and 𝛽𝛽 = 3.5. The 

unit vector is given by 𝛂𝛂 = (𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼𝐿𝐿) = (0.8165, 0.1361,−0.1361,−0.5443), and the last 

component is for the component load; namely, 𝛼𝛼𝐿𝐿 = −0.5443.  

Now we use the proposed method to estimate 𝛼𝛼𝐿𝐿 and compare it with the true value −0.5443. 

To mimic the physical experiment, we conduct the experiment on computer. In other words, we 

use MCS and the true limit-state function to generate samples of the component load 𝐿𝐿 in the 

failure region. The details are as follows. We generate 30 random samples of all the random 

variables 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, and 𝑈𝑈𝐿𝐿; at these sample points, we have response 𝑌𝑌� < 0. This mimics the 

component failure. Then the 30 samples of 𝑈𝑈𝐿𝐿  represent the data of component load recorded when 

the component failed. We then use the maximum likelihood method in Eq. (19) to estimate  𝛼𝛼𝐿𝐿.  

Step 1: Estimate CDFs of 𝐿𝐿1 
and 𝐿𝐿2 

Generate samples of 𝐿𝐿 

Obtain samples of 𝐿𝐿1 and 
𝐿𝐿2 

Estimate CDF of 𝐿𝐿1 and 
𝐿𝐿2  

Transform samples of 𝐿𝐿1 and 
𝐿𝐿2 in U-space 

  

Obtain samples of 𝑈𝑈𝐿𝐿1 and 
𝑈𝑈𝐿𝐿2 

Calculate the covariance of 
𝑈𝑈𝐿𝐿1 and 𝑈𝑈𝐿𝐿2 

  

Step 2: Estimate covariance of 
𝑈𝑈𝐿𝐿1 and 𝑈𝑈𝐿𝐿2 
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Since the above process involves random sampling and the result contains variation, we repeat 

the same process 30 times. The estimated 𝛼𝛼𝐿𝐿 from the 30 runs are given in Table 1.  

The mean and standard deviation of 𝛼𝛼𝐿𝐿 are 𝜇𝜇𝛼𝛼𝐿𝐿 = −0.5372 and 𝜎𝜎𝛼𝛼𝐿𝐿 = 0.0580, respectively. 

Comparing 𝜇𝜇𝛼𝛼𝐿𝐿 = −0.5372 with the true value −0.5443, we see that they are in good agreement.  

Table 1 Estimates of 𝛼𝛼𝐿𝐿 

-0.6199 -0.6293 -0.5561 -0.5468 -0.5769 
-0.5160 -0.6190 -0.5438 -0.6216 -0.5575 
-0.5655 -0.5569 -0.5378 -0.5866 -0.5391 
-0.5417 -0.6255 -0.6037 -0.4839 -0.4825 
-0.5876 -0.5617 -0.4753 -0.6197 -0.5441 
-0.5859 -0.4413 -0.5473 -0.5473 -0.5920 

 

4.3 Example 3: A system with two shafts 

A system consists of two shafts as shown in Fig. 6. Both shafts share the system load 𝐿𝐿 = 𝐹𝐹. 𝐿𝐿 

follows a normal distribution 𝑁𝑁(3000, 6602) N. The component loads of the shafts 1 and 2 are 

given by 𝐿𝐿1 = 0.7𝐿𝐿 and 𝐿𝐿2 = 0.3𝐿𝐿, respectively.  

Shaft 1 has a predictable response, and its limit-state function is available and is given by 

𝑌𝑌1 = 𝑔𝑔1(𝐗𝐗1, 𝐿𝐿1) = 𝑆𝑆1 −
16
𝜋𝜋𝑑𝑑13

�4𝐿𝐿12𝑙𝑙 2 + 3𝑇𝑇12 (45) 

where 𝑆𝑆1 is the yield strength of the shaft, 𝑇𝑇1 is the torque applied to the shaft, 𝑑𝑑1 = 39 mm is the 

diameter of the shaft, and 𝑙𝑙 = 600 mm is the length of the shaft. 𝐗𝐗1 =  (𝑆𝑆1,𝑇𝑇1).  
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Fig. 6 A system with two shafts 

The distributions of 𝑆𝑆1  and 𝑇𝑇1  are 𝑁𝑁(250, 62)  MPa and 𝑁𝑁(450,202)  N⋅m, respectively. The 

system designer uses FORM to perform the reliability analysis, which yields the reliability index 

𝛽𝛽1  = 2.9873 and the limit-state function in the U-space 𝑌𝑌1𝑃𝑃 = 𝛼𝛼11𝑈𝑈𝑆𝑆1 + 𝛼𝛼12𝑈𝑈𝑇𝑇1 + 𝛼𝛼𝐿𝐿1𝑈𝑈𝐿𝐿1 − 𝛽𝛽1, 

where 𝜶𝜶1 = �𝛼𝛼11,𝛼𝛼12, 𝛼𝛼𝐿𝐿1�    = [0.192752, −0.02602, −0.9809]. 

The limit-state function of shaft 2 is unknown, and the shaft has an observable response. Its 

reliability is estimated by data. Assume the true limit-state function is given by 

𝑌𝑌�2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑔𝑔2(𝐗𝐗2, 𝐿𝐿2) = 𝑆𝑆2 −
16
𝜋𝜋𝑑𝑑23

�4𝐿𝐿22𝑙𝑙 2 + 3𝑇𝑇22 (46) 

where 𝑆𝑆2 is the yield strength of the shaft, 𝑇𝑇2 is the torque applied to the shaft, 𝑑𝑑1 = 39 mm is the 

diameter of the shaft, and 𝑙𝑙 = 600 mm is the length of the shaft. 𝐗𝐗2 = (𝑆𝑆2,𝑇𝑇2). The distributions 

of 𝑆𝑆2 and 𝑇𝑇2 are 𝑁𝑁(130, 82) MPa and 𝑁𝑁(450,202) N⋅m, respectively. The reliability of shaft 2 is 

estimated by experimental data. We use MCS to mimic the experiment by using the true limit-state 

function in Eq. (46). The reliability index obtained is 𝛽𝛽2 =  2.9642. The system designer then 
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reconstructs an equivalent limit-state function 𝑌𝑌2𝑂𝑂 = 𝛼𝛼𝑆𝑆2𝑈𝑈𝑆𝑆2 + 𝛼𝛼𝐿𝐿2𝑈𝑈𝐿𝐿2 − 𝛽𝛽2. The system designer 

uses the proposed Bayesian approach with 17 samples of 𝐿𝐿2 in the failure region (in the U-space) 

to estimate the unknown coefficient 𝛼𝛼𝐿𝐿2, and the result is  𝛼𝛼𝐿𝐿2 = −0.8062.  The true coefficient 

from the true limit-sate function in Eq. (46) is 𝛼𝛼𝐿𝐿2
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  −0.8028. 

The system designer now has the following information: The mean vector 𝛍𝛍 = (𝜇𝜇1,𝜇𝜇2) =

(−2.1313,−3.1224) , and the covariance 𝑐𝑐𝑐𝑐𝑐𝑐�𝑌𝑌�1𝑃𝑃 ,𝑌𝑌�2𝑂𝑂� = 𝛼𝛼𝐿𝐿1𝛼𝛼𝐿𝐿2 = 0.80 , which results in the 

covariance matrix 𝚺𝚺 =  � 1 0.80
0.80 1 � . This indicates a strong correlation between the two 

responses. The system probability of failure estimated by the system designer using Eq. (42) is 

𝑝𝑝𝑓𝑓𝑓𝑓 = 1 − 𝑅𝑅 = 1 −Φ2(𝟎𝟎;−𝛍𝛍,𝚺𝚺) = 2.534 × 10−3. The result from the independent component 

assumption and the true value are given in Table 2. The true probability of failure is estimated from 

MCS using all the limit-state functions with a sample size of 106 . The results show that the 

proposed method is more accurate than the traditional method. 

Table 2 The probabilities of system failure  

Method 𝑝𝑝𝑓𝑓𝑓𝑓 𝜀𝜀 % 
Proposed method 2.5348 × 10−3 0.9 

Independence assumption method 2.9227 × 10−3 14.2 
MCS 2.5580 × 10−3 N/A 

 

In this example, 𝑌𝑌1 is a predictable response, whose reliability is calculated numerically with 

FORM. The number of limit-state function calls is usually used as a measure of computational 

efficiency. The number of function calls for 𝑌𝑌1 is 16. 

We now use this example to discuss possible errors in the system reliability prediction. The 

errors are from 1) the use of FORM, 2) the limited failure data for observable responses, and 3) 

the ignorance of the dependence between components. 
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To show the first error due to the use of FORM, we compare the result from FORM using the 

true correlation coefficient with the accurate solution. The solution is  

2.5347 × 10−3 , and the error is 0.9% compared to the accurate  

2.5580 × 10−3. The error from FORM in this problem is therefore small.  

To examine the second error due to the random data, we ran the problem 30 times with different 

random failure data with the same sample size 17. The average solution is 2.5282 × 10−3 with an 

average error 1.2%. The standard deviation is 8.3677 × 10−5 , which is small, indicating the 

relatively small error due to the randomness of the failure data. 

For the third error due to the ignorance of the dependence between components, we have 

already provided the results in Table 2. The table indicates that the error from the independence 

assumption method is large. 

4.4 Example 4: A connector assembly 

A connector assembly system consists of a rectangular steel bar, and a steel channel is 

assembled by four identical bolts at points 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝐷𝐷 as shown in Fig. 7 [37]. The external 

load 𝐹𝐹, which is the system load 𝐿𝐿, acts at the end of the bar.  

There are six physical components in the system, where the steel bar and the channel are in-

house designed and manufactured, and the four bolts are purchased from a component supplier. 

The reliability of the in-house components is predicted by a physics-based approach, and the 

reliability of the outsourced bolts is estimated by data. Hence the responses of the three former 

components are predictable, and the responses of the latter four components are observable.  

The distributions of random variables known to the system designer are given in Table 3, and 

they include the distributions of 𝐹𝐹 and those associated with the in-house components. The limit-

state functions of the two in-house components are derived below. 
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Fig. 7 A connector assembly 

Table 3 Distributions associated with predictive responses 

Variable Description Distribution 
𝐹𝐹 (N) External force 𝑁𝑁(1.8 × 104, 3.36 × 103) 
𝑑𝑑1  (m) Channel hole D inner diameter 𝑁𝑁(1.6 × 10−3, 3.2 × 10−4) 
𝑑𝑑2 (m) Bar hole D inner diameter 𝑁𝑁(1.6 × 10−3, 3.2 × 10−4) 
𝑆𝑆 (Pa) Channel yield strength 𝑁𝑁(300 × 106, 24 × 106) 
𝑆𝑆2 (Pa) Bar yield strength 𝑁𝑁(300 × 106, 24 × 106) 
𝑡𝑡1 (Pa) Channel thickness 𝑁𝑁(1.0 ×  10−3, 2.0 ×  10−5) 
𝑡𝑡2 (Pa) Bar thickness 𝑁𝑁(1.0 ×  10−3, 2.0 ×  10−5) 
𝑙𝑙1 (m) See Fig. 7 𝑁𝑁(3.2 × 10−1, 6.4 × 10−3) 
𝑙𝑙2 (m) See Fig. 7 𝑁𝑁(5.0 × 10−1, 1.0 × 10−3) 
𝑙𝑙3 (m) Bar width 𝑁𝑁(2.0 × 10−1, 4.0 ×  10−3) 

𝑙𝑙4 (m) Distance between bolts A and D; 
and B and C 𝑁𝑁(7.5 × 10−2, 1.5 × 10−3) 

𝑙𝑙5 (m) Distance between bolts A and B; 
and C and D 𝑁𝑁(6.0 × 10−4, 1.2 × 10−3) 

 

Since the four bolts are symmetrically installed and are equally distanced from the centroid 

point 𝑂𝑂, the distance from each bolt to the centroid is 𝑟𝑟 = 0.5�𝑙𝑙42 + 𝑙𝑙52. The shear reaction 𝑉𝑉 and 
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moment reaction 𝑀𝑀 at 𝑂𝑂 are given by 𝑉𝑉 = 𝐹𝐹 and 𝑀𝑀 = 𝐹𝐹 �𝑙𝑙1 + 𝑙𝑙2 +  𝑙𝑙4
2
�, respectively. The primary 

shear load per bolt is 𝐹𝐹′ = 𝑉𝑉
4
, and the secondary shear forces are equal and are given by 𝐹𝐹′′ = 𝑀𝑀𝑀𝑀

4𝑟𝑟2
=

 𝑀𝑀
4𝑟𝑟

. By applying the parallelogram rule, we obtain the magnitudes of the primary and the secondary 

shear forces as follows.   

𝐹𝐹𝐴𝐴 = 𝐹𝐹𝐵𝐵 =  �(𝐹𝐹′)2 + (𝐹𝐹′′)2 − 2𝐹𝐹′𝐹𝐹′′𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 (47) 

𝐹𝐹𝐶𝐶 = 𝐹𝐹𝐷𝐷 =  �(𝐹𝐹′)2 + (𝐹𝐹′′)2 − 2𝐹𝐹′𝐹𝐹′′𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 (48) 

where 𝜃𝜃1 =  𝑝𝑝𝑝𝑝
2

+ arctan (𝑙𝑙4
𝑙𝑙5

), and 𝜃𝜃2 =  𝑝𝑝𝑝𝑝
2
− arctan �𝑙𝑙4

𝑙𝑙5
�. 

The channel has one failure mode caused by excessive bearing stress. The bearing area of the 

channel is 𝐴𝐴1 = 𝑡𝑡1𝑑𝑑1, where 𝑑𝑑1 is the inner diameter of the hole 𝐷𝐷 in the channel. 𝐿𝐿1 = 𝐹𝐹𝐴𝐴 and 

𝐗𝐗1 = (𝑆𝑆1). The limit-state function is given by 

𝑌𝑌1 = 𝑔𝑔1(𝐗𝐗1, 𝐿𝐿1)  =
𝐹𝐹𝐴𝐴
𝐴𝐴1

− 𝑆𝑆1 (49) 

The bar is another in-house component. It has two failure modes. The first one is due to an 

excessive bearing stress, and the associated limit-state function is given by 

𝑌𝑌2 = 𝑔𝑔2(𝐗𝐗𝟐𝟐,𝐿𝐿2)  =  
𝐹𝐹𝐴𝐴
𝐴𝐴2

− 𝑆𝑆2 (50) 

in which 𝐴𝐴2 = 𝑡𝑡2𝑑𝑑2, where 𝑑𝑑2 is the inner diameter of hole 𝐵𝐵 of the bar, 𝑆𝑆2 is the yield strength. 

𝐿𝐿2 = 𝐹𝐹𝐴𝐴, and 𝐗𝐗2 = (𝑆𝑆2). The second failure mode occurs due to the excessive bending stress at 

the cross section 𝐴𝐴-𝐵𝐵, whose moment of inertia of the cross section is given by 

𝐼𝐼 =  𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏 − 2�𝐼𝐼ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑̅2𝐴𝐴� =
𝑡𝑡2𝑙𝑙23

12 − 2 �
𝑡𝑡2𝑑𝑑𝑎𝑎3

12 +  
𝑙𝑙53

4 𝑡𝑡2𝑑𝑑𝑎𝑎�   (51) 
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and the limit-state function is defined by 

𝑌𝑌3 = 𝑔𝑔3(𝐗𝐗𝟑𝟑,𝐿𝐿3)  =
𝑀𝑀1

𝐼𝐼/𝑐𝑐 − 𝑆𝑆2  (52) 

in which  𝐼𝐼/𝑐𝑐 is the section modulus, 𝑐𝑐 = 𝑙𝑙3/2, and 𝑀𝑀1 = 𝐹𝐹(𝑙𝑙1 + 𝑙𝑙2) is the bending moment.  

We now discuss the outsourced components. Bolts 𝐴𝐴 , 𝐵𝐵 , 𝐶𝐶  and 𝐷𝐷  are components with 

observable responses, and the system designer does not know their failure modes and limit-state 

functions. Experiments on the individual bolts are performed until the bolts fail, and the values of 

the force 𝐹𝐹 are recorded upon failure. Their reliability is estimated from the experimental results. 

To mimic the actual physical experiments and simulate the experiments. we use their true limit-

state functions, which are given by  

𝑌𝑌�4𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑔𝑔4𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐗𝐗𝟒𝟒, 𝐿𝐿4)  =
𝐹𝐹𝐴𝐴
𝐴𝐴𝑠𝑠𝑠𝑠

− 𝜏𝜏𝑎𝑎  (53) 

𝑌𝑌�5𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑔𝑔5𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐗𝐗𝟓𝟓,𝐿𝐿5)  =
𝐹𝐹𝐵𝐵
𝐴𝐴𝑠𝑠𝑠𝑠

− 𝜏𝜏𝑏𝑏  (54) 

where 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐴𝐴𝑠𝑠𝑠𝑠 are the areas subject to shear stresses, and 𝜏𝜏𝑎𝑎 and 𝜏𝜏𝑏𝑏 are the allowable shear 

stresses of bolt 𝐴𝐴 and 𝐵𝐵, respectively. 𝐗𝐗𝟒𝟒 = (𝐴𝐴𝑠𝑠𝑠𝑠 , 𝜏𝜏𝑎𝑎), 𝐿𝐿4 = 𝐹𝐹𝐴𝐴. 𝐗𝐗𝟓𝟓 = (𝐴𝐴𝑠𝑠𝑠𝑠, 𝜏𝜏𝑏𝑏), 𝐿𝐿5 = 𝐹𝐹𝐵𝐵. 

𝑌𝑌�6𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑔𝑔6𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐗𝐗𝟔𝟔, 𝐿𝐿6)  =
𝐹𝐹𝐶𝐶
𝐴𝐴𝑠𝑠𝑠𝑠

− 𝜏𝜏𝑐𝑐   (55) 

𝑌𝑌�7𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑔𝑔7𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐗𝐗𝟕𝟕, 𝐿𝐿7)  =
𝐹𝐹𝐷𝐷
𝐴𝐴𝑠𝑠𝑠𝑠

− 𝜏𝜏𝑑𝑑   (56) 

where 𝐴𝐴𝑠𝑠𝑠𝑠  and 𝐴𝐴𝑠𝑠𝑠𝑠  are areas subject to shear stresses, and 𝜏𝜏𝑐𝑐  and 𝜏𝜏𝑑𝑑  are the allowable shear 

stresses of bolts 𝐶𝐶  and 𝐷𝐷 , respectively. 𝐗𝐗6 = (𝐴𝐴𝑠𝑠𝑠𝑠 , 𝜏𝜏𝑐𝑐) , 𝐿𝐿6 = 𝐹𝐹𝐶𝐶 . 𝐗𝐗7 = (𝐴𝐴𝑠𝑠𝑠𝑠 , 𝜏𝜏𝑑𝑑) , 𝐿𝐿7 = 𝐹𝐹𝐷𝐷 . We 

also use the true distributions associated with the outsourced variables to simulate the experiments. 

The distributions are given in Table 4. 
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With the above true limit-state functions, we use MCS to generate samples of all the random 

variables in Table 4 and estimate the reliability of the four components. The reliability of each of 

the bolts is assumed from experiments. We also pick 17 random samples of the force 𝐹𝐹 in the 

failure region and assume that they are the recorded samples from the experiments.  

Table 4 Distributions associated with observable responses 

𝐴𝐴𝑠𝑠𝑠𝑠 (m2) Bolt A shear-stress area 𝑁𝑁(1.44 × 10−4, 2.88 × 10−6) 

𝐴𝐴𝑠𝑠𝑠𝑠 (𝑚𝑚2) Bolt B shear-stress area 𝑁𝑁(1.44 × 10−4, 2.88 × 10−6) 

𝐴𝐴𝑠𝑠𝑠𝑠  (𝑚𝑚2) Bolt C shear-stress area 𝑁𝑁(1.15 × 10−4, 2.88 × 10−6) 

𝐴𝐴𝑠𝑠𝑠𝑠  (𝑚𝑚2) Bolt D shear-stress area 𝑁𝑁(1.15 × 10−4, 2.88 × 10−6) 

𝜏𝜏𝑎𝑎 (𝑃𝑃𝑃𝑃) Bolt A allowable shear stress 𝐿𝐿𝐿𝐿(310 × 106, 24.8 × 106) 

𝜏𝜏𝑏𝑏 (𝑃𝑃𝑃𝑃) Bolt B allowable shear stress 𝐿𝐿𝐿𝐿(310 × 106, 24.8 × 106) 

𝜏𝜏𝑐𝑐  (𝑃𝑃𝑃𝑃) Bolt C allowable shear stress 𝐿𝐿𝐿𝐿(310 × 106, 24.8 × 106) 

𝜏𝜏𝑑𝑑  (𝑃𝑃𝑃𝑃) Bolt D allowable shear stress 𝐿𝐿𝐿𝐿(310 × 106, 24.8 × 106) 

𝑑𝑑𝑎𝑎 (𝑚𝑚) Bolt A diameter 𝑁𝑁(1.6 × 10−2, 6.4 ×  10−4) 

𝑑𝑑𝑏𝑏 (𝑚𝑚) Bolt B diameter 𝑁𝑁(1.6 × 10−2, 6.4 ×  10−4) 

𝑑𝑑𝑐𝑐  (𝑚𝑚) Bolt C diameter 𝑁𝑁(1.6 × 10−2, 3.2 ×  10−4) 

𝑑𝑑𝑑𝑑  (𝑚𝑚) Bolt D diameter 𝑁𝑁(1.6 × 10−2, 3.2 ×  10−4) 
 

From the estimated reliability, the system designer calculates the reliability indexes and 

reconstructs the equivalent limit-state functions as follows. 

𝑌𝑌�𝑖𝑖𝑂𝑂 = 𝛼𝛼𝑆𝑆𝑖𝑖𝑈𝑈𝑆𝑆𝑖𝑖 + 𝛼𝛼𝐿𝐿𝑖𝑖𝑈𝑈𝐿𝐿𝑖𝑖 + 𝛽𝛽𝑖𝑖  (𝑖𝑖 = 4, … ,7) 

in which  𝛽𝛽4 = 3.4914, 𝛽𝛽5 =  3.4914, 𝛽𝛽6 = 4.1971, 𝛽𝛽7 = 4.1971.  

Using 𝛽𝛽𝑖𝑖  (𝑖𝑖 = 4, … ,7) and the proposed Bayesian approach, the system designer estimates the 

unknown coefficients 𝛼𝛼𝐿𝐿𝑖𝑖   and obtain 𝛼𝛼𝐿𝐿4 = −0.8316 , 𝛼𝛼𝐿𝐿5 = −0.8475 , 𝛼𝛼𝐿𝐿6 = −0.7675 , 𝛼𝛼𝐿𝐿7 =

−0.8536. Their true values from the assumed true limit-state function are 𝛼𝛼𝐿𝐿4
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =   −0.8229, 
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𝛼𝛼𝐿𝐿5
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  −0.8229 , 𝛼𝛼𝐿𝐿6

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  −0.7980  and 𝛼𝛼𝐿𝐿7
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  −0.7980 . The results show that the 

estimated coefficients are close to the true ones. 

Using the estimated coefficients, the system designer obtains the covariance matrix as follows.  

𝚺𝚺 =

⎣
⎢
⎢
⎢
⎡

1.0
0.6134

⋮
0.5966
0.6618

   

0.6134
1.0
⋮

0.6263
0.6948

      

⋯
⋯
⋱
⋯
⋯

       

0.5966
0.6263

⋮
1.0

0.6789

          

0.6618
0.6948

⋮
0.6789

1.0

   

⎦
⎥
⎥
⎥
⎤

7×7

 

The mean vector is 

 𝛍𝛍 = (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽7) = (3.8461, 3.8461, 3.7545, 3.4914, 3.4914, 4.1971, 4.1971) 

Plugging 𝛍𝛍 and 𝚺𝚺 into Eq. (42), the system designer predicts the probability of system failure, 

and the result is given in Table 5. The result from the independence assumption method is also 

provided in the table. MCS is used to produce a true prediction with the assumption that all the 

limit-state functions 𝑔𝑔𝑖𝑖(⋅) (𝑖𝑖 = 1, 2, 3) and 𝑔𝑔𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(⋅) (𝑗𝑗 = 4, 5, 6, 7) are known. The sample size of 

MCS is 106. The error of the proposed method is 4.3%, much smaller than the error from the 

independence assumption method, which is approximately 19.5%.  

Table 5 The probabilities of system failure  

Method 𝑝𝑝𝑓𝑓 𝜀𝜀 % 
Proposed method 5.7179 × 10−4 4.3 

Independence assumption method 7.1418 × 10−4 19.5 
MCS 5.9760 × 10−4 N/A 

 
Table 6 The number of function evaluations 

Limit-state function Function calls 
𝑌𝑌1 100 
𝑌𝑌2 100 
𝑌𝑌3 125 
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In this example, 𝑌𝑌1 , 𝑌𝑌2 , and 𝑌𝑌3  are predictable responses. Their reliability is calculated 

numerically with FORM. The number of function calls for 𝑌𝑌1, 𝑌𝑌2, and 𝑌𝑌3 are 100, 100, and 125, 

respectively. 

5. CONCLUSIONS 

This study considers the reliability prediction for series systems with both predictable and 

observable component responses. The proposed method is applicable for systems whose load is 

shared by its components and whose failure is due to excessive loading. The results demonstrate 

that it is possible to reconstruct an equivalent limit-state function for an observable component 

response if the load that causes a failure is recorded upon failure with a set of samples. The 

unknown coefficient of the component load in the equivalent limit-state function can be obtained 

by the maximum likelihood estimate with the proposed Bayesian approach. The joint PDF of all 

the component responses is then obtainable with the availability of all the limit-state functions of 

predictable and observable components responses, thereby leading to a more accurate system 

reliability prediction than the traditional method that assumes independent component states. The 

other advantage of the proposed method is that it can deal with any relationships between system 

and component loads, including nonlinear relationships. 

The method is limited to systems with only one system load. If multiple system loads exist, the 

equivalent limit-state function should include multiple component loads that correspond to the 

system loads, and there will be multiple unknown coefficients for the component loads. Our future 

work will focus on estimating the unknown coefficients by the proposed Bayesian approach. Once 

the coefficients are available, the joint distribution of all the components can then be obtained 

using the same approach developed in this study.  
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