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Quantum outage probability for time-varying quantum channels
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Recent experimental studies have shown that the relaxation time 77 and the dephasing time 75 of superconduct-
ing qubits fluctuate considerably over time. Time-varying quantum channel (TVQC) models have been proposed
in order to consider the time-varying nature of the parameters that define qubit decoherence. This dynamic nature
of quantum channels causes a degradation of the performance of quantum error correction codes (QECCs) that
is portrayed as a flattening of their error rate curves. In this article we introduce the concepts of quantum outage
probability and quantum hashing outage probability as asymptotically achievable error rates by a QECC with
the quantum rate R, operating over a TVQC. We derive closed-form expressions for the family of time-varying
amplitude damping channels and study their behavior for different scenarios. We quantify the impact of time
variation as a function of the relative variation of 7; around its mean. We conclude that the performance of

QECGC:s is limited in many cases by the inherent fluctuations of their decoherence parameters and corroborate
that parameter stability is crucial to maintain the excellent performance observed over static quantum channels.
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I. INTRODUCTION

The proneness of quantum information to errors puts in
jeopardy the astonishing potential of quantum technologies
to solve computational problems that cannot be efficiently
processed by classical machines [1-3]. Quantum errors arise
due to the loss of coherence experienced by quantum states
as a consequence of their interaction with the surrounding
environment [4]. This phenomenon is known as environmen-
tal decoherence. Quantum error correction codes (QECCs)
were conceived as methods to protect quantum information
from the deleterious effects of decoherence. Such strategies
are of paramount importance to fulfill the potential of quan-
tum technologies. In consequence, the quantum information
community has gone above and beyond in its pursuit of
QECCs that exhibit excellent performance and are capable
of reversing quantum errors while consuming the fewest re-
sources possible. Several promising families of QECCs such
as quantum Reed-Muller codes [5], quantum low-density par-
ity check codes [6], quantum low-density generator matrix
codes [7-10], quantum convolutional codes [11], quantum
turbo codes [12-16], and quantum topological codes [17,18]
have been constructed following this premise.

Accurate mathematical modeling of decoherence effects is
invaluable to construct QECCs that work in realistic scenar-
ios. Abstractions that represent the effects of decoherence on
quantum information are known as quantum channels. In the
context of density matrices, quantum channels are completely
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positive and trace-preserving linear maps between spaces of
operators [4]. Generally, these transformations are described
via the Choi-Kraus representation as a set of matrices known
as Kraus or error operators. Quantum noise models that de-
scribe decoherence effects experienced by two-level systems
(qubits) in a fairly complete manner depend on the so-called
relaxation time 77 and on the dephasing time 7; [4]. Times T}
and T, are experimentally measurable parameters that provide
a nexus between the actual qubits that will be constructed for
a quantum processor and the theoretical models that are used
to describe how these qubits behave. Previous literature on
QECCs assumes that 77 and 7; are fixed parameters, implying
that the quantum channels used for noise modeling are static
and that their behavior does not change over time [4—18].
Recent experimental studies on superconducting qubits
have shown that 77 and 7, are time variant [19-25]. The
sample data in these studies showed that 77 and 7, can ex-
perience time variations of up to 50% of their mean value and
coefficients of variation of approximately 25%. These results
have led to the proposal of the framework of time-varying
quantum channels (TVQCs) [26] as quantum channel models
that fluctuate from time to time. This time-varying channel
paradigm stands in contrast to the static approach that has
been assumed previously. The TVQC model [26] is relevant
given its consideration of the dynamic behavior of experi-
mentally measured decoherence parameters. Furthermore, it
was shown in [26] that the excellent performance achieved by
the QECCs proposed in the literature is compromised when
the time variations considered for decoherence modeling are
significant and the QECCs have a steep error correction curve.
This last result is embodied by a flattening of the steep error
rate curve (as a function of the noise level) of those QECCs.
In consequence, since the TVQC portrays a more realistic
mathematical abstraction of the quantum noise suffered by
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superconducting qubits when time variations of decoherence
parameters exist, the real error rate of QECCs should present
this flattening effect.

In this article we study the asymptotic limits of error
correction for the paradigm of time-varying quantum chan-
nel models. Motivated by the similarity between the TVQCs
and classical slow or block fading scenarios, i.e., when the
channel remains constant over the duration of the coded
block [26,27], we define the quantum outage probability of
a TVQC as the asymptotically achievable error rate for a
QECC with quantum rate Ry that operates over the afore-
mentioned noise model. Additionally, we also introduce the
concept of the quantum hashing outage probability to provide
an upper bound on the asymptotically achievable error rate
for TVQC channels whose quantum capacity (of their static
counterparts) is unknown, but for which a lower bound known
as the hashing limit exists. Based on the experimentally de-
termined statistical distribution of 7; [19,26], we provide
closed-form expressions for the known TVQCs: the time-
varying amplitude damping (TVAD) channel, time-varying
amplitude damping Pauli twirl approximated (TVADPTA)
channel, and time-varying amplitude damping Clifford twirl
approximated (TVADCTA) channel. We analyze the quantum
outage probability and quantum hashing outage probabilities
of the aforementioned TVQC:s for different scenarios. Finally,
quantum turbo codes operating over the considered channels
are numerically studied and benchmarked using the derived
information-theoretic limits.

II. TIME-VARYING QUANTUM CHANNELS

The time-varying quantum channel model [26] has been
recently proposed with the purpose of including the time
fluctuations that are inherent in the decoherence parameters
of superconducting qubits [19,21,22]. In [26], several super-
conducting qubit scenarios were considered depending on the
influence of 77 and 75 on the decoherence effects experienced
by these qubits. The TVAD channel was proposed for qubits
whose pure dephasing rates are negligible (7] limited) and
the time-varying combined amplitude and phase damping
channels were proposed for qubits that have pure dephasing
channels that require attention (7} ~ T, and 7, dominated
scenarios). In this work we will focus on the asymptotic limits
for the TVAD channel.

The experimental analysis presented in [19,26] shows that
Ti(t, ) can be modeled by a wide-sense stationary (WSS)
random process of mean 7, and standard deviation o, with a
stochastic coherence time 7, which is on the order of minutes.
Since the processing times for quantum algorithms and error
correction rounds #,g, are on the order of microseconds [26],
tago K T, it is reasonable to assume that the process 7;(t, )
remains constant during the execution of the algorithm. In
other words, T1( ,t) can be modeled as a random variable
(t =0 has been selected without loss of generality due to
the fact that the process is WSS) T1( ) =Ti(t, )=Vt €
[0,T], T < T.. Given that the random process Ti(¢, ) is
assumed to be Gaussian, the random variable 7;( ) will also
be Gaussian with distribution A (MTI,U%I ). However, since
any realization of 77( ) should always be positive, 77 must
be modeled as a truncated Gaussian random variable in the

region [0, co]. Therefore, the probability density function of
Ti( ) is modeled as

1 e—(rl—url )2/2072-1 .

— = ifn =20
frie) = { oV =05 (1)

0 ift; <0,

where Q(-) is the Q function defined as
1 * —x2/2
Q(X) = \/? e dx. (2)
T Jx

A. Time-varying amplitude damping channels

The amplitude damping channel is a fairly complete model
for describing the decoherence effects suffered by supercon-
ducting qubits [4]. To be more specific, it accurately models
the quantum noise experienced by qubits that are said to be
T; limited. In consequence, the time-varying amplitude damp-
ing channel was proposed in [26]. The Kraus operators for
the TVAD channel for 7;-limited superconducting qubits are
given by

1 0 _(0 Vv@ )
EO_(O JT=v@ ) ))’ El_(o 0 ) )

where the damping parameter WSS random process y (¢, )is
related to the relaxation WSS random process 7; (¢, ) as

v, )=1- e_talgO/Tl(ts )_ 4)

B. Time-varying twirl approximated channels

As comprehensive as amplitude damping channels are,
they cannot be efficiently implemented in classical computers
when the number of qubits starts to grow. This limitation made
the research community consider the use of approximated
channels that are efficiently implementable in the classical
domain and that maintain enough information about quantum
noise. Twirling is an extensively used method in quantum
information theory to study the average effect of general
quantum noise models via their mapping to more symmetric
versions of themselves [28,29]. Moreover, it is known that any
correctable code for a twirled channel is a correctable code for
the original channel up to an additional unitary correction [4].

As a consequence, Pauli twirl approximated channels and
Clifford twirl approximated channels have been widely used
in the context of quantum error correction [4,28,29]. These
approximated channels belong to the family of Pauli channels.
Since they fulfill the Gottesman-Knill theorem [30], they can
be simulated appropriately on classical machines [4].

Since the TVAD channel model is fairly successful in
describing T;-limited superconducting qubits [31,32], the
TVADPTA channel and the TVADCTA channel were pro-
posed in [26]. More precisely, when Pauli twirling a TVAD
channel with Kraus operators in (3), the resulting TVADPTA
channel has the Kraus operators

Wi )X, /Py Y, - (V)Z), Q)
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with 37 o pe(y) = 1 and

px(y)=py(y)=¥

1-JT—y@ ) >)2
——=).

, p(y)= (
(6)

Note that the TVADPTA channel exhibits some degree
of asymmetry (asymmetry refers to the fact that there is a
mismatch between errors of type Z and errors of types X
and Y. Asymmetry is quantified by the so-called asymmetry
parameter « = p,/p, [10,16,28]).

On the other hand, when Clifford twirling a TVAD channel,
the resulting Kraus operators for the TVADCTA channel are
those defined in (5), with
<1+¢71—y<r, >>2 L—pi(y)

2 ’ 3 ’

(N
where k € {x, y, z}. Note that the TVADCTA channels belong
to the subfamily of Pauli channels known as depolarizing
channels, since the additional symplectic twirl performed on
the Pauli twirl in order to obtain the Clifford twirl symmetrizes
the error distribution, which results in p, = p, = p. [4,29].
We denote by pappra(y) and papcra (¥ ) the probability mass
functions for the ADPTA and ADCTA channels defined by
(6) and (7), respectively. Note that since the Kraus operators
of all the discussed quantum channels are a function of the re-
laxation time stochastic process 77 (¢, ), they will be constant
for the coherence time and are obtained by the realizations of
the probability distribution in (1).

pi(y) = pi(y) =

III. QUANTUM CAPACITY

The quantum capacity is the maximum rate at which quan-
tum information can be communicated or corrected over many
independent uses of a noisy quantum channel. In other words,
the concept of the quantum capacity establishes the quantum
rate! Ry limit for which reliable (i.e., with a vanishing error
rate) quantum communication or correction is asymptotically
possible. Note that, traditionally, the concept of quantum
channel capacity is understood in the context of quantum com-
munications. In the realm of communication, it is convenient
to think of a sender (Alice) who wants to relay qubits to
a receiver (Bob). For memory or processing devices, Alice
and Bob simply label the input and output. In this way, the
noise suffered by qubits due to decoherence can be thought
of as the transmission of the information through a virtual
noisy channel [34]. Hence, we can also apply the concept of
quantum channel capacity to this framework by defining it as
the maximum achievable rate by quantum error correction that
can make the stored or processed quantum information error-
less. It is within this framework that we discuss the concept of
the quantum capacity in this article.

'"The quantum coding rate Rp of an [[n, k]] quantum code is
measured in terms of the number of qubits transmitted per channel
use, i.e., we have Ry = k/n, which means that k logical qubits are
encoded per n physical qubits. A rate Ry, is said to be achievable for
a quantum channel if there exits a sequence of [[n, k]] quantum
codes such that the probability of error of the codes goes to zero as
n oo [33].

The definition of quantum capacity Co(N) is similar to
its classical analog, that is, the supremum of all achievable
quantum rates for a noise channel N [33]. The following
theorem, often referred to as the Lloyd-Shor-Devetak (LSD)
theorem, relates quantum channel capacity with the regular-
ized coherent information of the channel [33,35].

Theorem 1 (LSD capacity). The quantum capacity Co(N)
of a quantum channel \V is equal to the regularized coherent
information of the channel

CoN) = Qreg(N), ®)

where
1
Qe W) = lim -~ Qen (V™). ©)

The channel coherent information Qcon(N) is defined as

OconN) = mgX[S(N(P)) — S(pe)l, (10)

where S is the von Neumann entropy and S(pg ) measures how
much information the environment has.

For general channels, there is no closed-form analyti-
cal expression of the quantum capacity given in Theorem
1. However, the amplitude damping (AD) channel and its
twirl approximations have either closed-form expressions or
bounds for their LSD capacities.

A. Static amplitude damping channel

The quantum capacity of an AD channel with damping
parameter y € [0, 1] is equal to [33,35]

Co(y) =§1;1[%§]H2((1 —y)E) — Hy(y§) (11)

whenever y € [0, %] and zero for y € [%, 1]. Here H(x) is the
binary entropy.

B. Static Pauli channels

An expression for the quantum capacity of the widely used
Pauli channels remains unknown [4,33]. However, a lower
bound that can be achieved by stabilizer codes, the hash-
ing bound Cy [33], is known. The reason why the quantum
capacity of a Pauli channel can be higher than the hashing
bound, i.e., Cp > Cy, is the degenerate nature of quantum
codes [36,37], which arises from the fact that several distinct
channel errors affect quantum states in an indistinguishable
manner.

The hashing bound for a Pauli channel defined by the
probability mass function p = (py, px, py, p;) is given by [33]

Cu(p) =1— H(p). 12)

Here Hy(p) = — Zj pjlog,(p;) is the entropy in bits of a
discrete random variable with probability mass function given
by p.

Equation (12) demonstrates the general hashing bound of
the whole family of Pauli channels. Subfamilies of Pauli
channels of special interest are the ones obtained by P, and

?” twirling the AD channel [4,26,28,29]. The families of
Pauli channels obtained by such operations are denominated
the AD Pauli twirl approximated (ADPTA) channel and the
AD Clifford twirl approximated (ADCTA) channel, which is
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a depolarizing channel (since p, = p, = p;). The parameters
Dx» Py, P- are themselves functions of the relaxation time 7;
due to the fact that they are approximated by the 77-dependent
AD channel.

IV. QUANTUM OUTAGE PROBABILITY

The TVQC model proposed in [26] clearly resembles the
paradigm of classical block fading [27]. This occurs because
the stochastic processes that define the dynamic behavior
of the relaxation and dephasing times are considered to be
constant for the codeword length, since the processing times
are much smaller than the coherence times of such processes
[19,26]. Also, it is considered that all qubits in the codeword
are affected equally by the noise [26]. This is reminiscent of
classical block fading scenarios in which the channel gain i
is considered to be constant for the codeword length [27]. We
use this connection with the classical domain to develop the
information-theoretic concepts for TVQCs.

A. Classical outage probability for the block fading additive
Gaussian noise channel

Under slow fading conditions, the channel gain of an
additive white Gaussian noise (AWGN) channel, which is
generally modeled as a WSS random process a(t, ), varies
slowly with respect to the time duration of a codeword. In
these situations, the value of the channel gain during the
transmission of a codeword can be considered to be approx-
imately constant and given by a realization of the random
variable o( ). Therefore, the block fading channel can be
reduced to an AWGN channel where the received signal-to-
noise ratio (SNR) Rg/n is a random variable |ot( )|2RS/N.
Consequently, the channel capacity also becomes the random
variable C( ) = log,[1 + |o( )IZRS/N] with bits per channel
use serving as the measuring units. Note that by the Shannon
channel coding theorem, given an encoding rate R bits per
channel use, reliable communication will be possible if the re-
alization of the channel capacity C( ) is larger than R. On the
other hand, when C < R communication with low probability
of error is not possible. The probability that communications
fail when transmitting a codeword with rate R is called outage
probability and is given by [27]

Pout(R,Rg/N) = Prob[{ € Q:C( ) <R}]

=Prob({ € Q:log,[l + |a( )[*Rsn] < R}).
(13)

The outage probability will depend on the probability dis-
tribution of the channel gain random variable o( ). For the
widely used Rayleigh fading model, for which the channel
gain follows a circularly symmetric complex normal distribu-
tion N(0, 1), the outage probability can be shown to be equal
to [27]

Pout(R, Rg/n) = 1 — e~ =D/Rsy, (14)

B. Quantum outage probability

Based on the similarity to the classical block fading sce-
nario, we can assume that each of the realizations of the
qubit relaxation and dephasing times 77 and 7, will result

in a realization of the time-varying quantum channel under
consideration and consequently in a specific value for the
quantum channel capacity Cp qubits per channel use. Simi-
lar to classical coding, if the realization of the decoherence
parameters leads to a channel capacity lower that the quantum
coding rate, Ry qubits per channel use, then the quantum bit
error rate will not vanish asymptotically with the block length,
independently of the selected QECC. Thus, we can state that
for such realizations the channel will be in outage. Therefore,
we define

pOQut(RQ) =Prob[{ € Q:Co( ) <Rp}] (15)

as the quantum outage probability.

In other words, with probability pgm (Rp), the capacity of
the channel Cyp( ) will be lower than the rate of the code and
thus the error rate will not vanish asymptotically. Conversely,
with probability 1 — pOQu[ (Rp), reliable quantum correction
will be possible. Thus, the quantum outage probability will
be the asymptotically achievable error rate for quantum error
correction when the rate is Ry.

V. COMPUTATION OF THE QUANTUM OUTAGE
PROBABILITY FOR THE FAMILY OF TIME-VARYING
AMPLITUDE DAMPING CHANNELS

Next we derive the quantum outage probability for the
family of TVAD channels in Theorem 2 [26] and we provide
a closed-form expression for this quantity when the TVAD
channel is considered. In addition, we define the quantum
hashing outage probability as a bound of pOQut for the twirl
approximated TVAD Pauli channels, as their exact LSD ca-
pacities are not known.

A. Outage probability for the time-varying
amplitude damping channel

It is important to define a set of specific concepts before
Theorem 2 is introduced. It is clear from the expression (11)
that the quantum capacity Cp of the AD channel is a mono-
tonically decreasing function of the damping parameter y.
Therefore, there will be a unique y*(R) that makes the value
of the channel capacity Cp equal to Ry, i.e., Co(y*(Rp)) =
Rp, that is to say,

Co(y*(Rg)) = Rg & ¥*(Rg) =C,'(Rg).  (16)

We will refer to y*(Rp) as the noise limit. Note that codes
with rates R cannot operate reliably for channels noisier than
the noise limit, where by noisier we mean that the channel
has a higher value of the damping parameter y (note that y
describes how intense the amplitude damping effects are).

Additionally, from (4) we define the critical relaxation time
Tl* (RQv talgo) as

_talgo

Tl*(RQv talgo) == In (17)

[1—y*(Ro)]’
which is a function of the algorithm time #,g,. In order to
perform accurate comparisons of quantum channels with dif-
ferent mean relaxation times w7, we rewrite the critical time
as a function of the damping parameter y that the AD channel
exhibits when its static version is considered (this is similar
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to the normalization done in [26], as the damping rate is
a function of the algorithm time and the relaxation time).
Note that if the calculations were done as a function of the
algorithm time, the comparison between qubits with different
mean relaxation times would not be ideal since for a fixed
taigo, higher values of w7, result in lower values of y and thus
lower channel noise. It is obvious that longer mean relaxation
times are more favorable for computing applications, as they
allow for longer algorithm times. However, we are interested
in calculating the quantum outage probability versus the noise
level of the channel, i.e., we want to know how much noise a
qubit is able to tolerate. Consequently, we obtain the time that
the quantum algorithm would require to reach a noise level y
for the static AD channel as [4]

talgo = —MT 111(1 - )/) (18)

This way, the critical relaxation time in (17) is a function
of the damping parameter y associated with the static AD
channel as

19)

* _ MpIn(d—y)

Finally, the coefficient of variation ¢ was shown in [26]
to be the most relevant parameter to describe how much the
variations of 7; influence the error correcting performance of
QECC:s. The coefficient of variation of a random variable is a
standardized measure of dispersion of a probability distribu-
tion and it is defined as

where o is the standard deviation of the random variable and
W is its mean. This parameter measures the extent to which
realizations of a random variable can deviate from its mean.

At this point, we are ready to introduce the theorem that
provides the quantum outage probability for TVAD channels
that consider the qubits of [19,26].

Theorem 2 (TVAD quantum outage probability). The
quantum outage probability for the time-varying amplitude
damping channels associated with the damping parameter
y €10,1 — e~ 1]is equal to
o

1 [ n(l—y)
c (Ty) Lin[1-y*(Rp)]

1= 0(m)

¢ (Tr)

where Q(-) is the Q function, ¢ (77) is the coefficient of
variation of 77 [Eq. (20)], y*(Rp) is the noise limit, w7, is
the mean relaxation time, and o7, is the standard deviation of
the relaxation time.

Proof. In order to compute the outage probability

Q . ..

Paut(Ro, ), we use the fact of the decreasing monotonicity of

1])

3

pei(Ro.y)=1— @

Co and T; with respect to y. This implies that the events { €
Q:Co(y( ) <Rp}, { €Q:y()<y"(Rp)}, and { €
Q:Ti( ) < T*(Rg, y))} are all the same. Therefore,
PC(Ro, y) =Prob[{ € Q:Co( )< Ro}l
=Probl{ €Q:Ti( ) <T"(Ro, ¥)}l. (22)

Next we compute (22) based on the fact that the random
variable 77( ) is modeled by the probability density function
in Eq. (1) [26]. The outage probability of the TVAD channel
can be calculated as

Sfr (t)dt

1

c =2, (20)
1%

|

0 T*(Rg.y)
Pout(Ro, v) =Prob[{ € Q:Ti( ) <T(Rg,¥)}] = /
—00
T (Ro.y) 1 e~ —nnP/20f, 1
= H =

[0 on2r 1—0() T T - (e

O'T]

0

(77‘1

e*(tlfﬂrl )2/20%l dt

T} (Rg.y)
(/.

on V21

T (Rp.y)— o — o
_/ ;e(nmlp/zaﬁdﬁ):;‘”</ " (Ro.y)—pr fory e’”z/zdn—/ wry /oy ;e’iz/zdn)
—00 0N/ 27T 1=0(5%) Voo V2n —o V2r
1 ( /°° 1 o 2
= —070(1- e”/zdr]—/ ——e "2y
1— Q(Z—;‘) Ty (Rg.y)—ury Jor, v 2T ur Jor, N 2T
T"(Ro,y)—1 Iz T (Ro.y)— 1 Iz In(1—y)
B 1 - Q(—' QC,TI 1) — Q(J—TT:) B o(——= QGT] Tl) Q(o_;:[ln[ln—y*(yRQ)] - 1])
- I - T A En\ T Iz
- 0(5) o5 - o(2)
1 In(l—y)
1 Q(c (Tl)[ln[l—y*(RQ)] l]) (23)
= : ,
1-0(; <T1>)

as we wanted to prove.

It can be seen that the quantum outage probability as a
function of the damping parameter y does not depend on
the absolute value of the mean relaxation time, but on the
coefficient of variation of 7;. This way, we decouple the
time-varying effects from the fact that longer mean relax-
ation times admit longer quantum algorithm processing times.

Consequently, we present a result agnostic to the impact that
longer coherence times have and we can provide conclusions
for all superconducting qubits.

To finish, one needs to make sure that under the normal-
ization done, the maximum value that f,,, can take is still
much lower than the coherence time 7, of the random process
Ti(¢, ), which is of the order of minutes [19]. Considering
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algorithm times longer than the mean relaxation time makes
no sense since for such a time frame the qubit is in equilibrium
state with high probability and therefore it is useless as a re-
source. Additionally, the value of the mean relaxation time is
on the order of microseconds for superconducting qubits [26],
and so taking 7,o" = ur; for our theorem makes sense. Such
an algorithm time is associated with the value y =1 — e !,
so the quantum outage probability defined here is valid for the
range y € [0, 1 —e™!]. [ ]

B. Quantum hashing outage probability for the time-varying
twirl approximated channels

Because the analytical expression for the LSD capacity of
Pauli channels is not known, the quantum outage probability
for this family of approximated channels cannot be calculated.
Nevertheless, by means of the hashing bound, we define the
quantum hashing outage probability for Pauli channels as

pgm(RQ) =Prob[{ € Q:Cy( ) < Rp}l. (24)

Note that the quantum hashing outage probability will be
an upper bound on the actual quantum outage probability of
time-varying Pauli channels, since the hashing limit is a lower
bound of the LSD capacity. This way, events that exceed the
hashing bound will be more likely than the events that exceed
the LSD capacity, which means that pf (Rp) > pgm (Rp).
Consequently, p (Rp) is an upper bound of interest for
benchmarking the behavior of the TV Pauli channels.

It is important to realize that the hashing bound (12)

Ch(y) =1+ Y p()log pi(y) =1 - H(p(y))
ke{l,x,y,z}

(25)
for the twirled approximated channels of the AD channel
with the probability distributions given in (6) and (7) is a
monotonic decreasing function of the damping probability y .
This is justified by the fact that, as y € [0, 1] increases, the
values of py, p,, p; in either (6) or (7) also increase. This
results in the uncertainty of the discrete random variables
associated with each of these distributions, and consequently
their corresponding entropy values, becoming higher. There-
fore, as for the AD channel, we define the noise limit for these
Pauli channels as the unique value of the damping parameter
v7 (Rp) such that

1 —Cy(p(y7(Rp)) = Rg & yf(Rg) = Cy' (1 — Rg). (26)

From (4) the critical relaxation time (note that we have added
the subindex T to indicate we are twirling the AD channel) is

_talgo
In[1 — y7(Rp)I’

where the probability mass function p in (26) should be taken
as pappra Of Papcta When considering the twirled ADPTA
or ADCTA channels, respectively. Similarly to the TVAD
channel, we can write the critical relaxation time as a function
of the damping parameter

Tlij (RQ» talgo) = (27)

* _ MTI ln(l - J/)
Tir(Ro.y) = = 28)

The following corollary yields the hashing outage proba-
bility of the twirled TVADPTA and TVADCTA Pauli channels
for the qubits studied in [19,26].

Corollary 1 (quantum hashing outage probability). The
quantum hashing outage probability for the time-varying
twirled approximated channels associated with the damping
parameter y € [0, 1 — e~!] is equal to

Ot L — 1)
1-0(m)

where Q(-) is the Q function, ¢ (77) is the coefficient of
variation of 77 given in (20), y;(Rp) is the noise limit that
depends on the considered twirled approximation, p, is the
mean relaxation time, and o7, is the standard deviation of the
relaxation time.

Proof. In order to compute the hashing outage probability
P (Ro, y), we use the fact of the decreasing monotonicity
of Cy and T, with respect to y. This implies that the events
{ €eQ:Cu( )<Rol,{ €Q:y( )<yiRg)},and{ €
Q:Ti( ) < T, (Rg, y)} are all the same. Therefore,

PhRe. y)=1— . (9

P (Ro, v) =Prob[{ € Q:Cy( ) <Ry}l
=Prob[{ €eQ:Ti( )< Tf,kT(RQ’ ). (30)

Thus, the hashing outage corresponds to events where the
realization of the relaxation time is lower than the critical
relaxation time.

From this point, the calculation of the quantum hashing
outage probability is the same as in the proof of Theorem 2,
since Eq. (30) is the same as (22). |

Note that even though the final expression is the same as
the one of Theorem 2, the noise limit value is calculated in
a different manner, which means that the results are different
for each of the TV channels.

C. Numerical simulations

By using the results derived previously, we now discuss the
behavior of the quantum outage probability and the quantum
hashing outage probability. Following the reasoning of [26],
we compare scenarios described by different coefficients of
variation of the random variable 7;. For the analysis con-
ducted in this section, we consider the following values of the
coefficient of variation: ¢ (77) = {1, 10, 15, 20, 25}%.

1. Quantum outage probability of the TVAD channel

Figure 1 plots the quantum outage probability versus the
damping parameter 107>y 0.6 for a quantum rate Ro =
% and for all the coefficients of variation of the relaxation time
random variable. Figure 1 further cements the conclusions
derived in [26], as it shows that the impact of the fluctuations
of the decoherence parameters can be accurately quantified
by the coefficient of variation of 77 (note that in [26] this was
true if the waterfall region was steep enough). Note that when
the coefficient of variation is very low, i.e., ¢ (T7) = 1%,
the quantum outage probability of the TVAD channel almost
coincides with the quantum capacity (represented herein by
the noise limit y*). Consequently, QECCs operating over
TVQCs that present low coefficients of variation will behave

012432-6



QUANTUM OUTAGE PROBABILITY FOR TIME-VARYING ...

PHYSICAL REVIEW A 105, 012432 (2022)
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10 1072 107
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FIG. 1. Quantum outage probability of the TVAD channel.
The metric is calculated for TVAD channels with ¢ (T}) =
{1, 10, 15, 20, 25}% and for a quantum rate of Ry = é

asymptotically in a similar manner to static channels. Never-
theless, increasing the variability of the relaxation time around
the mean causes the outage probability to diverge from the
static capacity. In this case, the asymptotic bounds flatten and
the achievable error rate of QECCs operating over TVQCs
does not vanish. Therefore, the higher ¢ (77) is, the worse the
achievable error rate will be.

The previous discussion indicates that the coefficient of
variability of the random variable 7;( ) can be used to de-
scribe the effect that decoherence parameter time fluctuations
will produce on the asymptotic limits of QECCs. These re-
sults also confirm the importance of qubit construction and
cooldown: If optimized correctly, the fluctuations relative to
the mean will be mild and the outage scenarios will be sig-
nificantly less frequent. Naturally, it is desirable for qubits to
exhibit long mean coherence times 77 so that algorithms with
longer life spans can be handled appropriately. However, aside
from seeking to increase the coherence time of qubits, it is
clear that minimizing the dispersion of this parameter will be
critical if these qubits are to be reliable [26].

Let us now discuss how the quantum rate affects the
quantum outage probability. Once more, Fig. 2 shows the
quantum outage probability for ¢ (77) = {10, 25}%, but it
now considers different quantum rates Ry € {%, %, }—P % % .
As expected, the results portrayed in this figure show that
increasing the rate leads to an increase of pon(RQ, y), al-
though the shape of the curves remains similar to scenarios
with the same coefficient of variation. The main takeaway is
that, although increasing the rate of an error correction code
reduces the overall resource consumption, this occurs at the
expense of a degradation in the asymptotic error correction
performance. It is important to mention that this degradation
does not occur because there is higher sensitivity to time
fluctuations at higher rates. Further inspection of Fig. 2 reveals
that the noise limits for each rate change as expected and that
the outage probabilities behave similarly according to those
noise limits. Thus, similarly to classical coding, the quantum
rate does indeed impact the quantum outage probability, but
not due to a higher sensitivity to time variance. Furthermore,

[e—Rq=1/49 ——Rq=1/9 —s—Rq = 1/4 ——Rq = 1/3 —#—Rq = 1/2

ey (T1) = 10% wweveeree e(T1) = 25% = = =7 (Rq)

10°

1072 107
Y

FIG. 2. Quantum outage probability of the TVAD channel for

different quantum rates Ry € {3 5. 1. 3. 3}. We plot the quantum
outage probability for ¢ (7}) = {10, 25}%. The quantum capacities

(noise limits y*) for the static quantum channels are also represented.

similar to what happens in static channels, there is trade-off
between resource consumption and how demanding (in terms
of noise) the quantum channel is.

2. Quantum hashing outage probability of the time-varying twirl
approximated channels

We continue by comparing the outage of the TVAD chan-
nel and its twirled approximated channels. Figure 3 plots
the hashing outage probability results of the TVADPTA and
TVADCTA channels. Note that the x axis is still y, despite
the fact that the defining parameter for the TVADPTA and
TVADCTA channels is p. However, the y associated with
a given p can be obtained easily [4], which is necessary to
perform comparisons with the TVAD channel. The quantum

[—#—=c.(Th) = 10% —k—c.(T1) = 10%

——TVAD = = ~-TVADPTA e TVADCTA
10° T T

(1)) = 15% —o—cy(T1) = 20% —o—c(T1) = 25% ——7

i
L I

1078 102 107
Y

FIG. 3. Quantum outage and hashing outage probabilities for
TVAD, TVADPTA, and TVADCTA channels when Ry = é. The
noise limits are yip = 0.432, yippra = 0.3354, and yipcma =
0.3065.
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outage capacities of the TVAD channel from Fig. 1 are also
shown. Note that the hashing outage probabilities for the
ADPTA and ADCTA channels are worse than the quantum
outage probability of the TVAD channel, since the noise lim-
its for those channels are lower than the one for the TVAD
channel. This means that the hashing outage probabilities
of the twirled channels are worse because their noise limits
are worse and not because they are more sensitive to time
fluctuations. This is analogous to the previous explanation of
the difference between the values of pgm for QECCs with dif-
ferent quantum rates operating over the TVAD channel. Also
note that even though the hashing outage probabilities for
these approximated channels are higher than the quantum out-
age probability for the TVAD channel, one cannot conclude
that the actual quantum outage probability for these twirled
channels will be worse than the one for the AD channel (recall
that the hashing outage probability provides an upper bound
on the actual outage probability).

VI. QECCS OPERATING OVER TVQCS AND QUANTUM
OUTAGE PROBABILITY

To finish our discussion of the quantum outage probability,
we study the performance of a quantum turbo code of rate
Ro = % [16] when operating under TVQC models of deco-
herence [26] and we use the results obtained in the preceding
section for the quantum outage probability to benchmark its
performance. Quantum turbo codes have shown excellent er-
ror correction capabilities achieving a performance less than
1 dB away from their corresponding hashing bounds. In ad-
dition, they encode quantum information with a long block
length (n = 9000 physical qubits for the quantum turbo code
considered here), making them interesting to benchmark us-
ing the asymptotic limits (n  00) derived here. Since the
depolarizing channel model is the most popular error model
when it comes to studying the performance of QECC families
in the literature [4], we will also follow this trend herein.
We consider the ADCTA depolarizing channel as the static
channel of interest and the TVADCTA as its time-varying
version. Considering that these decoherence models belong to
the family of Pauli channels, the information-theoretic bench-
marks that will be considered are the hashing bound and the
quantum hashing outage probability. The time-varying chan-
nels that we consider are the ones associated with the QA_C5
[c (T1) = 26%] and QA_C6 [c (T1) = 22%] superconducting
qubit scenarios of [19]. We select these scenarios in order
to portray the performance that error correction codes would
exhibit when operating on real hardware that exhibits time
fluctuations [19,26].

Monte Carlo computer simulations have been carried out
to estimate the performance for the different scenarios pre-
sented in the paper. Each round (i.e., transmitted block) of the
numerical simulation is performed by generating an n-qubit
Pauli operator, calculating its associated syndrome, and finally
running the decoding algorithm. Once the logical error is
estimated, it is compared with the logical error associated with
the physical channel error in order to decide if the decoding
round was successful. The operational figure of merit used to
evaluate the performance of these quantum error correction
schemes is the word error rate (WER) W, which is the proba-

[~e—QTC (Static) ——QTC (QA_C6) ——QTC (QA_C5)
[~6 2L (Rq = 1/9) (QA_C6) — k- pll,(Rq = 1/9) (QA_C5) - - ~Hashing bound (p° = 0.1602)

FIG. 4. Performance of the quantum turbo code from [16,26].
The quantum turbo code operates over the static ADCTA channel and
the TVADCTA channel for scenarios QA_C5 and QA_C6 [19,26].
The quantum error correction code has rate Ry = é and encodes
blocks of 1000 logical qubits into 9000 physical qubits. The hashing

bound and the hashing outage probabilities are also plotted.

bility that at least one qubit of the received block is incorrectly
decoded.

The number of transmitted blocks Npjocks Nneeded to empiri-
cally estimate VW (by Monte Carlo simulation) is given by the
following rule of thumb [38]:

100
Nblocks = Ta (3 1)

w
Under the assumption that the observed error events are in-
dependent, the above number of blocks will guarantee that
the unknown value of W will be inside the confident interval
0.8V, 1.25W0) with probability 0.95, where W refers to the
empirically estimated value of WV based on Nyjocks-

Figure 4 shows the performance curves for the quantum
turbo codes studied in [16,26] operating over the static and
time-varying channels. Here we use p instead of y, since
the depolarizing channel is considered (calculating the depo-
larizing probability of a Clifford twirl approximated channel
associated with a value of y is trivial). This code has rate Ry =
é, a block length of 1000 qubits, and is decoded using the
turbo decoding algorithm presented in [12,13], which com-
bines two soft-in—soft-out decoders. From this figure it can be
observed that the performance degradation for the quantum
turbo code when the channel is the TVADCTA channel rather
than the static ADCTA channel begins at the waterfall region
and becomes more prominent as the depolarizing probability
decreases. For example, for a depolarizing probability p ~
0.12, the word error rate of the quantum turbo code operating
over the static channel is within the range of W =~ 1072,
but for that same p, it increases an order of magnitude to
W = 10~! when operating over the time-varying channel sce-
nario QA_C6. This )V deviation increases almost four orders
of magnitude when the depolarizing probability decreases to
p ~ 0.1 for the same superconducting qubit scenarios. Thus,
as concluded in [26], the fluctuations of the relaxation time
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of the superconducting qubits substantially worsen the error
correcting capabilities of the QECCs.

Figure 4 also shows the quantum hashing outage proba-
bility pf, (Rp, p), derived in Sec. V B. Note that the quantum
hashing outage probability is an upper bound on the asymptot-
ically achievable WW. We know from the preceding section that
the coefficient of variation of the relaxation time yields in-
sight into how flat the hashing outage probability becomes.
Notice that the superconducting qubits of scenario QA_C5
[c (T1) =~ 26%] are more affected by time variations than the
ones of scenario QA_C6 [c¢ (T}) ~ 22%].

To quantify the distance to the hashing outage bound, we
use a similar metric to the one proposed in [10], which mea-
sures the distance in decibels between the performance of a
code and the hashing outage at a given W = x:

P(Pow = X) )

32
PWeode = X) ©2)

Sou(@x) = 1010g10(

For example, the é quantum turbo code is 8oy (@1073) &
1.75 dB away from the hashing outage for the QA_C5
scenario and 8o, (@1073) &~ 1.67 dB away for the QA_C6

scenario.

VII. CONCLUSION

In this paper we have introduced the concept of quan-
tum outage probability as the asymptotically achievable error
rate for quantum error correction when time-varying quantum
channels are considered. Additionally, we have also intro-
duced the quantum hashing outage probability as an upper
bound on the quantum outage probability when Pauli channels
are considered, since the actual quantum capacity of these
channels is not known. We have provided closed-form ex-
pressions of these probabilities for the TVAD, TVADPTA,
and TVADCTA channels. We have also studied the behavior
of the Ry = % quantum turbo code from [16,26] and bench-
marked its performance using the hashing outage probability.
We have concluded that the time variations experienced by
the relaxation times do affect the performance of QECCs
in a significant manner when the error rate curve is steep
enough [26] and that those time-varying effects should be
taken into account when optimizing code construction. The

information-theoretic analysis presented in this work is essen-
tial to benchmark the behavior of quantum error correction
codes in time-varying scenarios. Similar studies for the quan-
tum outage probability of the more general time-varying
combined amplitude and phase damping channel should be
considered in future work, as this will be critical in order to
have a complete tableau of the information-theoretic limits of
error correction for superconducting qubits with pure dephas-
ing channels.

In summary, it is clear that the time-varying nature of the
decoherence parameters will have a significant impact on the
performance of future QECCs that will be used to protect
quantum information. We have found, based on the results
shown throughout this paper, that the quantum outage prob-
ability is a function of the coefficient of variation of 77 and
that it increases as ¢ (7}) increases. Therefore, to improve the
error correction capabilities of quantum codes in TVQCs it
is important to experimentally look for qubits that not only
have a large mean relaxation time, but that also exhibit a
low standard deviation relaxation time. In this way, the error
correction potential of QECCs under time-varying conditions
will approach those found for static channels.
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