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Abstract  

It is computationally expensive to predict reliability using physical models at the design stage if 

many random input variables exist. This work introduces a dimension reduction technique based 

on generalized sliced inverse regression (GSIR) to mitigate the curse of dimensionality. The 

proposed high dimensional reliability method enables active learning to integrate GSIR, Gaussian 

Process (GP) modeling, and Importance Sampling (IS), resulting in an accurate reliability 

prediction at a reduced computational cost. The new method consists of three core steps, 1) 

identification of the importance sampling region, 2) dimension reduction by GSIR to produce a 

sufficient predictor, and 3) construction of a GP model for the true response with respect to the 

sufficient predictor in the reduced-dimension space. High accuracy and efficiency are achieved 

with active learning that is iteratively executed with the above three steps by adding new training 

points one by one in the region with a high chance of failure.    
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1. Introduction 

Reliability is measured by the probability that a system performs its intended function without 

failure. Reliability analysis is a core task in engineering design, where the probability of failure is 

predicted for a given design. If the probability of failure exceeds the design requirement, the design 

is updated, and the reliability analysis is performed again. This process repeats until the reliability 

target is achieved. The probability of failure can be predicted by physical models derived from 

physical principles or data-driven models. It is given by 

𝑝𝑝𝑓𝑓 = Pr{𝑌𝑌 = 𝑔𝑔(𝐗𝐗) < 0} (1)  

where 𝐗𝐗 = �𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝�
T

 is a vector of input random variables, 𝑔𝑔(𝐗𝐗) is a performance function 

that could be a physical model derived from physical principles or a regression model based on 

data, and 𝑌𝑌 is a response that indicates the state of the product. Conventionally, when 𝑌𝑌 < 0, a 

failure occurs. In this study, we assume the input random variables 𝐗𝐗 are independent. If they are 

not independent, they could be transformed into independent ones [1]. 

There are three types of reliability analysis methods: 1) approximation methods [2-4], 2) meta-

modeling methods [5-12], and 3) sampling methods [13-17]. Commonly used approximation 

methods include the first order reliability method (FORM) [2] and the second order reliability 

method (SORM) [3]. They approximate the performance function by making use of Taylor 

expansion. Meta-modeling methods construct a surrogate model to replace the performance 

function using regression or interpolation methods. Design of Experiments (DoE) [18] is a 

commonly used tool to generate optimal training points to build the surrogate model. The 

efficiency of mate-modeling based reliability analysis methods can be improved by active learning 

[19]. Sampling methods, such as Monte Carlo Simulation (MCS) [20], importance sampling (IS) 



3 
 

[21], and subset simulation (SS) [22], are not affected by the dimensionality. However, their 

computational effort is still very high regardless of the dimension, especially when the probability 

of failure is low. Although meta-modeling approaches may be more efficient, a dimension 

reduction is still needed to handle high-dimension problems. 

A commonly used dimension reduction approach is the principal component analysis (PCA) 

[23-25]. PCA reduces the dimension of random variables by exploiting their correlation structure. 

If the random variables are strongly correlated, PCA can effectively reduce the dimension by linear 

combinations of the random variables, resulting in the so-called principal components. It does not 

work well for independent random variables. PCA is an unsupervised method that does not use the 

information of the response 𝑌𝑌. High-dimensional model representation (HDMR) [26-28] is another 

high-dimensional reliability method, which decomposes 𝑔𝑔(𝐗𝐗)  into the sum of several low- 

dimensional functions. However, when the interaction terms dominate the performance function, 

the accuracy is poor.   

Machine learning and regression methods have recently been used in high dimensional 

reliability analysis. Several studies [29-34] combine meta-modeling and dimension reduction 

techniques. Two steps are typically involved. A low dimensional latent subspace is identified by 

the sliced inverse regression (SIR) [35], which is a linear sufficient dimension reduction (SDR) 

technique, or other dimension reduction methods [32, 34, 36] using training points generated by 

DoE. A surrogate model of the performance function is then constructed in the low dimensional 

latent subspace and is refined by cross validation. Since the training points are pre-defined by DoE 

in the first step, there is no guarantee that 1) a suitable latent subspace exists, and 2) the accuracy 

of the surrogate model is satisfactory. An active learning based meta-modeling approach combined 

with dimension reduction is reported in [33]. It combines AK-MCS [8] with a dimension reduction 
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technique called active subspace (AS) [36] to iteratively select the optimum training points in the 

original high dimensional space, and good accuracy and efficiency are achieved. SIR and AS, 

however, are both linear dimension reduction techniques, and they may not work well for problems 

that need nonlinear dimension reduction. 

It is desirable to use nonlinear dimension reduction approaches for high dimensional reliability 

analysis. Nonlinear dimension reduction techniques can be classified into two groups, supervised 

nonlinear dimension reduction [37, 38] and unsupervised nonlinear dimension reduction [39, 40]. 

Similar to PCA, unsupervised nonlinear dimension reduction,  such as Kernel PCA [39],  

autoencoder [31], and diffusion maps [41], do not make use of the information of the model 

response or labels in the dimension reduction process. For the supervised dimension reduction 

methods, studies in [42-44] combine the so-called kernel trick [45, 46] with SDR to overcome the 

limitation of linear SDR, making supervised nonlinear sufficient dimension reduction feasible. The 

approaches include the kernel canonical correlation analysis (KCCA) [44], kernel SIR (KSIR) [43], 

and generalized SIR (GSIR) [42]. GSIR not only relaxes the stringent conditions required by linear 

SDR where the reduced subspace is the linear combination of the original random variables, but 

also relieves the assumption of KSIR that the subspace is the linear combination of a set of 

nonlinear functions. Given the advantages of GSIR, it is worth investigating its use in high 

dimensional reliability analysis.  

 This work develops a high dimensional reliability method that combines GSIR with GP, IS, 

and active learning. The proposed method inherits the advantage of GSIR, which is more general 

and robust no matter if the linear or nonlinear dimension reduction is required. The computational 

cost of constructing the surrogate model used for reliability analysis is decreased drastically due 
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to the dimension reduction by GSIR. Since the use of IS requires less computational effort than 

MCS based methods, the proposed method can also handle small probabilities of failure. 

The rest of the paper is organized as follows. Section 2 reviews the related methodologies used 

in this paper. Section 3 presents the details of the proposed method followed by four examples in 

Section 4. Concluding remarks are provided in Section 5.  

2. Literature Review  

2.1 Generalized Sliced Inverse Regression (GSIR) 

GSIR is an approach belonging to sufficient dimension reduction (SDR). Given input variables 

𝐗𝐗 ∈ ℝ𝑛𝑛×𝑝𝑝 and the response 𝑌𝑌 ∈ ℝ𝑛𝑛×1 that depends on 𝐗𝐗, SDR seeks a function 𝑅𝑅(𝐗𝐗) to map 𝐗𝐗 to 

a subspace so that the distribution of 𝑌𝑌 given 𝐗𝐗 is the same as that given 𝑅𝑅(𝐗𝐗), where 𝑛𝑛 is the 

number of training points, and 𝑝𝑝 is the dimension of 𝐗𝐗. For linear SDR, 𝑅𝑅(𝐗𝐗) contains one or more 

linear combinations of 𝐗𝐗, and the task is to find a matrix 𝛽𝛽 ∈ ℝ𝑝𝑝×𝑑𝑑 such that 

𝑌𝑌 ⫫ 𝐗𝐗|𝛽𝛽T𝐗𝐗 (2) 

where 𝑑𝑑 is the dimension of the subspace, and 𝑑𝑑 < 𝑝𝑝; ⫫ denotes independence, meaning that the 

distribution of 𝑌𝑌 is conditionally independent of 𝐗𝐗 given 𝛽𝛽T𝐗𝐗. Different from SDR, nonlinear 

SDR searches for a set of nonlinear functions 𝑓𝑓1(𝐗𝐗), … , 𝑓𝑓𝑑𝑑(𝐗𝐗) such that  

𝑌𝑌 ⫫ 𝐗𝐗|𝑓𝑓1(𝐗𝐗), … , 𝑓𝑓𝑑𝑑(𝐗𝐗) (3) 

Since 𝑑𝑑 < 𝑝𝑝, the dimension is reduced from 𝑝𝑝 to 𝑑𝑑. 

The nonlinear functions may be hard to define in practice. But the use of the kernel trick could 

allow dimension reduction to proceed without defining the nonlinear function. This is done by 

projecting 𝐗𝐗 and 𝑌𝑌 to the kernel space.  
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GSIR [42] is a nonlinear dimension reduction method that stems from the nonlinear SDR 

theory. The conditional expectation of 𝐗𝐗 given 𝑌𝑌 is denoted by 

𝐸𝐸𝐗𝐗|𝑌𝑌 = ∑𝑌𝑌𝑌𝑌
−1/2𝑅𝑅𝑌𝑌𝐗𝐗∑𝐗𝐗𝐗𝐗

1/2 (4) 

where 𝑅𝑅𝑌𝑌𝐗𝐗 is called the correlation operator denoted by 

𝑅𝑅𝑌𝑌𝐗𝐗 = ∑𝑌𝑌𝑌𝑌
−1/2∑𝑌𝑌𝐗𝐗∑𝐗𝐗𝐗𝐗

−1/2 (5) 

and ∑ is the covariance operator.  

If a data set of training points are available with (𝐱𝐱1, … ,𝐱𝐱𝑛𝑛) and (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛), then  

∑𝐗𝐗𝐗𝐗 = ∑𝑌𝑌𝐗𝐗 =
1
𝑛𝑛 𝐺𝐺𝐗𝐗 =

1
𝑛𝑛𝑄𝑄𝐾𝐾𝐗𝐗𝑄𝑄 =

1
𝑛𝑛𝑄𝑄

�
𝐾𝐾(𝐱𝐱1, 𝐱𝐱1) ⋯ 𝐾𝐾(𝐱𝐱1, 𝐱𝐱𝑛𝑛)

⋮ ⋱ ⋮
𝐾𝐾(𝐱𝐱𝑛𝑛 ,𝐱𝐱1) ⋯ 𝐾𝐾(𝐱𝐱𝑛𝑛 ,𝐱𝐱𝑛𝑛)

�𝑄𝑄 (6) 

∑𝑌𝑌𝑌𝑌 =
1
𝑛𝑛 𝐺𝐺𝑌𝑌 =

1
𝑛𝑛𝑄𝑄𝐾𝐾𝑌𝑌𝑄𝑄 =

1
𝑛𝑛𝑄𝑄

�
𝐾𝐾(𝑦𝑦1, 𝑦𝑦1) ⋯ 𝐾𝐾(𝑦𝑦1, 𝑦𝑦𝑛𝑛)

⋮ ⋱ ⋮
𝐾𝐾(𝑦𝑦𝑛𝑛 ,𝑦𝑦1) ⋯ 𝐾𝐾(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛)

�𝑄𝑄 (7) 

where 𝑄𝑄 = 𝐼𝐼𝑛𝑛 − 1𝑛𝑛1𝑛𝑛𝑇𝑇/𝑛𝑛; 𝐺𝐺𝐗𝐗 and 𝐺𝐺𝑌𝑌 are the centered versions of the kernel matrixes 𝐾𝐾𝐗𝐗 and 𝐾𝐾𝑌𝑌; 

𝐼𝐼𝑛𝑛  is an 𝑛𝑛 × 𝑛𝑛 identity matrix; and 1𝑛𝑛 is an 𝑛𝑛 × 1 vector with all elements being 1. The kernel 

function used in this paper is the anisotropic squared-exponential function and is defined by 

𝐾𝐾�𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗� = exp �−𝜃𝜃𝐗𝐗�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�
2
� , 𝑖𝑖. 𝑗𝑗 = 1, … , 𝑛𝑛 (8) 

𝐾𝐾(𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑗𝑗) is obtained by replacing 𝜃𝜃𝐗𝐗�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�
2
 with 𝜃𝜃𝑌𝑌�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2
 in Eq. (8). 𝜃𝜃𝐗𝐗 is computed by  

1
𝜃𝜃𝐗𝐗

= �𝑛𝑛2�
−1
��𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�

2

𝑖𝑖<𝑗𝑗

(9) 
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𝜃𝜃𝑌𝑌  is obtained by replacing �𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗�  with �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�  in Eq. (9). Similar to other kernel-based 

methods, such as GP and SVM, we can choose a kernel from several well established options [47]. 

Anisotropic squared-exponential function or squared-exponential function is a good starting point 

when we are short of knowledge about a problem. 

Substituting ∑𝑌𝑌𝑌𝑌 , ∑𝐗𝐗𝐗𝐗, and ∑𝑌𝑌𝐗𝐗  into Eqs. (12) and (13) yields the correlation operator and 

conditional expectation.  

𝑅𝑅𝑌𝑌𝐗𝐗 = 𝐺𝐺𝑌𝑌
+1/2𝐺𝐺𝐗𝐗𝐺𝐺𝐗𝐗

+1/2 (10) 

𝐸𝐸𝐗𝐗|𝑌𝑌 = 𝐺𝐺𝑌𝑌+𝐺𝐺𝐗𝐗𝐺𝐺𝐗𝐗
+1/2𝐺𝐺𝐗𝐗

1/2 (11) 

where + means the Moore–Penrose inverse [48] of a matrix in a general sense. In the numerical 

computation, the Moore-Penrose inverses 𝐺𝐺𝐗𝐗+ and 𝐺𝐺𝑌𝑌+ are replaced by the ridge-regression-type 

regularized inverses (𝐺𝐺𝐗𝐗 + 𝜖𝜖𝐗𝐗𝐼𝐼𝑛𝑛)−1  and (𝐺𝐺𝑌𝑌 + 𝜖𝜖𝑌𝑌𝐼𝐼𝑛𝑛)−1 , respectively, where 𝜖𝜖𝐗𝐗  and 𝜖𝜖𝑌𝑌  are the 

penalty terms. The first 𝑑𝑑  eigenvectors 𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑑𝑑  used to form the sufficient predictors are 

obtained by performing the eigen-analysis of the matrix in Eq. (12).  

𝐺𝐺𝑋𝑋+�𝐸𝐸𝑋𝑋|𝑌𝑌�
𝑇𝑇
𝐺𝐺𝑌𝑌2�𝐸𝐸𝑋𝑋|𝑌𝑌�𝐺𝐺𝑋𝑋+ = 

(𝐺𝐺𝑋𝑋 + 𝜖𝜖𝑋𝑋𝐼𝐼𝑛𝑛)−3/2𝐺𝐺𝑋𝑋
3/2(𝐺𝐺𝑌𝑌 + 𝜖𝜖𝑌𝑌𝐼𝐼𝑛𝑛)−1𝐺𝐺𝑌𝑌2(𝐺𝐺𝑌𝑌 + 𝜖𝜖𝑌𝑌𝐼𝐼𝑛𝑛)−1𝐺𝐺𝑋𝑋

3/2(𝐺𝐺𝑋𝑋 + 𝜖𝜖𝑋𝑋𝐼𝐼𝑛𝑛)−3/2 (12) 

After the dimension reduction (training) is complete, predictions of new input variables can be 

made. Given a new set of input variables (𝐱𝐱�1, … , 𝐱𝐱�𝑚𝑚), denote their responses by 𝑌𝑌� = (𝑦𝑦�1, … , 𝑦𝑦�𝑚𝑚), 

and their predictors can be obtained as follow. 

The kernel matrix of the training points and new points are obtained by 
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𝐾𝐾𝐗𝐗𝐗𝐗� = �
𝐾𝐾(𝐱𝐱1, 𝐱𝐱�1) ⋯ 𝐾𝐾(𝐱𝐱1,𝐱𝐱�𝑚𝑚)

⋮ ⋱ ⋮
𝐾𝐾(𝐱𝐱𝑛𝑛 ,𝐱𝐱�1) ⋯ 𝐾𝐾(𝐱𝐱𝑛𝑛 ,𝐱𝐱�𝑚𝑚)

� (13)  

Then, the sufficient predictor 𝑓𝑓𝑖𝑖 is given by 

𝑓𝑓𝑖𝑖 = 𝜉𝜉𝑖𝑖𝑇𝑇𝑄𝑄𝐾𝐾𝐗𝐗𝐗𝐗�, 𝑖𝑖 = 1, … , 𝑑𝑑 (14) 

The corresponding eigenvalues of the eigenvectors (𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑑𝑑) are sorted in a descending 

order, as is the importance of the corresponding eigenvectors. The first sufficient predictor 𝑓𝑓1 is 

therefore the most important predictor. As indicated in [42], the relationship between 𝑓𝑓1 and the 

response 𝑌𝑌� is usually monotonic, and Spearman’s correlation is used to measure the monotonic 

relationship. The monotonicity is an advantage of GSIR over many other dimension reduction 

methods [42] since the monotonic relationship can clearly classify a training point into either the 

safe region or the failure region for the reliability prediction. The advantage is also demonstrated 

in this study as will be shown in Sec. 4. It is therefore possible to reduce the original dimension 𝑝𝑝 

to 1 because 𝑓𝑓1 is in a one-dimensional space.  

The GSIR algorithm is summarized as follows. 

Algorithm 1 Generalized sliced inverse regression [42] 
1. Collect training points (𝐱𝐱1, … , 𝐱𝐱𝑛𝑛) and (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛).  
2. Select the ridge parameters 𝜖𝜖𝑋𝑋  and 𝜖𝜖𝑌𝑌 and compute 𝜃𝜃𝑋𝑋 , 𝜃𝜃𝑌𝑌 by Eq. (9). 
3. Solve for the first 𝑑𝑑 eigenvectors 𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑑𝑑 of the matrix in Eq. (12). 
4. Form the sufficient predictors by Eq. (14).  

 

2.2 Importance Sampling (IS) 

Importance sampling (IS) is a sampling method that approximates a mathematical expectation 

with respect to a target distribution by a weighted average of random draws from another 
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distribution (called an importance distribution). For high reliability problem, if samples are drawn 

from the joint (target) distribution of the original random variables, the chance of getting samples 

in the failure region is low. Such a chance will be much higher if the samples are drawn from a 

suitable importance distribution, thereby increasing the computational efficiency. Therefore, it is 

desirable to use an importance distribution that is centered in the region where the failure is most 

likely. In risk analysis literature, the Most Probable Point (MPP) [19] is usually used as the center 

of the importance distribution. The MPP belongs to the limit state surface, and this point has the 

highest probability density in the standard normal space (U-space). 

To solve for MPP, we first transformed 𝐗𝐗 to 𝐔𝐔, whose components are independent standard 

normal variables [1]. The transformation is denoted by 𝐗𝐗 = 𝑇𝑇(𝐔𝐔). The performance function then 

becomes 𝑌𝑌 = 𝑔𝑔(𝑻𝑻(𝐔𝐔)) = 𝐺𝐺(𝐔𝐔). The next step is to obtain the IS center. There is no need to search 

for the true MPP in practice. We can use the point from the first iteration of the MPP search as the 

IS center to reduce the computation time. Although it may not be close to the true MPP, the one-

iteration MPP allows the IS samples centered around it to cover a sufficiently large area of failure 

region if a proper sample size is used. The one-iteration MPP is obtained by 

𝐮𝐮∗  = −
𝐺𝐺(𝐮𝐮0)𝛻𝛻𝛻𝛻(𝐮𝐮0)
‖𝛻𝛻𝛻𝛻(𝐮𝐮0)‖2 (15) 

 where 𝐮𝐮0 = (0, … ,0)𝑇𝑇  is the origin of the U-space. For the highly nonlinear problems, more 

iterations of the MPP search may be needed to approach the failure boundary.   

With the approximate MPP 𝐮𝐮∗, we shift the center of the probability density to 𝐮𝐮∗, resulting in 

importance probability density 𝜑𝜑𝐔𝐔(∙), represented by the new distribution 𝑈𝑈�𝑖𝑖~𝑁𝑁(𝑢𝑢𝑖𝑖∗, 12), where 

𝑢𝑢𝑖𝑖∗ is the 𝑖𝑖-th component of 𝐮𝐮∗. In this paper, we use the same standard deviations of standard 
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normal variables. The probability of failure is estimated with density 𝜙𝜙𝐔𝐔(⋅)  of 𝐔𝐔  and the 

importance density 𝜑𝜑𝐔𝐔(𝐮𝐮). 

𝑝𝑝𝑓𝑓 = �𝐼𝐼𝐹𝐹(𝐮𝐮)
𝜙𝜙𝐔𝐔(𝐮𝐮)
𝜑𝜑𝐔𝐔(𝐮𝐮)𝜑𝜑𝐔𝐔(𝐮𝐮)𝑑𝑑𝐮𝐮 (16) 

where 𝐼𝐼𝐹𝐹(⋅) is an indicator function and is defined as 

𝐼𝐼𝐹𝐹(𝐮𝐮) = �0,𝐺𝐺(𝐔𝐔) > 0 
1,𝐺𝐺(𝐔𝐔) ≤ 0

(17) 

With the samples drawn from the importance density 𝜙𝜙𝐔𝐔(𝐮𝐮), 𝑝𝑝𝑓𝑓 in Eq. (16) is estimated by  

𝑝𝑝𝑓𝑓 ≈ 𝑝̂𝑝𝑓𝑓 =
1
𝑁𝑁𝐼𝐼𝐼𝐼

�𝐼𝐼𝐹𝐹(𝐮𝐮�𝑖𝑖)
𝑁𝑁𝐼𝐼𝐼𝐼

𝑖𝑖=1

𝜙𝜙𝐔𝐔(𝐮𝐮�𝑖𝑖)
𝜑𝜑𝐔𝐔(𝐮𝐮�𝑖𝑖)

(18) 

where 𝐮𝐮�𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁𝐼𝐼𝐼𝐼, are the samples generated from 𝜙𝜙𝐔𝐔(𝐮𝐮). The variance of the probability of 

failure is estimated by  

Var�𝑝̂𝑝𝑓𝑓� =
1
𝑁𝑁𝐼𝐼𝐼𝐼

�
1
𝑁𝑁𝐼𝐼𝐼𝐼

��𝐼𝐼𝐹𝐹(𝐮𝐮�𝑖𝑖)�
𝜙𝜙𝐔𝐔(𝐮𝐮�𝑖𝑖)
𝜑𝜑𝐔𝐔(𝐮𝐮�𝑖𝑖)

�
2

�
𝑁𝑁𝐼𝐼𝐼𝐼

𝑖𝑖=1

− 𝑝̂𝑝𝑓𝑓2� (19) 

If a proper importance distribution is chosen, Var�𝑝̂𝑝𝑓𝑓� is less than the variance of MCS, 

therefore increasing the computational efficiency. 

The coefficient of variation 𝛿𝛿𝐼𝐼𝐼𝐼 of 𝑝̂𝑝𝑓𝑓 is calculated by 

𝛿𝛿𝐼𝐼𝐼𝐼 =
�Var�𝑝̂𝑝𝑓𝑓�

𝑝̂𝑝𝑓𝑓
(20) 
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2.3 Gaussian Process (GP) Modeling 

GP modeling [49] views a function 𝐺𝐺(𝐔𝐔) as a realization of a Gaussian process. Given a set of 

training points, a GP model is obtained by 

𝐺𝐺�(𝐮𝐮) = 𝐟𝐟(𝐮𝐮)T𝛃𝛃+ 𝑍𝑍(𝐮𝐮) (21) 

where 𝐟𝐟(𝐮𝐮)T𝛃𝛃  is a deterministic term, providing the trend and the mean response; 𝐟𝐟(𝐮𝐮) =

�𝑓𝑓1(𝐮𝐮),𝑓𝑓2(𝐮𝐮), … , 𝑓𝑓𝑝𝑝(𝐮𝐮)�
𝑇𝑇
 is a vector of regression functions; 𝛃𝛃 = �𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑝𝑝�

𝑇𝑇
 is a vector of 

regression coefficients; 𝑍𝑍(∙) is a stationary Gaussian process with zero mean and covariance. The 

covariance is denoted by  

Cov �𝑍𝑍(𝐮𝐮𝑖𝑖),𝑍𝑍�𝐮𝐮𝑗𝑗�� = 𝜎𝜎𝑍𝑍2𝑅𝑅�𝐮𝐮𝑖𝑖 ,𝐮𝐮𝑗𝑗� (22) 

where 𝜎𝜎𝑍𝑍2  is the process variance, 𝑅𝑅(∙, ∙) is the correlation function, specifically the squared-

exponential kernel used in this work. GP can also provide the variance of the prediction as the GP 

predictor 𝐺𝐺�(𝐮𝐮) follows a normal distribution, denoted by  

𝐺𝐺�(𝐮𝐮)~𝑁𝑁�𝜇𝜇𝐺𝐺(𝐮𝐮),𝜎𝜎𝐺𝐺2(𝐮𝐮)� (23) 

where 𝜇𝜇𝐺𝐺(∙) and 𝜎𝜎𝐺𝐺2(∙) represent the mean GP prediction and GP variance, respectively.  

2.4 AK-IS 

AK-IS [19] is an active learning method combining Kriging (GP modeling) with IS for 

reliability analysis. AK-IS at first uses the MPP-centered importance distribution to generate 

samples, called the IS population. It then constructs the GP model by the point used for solving 

the MPP and refines the model by adding training points selected from the IS population. A new 

training point is selected by a learning function and is added to the set of training points, which 
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allows for an update of the GP model. The process stops once the desired accuracy is achieved. 

The size of the IS population will be increased if a target coefficient of variation is unsatisfied. 

The learning function is defined by  

𝕌𝕌(𝐮𝐮�) =
|𝜇𝜇𝐺𝐺(𝐮𝐮�)|
𝜎𝜎𝐺𝐺2(𝐮𝐮�)

(24) 

where 𝐮𝐮� is a point in the IS population, and 𝜇𝜇𝐺𝐺(∙) and 𝜎𝜎𝐺𝐺2(∙) are given in Eq. (23). A lower 𝕌𝕌(𝐮𝐮�) 

means a higher probability that the point is misclassified. Then the point with the minimum 𝕌𝕌(𝐮𝐮�) 

in the IS population is selected as the new training point. The learning process stops when 

min𝕌𝕌(𝐮𝐮�) ≥ 2.  

3. Methodology  

The purpose of this study is to explore the use of GSIR in high dimensional reliability analysis 

to reduce computational efforts. The central strategy is reducing the dimension of input variables 

by GSIR so that a GP model can be constructed in a low dimensional subspace. The following 

three steps are involved and are illustrated in Fig. 1, where TP stands for training point.  

 

Fig. 1 Schematic of the proposed method 
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1) Determine the importance distribution: we first obtain the one-iteration MPP which is the 

importance distribution center. Samples are generated from the importance distribution as 

described in Section 2.2 to form the importance population.  

2) Initialization and dimension reduction by GSIR. Initially, training points 𝐔𝐔 are generated 

by Latin Hypercube sampling, centered at the origin of the U-space, and the corresponding 

responses are obtained by calling the performance function 𝑌𝑌 = 𝐺𝐺(𝐔𝐔). GSIR then trains  

sufficient predictors using the set of training points and associated responses. In subsequent 

iterations, new training points are selected by active learning from the IS population. 

3) Surrogate model creation in subspace: the GP model is constructed in the one-dimensional 

space of the sufficient predictor (Eq. (14)). The input of the model is the first sufficient 

predictor from step 2), and the output is the prediction of the response 𝑌𝑌 for the GP model. 

Since the sufficient predictor and GP model may not be accurate, steps 2 and 3 are performed 

iteratively to refine the GP model by selecting new training points from the IS population through 

an active learning strategy. In each iteration, only one new training point is added. The model 

update completes once the convergence criterion is met. When the algorithm converges, the 

probability of failure is obtained by the IS estimation method discussed in Section 2.2. Next, we 

provide detailed descriptions of the three major steps.  

3.1 Importance Distribution 

The first step of the proposed method is to generate a sample population that supplies candidate 

training points during active learning. As discussed in Sec. 2.2, if the sample population covers 

both safe and failure regions where the probability density is high, the variance of the estimated 

probability of failure will be reduced, thereby increasing computational efficiency.  
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We first transform random variables 𝐗𝐗 in the X-space to 𝐔𝐔 in the U-space. The performance 

function then becomes 𝑌𝑌 = 𝐺𝐺(𝐔𝐔). Then all the derivations will be performed with respect to 𝐔𝐔. 

After the transformation, the one-iteration MPP 𝐮𝐮∗ is obtained by Eq. (15) and serves as the IS 

center [19]. The computational cost for the one-iteration MPP is 𝑛𝑛 + 1  evaluations of the 

performance function.  

As mentioned in Section 2.2, the importance probability density 𝜑𝜑𝐔𝐔(∙)  results in new 

distributions 𝑈𝑈�𝑖𝑖~𝑁𝑁(𝑢𝑢𝑖𝑖∗, 12), 𝑖𝑖 = 1, … , 𝑛𝑛 , where 𝑢𝑢𝑖𝑖∗  is the 𝑖𝑖-th component of 𝐮𝐮∗ . We then draw 

samples 𝐔𝐔� = �𝐮𝐮�1, … ,𝐮𝐮�𝑁𝑁𝐼𝐼𝐼𝐼 �  from 𝜑𝜑𝐔𝐔(∙) to establish an IS population denoted by ℙ𝐼𝐼𝐼𝐼 . The IS 

population can cover both safety and failure regions with balanced samples in both regions. It is 

recommended that the size of IS population should be sufficiently large (e.g., 104), especially for 

high dimensional problems. If the coefficient of variation in Eq. (20) is large, the population size 

should be increased accordingly. If the one-iteration MPP is far away from the true MPP, we can 

also increase the importance sampling size or increase the standard deviations of 𝐔𝐔 to cover the 

critical failure region. The added training points during the active learning stage are selected from 

the IS population.  

3.2 Initialization and Dimension Reduction by GSIR 

The initial training points are generated by Latin Hypercube sampling and are centered at the 

origin of the U-space, which is denoted by 𝐔𝐔𝑡𝑡 = (𝐮𝐮𝑡𝑡1, … ,𝐮𝐮𝑡𝑡𝑡𝑡),𝐮𝐮𝑡𝑡1 ∈ ℝ𝑝𝑝×1 . Then, the 

corresponding responses 𝑌𝑌𝑡𝑡 = (𝑦𝑦𝑡𝑡1 , … , 𝑦𝑦𝑡𝑡𝑡𝑡), 𝑦𝑦𝑡𝑡1 ∈ ℝ1×1 are obtained by calling the performance 

function at 𝐔𝐔𝑡𝑡. It is recommended that the sample size of initial training points is three to five times 

of the input dimension. This number of initial training points can help create an accurate initial 

model and can therefore reduce the number of new training points in the subsequent iterations. It 
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is also possible to use fewer initial training points, and the number of new training points will be 

likely increase.  

Once the training points (𝐔𝐔𝑡𝑡,𝑌𝑌𝑡𝑡) are available, GSIR is used to reduce the dimension of input 

variables such that the GP model can be constructed in a low dimensional space. We first obtained 

the kernel matrices 𝐾𝐾𝐔𝐔𝑡𝑡  and 𝐾𝐾𝑌𝑌𝑡𝑡 by  

𝐾𝐾𝐔𝐔𝑡𝑡 = �
𝐾𝐾(𝐮𝐮𝑡𝑡1,𝐮𝐮𝑡𝑡1) ⋯ 𝐾𝐾(𝐮𝐮𝑡𝑡1,𝐮𝐮𝑡𝑡𝑡𝑡)

⋮ ⋱ ⋮
𝐾𝐾(𝐮𝐮𝑡𝑡𝑡𝑡 ,𝐮𝐮𝑡𝑡1) ⋯ 𝐾𝐾(𝐮𝐮𝑡𝑡𝑡𝑡 ,𝐮𝐮𝑡𝑡𝑡𝑡)

� (25) 

𝐾𝐾𝑌𝑌𝑡𝑡 = �
𝐾𝐾(𝑦𝑦𝑡𝑡1, 𝑦𝑦𝑡𝑡1) ⋯ 𝐾𝐾(𝑦𝑦𝑡𝑡1 ,𝑦𝑦𝑡𝑡𝑡𝑡)

⋮ ⋱ ⋮
𝐾𝐾(𝑦𝑦𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑡𝑡1) ⋯ 𝐾𝐾(𝑦𝑦𝑡𝑡𝑡𝑡 , 𝑦𝑦𝑡𝑡𝑡𝑡)

� (26) 

where 𝐾𝐾(∙,∙) is the kernel function defined in Eq. (8). The centered kernel matrices of 𝐾𝐾𝐔𝐔𝑡𝑡  and 𝐾𝐾𝑌𝑌𝑡𝑡 

are obtained by 𝐺𝐺𝐔𝐔𝑡𝑡 = 𝑄𝑄𝐾𝐾𝐔𝐔𝑡𝑡𝑄𝑄 and 𝐺𝐺𝑌𝑌𝑡𝑡 = 𝑄𝑄𝐾𝐾𝑌𝑌𝑡𝑡𝑄𝑄. Then the correlation operator and conditional 

expectation are obtained by  

𝑅𝑅𝑌𝑌𝑡𝑡𝐔𝐔𝑡𝑡 = 𝐺𝐺𝑌𝑌𝑡𝑡
+1/2𝐺𝐺𝐔𝐔𝑡𝑡𝐺𝐺 𝐔𝐔𝑡𝑡

+1/2 (27) 

𝐸𝐸𝐔𝐔𝑡𝑡|𝑌𝑌𝑡𝑡 = 𝐺𝐺𝑌𝑌𝑡𝑡
+𝐺𝐺 𝐔𝐔𝑡𝑡𝐺𝐺 𝐔𝐔𝑡𝑡

+1/2𝐺𝐺 𝐔𝐔𝑡𝑡
1/2 (28) 

The first 𝑑𝑑 eigenvectors 𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑑𝑑 , which are used to form sufficient predictors, are calculated 

by performing eigen-analysis to the following matrix: 

𝐺𝐺𝐔𝐔𝑡𝑡
+ �𝐸𝐸𝐔𝐔𝑡𝑡|𝑌𝑌𝑡𝑡�

𝑇𝑇
𝐺𝐺𝑌𝑌𝑡𝑡
2 �𝐸𝐸𝐔𝐔𝑡𝑡|𝑌𝑌𝑡𝑡�𝐺𝐺𝐔𝐔𝑡𝑡

+ = 

�𝐺𝐺𝐔𝐔𝑡𝑡 + 𝜖𝜖𝐔𝐔𝑡𝑡𝐼𝐼𝑛𝑛�
−3/2

𝐺𝐺𝐔𝐔𝑡𝑡
3/2�𝐺𝐺𝑌𝑌𝑡𝑡 + 𝜖𝜖𝑌𝑌𝑡𝑡𝐼𝐼𝑛𝑛�

−1
𝐺𝐺𝑌𝑌𝑡𝑡
2 �𝐺𝐺𝑌𝑌𝑡𝑡 + 𝜖𝜖𝑌𝑌𝑡𝑡𝐼𝐼𝑛𝑛�

−1
𝐺𝐺𝐔𝐔𝑡𝑡
3/2�𝐺𝐺𝐔𝐔𝑡𝑡 + 𝜖𝜖𝐔𝐔𝑡𝑡𝐼𝐼𝑛𝑛�

−3/2 (29) 
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As mentioned in Section 2.1, the first sufficient predictor (𝑓𝑓1) and the real response 𝑌𝑌𝑡𝑡 are in a 

good monotonic relationship. We now denote 𝑓𝑓1 by 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 . Then the training points 𝐔𝐔𝑡𝑡 are mapped 

to a one-dimensional space through the sufficient predictor 

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔𝑡𝑡) = 𝜉𝜉1𝑇𝑇𝑄𝑄𝐾𝐾𝐔𝐔𝑡𝑡 (30) 

Predictions of the sufficient predictor can be made for new untried points 𝐔𝐔 = (𝐮𝐮1, … ,𝐮𝐮𝑙𝑙 ) by  

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔) = 𝜉𝜉1𝑇𝑇𝑄𝑄𝐾𝐾𝐔𝐔𝑡𝑡𝐔𝐔 (31) 

where  

𝐾𝐾𝐔𝐔𝑡𝑡𝐔𝐔 = �
𝐾𝐾(𝐮𝐮𝑡𝑡1,𝐮𝐮1) ⋯ 𝐾𝐾(𝐮𝐮𝑡𝑡1,𝐮𝐮𝑙𝑙)

⋮ ⋱ ⋮
𝐾𝐾(𝐮𝐮𝑡𝑡𝑡𝑡 ,𝐮𝐮1) ⋯ 𝐾𝐾(𝐮𝐮𝑡𝑡𝑡𝑡 ,𝐮𝐮𝑙𝑙)

� (32) 

The next step is to construct a functional relationship between the real response 𝑌𝑌 and the 

sufficient predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 . 

3.3 GP Modeling in Subspace 

As discussed in Sec. 3.3, the sufficient predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  does not provide the prediction of the 

true response 𝑌𝑌, but both have a monotonic relationship. The task now is to transform the sufficient 

predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  to the response 𝑌𝑌 . Despite the monotonicity feature, the relationship may be 

nonlinear. Many regression techniques can be used for this task, such as GP, support vector 

machine (SVM), polynomial chaos expansions (PCEs), and Neural Networks (NNs). In this study, 

we use GP modeling as an example to illustrate the process. The GP method can not only handle 

nonlinearity well but also provide the uncertainty estimate of the prediction, enabling an active 

learning process. 
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Given a set of training points (𝐔𝐔𝑡𝑡,𝑌𝑌𝑡𝑡 ), the sufficient predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔𝑡𝑡), which is a one-

dimensional variable, is obtained by Eq. (30) as discussed in Sec. 3.2. Then we construct a one-

dimensional GP model using the low dimensional training points (𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔𝑡𝑡),𝑌𝑌𝑡𝑡) denoted by 

𝑌𝑌 = 𝐺𝐺�(𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝐟𝐟(𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)T𝛃𝛃 + 𝑍𝑍(𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) (33) 

Since 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  is obtained from training points (𝐔𝐔𝑡𝑡 ,𝑌𝑌𝑡𝑡), it is a function of 𝐔𝐔. Eq. (33) can be 

rewritten as 

𝑌𝑌 = 𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔)� = 𝐟𝐟�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔)�T𝛃𝛃 + 𝑍𝑍�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔)� (34) 

For an untried point 𝐮𝐮 , 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)  is obtained by Eq. (31), and the Gaussian predictor 

𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� follows a normal distribution as follow. 

𝑌𝑌 = 𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)�~𝑁𝑁 �𝜇𝜇𝐺𝐺�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)�,𝜎𝜎𝐺𝐺2�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)�� (35 ) 

where 𝜇𝜇𝐺𝐺�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� is the prediction of the mean value of 𝑌𝑌 at 𝐮𝐮, and 𝜎𝜎𝐺𝐺�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� measures the 

uncertainty in the prediction. The accuracy of the prediction will be gradually improved during the 

learning process discussed in Sec. 3.4. 

3.4 Active Learning 

The dimension reduction and regression discussed above are executed iteratively to improve 

the accuracy of the GP model. The accuracy depends on the size and location of the training points, 

which can be hard to be determined beforehand. To have the best balance between accuracy and 

efficiency, we gradually improve the accuracy of the regression model by an active learning 

strategy that adds new training points one by one selected from the IS population. The GSIR 
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dimension reduction and the GP model are updated and refined until the convergence criterion is 

met. Next, we discuss how to select a new training point and how to measure the accuracy.  

We adopt the 𝕌𝕌-learning function [8] to select the next training point at each iteration. Since 

the GP model is created in the space of sufficient predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔), given the IS population 𝐔𝐔� =

�𝐮𝐮�1, … ,𝐮𝐮�𝑁𝑁𝐼𝐼𝐼𝐼 �, the sufficient predictor 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐔𝐔�� = �𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�1), … , 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐮𝐮�𝑁𝑁𝐼𝐼𝐼𝐼� � is obtained by Eq. 

(31). Then the learning function is denoted by  

𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� =
�𝜇𝜇𝐺𝐺�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)��
𝜎𝜎𝐺𝐺2�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)�

(36) 

As discussed in Sec. 2.4, the value of the learning function indicates the probability of 

misclassification of the GP model. The smaller is 𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)�, the higher chance the point is 

misclassified. Therefore, the next training point is the point that 𝕌𝕌�𝜇𝜇𝐺𝐺�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)�� is the smallest 

and is therefore found by 

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛) = min
𝐮𝐮�𝑖𝑖∈ℙ𝐼𝐼𝐼𝐼

𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� (37) 

Then, the corresponding response 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 is available by evaluating the performance function 

𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐺𝐺(𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛). (𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛) is then added to the existing training points. The indicator function 

in the low dimensional space is 𝐼𝐼𝐹𝐹�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� = 0 if 𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� > 0 or 1 if 𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮)� < 0 . 

The probability of failure (𝑝𝑝𝑓𝑓) is obtained by Eq. (18). Here we use the original joint PDF 𝜙𝜙𝐔𝐔(⋅) 

of 𝐔𝐔 and the importance density 𝜑𝜑𝐔𝐔(𝐮𝐮) to estimate the probability of failure instead of using the 

joint PDF in the subspace after dimension reduction. First, it is difficult or almost impossible to 

estimate the joint PDF of the variables in the subspace. Second, the sufficiency maintained by the 

sufficient dimension reduction means that the information in the original space is preserved after 
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dimension reduction. Based on the two reasons, we use the original joint PDF 𝜙𝜙𝐔𝐔(⋅) of 𝐔𝐔 and the 

importance density 𝜑𝜑𝐔𝐔(𝐮𝐮).  

The 𝕌𝕌-learning function is adapted from the lower confidence bounding (𝑙𝑙𝑙𝑙𝑙𝑙) function [50]. 

The value of 𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)�  reflects the least confidence level that the indicator function 

𝐼𝐼𝐹𝐹�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� is classified into the correct group (safe or failure). Thus, the stopping criterion is 

set to be min𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� ≥ 2, which means that, at the lowest confidence level, the probability 

of 𝐼𝐼𝐹𝐹�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)�  being accurately classified is Φ(2) = 97.7%, where Φ(∙)  is the cumulative 

density function (CDF) of a  standard normal variable. The iterative process terminates until the 

stopping criterion is satisfied.  

Since the probability of failure is calculated in every iteration with the updated GP model, the 

final probability of failure is obtained from the last iteration. It is recommended that if the 

coefficient of variation in Eq. (20) is high, for example, 5%, the IS population size should be 

increased. 

3.5 Numerical procedure 

The numerical procedures are summarized below. 

Algorithm 2: GSIR-GP-IS 
Initialization  
Determine the approximate MPP and importance distribution. 
Generate IS population 𝐔𝐔� = (𝐮𝐮�𝑖𝑖)1

𝑁𝑁𝐼𝐼𝐼𝐼 . 
Select ridge parameters 𝜖𝜖𝐗𝐗, 𝜖𝜖𝑌𝑌. 
Define initial TPs (𝐔𝐔𝑡𝑡,𝑌𝑌𝑡𝑡) by Latin hypercube sampling. 
while convergence is false do 

Perform dimension reduction GSIR, and obtain the first eigenvector (𝜉𝜉1) of the sufficient 
predictor in Eq. (30) and 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔𝑡𝑡) = 𝜉𝜉1𝑇𝑇𝑄𝑄𝐾𝐾𝐔𝐔𝑡𝑡 . 
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Construct the GP model 𝐺𝐺��𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔)�  using the low-dimensional training points 
(𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐔𝐔𝑡𝑡),𝑌𝑌𝑡𝑡). 
Obtain the sufficient predictor at 𝐔𝐔�: 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐔𝐔�� = 𝜉𝜉1𝑇𝑇𝑄𝑄𝐾𝐾𝐔𝐔𝑡𝑡𝐔𝐔�. 

Run the GP model at 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐔𝐔��  to have 𝐺𝐺� �𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝐔𝐔� �� , the probability of failure 𝑝𝑝𝑓𝑓  is 
obtained by Eq. (18). 
If min𝑈𝑈�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� ≥ 2 is false 

Find the next training point (𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛) using Eqs. (36) and (37); obtain 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐺𝐺(𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛). 
Add (𝐮𝐮𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛) to TPs. 

Elseif min𝕌𝕌�𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐮𝐮�𝑖𝑖)� ≥ 2 is true 
Stop. 

End if 
End while 
If 𝛿𝛿𝐼𝐼𝐼𝐼 (Eq. (20)) and accuracy of 𝑝𝑝𝑓𝑓 is satisfied 

Stop. 
Else  

Go to Initialization and increase 𝑁𝑁𝐼𝐼𝐼𝐼 (the size of IS population). 
End  
Output: 𝑝𝑝𝑓𝑓 and associated error. 

 

4. Examples 

In this section, four examples are provided to demonstrate the proposed method. The first 

example is a mathematical problem followed by three engineering examples. We compare the 

proposed method with MCS, FORM, the second order saddlepoint approximation (SOSPA), and 

SIR-GP-IS. SOSPA [48] is a second-order approximation method based on SORM and saddlepoint 

approximation (SPA). SIR-GP-IS uses the same settings as the proposed method but using the 

linear dimension reduction method. Since the first example has been studied by SS-SVM [49] and 

SIR-SPCE [29], we also compare the two methods for the first example. Since constructing a GP 

model in the high dimensional space is more expansive than in a subspace, we only use GP-IS, the 

algorithm without dimension reduction, to evaluate the first case of example 1 to show the 

necessity of dimension reduction for high-dimensional problems.   
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A weak penalty is applied for the four examples, and the ridge parameters 𝜖𝜖𝐗𝐗 and 𝜖𝜖𝑌𝑌 of GSIR 

are set to be 10−5. Since the proposed method is a sampling-based meta-modeling method, we run 

the method 20 times to assess its performance. We then report the medians of the results, including 

the probability of failure, the error, and the number of function calls. The accuracy of different 

methods is assessed by the error relative to MCS. The relative error is defined by  

𝜀𝜀 = �
𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑓𝑓,MCS

𝑝𝑝𝑓𝑓,MCS
� × 100% (38) 

where 𝑝𝑝𝑓𝑓 is the probability obtained by a non-MCS method. The efficiency is measured by the 

number of function calls and the coefficient of efficiency (CoE). CoE describes the efficiency with 

respect to the dimension and is defined by  

CoE =
The number of performance function calls
The dimension of input random variables

(39) 

4.1 A mathematical problem 

The mathematical example is given in [51] and is further studied in [29, 52]. The performance 

function is defined by  

𝑔𝑔(𝐗𝐗) = 𝑛𝑛 + 3𝜎𝜎√𝑛𝑛 −�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(40) 

in which 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛, are independent and lognormally distributed with means and standard 

deviations being 1 and 0.2, respectively. We study three cases that 𝑛𝑛 is equal to 40, 100, and 250. 

The corresponding initial DoE sample sizes are 200, 400, and 1000. The IS population sizes 𝑁𝑁𝐼𝐼𝐼𝐼 

are 104, 104, and 3 × 104 for the three cases.  The IS population sizes are large enough to cover 
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the major failure boundaries. If this condition was not satisfied, a larger sample size (e. g. , 105 or 

106) would be needed.   

The results of dimension reduction are presented in Figs. 2, 3, and 4, in which TPs means 

training points. The sufficient predictor, which is obtained by GSIR using Eq. (31), is in the one-

dimensional space. The three cases show that the sufficient predictor and the real response have 

perfect monotonicity, for which Spearman’s correlations are 0.9993, 0.9999, and 1.0 for the three 

cases. It is found that the added learning points are concentrated on the failure boundary or the 

limit state, which means that the GSIR-aided dimension reduction method can identify points in 

the vicinity of the failure boundary and alleviate the curse of dimensionality.  

 

Fig. 2 Sufficient predictor versus real response of Case 1 
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Fig. 3 Sufficient predictor versus real response of Case 2 

 

Fig. 4 Sufficient predictor versus real response of Case 3 
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sufficient samples. FORM and SOSPA are also run for one time since these approximation 

methods are not influenced by randomness. The results of SS-SVM and SIR-SPCE are directly 

from the literatures as mentioned previously. The results are summarized in Table 1.  
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Table 1 Results of different methods for Example 1 

𝑛𝑛 Methods 𝑝𝑝𝑓𝑓 Error (%) FCs CoE 

40 

MCS 1.97 × 10−3 - 107 2.5 × 105 
FORM 2.152 × 10−4 89.1 164 4.1 
SOSPA 2.028 × 10−3 2.96 1,025 25.6 
GP-IS 7.41 × 10−2 3600 1241 31.0 

SIR-GP-IS 1.14 × 10−3 42.04 1241 31.0 
SS-SVM 1.95 × 10−3 1.5 3,729 93.2 

SIR-SPCE 1.88 × 10−3 3.3 1,200 30 
GSIR-GP-IS  1.98 × 10−3 0.37 400.65 10.0 

100 

MCS 1.72 × 10−3 - 107 105 
FORM 4.204 × 10−5 97.55 404 4.0 
SOSPA 1.796 × 10−3 4.42 5,555 5.6 

SIR-GP-IS 0.1614 9283 559 5.59 
SS-SVM 1.74 × 10−3 0.58 6036 60.4 

SIR-SPCE 1.63 × 10−3 5.6 3,000 30 
GSIR- GP-IS  1.74 × 10−3 1.03 715.4 7.2 

250 

MCS 1.56 × 10−3 - 107 4 × 104  
FORM 2.82 × 10−6 99.82 1004 4.0 
SOSPA 1.673 × 10−3 7.24 32,630 130.5 

SIR-GP-IS 0.1487 9431 1281 5.1 
SS-SVM 1.61 × 10−3 1.26 10,707 42.8 

SIR-SPCE 1.59 × 10−3 0.6 10,000 40 
GSIR-GP-IS  1.60 × 10−3 2.25 1,548.6 6.2 

 

FORM is the most efficient, but least accurate method. When 𝑛𝑛 = 40, the proposed method 

outperforms SOSPA, SS-SVM, and SIR-SPCE with respect to both accuracy and efficiency. Its 

error and number of function calls are 0.37% and 401.7, respectively. For the case 𝑛𝑛 = 100, GSIR-

GP-IS obtains an error of 1.03% with 715.4 function calls. Although SS-SVM has a slightly 

smaller error (0.58%), it calls the performance function 3,729 times. The proposed method 

performs well for the high dimensional case (𝑛𝑛 = 250). Although SS-SVM and SIR-SPCE are 

more accurate than the proposed method, their efficiency is much poorer with CoEs of 40.8 and 

40, respectively. The proposed method produces an accurate solution (2.25% error) with much 

fewer function calls (CoE = 6.2). GP-IS, the algorithm without dimension reduction, cannot 
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converge within the prespecified number of iterations (1000) for the case with the lowest 

dimension (𝑛𝑛 = 40 ). SIR-GP-IS, the algorithm with the linear dimension reduction, cannot 

converge either within 1000 iterations for the same case. The results reported in Table 1 are from 

the last iteration of the two methods. Although SIR-GP-IS displays a fast convergence rate for the 

other two cases, the algorithm does not work as the errors are 9283% and 9341%, respectively.  

Since the surrogate model construction in a high dimensional space is time-consuming, we only 

run GP-IS for 𝑛𝑛 = 40 to demonstrate the necessity of dimension reduction. 

To analyze the uncertainty of the result from the proposed method, we also provide box plots 

in Fig. 5 for the probabilities of failure and errors from the 20 runs. The medians of the probability 

of failure and the corresponding errors are (1.98 × 10−3, 0.37%), (1.74 × 10−3, 1.03%), and 

(1.60 × 10−3, 2.25%) for the three cases, where the errors here are obtained by comparing the 

median probability of failure with the MCS by Eq. (38). The error plot is from the 20 simulations 

whose median errors are 1.06%, 2.98%, and 2.41%. The standard deviations of errors are 1.77%, 

2.80%, and 3.01%. The highest error is smaller than 6%.  

  

Fig. 5 Box plot of 20 simulations 
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As mentioned in Sec. 2.1, the nonlinearity between the sufficient predictors and real response 

is ascending. Fig. 6 shows the first ten sufficient predictors versus the real response based on the 

result of case 1 (𝑛𝑛 = 40). Since the other cases and the other three examples also have the same 

pattern, we provide the figure for illustration for only case 1 in this example. For GSIR, the first 𝑑𝑑 

sufficient predictors are obtained, and we use the first one for GP modeling and active learning. 

After the algorithm converges, we plot the first 10 sufficient predictors versus the real response. It 

is clear that the added training points by active learning cluster at the failure boundary for all 

sufficient predictors. Therefore, we need to use only the first sufficient predictor.   

 

Fig. 6 The relationship between sufficient predictors and real response 
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strength (𝑆𝑆𝑦𝑦) are also normally distributed.  All the 215 random variables are independent. Their 

distributions are given in Table 2.  

 

Fig. 7 A cantilever beam 

Table 2 Distributions of random variables in Example 2 

Random variables Distribution  Mean  Standard deviation 
𝑆𝑆𝑦𝑦  (MPa) Normal 720 60 
𝑤𝑤 (m) Normal 0.2 0.001 
ℎ (m) Normal 0.4 0.001 

𝐹𝐹𝑖𝑖, 𝑖𝑖 = 1,2, … ,6 (kN) Lognormal 30 + 5𝑖𝑖 2.4 + 0.4𝑖𝑖 
𝑙𝑙𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6 (m) Normal 4.3 + 0.1𝑖𝑖 0.01 

𝐹𝐹𝑖𝑖, 𝑖𝑖 = 7,8, … ,106 (kN) Normal 10 1 
𝑙𝑙𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 7,8, … ,106 (m) Normal 0.02𝑖𝑖 0.01 

 

A failure would occur if the yield strength 𝑆𝑆𝑦𝑦  is smaller than the maximum stress, and the 

performance function is therefore given by 

𝑔𝑔(𝐗𝐗) = 𝑆𝑆𝑦𝑦 −
6∑ 𝐹𝐹𝑖𝑖𝑙𝑙𝐹𝐹𝑖𝑖

106
𝑖𝑖=1

𝑤𝑤ℎ2
(41) 

There are 600 initial training points in this example. We project the 215 input random variables 

in the high dimensional space to the sufficient predictor, and the relationship between the sufficient 

predictor and the real response is shown in Fig. 8. A good monotonic relationship is obtained with 
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the Spearman’s correlation being 0.9991. The added training points are concentrated on the failure 

boundary.  

 

Fig. 8 Sufficient predictor versus real response of Example 2 

The results of the proposed method with 20 runs are provided in Fig. 9. The probability of 

failure and the corresponding error are within the intervals [1.85 × 10−6, 2.08 × 10−6]  and 

[0.02%, 8.96%], respectively. And the median failure probability is 1.9448 × 10−6  with the 

corresponding error of 2.83%. 

 

Fig. 9 Statistical results of Example 2 
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In addition to the proposed method, MCS, FORM, SOSPA, and SIR-GP-IS are also used. The 

results are listed in Table 3. Although FORM calls the performance function only 648 times, its 

error is 5.9%. SOSPA is the most accurate method, but its computational cost is extremely high, 

with 24,084 function calls and a CoE of 112. SIR-GP-IS cannot converge within the maximum of 

1,000 iterations. The results shown in Table 3 are from the last iteration. GSIR-GP-IS maintains a 

good balance between accuracy and efficiency with an error of 2.83% and a CoE of 4.84.   

Table 3 Results of different methods for Example 2 

Methods 𝑝𝑝𝑓𝑓 Error (%) FC CoE 
MCS 1.9106 × 10−6 - 1.6 × 109 7.4 × 106 

FORM 1.7964 × 10−6 5.9 648 3.0 
SOSPA 1.9200 × 10−6 0.5 24,084 112.0 

SIR-GP-IS 2.3097 × 10−6 20.89 1816 8.45 
GSIR-GP-IS 1.9448 × 10−6 2.83 1040.4 4.84 

 

4.3 A truss system 

A dome-truss [53] consists of 52 bars with 21 nodes as shown in Fig. 10, where numbers 

without dots represent bars and the others with dots mean nodes. All the nodes lie on an imaginary 

hemisphere with a radius of 240 in. The cross-section areas and the young’s moduli of the bars are 

normally distributed. Six random forces (𝐹𝐹1, … ,𝐹𝐹6)  that point to the center of the imaginary 

hemisphere are applied to nodes 1-13. The forces are applied as follows: 𝐹𝐹1 to node 1, 𝐹𝐹2 to nodes 

2, 4, 𝐹𝐹3 to nodes 3, 5, 𝐹𝐹4 to nodes 6, 10, 𝐹𝐹5 to nodes 8, 12, and 𝐹𝐹6 to nodes 7, 9, 11, and 13. The 

random variables are independent and their distributions are summarized in Table 4.  
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Table 4 Distributions of random variables in Example 3 

Random variables Distribution  Mean  Standard deviation 
𝐸𝐸𝑖𝑖 , 𝑖𝑖 = 1~50 (ksi) Normal 2.5 × 104  1000  

𝐴𝐴𝑖𝑖, 𝑖𝑖 = 1~8, and 29~36 (in2) Normal 2  0.001 
𝐴𝐴𝑖𝑖, 𝑖𝑖 = 9~16 (in2) Normal 1.2 0.0006 

𝐴𝐴𝑖𝑖, 𝑖𝑖 = 17~28, and 37~52 (in2) Normal 0.6 0.0003 
𝐹𝐹1 (kip) Normal 45 3.6 
𝐹𝐹2 (kip) Extreme 40 6.0 
𝐹𝐹3 (kip) Extreme 35 5.25 
𝐹𝐹4 (kip) Normal 30 2.4 
𝐹𝐹5 (kip) Normal 25 2.0 
𝐹𝐹6 (kip) Normal 20 1.6 

  

 

Fig. 10 A 52-bars truss system 

The performance function is given in Eq. (42). 

𝑌𝑌 = 𝑔𝑔(𝐗𝐗) = 𝛿𝛿0 − 𝛿𝛿(𝐄𝐄;𝐀𝐀;𝐅𝐅) (42) 
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where 𝛿𝛿0 = 0.7 in  is the allowed maximum displacement of node 1, and 𝛿𝛿  is the actual 

displacement of the same node, which is obtained by the finite element method (FEM). 𝐄𝐄 =

[𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸52]T and 𝐀𝐀 = [𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴52]T are vectors of the young’s moduli and cross-sectional 

areas, respectively, 𝐅𝐅 = [𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹6]T is a force vector. 

We have Fig. 11 shows that the sufficient predictor is monotonic to the real response that the 

Spearman’s correlation is 0.9996. The failure boundary is identified by making use of the 

monotonic relationship through active learning.   

 

Fig. 11 Sufficient predictor versus real response of Example 3 

The statistical results of the proposed method are given in Fig. 12. For the 20 runs, most of the 

errors are smaller than 6%, and the maximum error is about 8.5%.   
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Fig. 12 Statistical results of Example 3 

The results of all the methods are given in Table 5. GSIR-GP-IS is less accurate than SOSPA 

but is far more efficient than SOSPA. GSIR-GP-IS has only 764.4 function calls and a CoE of 6.95 

while SOSPA has 6,771 function calls with a CoE of 61.55. The accuracy of FORM is poor, and 

its error is 15.77%. SIR-GP-IS cannot converge with a subspace of 1 in 1000 iterations and the 

results reported are from the last iteration.  

Table 5 Results of different methods for Example 3 

Methods 𝑝𝑝𝑓𝑓 Error (%) FC CoE 
MCS 3.506 × 10−3 - 107 9.09 × 104 

FORM 4.059 × 10−3 15.77 555 5.05 
SOSPA 3.529 × 10−3 0.65 6,771 61.55 

SIR-GP-IS 3.046 × 10−3 13.11 1511 13.7 
GSIR-GP-IS 3.4148 × 10−3 3.02 764.4 6.95 

 

4.4 Nonlinear seismic dynamic analysis of a shear Frame 

This example involves a 25-story shear frame structure (Fig. 13) under stochastic seismic 

excitation. The masses (𝑚𝑚1, … ,𝑚𝑚25) of all stories are normal variables with means of 3 × 105 kg 

and coefficients of variation (C.O.V) of 0.05. The inter-story stiffnesses (𝑘𝑘1, … ,𝑘𝑘25 ) follow 

lognormal distributions with means of 1.2 × 108 N/m and C.O.V. of 0.1. The motion of the shear 
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frame under seismic ground motions is characterized by the extended Bouc-Wen model [54] given 

by 

𝑴𝑴𝑿̈𝑿+ 𝑪𝑪𝑿̇𝑿 + 𝛼𝛼ℎ𝑲𝑲𝑲𝑲 + (1 − 𝛼𝛼ℎ)𝑲𝑲𝑲𝑲 = −𝑴𝑴𝑢̈𝑢𝑔𝑔(𝑡𝑡) (43) 

where 𝑿̈𝑿, 𝑿̇𝑿, and 𝑿𝑿 are vectors of acceleration, velocity, and displacement, respectively; 𝑴𝑴, 𝑪𝑪 and 

𝑲𝑲 are the mass matrix, damping matrix, and stiffness matrix, respectively; 𝛼𝛼ℎ  is a weighting 

parameter regarding hysteresis; 𝒁𝒁 is a vector of hysteretic displacement; 𝑢̈𝑢𝑔𝑔(𝑡𝑡) denotes the random 

ground motion and is given by  

𝑢̈𝑢𝑔𝑔(𝑡𝑡) = 𝜉𝜉𝑁𝑁𝑁𝑁𝑢̈𝑢𝑁𝑁𝑁𝑁(𝑡𝑡) + 𝜉𝜉𝑊𝑊𝑊𝑊𝑢̈𝑢𝑊𝑊𝑊𝑊(𝑡𝑡) (44) 

where 𝜉𝜉𝑁𝑁𝑁𝑁  and 𝜉𝜉𝑊𝑊𝑊𝑊 are independent extreme-value variables whose means and C.O.V both are 1 

and 0.1, respectively; 𝑢̈𝑢𝑁𝑁𝑁𝑁(𝑡𝑡)  and 𝑢̈𝑢𝑊𝑊𝑊𝑊(𝑡𝑡)  are accelerations in the N-S and W-E directions, 

respectively, obtained from the EI Centro Earthquake [55]. There are 52 random variables in this 

example. The 13 parameters of the extended Bouc-Wen model used in this paper are 𝐴𝐴 = 1, 𝛼𝛼ℎ =

0.04, 𝛽𝛽ℎ = 30, 𝛾𝛾ℎ = 10, 𝑛𝑛 = 1, 𝛿𝛿𝜈𝜈 = 2000, 𝛿𝛿𝜂𝜂 = 2000, 𝜁𝜁𝑠𝑠 = 0.99, 𝑞𝑞 = 0.25, 𝑝𝑝 = 1000, 𝜓𝜓 =

0.05, 𝛿𝛿𝜓𝜓 = 5, 𝜆𝜆 = 0.5.  

The damping matrix is 𝑪𝑪 = 𝛼𝛼𝑴𝑴 + 𝛽𝛽𝑲𝑲, where 𝛼𝛼 and 𝛽𝛽 are the damping coefficients, which are 

given by 𝛼𝛼 = 0.02 and 𝛽𝛽 = 0.01. The maximum displacement of the first floor 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is obtained 

by solving the nonlinear Ordinary Differential Equations system in Eq. (43).   

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑡𝑡∈[0,𝑇𝑇]

𝜓𝜓1(𝑚𝑚1, … ,𝑚𝑚25, 𝑘𝑘1, … , 𝑘𝑘25, 𝜉𝜉𝑁𝑁𝑁𝑁 , 𝜉𝜉𝑊𝑊𝑊𝑊) (45) 

where 𝜓𝜓1(∙)  denotes the function of the displacement of the first floor over time. When the 

maximum displacement exceeds a threshold (𝑑𝑑𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 32 mm ), the shear frame fails. The 

performance function of the shear frame is defined by  
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Fig. 13 Schematic of a shear frame 

𝑌𝑌 = 𝑑𝑑𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (46) 

For this example, we have 200 initial training points and the IS population is 1 × 104. As 

shown in Fig. 14, the proposed method can successfully identify the failure boundary for the 

nonlinear system, although some points are not at the failure boundary at the beginning stage of 

active learning. Fig. 15 shows that the proposed method maintains a good accuracy for most of the 

20 simulations. 
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Fig. 14 Sufficient predictor versus real response of Example 4 

 

Fig. 15 Statistical results of Example 4 

The results of all the methods are provided in Table 7. GSIR-GP-IS outperforms other methods 

with an error of 2.39%, and 367.25 average function calls, and CoE of 6.93. SIR-GP-IS has a 

slightly larger average error of 6.02%, but its efficiency is much worse since it needs 938 function 

calls. The MPP search of FORM cannot converge in 50 iterations with 2650 function calls. The 

reported  𝑝𝑝𝑓𝑓 for FORM is from the last iteration. Since SOSPA is based on the result of the MPP 

from FORM, SOSPA also has a large error for this example.  
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  Table 7 Results of different methods for Example 4  

Methods 𝑝𝑝𝑓𝑓 Error (%) FC CoE 
MCS 8.46 × 10−2 - 105 9.09 × 104 

FORM* 0.4869 476 2650 50 
SOSPA* 0.8878 949 4081 78.48 

SIR-GP-IS 8.97 × 10−2 6.02 938 17.7 
GSIR-GP-IS 8.32 × 10−2 2.39 367.25 6.93 

*The MPP search does not converge in 50 iterations. Results are reported based on the MPP obtained   
at the 50th iteration. 

 

5. Discussion and Conclusions 

The proposed method combines the generalized sliced inverse regression (GSIR), importance 

sampling (IS), Gaussian process (GP), and active learning to relieve the curse of dimensionality of 

high dimensional reliability analysis. A GP model is constructed in a subspace after dimension 

reduction by GSIR. Then, active learning is used to refine the GP model. By iteratively adding 

new training points to the training set, the failure boundary is identified, which results in an 

accurate probability of failure. The four examples demonstrate that GSIR can successfully relieve 

the curse of dimensionality. The proposed method has a good potential to predict the reliability of 

high dimensional problems accurately and efficiently.  

The proposed method has some limitations. It requires a sufficient number of initial training 

points, and this may not be computationally efficient for large-scale problems. It is possible that 

the use of a univariate subspace (the first sufficient predictor) may not be accurate enough for 

highly nonlinear problems. The proposed method may also produce a large error if multiple failure 

regions exist. To address the first two limitations, we will study the optimal balance between the 

number of initial training points and the number of added training points; we will also investigate 

the use of multiple predictors. For the third limitation, we will explore the possibility of using 

importance sampling centered at the most probable points of the multiple failure regions. 
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