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Abstract

It is computationally expensive to predict reliability using physical models at the design stage if
many random input variables exist. This work introduces a dimension reduction technique based
on generalized sliced inverse regression (GSIR) to mitigate the curse of dimensionality. The
proposed high dimensional reliability method enables active learning to integrate GSIR, Gaussian
Process (GP) modeling, and Importance Sampling (IS), resulting in an accurate reliability
prediction at a reduced computational cost. The new method consists of three core steps, 1)
identification of the importance sampling region, 2) dimension reduction by GSIR to produce a
sufficient predictor, and 3) construction of a GP model for the true response with respect to the
sufficient predictor in the reduced-dimension space. High accuracy and efficiency are achieved
with active learning that is iteratively executed with the above three steps by adding new training

points one by one in the region with a high chance of failure.
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1. Introduction

Reliability is measured by the probability that a system performs its intended function without
failure. Reliability analysis is a core task in engineering design, where the probability of failure is
predicted for a given design. If the probability of failure exceeds the design requirement, the design
is updated, and the reliability analysis is performed again. This process repeats until the reliability
target is achieved. The probability of failure can be predicted by physical models derived from

physical principles or data-driven models. It is given by

py =Pr{y = g(X) <0} (1)

where X = (Xl, ), CT Xp)T is a vector of input random variables, g(X) is a performance function
that could be a physical model derived from physical principles or a regression model based on
data, and Y is a response that indicates the state of the product. Conventionally, when Y < 0, a
failure occurs. In this study, we assume the input random variables X are independent. If they are

not independent, they could be transformed into independent ones [1].

There are three types of reliability analysis methods: 1) approximation methods [2-4], 2) meta-
modeling methods [5-12], and 3) sampling methods [13-17]. Commonly used approximation
methods include the first order reliability method (FORM) [2] and the second order reliability
method (SORM) [3]. They approximate the performance function by making use of Taylor
expansion. Meta-modeling methods construct a surrogate model to replace the performance
function using regression or interpolation methods. Design of Experiments (DoE) [18] is a
commonly used tool to generate optimal training points to build the surrogate model. The
efficiency of mate-modeling based reliability analysis methods can be improved by active learning

[19]. Sampling methods, such as Monte Carlo Simulation (MCS) [20], importance sampling (IS)



[21], and subset simulation (SS) [22], are not affected by the dimensionality. However, their
computational effort is still very high regardless of the dimension, especially when the probability
of failure is low. Although meta-modeling approaches may be more efficient, a dimension

reduction is still needed to handle high-dimension problems.

A commonly used dimension reduction approach is the principal component analysis (PCA)
[23-25]. PCA reduces the dimension of random variables by exploiting their correlation structure.
Ifthe random variables are strongly correlated, PCA can effectively reduce the dimension by linear
combinations of the random variables, resulting in the so-called principal components. It does not
work well for independent random variables. PCA is an unsupervised method that does not use the
information of the response Y. High-dimensional model representation (HDMR) [26-28] is another
high-dimensional reliability method, which decomposes g(X) into the sum of several low-
dimensional functions. However, when the interaction terms dominate the performance function,

the accuracy is poor.

Machine learning and regression methods have recently been used in high dimensional
reliability analysis. Several studies [29-34] combine meta-modeling and dimension reduction
techniques. Two steps are typically involved. A low dimensional latent subspace is identified by
the sliced inverse regression (SIR) [35], which is a linear sufficient dimension reduction (SDR)
technique, or other dimension reduction methods [32, 34, 36] using training points generated by
DoE. A surrogate model of the performance function is then constructed in the low dimensional
latent subspace and is refined by cross validation. Since the training points are pre-defined by DoE
in the first step, there is no guarantee that 1) a suitable latent subspace exists, and 2) the accuracy
ofthe surrogate model is satisfactory. An active learning based meta-modeling approach combined

with dimension reduction is reported in [33]. It combines AK-MCS [8] with a dimension reduction



technique called active subspace (AS) [36] to iteratively select the optimum training points in the
original high dimensional space, and good accuracy and efficiency are achieved. SIR and AS,
however, are both linear dimension reduction techniques, and they may not work well for problems

that need nonlinear dimension reduction.

It is desirable to use nonlinear dimension reduction approaches for high dimensional reliability
analysis. Nonlinear dimension reduction techniques can be classified into two groups, supervised
nonlinear dimension reduction [37, 38] and unsupervised nonlinear dimension reduction [39, 40].
Similar to PCA, unsupervised nonlinear dimension reduction, such as Kernel PCA [39],
autoencoder [31], and diffusion maps [41], do not make use of the information of the model
response or labels in the dimension reduction process. For the supervised dimension reduction
methods, studies in [42-44] combine the so-called kernel trick [45, 46] with SDR to overcome the
limitation of linear SDR, making supervised nonlinear sufficient dimension reduction feasible. The
approaches include the kernel canonical correlation analysis (KCCA) [44], kernel SIR (KSIR) [43],
and generalized SIR (GSIR) [42]. GSIR not only relaxes the stringent conditions required by linear
SDR where the reduced subspace is the linear combination of the original random variables, but
also relieves the assumption of KSIR that the subspace is the linear combination of a set of
nonlinear functions. Given the advantages of GSIR, it is worth investigating its use in high

dimensional reliability analysis.

This work develops a high dimensional reliability method that combines GSIR with GP, IS,
and active learning. The proposed method inherits the advantage of GSIR, which is more general
and robust no matter if the linear or nonlinear dimension reduction is required. The computational

cost of constructing the surrogate model used for reliability analysis is decreased drastically due



to the dimension reduction by GSIR. Since the use of IS requires less computational effort than

MCS based methods, the proposed method can also handle small probabilities of failure.

The rest of the paper is organized as follows. Section 2 reviews the related methodologies used
in this paper. Section 3 presents the details of the proposed method followed by four examples in

Section 4. Concluding remarks are provided in Section 5.

2. Literature Review

2.1 Generalized Sliced Inverse Regression (GSIR)

GSIR is an approach belonging to sufficient dimension reduction (SDR). Given input variables
X € R™ P and the response Y € R™*! that depends on X, SDR secks a function R(X) to map X to
a subspace so that the distribution of Y given X is the same as that given R(X), where n is the
number of training points, and p is the dimension of X. For linear SDR, R (X) contains one or more

linear combinations of X, and the task is to find a matrix f € RP*% such that
Y L X|8TX (2)

where d is the dimension of the subspace, and d < p; 1l denotes independence, meaning that the
distribution of Y is conditionally independent of X given STX. Different from SDR, nonlinear

SDR searches for a set of nonlinear functions f; (X), ..., fz(X) such that
Y LX|f; (X, ..., fa(X) (3)
Since d < p, the dimension is reduced from p to d.

The nonlinear functions may be hard to define in practice. But the use of the kernel trick could
allow dimension reduction to proceed without defining the nonlinear function. This is done by

projecting X and Y to the kernel space.



GSIR [42] is a nonlinear dimension reduction method that stems from the nonlinear SDR

theory. The conditional expectation of X given Y is denoted by

EX|Y = ;;/ZRYXZ%(Z (4)
where Ryy is called the correlation operator denoted by

Rrx = Zry ErxZxx’ (5)
and )’ is the covariance operator.

If a data set of training points are available with (X4, ...,X,) and (y4, ..., ¥»), then

1 1 1 [K&Eux) - KXy,Xy)
Xxx = 2yx = —Gx = —QKxQ =—0Q : : ]Q (6)
n n n K(Xnixl) K(Xnixn)
1 1 1 [KQuy1) - K1 yn)
Yyy = EGY = EQKYQ = ZQ : : Q (7)
Kny1) - KO Yn)

where Q = I,, — 1,,11 /n; Gx and Gy are the centered versions of the kernel matrixes Ky and Ky ;
I, is an n X n identity matrix; and 1,, is an n X 1 vector with all elements being 1. The kernel

function used in this paper is the anisotropic squared-exponential function and is defined by
AN
K(xi,xj) = exp (—Hx(xi —Xj) ),l.] =1,..,n (8)

K(y;,y;) is obtained by replacing 6y (x; — x;)” with 8, (y; — ;)" in Eq. (8). 6y is computed by

= () Y 2

i<j



0y is obtained by replacing |Xi — Xj| with | Vi — yjl in Eq. (9). Similar to other kernel-based
methods, such as GP and SVM, we can choose a kernel from several well established options [47].
Anisotropic squared-exponential function or squared-exponential function is a good starting point

when we are short of knowledge about a problem.

Substituting }'yy, Yxx, and Yyx into Egs. (12) and (13) yields the correlation operator and

conditional expectation.
_ +1)2 +1/2
Ryx = G, ' "GxGy (10)
Exy = Gy GxGy /Gy (11)

where + means the Moore—Penrose inverse [48] of a matrix in a general sense. In the numerical
computation, the Moore-Penrose inverses Gy and Gy are replaced by the ridge-regression-type
regularized inverses (Gx + e€xl,) ™! and (Gy + €y1,)™1, respectively, where €x and €, are the
penalty terms. The first d eigenvectors &;, &5, ..., €4 used to form the sufficient predictors are

obtained by performing the eigen-analysis of the matrix in Eq. (12).
T
Gx [EX|Y] G¢ [Exn/]G)J(r =
(Gx + GXIn)_3/ZG)§/2(GY +eyly) TG (Gy + GYIn)_lG;/Z (Gx + exly) 3/ (12)

After the dimension reduction (training) is complete, predictions of new input variables can be
made. Given a new set of input variables (%1, ..., X,,,), denote their responses by ¥ = (91, ..., Pm),

and their predictors can be obtained as follow.

The kernel matrix of the training points and new points are obtained by



K(Xllﬁl) K(Xllﬁm)

Kxi = . . . (13)
K(an 521) K(an ﬁm)
Then, the sufficient predictor f; is given by
fi=&QKxgi=1,..,d (14)

The corresponding eigenvalues of the eigenvectors (&4, &5, ..., §,) are sorted in a descending
order, as is the importance of the corresponding eigenvectors. The first sufficient predictor f; is
therefore the most important predictor. As indicated in [42], the relationship between f; and the
response Y is usually monotonic, and Spearman’s correlation is used to measure the monotonic
relationship. The monotonicity is an advantage of GSIR over many other dimension reduction
methods [42] since the monotonic relationship can clearly classify a training point into either the
safe region or the failure region for the reliability prediction. The advantage is also demonstrated
in this study as will be shown in Sec. 4. It is therefore possible to reduce the original dimension p

to 1 because f; is in a one-dimensional space.

The GSIR algorithm is summarized as follows.

Algorithm 1 Generalized sliced inverse regression [42]

1. Collect training points (X1, ..., Xp) and (¥4, ..., Vn)-

2. Select the ridge parameters €y and €, and compute 6y, 8y by Eq. (9).
3. Solve for the first d eigenvectors &;, &5, ..., &4 of the matrix in Eq. (12).
4. Form the sufficient predictors by Eq. (14).

2.2 Importance Sampling (IS)

Importance sampling (IS) is a sampling method that approximates a mathematical expectation

with respect to a target distribution by a weighted average of random draws from another



distribution (called an importance distribution). For high reliability problem, if samples are drawn
from the joint (target) distribution of the original random variables, the chance of getting samples
in the failure region is low. Such a chance will be much higher if the samples are drawn from a
suitable importance distribution, thereby increasing the computational efficiency. Therefore, it is
desirable to use an importance distribution that is centered in the region where the failure is most
likely. In risk analysis literature, the Most Probable Point (MPP) [19] is usually used as the center
of the importance distribution. The MPP belongs to the limit state surface, and this point has the

highest probability density in the standard normal space (U-space).

To solve for MPP, we first transformed X to U, whose components are independent standard
normal variables [1]. The transformation is denoted by X = T'(U). The performance function then
becomes Y = g(T(U)) = G(U). The next step is to obtain the IS center. There is no need to search
for the true MPP in practice. We can use the point from the first iteration of the MPP search as the
IS center to reduce the computation time. Although it may not be close to the true MPP, the one-
iteration MPP allows the IS samples centered around it to cover a sufficiently large area of failure

region if a proper sample size is used. The one-iteration MPP is obtained by

. _G(UO)VG(UO)
N T CBIE (15)

where uy = (0,...,0)7 is the origin of the U-space. For the highly nonlinear problems, more

iterations of the MPP search may be needed to approach the failure boundary.

With the approximate MPP u*, we shift the center of the probability density to u*, resulting in
importance probability density ¢y (+), represented by the new distribution U;~N (u}, 1%), where

u; is the i-th component of u*. In this paper, we use the same standard deviations of standard



normal variables. The probability of failure is estimated with density ¢y(-) of U and the

importance density ¢y (u).

Bo(w)
D, =_[1F(u)5§fgjwu(u)du (16)

where I (-) is an indicator function and is defined as

0,G(U) >0

lr(u) = {1,G(U) <0

(17)

With the samples drawn from the importance density ¢y(u), pr in Eq. (16) is estimated by

¢y (U;)
Py (U;)

1 Nis
by~ By == ) Ip(@) (18)
Nis

where U;, i = 1, ..., N, are the samples generated from ¢y (u). The variance of the probability of

failure is estimated by

Nis

. 1 [ 1 _[(pu@)\’ -
Var(p;) = N, N_zs; (IF(ui) (m) > — Df (19)

If a proper importance distribution is chosen, Var(ﬁf) is less than the variance of MCS,

therefore increasing the computational efficiency.

The coefficient of variation §;5 of P is calculated by

’Var(ﬁf)
§is =Y———— (20)

10



2.3 Gaussian Process (GP) Modeling

GP modeling [49] views a function G (U) as a realization of a Gaussian process. Given a set of

training points, a GP model is obtained by
G(u) = f(w)™B + Z(w) (21)
where f(u)TB is a deterministic term, providing the trend and the mean response; f(u) =

T
(fl(u),f2 (u), ...,fp(u)) is a vector of regression functions; B = (B4, B2, ...,ﬁp)T is a vector of

regression coefficients; Z(-) is a stationary Gaussian process with zero mean and covariance. The

covariance is denoted by
Cov (Z(ui),Z(uj)) = aZZR(ui,uj) (22)

where 62 is the process variance, R(:, *) is the correlation function, specifically the squared-
exponential kernel used in this work. GP can also provide the variance of the prediction as the GP

predictor G (u) follows a normal distribution, denoted by

G (u)~N (g (), & (w)) (23)
where pg (+) and o (+) represent the mean GP prediction and GP variance, respectively.
2.4 AK-IS

AK-IS [19] is an active learning method combining Kriging (GP modeling) with IS for
reliability analysis. AK-IS at first uses the MPP-centered importance distribution to generate
samples, called the IS population. It then constructs the GP model by the point used for solving
the MPP and refines the model by adding training points selected from the IS population. A new

training point is selected by a learning function and is added to the set of training points, which

11



allows for an update of the GP model. The process stops once the desired accuracy is achieved.
The size of the IS population will be increased if a target coefficient of variation is unsatisfied.

The learning function is defined by

g (@]
o¢ (@)

Uu(m) = (24)

where 1 is a point in the IS population, and . () and 6 (+) are given in Eq. (23). A lower U(@i)
means a higher probability that the point is misclassified. Then the point with the minimum U (i)

in the IS population is selected as the new training point. The learning process stops when

min U(W) > 2.
3. Methodology

The purpose of this study is to explore the use of GSIR in high dimensional reliability analysis
to reduce computational efforts. The central strategy is reducing the dimension of input variables
by GSIR so that a GP model can be constructed in a low dimensional subspace. The following

three steps are involved and are illustrated in Fig. 1, where TP stands for training point.

Determination of
importance distribution

Dimension reduction by
GSIR

New TP

GP model constructions
and model refinement

Fig. 1 Schematic of the proposed method
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1) Determine the importance distribution: we first obtain the one-iteration MPP which is the
importance distribution center. Samples are generated from the importance distribution as
described in Section 2.2 to form the importance population.

2) Initialization and dimension reduction by GSIR. Initially, training points U are generated
by Latin Hypercube sampling, centered at the origin of the U-space, and the corresponding
responses are obtained by calling the performance function Y = G (U). GSIR then trains
sufficient predictors using the set of training points and associated responses. In subsequent
iterations, new training points are selected by active learning from the IS population.

3) Surrogate model creation in subspace: the GP model is constructed in the one-dimensional
space of the sufficient predictor (Eq. (14)). The input of the model is the first sufficient

predictor from step 2), and the output is the prediction of the response Y for the GP model.

Since the sufficient predictor and GP model may not be accurate, steps 2 and 3 are performed
iteratively to refine the GP model by selecting new training points from the IS population through
an active learning strategy. In each iteration, only one new training point is added. The model
update completes once the convergence criterion is met. When the algorithm converges, the
probability of failure is obtained by the IS estimation method discussed in Section 2.2. Next, we

provide detailed descriptions of the three major steps.

3.1 Importance Distribution

The first step of the proposed method is to generate a sample population that supplies candidate
training points during active learning. As discussed in Sec. 2.2, if the sample population covers
both safe and failure regions where the probability density is high, the variance of the estimated

probability of failure will be reduced, thereby increasing computational efficiency.

13



We first transform random variables X in the X-space to U in the U-space. The performance
function then becomes Y = G(U). Then all the derivations will be performed with respect to U.
After the transformation, the one-iteration MPP u* is obtained by Eq. (15) and serves as the IS
center [19]. The computational cost for the one-iteration MPP is n + 1 evaluations of the

performance function.

As mentioned in Section 2.2, the importance probability density ¢@y(-) results in new
distributions U;~N(u},1%), i = 1,..,n, where u;] is the i-th component of u*. We then draw
samples U = (ﬁl, ""ﬁst) from @y(*) to establish an IS population denoted by P;s. The IS
population can cover both safety and failure regions with balanced samples in both regions. It is
recommended that the size of IS population should be sufficiently large (e.g., 10%), especially for
high dimensional problems. If the coefficient of variation in Eq. (20) is large, the population size
should be increased accordingly. If the one-iteration MPP is far away from the true MPP, we can
also increase the importance sampling size or increase the standard deviations of U to cover the
critical failure region. The added training points during the active learning stage are selected from

the IS population.
3.2 Initialization and Dimension Reduction by GSIR

The initial training points are generated by Latin Hypercube sampling and are centered at the
origin of the U-space, which is denoted by U, = (U, ..., Us,), Uy € RP*T | Then, the
corresponding responses Y; = (Y1, ..., Ven), Ye1 € RY*1 are obtained by calling the performance
function at U,. It is recommended that the sample size of initial training points is three to five times
of the input dimension. This number of initial training points can help create an accurate initial

model and can therefore reduce the number of new training points in the subsequent iterations. It

14



is also possible to use fewer initial training points, and the number of new training points will be

likely increase.

Once the training points (U, ;) are available, GSIR is used to reduce the dimension of input
variables such that the GP model can be constructed in a low dimensional space. We first obtained

the kernel matrices Ky, and Ky, by

KUy, up) - K(ugg,ugy)

Ky, = : : ] (25)
K(ueg,ug) - KUy, uey)
KYe,ye) = KW, Yen)

Ky, = : : (26)
KW Ye1) = Ko Yen)

where K (') is the kernel function defined in Eq. (8). The centered kernel matrices of Ky, and Ky,
are obtained by Gy, = @Ky, Q and Gy, = QKy,Q. Then the correlation operator and conditional

expectation are obtained by
R, = ct\2c c*1/2 97
Uy — Yy, U:Y U, ( )
1/2 21/2
By, = G;;GUtG;t/ GU/t (28)

The first d eigenvectors &4, &5, ..., &4, which are used to form sufficient predictors, are calculated

by performing eigen-analysis to the following matrix:

Gl-ll_t [EUtlYt]TGlgt [EUtlYt]Gth =

-3/2

(Gu, + €u,ln) 2 G2(Gy, + enln) " GE(Gy, + enl) G (Gu, +euln) T (29)
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As mentioned in Section 2.1, the first sufficient predictor (f;) and the real response Y; are in a

good monotonic relationship. We now denote f; by fss;z. Then the training points U, are mapped

to a one-dimensional space through the sufficient predictor
fesir (Up) = &1 QKy, (30)

Predictions of the sufficient predictor can be made for new untried points U = (ug, ..., u; ) by

fesir(U) = §1TQKUtU (31)
where
K(ug,ug) - K(ug,up)
Ky,u = s s (32)
K(ug,uy) - KQugy,uy)

The next step is to construct a functional relationship between the real response Y and the

sufficient predictor f;gx.

3.3 GP Modeling in Subspace

As discussed in Sec. 3.3, the sufficient predictor f;¢;z does not provide the prediction of the
true response Y, but both have a monotonic relationship. The task now is to transform the sufficient
predictor f;gr to the response Y. Despite the monotonicity feature, the relationship may be
nonlinear. Many regression techniques can be used for this task, such as GP, support vector
machine (SVM), polynomial chaos expansions (PCEs), and Neural Networks (NNs). In this study,
we use GP modeling as an example to illustrate the process. The GP method can not only handle
nonlinearity well but also provide the uncertainty estimate of the prediction, enabling an active

learning process.

16



Given a set of training points (U, Y;), the sufficient predictor f;5;zr(Us), which is a one-
dimensional variable, is obtained by Eq. (30) as discussed in Sec. 3.2. Then we construct a one-

dimensional GP model using the low dimensional training points (f;5;2(U,),Y;:) denoted by

Y = G(fosir) = F(fosir) "B + Z(fesir) (33)

Since f;gr 1s obtained from training points (U, Y;), it is a function of U. Eq. (33) can be

rewritten as

Y = G(fosir () = £(fosir (U))TB + Z(fos1 (1)) (34)

For an untried point u, f;gg(u) is obtained by Eq. (31), and the Gaussian predictor

G (fzsir () follows a normal distribution as follow.

Y = é(fcsm (“))"’N (HG (fGSIR (“))' UGZ (fGSIR (U))) (35)

where g (fz5r(0)) is the prediction of the mean value of Y at u, and g (f55/z (w) ) measures the
uncertainty in the prediction. The accuracy of the prediction will be gradually improved during the

learning process discussed in Sec. 3.4.
3.4 Active Learning

The dimension reduction and regression discussed above are executed iteratively to improve
the accuracy of the GP model. The accuracy depends on the size and location of the training points,
which can be hard to be determined beforehand. To have the best balance between accuracy and
efficiency, we gradually improve the accuracy of the regression model by an active learning

strategy that adds new training points one by one selected from the IS population. The GSIR

17



dimension reduction and the GP model are updated and refined until the convergence criterion is

met. Next, we discuss how to select a new training point and how to measure the accuracy.

We adopt the U-learning function [8] to select the next training point at each iteration. Since
the GP model is created in the space of sufficient predictor f;5;z (U), given the IS population U =

(4, . Uy ), the sufficient predictor fg52(0) = (fos:r (1), -, fosir (ﬁst) ) is obtained by Egq.

(31). Then the learning function is denoted by

|HG (fGSIR (ﬁi)) |
UGZ (fGSIR (ﬁi))

[U(fasm (ﬁi)) = (36)

As discussed in Sec. 2.4, the value of the learning function indicates the probability of

misclassification of the GP model. The smaller is [U(fGS,R (ﬁi)), the higher chance the point is

misclassified. Therefore, the next training point is the point that U (yG ( fesir (iii))) is the smallest

and is therefore found by
fosir (Unew) = min U(fgsz (@) (37)
u;ePrs

Then, the corresponding response Yy, is available by evaluating the performance function
Yiew = G(Wpew). (Wpew, Ynew) 1s then added to the existing training points. The indicator function
in the low dimensional space is Iz(f55r (W) = 0 if G(fsr (W) > 0 or 1if G(fz52(w)) < 0.
The probability of failure (pf) is obtained by Eq. (18). Here we use the original joint PDF ¢y (-)
of U and the importance density ¢y(u) to estimate the probability of failure instead of using the
joint PDF in the subspace after dimension reduction. First, it is difficult or almost impossible to
estimate the joint PDF of the variables in the subspace. Second, the sufficiency maintained by the

sufficient dimension reduction means that the information in the original space is preserved after
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dimension reduction. Based on the two reasons, we use the original joint PDF ¢y(-) of U and the

importance density ¢y (u).

The U-learning function is adapted from the lower confidence bounding (Icb) function [50].
The value of [U( fesir (ﬁi)) reflects the least confidence level that the indicator function
I ( fesir (ﬁi)) is classified into the correct group (safe or failure). Thus, the stopping criterion is
set to be min [U(fGS,R (ﬁi)) > 2, which means that, at the lowest confidence level, the probability
of IF(fGS,R (ﬁi)) being accurately classified is ®(2) = 97.7%, where ®(-) is the cumulative

density function (CDF) of a standard normal variable. The iterative process terminates until the

stopping criterion is satisfied.

Since the probability of failure is calculated in every iteration with the updated GP model, the
final probability of failure is obtained from the last iteration. It is recommended that if the
coefficient of variation in Eq. (20) is high, for example, 5%, the IS population size should be

increased.
3.5 Numerical procedure

The numerical procedures are summarized below.

Algorithm 2: GSIR-GP-IS

Initialization

Determine the approximate MPP and importance distribution.

Generate IS population U = (; 11V15

Select ridge parameters €y, €y.
Define initial TPs (U, Y;) by Latin hypercube sampling.
while convergence is false do

Perform dimension reduction GSIR, and obtain the first eigenvector (;) of the sufficient
predictor in Eq. (30) and f;5,2(U,) = &1 QKy,.
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Construct the GP model G(f;5z(U)) using the low-dimensional training points

(fesir(Up), V).
Obtain the sufficient predictor at U: f;qx (ﬁ) =&TQK u,0-

Run the GP model at f;qz (ﬁ) to have G ( fesir (fj )) , the probability of failure p; is
obtained by Eq. (18).
If min U(f5, (W) > 2 is false
Find the next training point (U,,,,,) using Egs. (36) and (37); obtain Y,;.,, = G (Uye)-
Add (W,ev, Ynew) to TPs.
Elseif min U(f5g/5 (6;)) > 2 is true
Stop.
End if
End while
If §;5 (Eq. (20)) and accuracy of py is satisfied
Stop.
Else
Go to Initialization and increase N;g (the size of IS population).
End
Output: p, and associated error.

4. Examples

In this section, four examples are provided to demonstrate the proposed method. The first
example is a mathematical problem followed by three engineering examples. We compare the
proposed method with MCS, FORM, the second order saddlepoint approximation (SOSPA), and
SIR-GP-IS. SOSPA [48] is a second-order approximation method based on SORM and saddlepoint
approximation (SPA). SIR-GP-IS uses the same settings as the proposed method but using the
linear dimension reduction method. Since the first example has been studied by SS-SVM [49] and
SIR-SPCE [29], we also compare the two methods for the first example. Since constructing a GP
model in the high dimensional space is more expansive than in a subspace, we only use GP-IS, the
algorithm without dimension reduction, to evaluate the first case of example 1 to show the

necessity of dimension reduction for high-dimensional problems.
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A weak penalty is applied for the four examples, and the ridge parameters ex and €, of GSIR
are set to be 107>, Since the proposed method is a sampling-based meta-modeling method, we run
the method 20 times to assess its performance. We then report the medians of the results, including
the probability of failure, the error, and the number of function calls. The accuracy of different

methods is assessed by the error relative to MCS. The relative error is defined by

X 100% (38)

e = ‘Pf PrmMmcs

Prmcs

where p is the probability obtained by a non-MCS method. The efficiency is measured by the

number of function calls and the coefficient of efficiency (CoE). CoE describes the efficiency with

respect to the dimension and is defined by

The number of performance function calls

CoE (39)

~ The dimension of input random variables
4.1 A mathematical problem

The mathematical example is given in [51] and is further studied in [29, 52]. The performance

function is defined by
g(X) = n + 30yn — Z %, (40)
i=1

in which x;,i = 1, ..., n, are independent and lognormally distributed with means and standard
deviations being 1 and 0.2, respectively. We study three cases that n is equal to 40, 100, and 250.
The corresponding initial DoE sample sizes are 200, 400, and 1000. The IS population sizes N;g

are 10%, 10%, and 3 x 10* for the three cases. The IS population sizes are large enough to cover
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the major failure boundaries. If this condition was not satisfied, a larger sample size (e. g., 10° or

10°) would be needed.

The results of dimension reduction are presented in Figs. 2, 3, and 4, in which TPs means
training points. The sufficient predictor, which is obtained by GSIR using Eq. (31), is in the one-
dimensional space. The three cases show that the sufficient predictor and the real response have
perfect monotonicity, for which Spearman’s correlations are 0.9993, 0.9999, and 1.0 for the three
cases. It is found that the added learning points are concentrated on the failure boundary or the
limit state, which means that the GSIR-aided dimension reduction method can identify points in

the vicinity of the failure boundary and alleviate the curse of dimensionality.

Initial TPs

+ Added TPs

|rs] = 0.9993 /
n =40

0.4

0 ’w/ — 4

& 0

7

Real response

-0.4

L |
0 0.1 0.2 0.3

Sufficient predictor

Fig. 2 Sufficient predictor versus real response of Case 1
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'4&. 0.4
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Fig. 3 Sufficient predictor versus real response of Case 2
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Fig. 4 Sufficient predictor versus real response of Case 3

In addition to the proposed method (GSIR-GP-IS), other methods are also performed,
including MCS, FORM, and SOSPA, GP-IS, SIR-GP-IS. We only run MCS for one time with
sufficient samples. FORM and SOSPA are also run for one time since these approximation
methods are not influenced by randomness. The results of SS-SVM and SIR-SPCE are directly

from the literatures as mentioned previously. The results are summarized in Table 1.
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Table 1 Results of different methods for Example 1

n Methods 12 Error (%) FCs CoE
MCS 1.97 x 1073 - 107 2.5 x10°
FORM 2152 x 107* 89.1 164 4.1
SOSPA 2.028 x 1073 2.96 1,025 25.6
40 GP-IS 7.41%x 1072 3600 1241 31.0
SIR-GP-IS 1.14 x 1073 42.04 1241 31.0
SS-SVM 1.95x 1073 1.5 3,729 93.2
SIR-SPCE 1.88 x 1073 3.3 1,200 30
GSIR-GP-IS 1.98 x 1073 0.37 400.65 10.0
MCS 1.72x 1073 - 107 10°
FORM 4204 x 1075 97.55 404 4.0
SOSPA 1.796 x 1073 4.42 5,555 5.6
100  SIR-GP-IS 0.1614 9283 559 5.59
SS-SVM 1.74 x 1073 0.58 6036 60.4
SIR-SPCE 1.63 x 1073 5.6 3,000 30
GSIR- GP-IS 1.74 x 1073 1.03 715.4 7.2
MCS 1.56 x 1073 - 107 4 x 10*
FORM 2.82x10°° 99.82 1004 4.0
SOSPA 1.673 x 1073 7.24 32,630 130.5
250  SIR-GP-IS 0.1487 9431 1281 5.1
SS-SVM 1.61x 1073 1.26 10,707 42.8
SIR-SPCE 1.59 x 1073 0.6 10,000 40
GSIR-GP-IS 1.60 x 1073 2.25 1,548.6 6.2

FORM is the most efficient, but least accurate method. When n = 40, the proposed method
outperforms SOSPA, SS-SVM, and SIR-SPCE with respect to both accuracy and efficiency. Its
error and number of function calls are 0.37% and 401.7, respectively. For the case n = 100, GSIR-
GP-IS obtains an error of 1.03% with 715.4 function calls. Although SS-SVM has a slightly
smaller error (0.58%), it calls the performance function 3,729 times. The proposed method
performs well for the high dimensional case (n = 250). Although SS-SVM and SIR-SPCE are
more accurate than the proposed method, their efficiency is much poorer with CoEs of 40.8 and
40, respectively. The proposed method produces an accurate solution (2.25% error) with much

fewer function calls (CoE = 6.2). GP-IS, the algorithm without dimension reduction, cannot
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converge within the prespecified number of iterations (1000) for the case with the lowest
dimension (n = 40). SIR-GP-IS, the algorithm with the linear dimension reduction, cannot
converge either within 1000 iterations for the same case. The results reported in Table 1 are from
the last iteration of the two methods. Although SIR-GP-IS displays a fast convergence rate for the
other two cases, the algorithm does not work as the errors are 9283% and 9341%, respectively.
Since the surrogate model construction in a high dimensional space is time-consuming, we only

run GP-IS for n = 40 to demonstrate the necessity of dimension reduction.

To analyze the uncertainty of the result from the proposed method, we also provide box plots
in Fig. 5 for the probabilities of failure and errors from the 20 runs. The medians of the probability
of failure and the corresponding errors are (1.98 x 1073,0.37%), (1.74 x 1073, 1.03%), and
(1.60 x 1073,2.25%) for the three cases, where the errors here are obtained by comparing the
median probability of failure with the MCS by Eq. (38). The error plot is from the 20 simulations
whose median errors are 1.06%, 2.98%, and 2.41%. The standard deviations of errors are 1.77%,

2.80%, and 3.01%. The highest error is smaller than 6%.
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Fig. 5 Box plot of 20 simulations
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As mentioned in Sec. 2.1, the nonlinearity between the sufficient predictors and real response

is ascending. Fig. 6 shows the first ten sufficient predictors versus the real response based on the

result of case 1 (n = 40). Since the other cases and the other three examples also have the same

pattern, we provide the figure for illustration for only case 1 in this example. For GSIR, the first d

sufficient predictors are obtained, and we use the first one for GP modeling and active learning.

After the algorithm converges, we plot the first 10 sufficient predictors versus the real response. It

is clear that the added training points by active learning cluster at the failure boundary for all

sufficient predictors. Therefore, we need to use only the first sufficient predictor.

Real response

4.2 A cantilever beam

Initial TPs

+

Added TPs

( -~
&

()

)

-
<
<
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-~
N

L

®)

The sufficient predictors

Fig. 6 The relationship between sufficient predictors and real response

The second example is a beam (Fig. 7) that is subjected to 106 random forces on the top. Six

forces (Fy, ..., Fg) are lognormally distributed, and the rest of the forces (F5, ..., F1o¢) are normally

distributed. The locations (I, ..., lg,,,) that the forces, the width (w), height (h), and the yield
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strength (S,,) are also normally distributed. All the 215 random variables are independent. Their

distributions are given in Table 2.

Fig. 7 A cantilever beam

Table 2 Distributions of random variables in Example 2

Random variables Distribution Mean Standard deviation

S, (MPa) Normal 720 60

w (m) Normal 0.2 0.001

h (m) Normal 0.4 0.001

F,i =1,2,..,6 (kN) Lognormal 30 +5i 2.4+ 0.4i

lp,i=12,..,6 (m) Normal 4.3+ 0.1i 0.01
F;,i =17,8,..,106 (kN) Normal 10 1

lp,i=178,..,106 (m) Normal 0.02i 0.01

A failure would occur if the yield strength S, is smaller than the maximum stress, and the

performance function is therefore given by

6 221 Filr,
gX) =S, - —h (41)

There are 600 initial training points in this example. We project the 215 input random variables
in the high dimensional space to the sufficient predictor, and the relationship between the sufficient

predictor and the real response is shown in Fig. 8. A good monotonic relationship is obtained with
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the Spearman’s correlation being 0.9991. The added training points are concentrated on the failure

boundary.
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Fig. 8 Sufficient predictor versus real response of Example 2

The results of the proposed method with 20 runs are provided in Fig. 9. The probability of
failure and the corresponding error are within the intervals [1.85 X 107%,2.08 X 107¢] and
[0.02%,8.96%], respectively. And the median failure probability is 1.9448 x 107¢ with the

corresponding error of 2.83%.
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Fig. 9 Statistical results of Example 2
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In addition to the proposed method, MCS, FORM, SOSPA, and SIR-GP-IS are also used. The
results are listed in Table 3. Although FORM calls the performance function only 648 times, its
error is 5.9%. SOSPA is the most accurate method, but its computational cost is extremely high,
with 24,084 function calls and a CoE of 112. SIR-GP-IS cannot converge within the maximum of
1,000 iterations. The results shown in Table 3 are from the last iteration. GSIR-GP-IS maintains a

good balance between accuracy and efficiency with an error of 2.83% and a CoE of 4.84.

Table 3 Results of different methods for Example 2

Methods Df Error (%) FC CoE
MCS 1.9106 x 107° - 1.6 x 10° 7.4 x 10°
FORM 1.7964 x 107° 5.9 648 3.0
SOSPA 1.9200 x 107° 0.5 24,084 112.0
SIR-GP-IS 2.3097 x 107 20.89 1816 8.45
GSIR-GP-IS 1.9448 x 107° 2.83 1040.4 4.84

4.3 A truss system

A dome-truss [53] consists of 52 bars with 21 nodes as shown in Fig. 10, where numbers
without dots represent bars and the others with dots mean nodes. All the nodes lie on an imaginary
hemisphere with a radius of 240 in. The cross-section areas and the young’s moduli of the bars are
normally distributed. Six random forces (Fj, ..., Fg) that point to the center of the imaginary
hemisphere are applied to nodes 1-13. The forces are applied as follows: F; to node 1, F, to nodes
2, 4, F5 to nodes 3, 5, F, to nodes 6, 10, F5 to nodes 8, 12, and Fg to nodes 7, 9, 11, and 13. The

random variables are independent and their distributions are summarized in Table 4.
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Table 4 Distributions of random variables in Example 3

Random variables Distribution Mean Standard deviation
E;, i = 1~50 (ksi) Normal 2.5 x 104 1000
A;, i = 1~8,and 29~36 (in?) Normal 2 0.001
A;, i = 9~16 (in?) Normal 1.2 0.0006
A;,i = 17~28,and 37~52 (in?) Normal 0.6 0.0003
F; (kip) Normal 45 3.6
F, (kip) Extreme 40 6.0
F; (kip) Extreme 35 5.25
F, (kip) Normal 30 2.4
F;5 (kip) Normal 25 2.0
F¢ (kip) Normal 20 1.6

! >
.l
:
R T ’Rz -
& A X V3R/2 -
- R - - R -
(a) Top view (b) Side view
Fig. 10 A 52-bars truss system
The performance function is given in Eq. (42).
Y =9gX) =6,—6(E;A;F) (42)
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where 6, = 0.7 in is the allowed maximum displacement of node 1, and & is the actual
displacement of the same node, which is obtained by the finite element method (FEM). E =
[E,, E,, ...,Es; T and A = [44, A5, ..., A, | T are vectors of the young’s moduli and cross-sectional

areas, respectively, F = [F}, F,, ..., F¢|T is a force vector.

We have Fig. 11 shows that the sufficient predictor is monotonic to the real response that the
Spearman’s correlation is 0.9996. The failure boundary is identified by making use of the

monotonic relationship through active learning.
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Sufficient predictor

Fig. 11 Sufficient predictor versus real response of Example 3

The statistical results of the proposed method are given in Fig. 12. For the 20 runs, most of the

errors are smaller than 6%, and the maximum error is about 8.5%.
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Fig. 12 Statistical results of Example 3

The results of all the methods are given in Table 5. GSIR-GP-IS is less accurate than SOSPA
but is far more efficient than SOSPA. GSIR-GP-IS has only 764.4 function calls and a CoE 0f 6.95
while SOSPA has 6,771 function calls with a CoE of 61.55. The accuracy of FORM is poor, and
its error is 15.77%. SIR-GP-IS cannot converge with a subspace of 1 in 1000 iterations and the

results reported are from the last iteration.

Table 5 Results of different methods for Example 3

Methods Df Error (%) FC CoE
MCS 3.506 x 1073 - 107 9.09 x 10*
FORM 4.059 x 1073 15.77 555 5.05
SOSPA 3.529 x 1073 0.65 6,771 61.55
SIR-GP-IS 3.046 x 1073 13.11 1511 13.7
GSIR-GP-IS 3.4148 x 1073 3.02 764.4 6.95

4.4 Nonlinear seismic dynamic analysis of a shear Frame

This example involves a 25-story shear frame structure (Fig. 13) under stochastic seismic
excitation. The masses (my, ..., M,s) of all stories are normal variables with means of 3 X 10° kg
and coefficients of variation (C.0.V) of 0.05. The inter-story stiffnesses (k, ..., k,5) follow
lognormal distributions with means of 1.2 X 108 N/m and C.O.V. of 0.1. The motion of the shear
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frame under seismic ground motions is characterized by the extended Bouc-Wen model [54] given

by
MX + CX + ayKX + (1 — ap)KZ = —Mii, (t) (43)

where X, X, and X are vectors of acceleration, velocity, and displacement, respectively; M, C and
K are the mass matrix, damping matrix, and stiffness matrix, respectively; aj is a weighting
parameter regarding hysteresis; Z is a vector of hysteretic displacement; i, (t) denotes the random

ground motion and is given by
ily (t) = Enslins (t) + Ewpliye (t) (44)

where &y and & are independent extreme-value variables whose means and C.0.V both are 1
and 0.1, respectively; iiys(t) and iiy,g(t) are accelerations in the N-S and W-E directions,
respectively, obtained from the EI Centro Earthquake [55]. There are 52 random variables in this
example. The 13 parameters of the extended Bouc-Wen model used in this paperare A = 1, a, =
0.04, B, =30, y, =10,n =1, 6, = 2000, 6, = 2000, {; = 0.99, g = 0.25, p = 1000, Y =

0.05, 8, = 5,1 = 0.5.

The damping matrix is C = aM + K, where a and [ are the damping coefficients, which are
given by @ = 0.02 and f = 0.01. The maximum displacement of the first floor d,, 4, is obtained

by solving the nonlinear Ordinary Differential Equations system in Eq. (43).

Amax = maX] Pi(my, ..., Mys, ky, oo, ka5, Ens, Swi) (45)

te[o,T

where 11 (*) denotes the function of the displacement of the first floor over time. When the
maximum displacement exceeds a threshold (d;jes = 32 mm), the shear frame fails. The

performance function of the shear frame is defined by
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Fig. 13 Schematic of a shear frame

Y = dthres - dmax (46)

For this example, we have 200 initial training points and the IS population is 1 X 10%*. As
shown in Fig. 14, the proposed method can successfully identify the failure boundary for the
nonlinear system, although some points are not at the failure boundary at the beginning stage of

active learning. Fig. 15 shows that the proposed method maintains a good accuracy for most of the

20 simulations.
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Fig. 15 Statistical results of Example 4

The results of all the methods are provided in Table 7. GSIR-GP-IS outperforms other methods
with an error of 2.39%, and 367.25 average function calls, and CoE of 6.93. SIR-GP-IS has a
slightly larger average error of 6.02%, but its efficiency is much worse since it needs 938 function
calls. The MPP search of FORM cannot converge in 50 iterations with 2650 function calls. The

reported py for FORM is from the last iteration. Since SOSPA is based on the result of the MPP

from FORM, SOSPA also has a large error for this example.

35



Table 7 Results of different methods for Example 4

Methods Df Error (%) FC CoE
MCS 8.46 x 1072 - 10° 9.09 x 10*
FORM* 0.4869 476 2650 50
SOSPA* 0.8878 949 4081 78.48
SIR-GP-IS 8.97 x 1072 6.02 938 17.7
GSIR-GP-IS 8.32 x 1072 2.39 367.25 6.93

*The MPP search does not converge in 50 iterations. Results are reported based on the MPP obtained
at the 50" iteration.

5. Discussion and Conclusions

The proposed method combines the generalized sliced inverse regression (GSIR), importance
sampling (IS), Gaussian process (GP), and active learning to relieve the curse of dimensionality of
high dimensional reliability analysis. A GP model is constructed in a subspace after dimension
reduction by GSIR. Then, active learning is used to refine the GP model. By iteratively adding
new training points to the training set, the failure boundary is identified, which results in an
accurate probability of failure. The four examples demonstrate that GSIR can successfully relieve
the curse of dimensionality. The proposed method has a good potential to predict the reliability of

high dimensional problems accurately and efficiently.

The proposed method has some limitations. It requires a sufficient number of initial training
points, and this may not be computationally efficient for large-scale problems. It is possible that
the use of a univariate subspace (the first sufficient predictor) may not be accurate enough for
highly nonlinear problems. The proposed method may also produce a large error if multiple failure
regions exist. To address the first two limitations, we will study the optimal balance between the
number of initial training points and the number of added training points; we will also investigate
the use of multiple predictors. For the third limitation, we will explore the possibility of using

importance sampling centered at the most probable points of the multiple failure regions.
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