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ABSTRACT 
 
HVAC systems account for 50% of buildings' energy use and could play a critical role in energy 
management in buildings both for energy-saving, and demand-side management to reduce peak 
energy use. According to contextual demands of occupants, efficient control of HVAC systems 
could result in peak energy shaving and decreased energy costs in demand response programs. 
Accordingly, in this paper, we have introduced an agent-based model consisting of three agents: 
human agent, thermostat agent, and utility agent. In this model, the thermostat agent receives the 
real-time electricity price from the utility agent and aggregates thermal comfort profiles of the 
occupants from human agents. By considering these inputs, the thermostat agent employs a 
predictive model of a house and calculates the next setpoint of the HVAC system on energy cost 
and occupants comfort. Then, the thermostat agent signals the suggested setpoint to the thermostat 
of the building at each time step. For evaluating the proposed controller's performance, the 
electricity price profile from ERCOT, which supplies the state of Texas, is used as a signal from 
the utility agent. Realistic thermal comfort data were used to simulate the thermal preference of 
occupants represented as human agents. The evaluation was carried out in a co-simulation using a 
Python and EnergyPlus model of a residential unit. Our results show that the proposed controller 
reduces the peak energy by 5.5% to 10% and increases occupants' thermal satisfaction up to 12%. 
The main contribution of this paper is developing an agent-based model that humans, as the main 
stakeholders of the buildings, play a role in controlling HVAC systems for peak reduction and 
energy saving. 

INTRODUCTION 
 
Based on a report from U.S. Energy Information Administration, peak-to-average electricity 
demand ratio has been increased from 1.52 in 1993 to 1.78 in 2012 in the U.S. and New England 
(EIA 2014). Increasing the peak demand could stress the grid and cause blackouts during peak 
times in summer seasons (Strengers 2013). One of the low-cost strategies that have been proposed 
is curtailing or shifting loads on the demand side as a demand response strategy. In demand 
response, utility companies try to motivate and incentivize customers to change their energy use 
pattern during peak time (Shariatzadeh, Mandal et al. 2015). Demand response has been classified 
into two different approaches: incentive-based and price-based (Shariatzadeh, Mandal et al. 2015). 
In the incentive-based, customers authorize utility companies through a contractual agreement to 
control appliances such as dryers and washing machines (Haider, See et al. 2016). By employing 
incentive-based demand response, utility companies balance their energy supply and customers' 
demand. Another approach, which is the focus of this paper, is price-based programs in which 
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utility companies increase the price of electricity during peak periods. By doing so, customers will 
be motivated to change their energy consumption behavior such as shifting deferrable loads to off-
peak time or changing the thermostat. Previous studies have shown that implementation of demand 
response in residential buildings, which account for 27% of total energy use, could reduce the peak 
energy use considerably (EIA 2012, He, Wang et al. 2012, Afzalan and Jazizadeh 2018, Afzalan 
and Jazizadeh 2019, Afzalan and Jazizadeh 2020). 

Heating, Ventilation, and Air Conditioning (HVAC) systems account for almost 50% of 
energy use for residential buildings to provide conditioned air for occupants comfort (EIA 2012). 
Dynamic control of HVAC systems based on demand variations and by temporal adjustment of 
system setpoint for reshaping the energy consumption profile could potentially result in peak 
shaving and aggregate energy-saving (Yoon, Baldick et al. 2014). In this paradigm, to account for 
thermal comfort of occupants, studies have commonly used a fixed range of temperature (e.g., 
19˚C to 26˚C (Li 2018)). Although a common engineering solution, this approach does not 
consider occupants' thermal preferences and their diversity. To this end, a few studies have used 
indices such as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfaction (PPD) to 
account for occupant thermal comfort (Li 2018). Although a target 90% of occupants would be 
satisfied if the PMV index is met for a thermal zone (ASHRAE 2017), recent studies have shown 
that at the individual level, only one-third of occupants are satisfied (Cheung, Schiavon et al. 
2019). 

Conventional methods of accounting for thermal comfort do not consider the variation 
across different groups of users. Smart thermostat technologies (e.g., Google Nest) have paved the 
way for learning occupant preferences from their interactions with the thermostat (Jazizadeh, 
Ghahramani et al. 2013, Jazizadeh, Ghahramani et al. 2014) or its proxy on a smartphone. 
Therefore, in this study, through an agent-based modeling paradigm, we have investigated a 
proposed controller thermostat for residential air conditioning systems that enables autonomous 
dynamic adjustment of setpoint by coordinating among human agents, a utility agent, and the 
thermostat agent. This controller centers around the concept of autonomous and human-in-the-
loop (HITL) demand-response. In this concept, the thermostat agent learns the aggregated thermal 
comfort profile from the human agents and receives the real-time electricity price signal from the 
utility agent for efficient control. Furthermore, using a predictive model of the environment, the 
thermostat agent takes actions that result in energy saving and peak demand reduction. The 
performance of the proposed controller has been evaluated through a co-simulation using Python 
and an EnergyPlus model for a residential unit for different scenarios consisting of 1, 2, and 4 
human agents to provide an insight into the impact of HITL demand-response compared to 
temperature-based control. 

PREVIOUS STUDIES 
 
Effective control of the HVAC systems could result in peak reduction and a balance between 
demand and supply in residential buildings (Yoon, Bladick et al. 2014). To this end, several HVAC 
controllers for residential buildings have been proposed in the literature. Yoon et al. (2014) 
developed a thermostat controller that dynamically adjusts the thermostat according to a dynamic 
electricity price profile to decrease energy use (Yoon, Baldick et al. 2014). In an example 
simulation, the controller was effective in reducing peak in summer by 12% and saving electricity 
cost by 20%. They also evaluated the efficiency of their proposed controller for different types of 
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houses - small and large - and different weather conditions in Austin, TX, and Chicago, IL (Yoon, 
Bladick et al. 2014, Yoon, Baldick et al. 2016). The controller curtails the peak by 20.2% for the 
large house and 12.8% for the medium house. Vedullapalli and Schroeder (2019) developed a two 
model predictive controller for HVAC system and a battery in a residential building and save 
13.5% annual saving of energy cost. Gupta and Ghose (2018) developed a dynamic controller for 
residential building that predicts price first and then changes the HVAC system setpoint based on 
the forecasted price. Although all the developed controllers benefit the customer by decreasing 
energy costs and curtailing energy peaks, they do not consider human preferences in the control 
loop. Although they investigated occupants' comfort level using predicted mean vote (PMV) and 
predicted percentage of dissatisfaction (PPD), occupant comfort level has not been integrated as a 
control variable in these controllers. Thus, these controllers cannot address differences between 
occupants' thermal preferences, while end-users are the main stakeholders that could decide on the 
trade-off between cost and comfort. Our proposed HITL controller seeks to address this aspect and 
investigate its impact. The agent-based model has been developed and evaluated for a single-
family residential building and its performance were compared with two well-known control logics 
in the literature, a fixed setpoint logic and the Dynamic Demand Response Controller (DDRC) 
logic by (Yoon, Baldick et al. 2014). 

METHODOLOGY 
 
In Figure 1, we have presented the envisioned framework for a smart thermostat agent that 
coordinates with human agents and a service provider agent to: collect data, receive dynamic 
feedback, and optimize the performance by adjusting the setpoints. Human agents represent 
occupants by collecting their preference data and developing personal models to be used in 
aggerate comfort representations. In what follows, details of an example implementation of this 
framework have been elaborated. 

 
Figure 1. Overall framework of the model 

Human agent. The human agent represents occupants that interact with the thermostat agent. Each 
occupant has a personal thermal comfort profile defined as a probability distribution quantifying 
how comfortable each individual feels for different ambient temperatures. For instance, Figure 2 
(a) shows the thermal preference profiles of two occupants. The thermal preferences are 20.05°C 
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and 27.31°C for agents #5 and #12, respectively. These profiles are derived from the interaction 
of each occupant with the thermostat interface. In this paper, 6 actual thermal votes data sets were 
gathered from (Jazizadeh, Ghahramani et al. 2014) and (Daum, Haldi et al. 2011). By employing 
a Bayesian network modeling approach, 15 profiles have been built. To this end, this approach is 
used to aggregate different probability distributions of feeling uncomfortably cold, uncomfortably 
warm, and comfortable into one probability distribution as shown in Figure 2 (a). More details 
could be found in (Jung and Jazizadeh 2020).  

 
Figure 2. (a) Thermal comfort profiles for two agents, (b) Aggregated profile of the occupants 

Typically, the number of occupants in a residential unit could be more than one. Thus, we used an 
aggregation strategy based on thermal comfort votes to build the aggregated comfort profile for all 
occupants that share a space. For each person, the thermal vote is +1 for all temperature values 
higher than his/her thermal preference and is -1 for all temperatures values lower than his/her 
thermal preference. Figure 3 (a) shows the pseudocode of the algorithm for aggregation of all 
occupants' thermal votes. For each temperature value, thermal votes of all occupants are summed 
up as 𝑉𝑇̃, which represents aggregated profile of occupants. Figure 2 (b) shows the aggregated 
profiles that has been built based on Figure 3 (a) pseudocode.  

Utility agent. As an energy management strategy, some utility companies increase the energy price 
during peak hours to incentivize customers to differ their loads to off-peak hours. In this paper, the 
utility agent provides a real-time electricity price to the thermostat agent. The electricity price that 
was used in this paper is the real-time electricity price from the Electric Reliability Council of 
Texas (ERCOT) for August, which is gauged every 15 minutes. 

Thermostat agent. The main goal of the thermostat agent is to provide a control setpoint that 
decreases the peak demand without compromising the thermal satisfaction of occupants. The 
thermostat agent gets two signals: an aggregated thermal comfort signal from the human agent and 
the price signal from the utility agent. To drive the dynamic setpoint based on the real-time price 
of electricity, we adopted and modified the algorithm proposed by (Yoon, Baldick et al. 2014), 
called DDRC. In the original algorithm, a predictive model for energy consumption of HVAC 
system in a residential unit is used to identify a dynamic setpoint based on the dynamic price. In 
this paper, the residential unit that has been used for simulation is a single-family house from 
Residential Prototype Building Models developed by Pacific Northwest National Laboratory 
(PNNL) in Austin, Texas. The model has two thermal zones: living and attic zones. The HVAC 
system conditions the living zone only. The cooling system uses electricity only. The total area of 
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the building is 3565.64 ft2. The weather data that has been used in this study is typical 
meteorological year (TMY3) at Austin Mueller Municipal Airport, Austin, TX, USA. To decrease 
the complexity of the model in the control process, we used a simple representation of the building 
using a back-box modeling scheme. This model has been only used in the control algorithm and 
the high-fidelity EnergyPlus model of the building was used for validation. The black-box model 
was developed using the data from EnergyPlus model and by changing the thermostat setpoints 
and calculating their corresponding energy consumption. Figure 4 shows the results of changing 
setpoint against change in HVAC energy consumption with a Pearson correlation coefficient of -
0.97. 
 

 
Figure 3. (a) Pseudocode of the aggregation, (b) Control strategy 

 
Figure 4 - Changing setpoint against HVAC energy usage 

𝐻𝑉𝐴𝐶𝑐𝑜𝑜𝑙 = −0.145 ∗ ∆𝑇 − 0.004     Equation (1) 
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Equation (1) shows the linear regression model that associates change in HVAC energy use with 
setpoint change. In this equation, ∆𝑇 is the change of setpoint. The DDRC controller receives a 
price threshold set by occupants, which was set to be 0.04 ($/kWh) in this paper. By calculating 
the difference between real-time price and price threshold (∆𝑃), the setpoint is changed (∆𝑇𝑐𝑜𝑜𝑙) 
using equation (2). 

∆𝑇𝑐𝑜𝑜𝑙 = 𝑎 ∙ 𝐻𝑉𝐴𝐶𝑐𝑜𝑜𝑙 ∙ 2∆𝑃    Equation (2) 

where 𝑎  is a correlation coefficient between outdoor temperature and price during August in 
Texas. 𝑎 is 2.254 based on our analysis. Although this controller in the original publication has 
shown to decreases energy peak by 12% and decreases energy cost by 10.8%, it does not consider 
human preferences in the control process. Thus, our contribution focuses on integrating occupants’ 
personal comfort into the control loop. Figure 3 (b) shows our proposed control strategy. 𝑉𝑇̃ shows 
the aggregated comfort profile in each temperature from Figure 2 (b). Positive 𝑉𝑇̃  means, 
occupants collectively prefer a higher temperature and vice versa.  Therefore, the DDRC driven 
setpoint is either increased or decreased (by one unit) in case of a positive and negative 𝑉𝑇̃ , 
respectively. The rationale behind changing by one unit is we move the setpoint suggested by 
DDRC to a setpoint where occupant comfort more aggregately. The efficiency of this controller 
has been evaluated in a co-simulation of python-EnergyPlus environment. At each time step, the 
EnergyPlus model received the suggested setpoint from thermostat agent along with weather data 
and building ambient conditions and a simulation was run at 15-minute intervals to return indoor 
temperature to the thermostat agent to calculate the next step setpoint. 

To investigate the efficiency of the controller, all 15 profiles have been used to have a wide range 
of thermal preference profiles in our simulations. We evaluated the proposed control strategy for 
different multi-occupancy scenarios consisting of one, two, and four occupants. The total number 
of combinations for each scenario has been shown in Table 1. We evaluated all single-occupant 
scenarios and randomly chose 30 cases for two and four occupant scenarios. 

𝑁𝑎𝑔𝑒𝑛𝑡 = 𝐶(𝑛, 𝑘) =
𝑛!

𝑘!(𝑛−𝑘)!
                Equation (3) 

Table 1 - Number of iterations for different multi-occupancy scenarios 
Number of occupants Total number of combinations Number of samples 

1 𝐶(15,1) = 15 15 
2 𝐶(15,2) = 105 30 
4 𝐶(15,4) = 1365 30 

 
DATA ANALYSIS AND RESULTS 
 

Table 2 shows the result of the analysis. The proposed controller's total energy usage and total 
energy cost are higher than DDRC’s for all scenarios. However, the average percentage of 
satisfaction (measured using individual thermal comfort profiles) is higher than DDRC’s by 16% 
for one occupant scenario (p-value of t-test = 0.058) and 14% for the two-occupant scenarios (p-
value of t-test = 0.019) and the same for four occupants scenarios. Compared to a fixed setpoint 
strategy, the DDRC controller reduced the peak by 15% while the proposed controller reduced the 
peak by 9% for one occupant, 8% for two occupants, and 6% for four occupants. In terms of total 
energy cost, compared with the DDRC controller, depending on different multi-occupancy 
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scenarios, the occupants pay $19 to $23 per month to achieve higher thermal satisfaction. 
Increasing the number of occupants decreases the standard deviation for energy usage, average 
daily peak, and total energy cost. The higher number of occupants causes less flexibility in 
controlling the thermostat for energy saving, peak shaving, and decreasing cost. 

Table 2 – Results of evaluations 

Different 
Controllers 

Total energy 
usage (std) 

KWH 

Average daily 
peak (std) 

KWH 

Total energy 
cost (std) 

$ 

Average 
percentage of 
satisfaction 

Fixed Setpoint 855.50 (-) 4.18 (0.30) 187.80 (-) 68% 
DDRC 787.80 (-) 3.54 (0.30) 140.14 (-) 64% 

one occupant 810.55 (159.68) 3.81 (0.47) 159.03 (17.6) 80% 
two occupants 821.48 (72.26) 3.83 (0.30) 158.82 (9.25) 78% 
four occupants 841.32 (63.41) 3.93 (0.30) 163.79 (4.95) 68% 

 
CONCLUSION 
 

In this study, we presented an agent-based model that facilitates the coordination among human 
agents, thermostat agents, and utility agents to reduce energy cost and shave energy consumption 
peak while accounting for occupants personalized thermal preferences in the control loop. In this 
agent-based modeling framework, the thermostat agent receives a price signal from the utility 
company, and uses an aggregated comfort profile learned from human-thermostat interactions. By 
employing a low-fidelity, black-box predictive model of the building, as well as the input from 
human agents and the utility agent, the thermostat agent dynamically controls the HVAC system's 
setpoint. The agent-based model has been implemented and validated in a python-EnergyPlus co-
simulation environment for a residential building in Austin, TX and for different realistic comfort 
profiles, representing a diverse set of occupants and different occupancy combinations. Our results 
show that the proposed controller could curtail the peak demand by 5.5% to 10% depending on 
the number of occupants while increasing occupants' thermal satisfaction up to 12%. 
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