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ABSTRACT The quantum paradigm presents a phenomenon known as degeneracy that can potentially
improve the performance of quantum error correcting codes. However, the effects of this mechanism are
sometimes ignored when evaluating the performance of sparse quantum codes and the logical error rate is
not always correctly reported. In this article, we discuss previously existing methods to compute the logical
error rate and we present an efficient coset-based method inspired by classical coding strategies to estimate
degenerate errors and distinguish them from logical errors. Additionally, we show that the proposed method
presents a computational advantage for the family of Calderbank—Shor—Steane codes. We use this method
to prove that degenerate errors are frequent in a specific family of sparse quantum codes, which stresses
the importance of accurately reporting their performance. Our results also reveal that the modified decoding
strategies proposed in the literature are an important tool to improve the performance of sparse quantum
codes.

INDEX TERMS Iterative decoding, quantum error correction (QEC), quantum low density generator matrix

codes, quantum low-density parity check (QLDPC) codes.

I INTRODUCTION

When quantum stabilizer codes built from sparse classical
codes are employed in the quantum paradigm, they are im-
pacted by a phenomenon known as degeneracy [1], [2], [3].
[4]. which has no classical equivalent. This causes stabilizer
codes to exhibit a particular coset structure in which mul-
tiple different error patterns act identically on the transmit-
ted information [5], [6], [7]. The manifestation of degener-
acy in the design of sparse quantum codes and its effects
on the decoding process has been studied extensively [3],
[4]. [8]. [9]. [10], [11], [12]., [13]. [14]. Unfortunately, al-
though degeneracy may potentially improve performance,
limited research exists on how to quantify the true impact
that this phenomenon has on quantum low-density parity
check (QLDPC) codes. This has resulted in the performance
of QLDPC codes being assessed differently throughout the
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literature; while some research considers the effects of de-
generacy by computing the metric known as the logical error
rate [3], [15], [16], [17]. [18], [19], [20], other works em-
ploy the classical strategy of computing the physical error
rate [21], [22], [23]. [24]. [25]. [26], a metric which provides
an upper bound on the logical error rate of these codes since
it ignores degeneracy. In the context of degenerate quantum
codes, the discrepancy between results computed based on
the physical error rate and the logical error rate can become
significant. QLDPC codes (also commonly referred to as
sparse quantum codes) are famous for their degenerate na-
ture [3], [4]. [12]. [14]. [27]. [28]. which makes it impor-
tant to accurately assess their performance using the logical
error rate.

The logical error rate is a well-known metric and has been
widely employed to assess the performance of other families
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of quantum error correction (QEC) codes such as quantum
turbo codes (QTC) and quantum topological codes [10], [35],
[36], [37], [38]. For these particular error correction schemes,
the decoders that are employed are sometimes capable of
distinguishing between error equivalence classes (they can
account for some aspects of degeneracy), which makes it
easy to compute the logical error rate. In contrast, the clas-
sical decoding algorithms [39], [40] that are used to decode
sparse quantum codes are unable to account for the presence
of degenerate error operators, and so their logical error rate
must be computed differently.

Given the coset structure of sparse quantum codes, in-
tuition would point toward approaching the issue of calcu-
lating the logical error rate by finding and comparing the
stabilizer cosets of the estimated error sequences and the
stabilizer cosets of the channel errors. Unfortunately, the task
of computing stabilizer cosets has been shown to be com-
putationally hard [4], [12], [24], which is the reason why
the performance of some sparse quantum codes [21], [22],
[23], [24]. [25]. [26] has been assessed based on the physical
error rate. This metric is computed by comparing the error
sequence estimated by the decoder, E € Gy. to the channel
error, E € Gy, where Gy denotes the N-fold effective Pauli
group. Essentially, if the estimation matches the channel er-
ror, the decoder has been successful, and, if not, a decoding
failure has occurred. Note, however, that because this metric
ignores the degenerate nature of stabilizer codes, the physical
error rate overestimates the number of decoding failures and
actually represents an upper bound on the performance of
stabilizer codes.

Despite the use of the physical error rate in some works,
other literature has successfully computed the logical error
rate of specific sparse quantum codes [3], [15], [16], [17],
[18], [19], [20]. These works succeed in computing the
logical error rate because they do not approach the issue
from the perspective of stabilizer cosets. Instead, in most of
these works 3], [15], [16], [17], [18], Gaussian elimination
is used to obtain the parity check matrix (PCM) of the code
in what is known as standard form [8], [41], [42], and then
this matrix is used to extract a basis for the encoded Pauli
operators of the corresponding codes. Then, this basis can
be employed to distinguish between degenerate errors and
logical errors. Additionally, other research [20] employs a
different, albeit much more computationally demanding,
method to compute the logical error rate.

Against this backdrop, in this article, we document the
methods that have previously been used in the literature to
compute the logical error rate of sparse quantum codes. In
addition, we introduce our own group theoretic strategy to
accurately assess the effects of degeneracy on sparse quan-
tum codes and compute their logical error rate. We also
show how for sparse Calderbank—Shor—Steane (CSS) quan-
tum codes the method we propose herein has a computational
complexity advantage over those that have been employed
previously. Following this, we use our strategy to analyze the
frequency with which degenerate errors occur when using
a specific family of sparse quantum codes and we provide
2100312

insight on how the design and decoding of these codes can
be improved.

1l DEGENERACY AND STABILIZER CODES

Throughout this article, we assume that the reader is familiar
with basic QEC concepts based on physical two-level sys-
tems (qubits) such as stabilizer codes, their coset structure,
and the different types of possible errors. This section is
meant as an introduction to the notation we will use (that
of [14]) and to provide a brief summary of some of the ideas
of [14]. For a complete overview on these preliminaries, refer
to [14]. [27]. [29].

A. COSET STRUCTURE OF THE PAULI GROUP

The coherence loss suffered by quantum information over
time can be approximated as the action of operators that
belong to the Pauli Group on the qubits that store this
information. In most cases, the action of these operators is
modeled by means of an abstraction known as the Pauli chan-
nel. For single qubit quantum states, the Pauli channel will
act on said states by combining them with an element of the
single-qubit Pauli group G; = (1, x). The set I is given by

1= {01, ©X, O@3Y, O47)
= (£, +il, £X, +iX, 1Y, +i¥, +Z, +iZ)

where ©; = {*1, £i}, {X, Y, Z} are the Pauli matrices, /
is the 2 x 2 identity matrix, and [ = 1, 2, 3, 4. The group
operation x represents the well-known product of Pauli
matrices, which is written as
3
Oa X 0 =185 +1 ) €apc0c (1)
c=1
where § represents the Kronecker delta and
lif(a,b,c) =1{(1,2,3), (3.1, ) , D},
—1 if(a,b,c)=1{(3,2,1),(1,3,2), %)}
Oifa=borb=cora=c.

€abe =

In (1), we have denoted the X Pauli matrix as oy, the ¥
Pauli matrix as o7, and the Z Pauli matrix as o3.

We can generalize the single qubit Pauli group so that it
can be applied to N-qubit quantum states based on the tensor
product. The N-qubit Pauli group is by Gy = (I1®V, ). The
set [TV is given by

N = (611, 6,X, 63Y, 04Z)%N

where 6 = {£1, £i}, and ® denotes the tensor product. For
all A, B € Gy, the group operation is defined as

A B=A; xB®Ay x A, ®...® Ay x By. (2)

Because it makes good physical sense to neglect the global
phase of Pauli operators [32], i.e., disregard the overall fac-
tors {£1, i}, it is typical in the field of QEC to work with
a reduced version of the Pauli group known as the effective
Pauli group. The N-qubit effective Pauli group is denoted by
Gy = (II®N ), where

={I,X,Y,2)®N
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and x behaves as in (2) but with the operation between single
Pauli operator products defined not as in (1) but as

3
Ga* 0 = I8ab+ ) _ |€abc|0e 3)

c=1

where €45 is the same as in (1).

Thus, against this backdrop, efficient QEC strategies for
general Pauli channels are defined as those methods that are
capable of reverting the action of elements that belong to
the effective Pauli group. It is important to note, however,
that Gy is abelian, whereas Gy is not, which means that the
commutation relations that exist between Pauli operators [see
(2)] are lost between effective Pauli operators [see (3)]. Given
the importance of these commutation relations for the pur-
poses of error correction [14], [29], [30], it is important that
they be recovered. For this purpose, we define the symplectic
map ey %N,which is an isomorphism between the
group Gy = (TT®V %) and the group ( 22N1 @) of 2N binary-
tuples under the mod 2 sum operation. For clarity, throughout
the remainder of this article, lower case boldface romans
without a subscript will be used to denote 2N binary-tuples
that belong to 22N . and lower case boldface romans with a
subscript will be used to denote N binary-tuples that belong
to Q" The symplectic mapping is defined as

(A) —=a= (a_daz), Ay, a; € ?r

where the values of the entries of a, and a; at position
i =1,...,N are directly dependent on the single qubit Pauli
operator [A]; located at the ith position in the tensor product
that makes up A € Gy.

Note that the commutation properties of the Pauli
operators with regard to the product are not recovered
by just defining the isomorphism  [after all. ( %N,EB)
is also an abelian group]. Thus, we define the symplectic
producta@be ,Vabe as

aOb (a;®b;) D (a;®by) )

where ® is the standard mod 2 inner product defined on
( f, @) considered as a vector space over the field ;. The
symplectic product tells us if any two operators A, B in
Gy will either commute or anticommute with regard to the
group operation in Gy, if and only if the symplectic product
between (A)=aand (B)=b,i.e,a(@® b, takes the value
O or 1, respectively [31], [32].

B. STABILIZER CODES

Stabilizer codes are a widely extended family of QEC codes.
They are constructed based on a set of generators that define
the so-called stabilizer group S C Gy. The stabilizer gener-
ators are a set of operators {S }Nz_l" that belong to Gy and
whose symplectic representatives commute with regard to
the symplectic product. This means that the stabilizer is com-
posed of elements of the effective Pauli group that commute
amongst themselves with regard to in Gy. The stabilizer S
has 2=k distinct elements and is completely represented by
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its N — k independent generators (the rest of the stabilizer
elements are combinations of the elements of the minimal
set). The codespace defined by the stabilizer, and hence a
stabilizer code, can be described mathematically as

S = Y) eHSV :Silv) =¥).i=1...N—k} (5)

where S;|) € ?{g’w is the evolution of state |y) under sta-
bilizer generator S;. Note that (S) is the subspace of ’Hg?N
formed by the simultaneous +1-eigenspaces of all the op-
erators in the stabilizer group S. Here, ’H?N denotes the
complex Hilbert space of dimension 2V that comprises the
state space of N-qubit systems.

It is also possible for elements of Gy to commute with
regard to the symplectic product with the elements of S but
not to belong to S. These elements are important because
they act nontrivially on encoded quantum states (they corrupt
the encoded quantum information but map the codespace to
itself). Together with the elements of S, these operators de-
fine the group Z(S) ¢ Gy known as the effective centralizer.
This group is the set of all operators in Gy whose symplectic
representatives commute with regard to the symplectic prod-
uct with all the symplectic representatives of the stabilizer
generators (S )e V.

Based on the relationship between the stabilizer and the
effective centralizer, the effective centralizer can actually be
understood as a union of stabilizer cosets. More specifically,
Z(8) can be partitioned into 2% cosets of S, each of these
cosets being indexed by a coset representative {Lj}ii: S
Z(8). Throughout this article, we will refer to these rep-
resentatives as logical operators. Whenever a representative
L; is multiplied in terms of the group operation over the
effective Pauli group, the  product, by all the elements of S,
the stabilizer coset, L + S, is obtained. This can be written
as

22k 22k

Z& =L «s=S|ULi*S|. ©
=1 j=2

Based on our definition of the effective centralizer, it is
easy to see that the group Gy also has a coset structure [14].
Knowing that [Gy| = 22" and that |Z(S)/S| = 2V**, then
we can partition the effective Pauli group into cosets of the
effective centralizer as

zN—k

Gyv=J Ti*Z©)

i=1

)
ZN—k
=Z&J| U Ti*Z2S)
i=2
Equation (7) shows how Gy can be partitioned into oN—k

cosets of the effective centralizer, each of these centralizer
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cosets being indexed by a coset representative! {T,}J ] ,
which when multiplied in terms of the % product by all
the elements of Z(S) yields the specific coset in question,
T; « Z(S). Finally, we can combine the partitions of (6) and
(7), respectively, to partition the entire effective Pauli space
into cosets of the stabilizer, each one indexed by a unique
product of the {Lj}ﬁ2 and {T;}fil_k
be written as

representatives. This can

2N—k —i 22k
Gv=JT1+26) = U JmisL)«S.  (®)
= =1 j=1

C. QUANTUM SYNDROMES

In order to operate properly, QEC strategies require infor-
mation regarding the transmitted quantum state. Although
the axioms of quantum mechanics establish that direct mea-
surement of a quantum state will result in information loss,
quantum error syndrome measurements (Hadamard test) can
be used to measure quantum states indirectly in order to
obtain sufficient information for quantum codes to oper-

ate [29], [31], [33]. A quantum syndrome w € f‘k captures

the commutation properties of any error sequence E € Gy
induced by the Pauli channel with regard to the stabilizer
generators {S }N | of the code. This can be written as

w=eQ® (S{,---,SN_k) (9)

where e = (E) and {s }N k= S W —1* respectively.
From (9), we can discern that the syndrome is a length N — k
binary vector whose components express the commutation
relations with regard to the product between E and each
of the generators of the stabilizer code. In other words, the
entries of w will be O if the specific error operator and sta-
bilizer generator commute and 1 if they do not. Recall that
the elements of Z(S) commute with the stabilizer genera-
tors, which means that all the elements of the same effective
centralizer coset will be associated with the same syndrome.
For instance, if a given error pattern E’ is associated with
syndrome w1, all the effective Pauli sequences that belong to
E’ « Z(S) will also be associated with syndrome w;. Thus,
the information provided by the syndrome w can be used
to locate the centralizer coset T,'*?(g) of a given error
operator E, where i = 1, s oN—k, Note, however, that we
have no information regarding which stabilizer coset the
error operator belongs to. The syndrome locates the cen-
tralizer coset that contains the error sequence that has taken
place, but because all the elements of this coset are asso-
ciated with the same syndrome, there is no way of know-
ing which specific stabilizer coset (T; L ;) % S contains the
error sequence, where j = 1,...,22k. As mentioned previ-
ously, knowing which particular stabilizer coset contains the
error that has taken place is important, since operators that
belong to different stabilizer cosets act nontrivially on the
encoded quantum information.

'These coset representatives are commonly referred to as pure error
operators in the literature.
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D. ESTIMATION AND END TO END ERRORS

The effective Pauli operators induced by quantum chan-
nels and estimated by decoders can be classified into
three different groups (summarized in Table 1). Consider
a channel error E € T;  Lj + S and an estimated error se-
quence Eet f.j * S: then the following situations can be
encountered.

1) End-to-end errors with different syndromes: These
events occur when the error sequence estimated by
the decoder and the real error sequence belong to dif-
ferent centralizer cosets, i.e., T; # Ti. Equipped with
an ideal decoder, such scenarios would not exist, as
the syndrome of the estimated error pattern E should
always match the measured syndrome associated with
the channel error E. However, because sparse quan-
tum codes are generally decoded based on the subopti-
mal classical sum product algorithm (SPA) a]gorithm,2
these errors can take place with varying probability [3],
[14]. [20]. [34].

2) End-to-end identical syndrome errors: These events
take place when the estimated error sequence and the
channel error both belong to the same centralizer coset,
T; = 'i‘;, but each of them belongs to a different stabi-
lizer coset, i.e., L; # f.j (the channel logical operator
and estimated logical operator do not match). Thus,
although E and E exhibit identical commutation prop-
erties with respect to the stabilizer generators, they
will each act on the transmitted codeword in a distinct
nontrivial manner and the decoder will fail. It should
be noted that in the literature, this type of end-to-end
error is generally referred to as a logical error.

3) End-to-end degenerate errors: These events take place
when the estimated error pattern and the channel error
both belong to the same stabilizer coset, T; = T,- and
L;= ﬂj, but they do not match, i.e., E # E. Since the
estimated error belongs to the same stabilizer coset as
the channel error, it will act identically on the quantum
codeword, which means that it will not actually result
in a decoding failure and should not be considered as
such.

1l PERFORMANCE ASSESSMENT METRICS

The manifestation of the degeneracy phenomenon in the
realm of QEC makes it impossible to accurately predict the
performance of QEC codes with methods that disregard its
presence. Thus, in the paradigm of sparse quantum codes,
which are famous for their degenerate nature, appropriate
performance assessment is of paramount importance. This
can be achieved using the logical error rate, which accurately
predicts the performance of quantum codes and distinguishes
between the different types of end-to-end errors (see Table 1).

2The SPA algorithm solves the symbolwise maximum likelihood
(SWML) problem and not the actual maximum likelihood (ML) decoding
problem. While the solutions to the SWML and ML problems usually coin-
cide, this is not always the case.
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TABLE 1 Characteristics of the Different Types of End-to-End Errors That Can Arise When Using Stabilizer Codes

Type of Defining Qutcome Outcome
error Characteristics (Phys. Error Rate)  (Logical Error Rate)
End-to-end error WEW
with Ti#T; Failure Failure
different syndrome E+E
End-to-end W=w
identical Ti=Tiandl; #L; Failure Failure
syndrome error E+E
End-to-end W=w
degenerate Ti=T;andL; =L; Failure Success
error E+#E

The hat notation is used to represent estimations made by the decoder, i.e., W, E, 'i',-, and IA..J- represent the estimated
syndrome, estimated error sequence, centralizer coset representative of the estimated error sequence and stabilizer
coset representative of the estimated error sequence, respectively.

Prior to discussing how to compute the logical error rate, it
should be mentioned that the concept of undetected errors is
not exclusive to the quantum paradigm. In fact, even though
degeneracy does not exist in the classical coding framework,
undetected or logical errors in classical low-density parity
check code (LDPC) codes and classical turbo codes have
previously been studied. This idea was introduced by the
early work of MacKay et al. [43], where a classical unde-
tected error is defined as a decoding estimate that is not equal
to the original error sequence and that is produced when
the decoder exits before the maximum number of decoding
iterations (it produces a valid syndrome). In their analysis
of classical LDPC codes, MacKay et al. showed that all of
the decoding mistakes they encountered were detected er-
rors (classical undetected errors were only observed in turbo
codes). This was also shown in [17] for a slightly different
decoding algorithm. Similar outcomes were observed in the
quantum paradigm for the failed recoveries of the modified
decoding strategies of [3] and [24]. These techniques serve
to improve standard SPA decoding of quantum codes by
postprocessing the initial error estimates and producing new
estimates of the channel error. If these new estimates do not
revert the channel error, then they are referred to as failed
recoveries or failed error corrections. In [3], all of the failed
error corrections were shown to be end-to-end errors with
different syndromes, whereas in [24], a small percentage of
failed estimates were shown to be end-to-end identical syn-
drome errors and end-to-end degenerate errors.?

Aside from these failed recovery analyses, the literature is
limited when it comes to assessing the percentage of decod-
ing failures that are caused by each type of end-to-end error.
It is reasonable to believe that QLDPC codes, given their
large number of degenerate operators [3], [4],[12], [14],[27],
[28], will experience a large percentage of end-to-end degen-
erate errors. We confirm this intuition in the final section of
our work, where we show how up to 30X of the end-to-end

3The authors of this work do not distinguish between end-to-end identical
syndrome errors and end-to-end degenerate errors.
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errors that take place when using the QLDPC codes of [21],
[22], and [26] are degenerate.

A. DISCRIMINATING BETWEEN DIFFERENT TYPES OF
END TO END ERRORS

It is clear from the defining characteristics of each specific
type of end-to-end error (see Table 1) that end-ro-end er-
rors with different syndromes are the easiest type of error to
identify. In fact, doing so is trivial, as all that is required is
a comparison of the syndrome estimate, W € :‘;V_k, and the
measured syndrome, w € :‘;V_k, where k and N represent the
number of logical qubits and physical qubits (blocklength)
of the quantum code, respectively. Similarly, knowing that
either an end-fo-end identical syndrome error or an end-to-
end degenerate error has occurred is simple. This can be
done by comparing the estimate of the error sequence E to
the channel error E whenever W = w, i.e., if E # E, either
an end-to-end degenerate error or an identical syndrome er-
ror has occurred, and if E = E, no error has taken place.
The issue arises when trying to distinguish between these
two families of end-to-end errors. Note that the comparison
E # E does not reveal if the error estimate belongs to the
same stabilizer coset as the channel error. Hence, we have no
way of discriminating between end-to-end degenerate errors
and end-to-end identical syndrome errors.

Conceptually, the simplest and most straightforward strat-
egy that comes to mind to resolve this problem is to compute
the stabilizer of the code in question, compute the + product
of the stabilizer with the channel error E to extract the spe-
cific stabilizer coset of the channel error, and then check if
E belongs to this coset. As mentioned in [14], this works be-
cause the coset representative choice for the coset (T; x L) *
S is irrelevant (any operator belonging to the coset serves
as a valid representative), where {T;,L;} € Gyand S C Gy
represent the effective centralizer coset representative, the
stabilizer coset representative, and the stabilizer itself. Thus,
computing E % S will yield the stabilizer coset of the channel
error, ie, E+S = (T; % L;j) * S. Therefore, whenever W =
w and E # E, we will know that an end-to-end degenerate
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error has occurred if the estimated error sequence E is in
the coset E + S. If this does not occur, then an end-to-end
identical syndrome error will have taken place.

Unfortunately, since extracting the stabilizer of a quantum
code becomes increasingly complex as its blocklength in-
creases, this strategy will only be applicable to short quan-
tum codes. The number of elements in the stabilizer of a
quantum code with blocklength N and rate Rg is given by
oN—k — oN(=Ro) [14], which grows exponentially with N
and can rapidly become intractable on a classical machine
as this parameter increases. In light of this, it is apparent that
more practical methods to differentiate between end-to-end
degenerate errors and end-to-end identical syndrome errors
are necessary. Both the strategy we propose herein and that
employed in [3], [15]. [16], [17], [18], which are explained
in the next two sections, resolve this issue.

B. ALGEBRAIC PERSPECTIVE ON END TO END
DEGENERATE ERRORS

The problem of differentiating between end-to-end identical
syndrome errors and end-to-end degenerate errors can also be
formulated as a set of linear equations. The PCM of a stabi-
lizer code that encodes k logical qubits into N physical qubits
(arate Rgp = % code with blocklength N) can be written as

hy

= ] (10)

where h =s denotes the symplectic representation of the
generators {S }Nz_{‘ € Gy that define the stabilizer group S.
Each of the elements of S is a linear combination of the N — k
generators; hence, if S is an element of the stabilizer and s is

the symplectic representation of this stabilizer element, then

N—k
s= Z El,'h,'
i=1

where a = (aj, ..., ay_j) is a unique binary vector.

Whenever a channel error E takes place, the decoder will
compute an estimate of this error and produce an estimate
of the syndrome associated with it. As discussed previously,
this syndrome only determines which specific effective cen-
tralizer coset the channel error belongs to. In other words, the
syndrome provides the effective centralizer coset representa-
tive T; (known as the pure error component in the literature)
of the channel error. Assuming that an end-to-end error with
different syndrome does not occur, the estimated syndrome
will match the measured syndrome; hence, the centralizer
coset representative of the estimated error sequence and the
centralizer coset representative of the channel error will also
be the same, i.e., T; = 'i‘;. Thus, if we compute the = opera-
tion of the channel error E and the estimated error ﬁl, which
can also be understood as the mod2 sum of their symplectic
representations over %N: (E)&® (E) = e @ é, where
denotes the symplectic map, the sequence E will be shifted
2100312

mod 2 (11)

to the effective centralizer Z(S). Note that we can also write
this using the symplectic map as E«EcZ(S) —> (E)®

(E)ye (Z(8))=e®écTly where ['p C 2 denotes
the equivalent group of the effective centralizer over 22N .
Based on this, the issue of determining whether an end-to-
end error is degenerate can be understood as finding out if
E+E belongs to the stabilizer. This can be formulated based

on the symplectic map into the following question:

N—k
Ja:edé= Za,-h,-
i=1

Essentially, if a set of coefficients a exists such that the
above equation holds, i.e.,ife® € e 22N is a linear combi-
nation of the symplectic representation of the stabilizer gen-
erators, then E x E belongs to the stabilizer and an end-to-end
degenerate error will have occurred. If such a set of coeffi-
cients does not exist, then an end-to-end identical syndrome
error has taken place.

The expression shown in (12) defines a linear system of
equations over the binary field. An answer to this question
can be found by writing the augmented matrix [H; l(e®e)]
in its row-echelon form. This means that, based on this proce-
dure, it is possible to determine the type of end-to-end errors
that occur and subsequently compute the logical error rate.
This is done in [20]. However, although the procedure is
conceptually simple, rewriting the augmented matrix in such
a manner becomes increasingly computationally complex as
matrices grow in size. Unfortunately, for sparse quantum
codes to be good, the blocklength must be large, which im-
plies that the PCMs of these codes will also be large.4 Fur-
thermore, the row-echelon form of the matrix [H; |(e & é)T]
must be computed during every simulation iteration (when-
ever the estimated syndrome and the measured syndrome
match) to determine what type of end-to-end error has taken
place, which may significantly increase simulation time. For
these reasons, calculating the logical error rate based on this
procedure can become a cumbersome and lengthy endeavor.
Therefore, the task at hand is to find a more practical and
less computationally demanding way to determine if the con-
gruence equation system given in (12) has a solution, as this
suffices to determine if the end-to-end error is degenerate (we
do not actually need to solve the system itself).

mod 2 ? (12)

1 CLASSICAL CODING-INSPIRED STRATEGY

It is possible to find an answer to (12) by casting the problem
in the framework of classical linear block codes. In classical
coding theory, the encoding matrix or generator matrix G,
of a binary linear block code and its corresponding PCM H,
fulfil (GcH]) mod 2 = (H.G]) mod 2 = 0. This means
that the PCM defines a basis for the nullspace of the gener-
ator matrix and viceversa. In the classical scenario, having
a basis for the nullspace of a code enables us to determine

4The PCMs of QEC codes are of size N — k x 2N. A common size in the
literature of QLDPC codes is 10 000 qubits; thus, the PCM associated with
such a code would be of size (10000 — k) x 20000.
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whether the decoding outcome x belongs to the code by
simply computing its product with the PCM of the code,
ie., if(chT) mod 2 = 0 then x is a codeword. Essentially,
whenever (H.x") mod 2 = 0, the decoding outcome is a
linear combination of the rows of the generator matrix G and
it belongs to the code, and whenever (chT) mod 2 # 0, x
does not belong to the code.

Note that, based on this formulation, the quandary posed
in (12) is reminiscent of the classical decoding scenario. The
main difference is that instead of determining if the decod-
ing outcome belongs to the code, we must discover if the
sum of the symplectic representations of the channel error
and the estimated error belong to the stabilizer. This paral-
lelism between the classical and quantum problems allows
us to apply the classical resolution strategy to the quantum
paradigm with only a slight caveat: answering (12) requires
an inverse approach to the classical method. Since the gen-
erators of the stabilizer code are given by the rows of the
PCM Hg, the corresponding kernel generator matrix> Gz
(instead of the PCM like in the classical paradigm) must be
used to discover if e @ € can be written as a linear combi-
nation of the stabilizer generators. The matrix Gz defines
a basis for the nullspace of the stabilizer code; hence, it
will suffice to compute [Gz(e & )] mod 2 to find the an-
swer to (12). If [Gg(e ® &)T] mod 2 = 0,E+E e S which
means that an end-to-end degenerate error has occurred, and
if [Gg(e ® é)T] mod 2 # 0, E E ¢ S, and an end-to-end
identical syndrome error will have taken place.

This strategy provides us with a simple and computation-
ally efficient method to determine the type of end-to-end
error that has taken place. The only requirement is obtaining
the matrix Gg, which can be computed once (by finding a
basis for the nullspace of its PCM Hg) and can then be stored
offline for any stabilizer code. In this manner, we have de-
signed a simple method to solve (12) that does not require the
computation of the stabilizer and so avoids the complexity
issues that this entails.

C. DETECTING END TO END DEGENERATE ERRORS
USING ENCODED PAULI OPERATORS

There is another manner of distinguishing between end-to-
end identical syndrome errors and end-to-end degenerate
errors. It involves obtaining the encoded Pauli operators®
of a code following a method derived by Gottesman in his
seminal work [8], and then using these operators to determine
whether the error estimate produced by the decoder is in
the stabilizer coset of the channel error (end-to-end degener-
ate errors occur when this happens and end-to-end identical
syndrome errors occur when it does not). This strategy was

3We refer to the matrix Gz as the kernel generator matrix to avoid the
term stabilizer generator matrix, as this latter term implies that the matrix
can be used for encoding purposes (which may not be true in the present
case).

SIn the literature, these operators are referred to as logical operators.
However, we use the term encoded Pauli operators to distinguish them from
the stabilizer coset representatives {L _,] _, which we originally defined as
logical operators.
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first applied to QLDPC codes in [3] and has since been used
in [15], [16], [17]. [18].

The encoded Pauli operators of an N-qubit stabilizer code
are defined as those operators in Gy that commute with the
elements of the stabilizer group and whose action on an en-
coded state can be understood as an X, ¥, or Z operation on
each of the encoded logical qubits. Each stabilizer code has
2k encoded Pauli operators’ which are generally represented
using the notation Z, and X;, where {g, [} € {1,...,k}. In
this manner, Z;, represents an operator in Gy whose action
is analogous to performing a Z operation (phase flip) on
the ith logical qubit. Thus, Z, € Gy maps to Z; € Gk, where
Z, denotes the action of a Z operator on the ith qubit and
the action of I operators on the remaining qubits (identity
operators are omitted). Recall that, since the global phase
can be ignored, it will be equivalent for the purpose of error
correction to consider the equivalent encoded Pauli operators
over the effective N-fold Pauli group, Zq = Z and X; = X,
where Zq, X; € Gy (we use capital boldface to preserve the
notation of [14]).

Based on this definition of the encoded Pauli operators,
we know that an encoded Pauli operator Z, commutes with
all the elements of S as well as with all other encoded Pauli
operators except for the operator X; when g = [. This means
that, if the encoded Pauli operators of a stabilizer code are
known, we can determine if an operator A € ?(3) c Gy
belongs to S by checking the commutation relations of A
with the encoded Pauli operators. If A commutes with all the
encoded Pauli operators, it is within the stabilizer and if it
does not (it anticommutes with one encoded Pauli operator),
it is not in the stabilizer. Against this backdrop, it is easy
to see how this strategy can be applied to solve the issue of
discriminating between end-to-end identical syndrome errors
and end-to-end degenerate errors. After successful decoding
(the decoder produces a matching estimate of the syndrome),
we know that ExE Z(S). Now, we determine if E +E
is in S by checking its commutation status with {Zq}q=l
and {X;}}_,
operators, E E € S and an end-to-end degenerate error has
occurred. If not, an end-to-end identical syndrome error has
occurred. It is based on these comparisons that the logical
error rate was successfully computed in [15]. [16], [17], [18].

Naturally, to be able to apply the method, one must first
have knowledge of the encoded Pauli operators of the code.
This is similar to the classical coding-based strategy we pro-
pose in this article, which requires the computation of the
kernel generator matrix Gz. The encoded Pauli operators of a
stabilizer code can be found based on the concept of the stan-
dard form (see [8, Ch. 4]). In this work, Gottesman showed
how, by applying row operations (i.e., Gaussian elimination)
together with the necessary qubit permutations (i.e., column
permutations) on the PCM of a stabilizer code, one can obtain

. If E » E commutes with all the encoded Pauli

'Given the difference in the number of stabilizer coset representatives
2
(logical operators) {L _,-}_%:1 and encoded Pauli operators, it is useful to em-

ploy different terminology for these concepts (even though encoded Pauli
operators are related to logical operators and viceversa).
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a special row reduced echelon form of the PCM: the standard
form. Once the standard form is known, the encoded Pauli
operators {Zz}%_; and {X;}i_; can be directly obtained from
it using matrix algebra [8], [41]. As with the kernel generator
matrix Gz, the encoded Pauli operators of a specific code
need only be computed once and can then be stored offline.

D. METHOD COMPARISON

For general stabilizer codes, computing the logical error rate
based on the classical coding inspired strategy does not yield
benefits over doing so via the encoded Pauli operator method.
This has to do with the fact that both of them have the same
computational complexity: performing Gaussian elimination
and column permutations is also what finding the basis for
the nullspace of a matrix requires. As is shown in [44], these
operations scale as O(N-”). However, when it comes to the
widely employed family of CSS codes, the classical coding
inspired strategy we propose herein will benefit from a sub-
stantial complexity advantage.

CSS codes [5]. [7] are a particular type of stabilizer code
that provide an efficient design strategy to build QEC codes
from existing classical codes. The quantum PCM of a CSS
code is written as

H. 0
Hp = (H:|H;) = ( X ) (13)

0 H;
where H, = (}cl';‘) and H; = (:)

In this construction, H}, and H are the parity check matri-
ces of two binary classical LDPC codes Cy and C;, respec-
tively, where each matrix is used to correct either bit-flips
or phase-flips. As discussed previously, any classical binary
LDPC code or any classical binary linear block code for
that matter will satisfy (GCHI Jmod2 = K, where G, and H,
represent the generator and parity check matrices of a binary
classical LDPC code, respectively. Because the generator
matrix is necessary to encode a classical LDPC code, the
issue of deriving the matrix G, from H, has been widely
researched in the realm of classical error correction [44]-
[48]. In general, finding the matrix G, from H, i.e., bringing
the PCM into the desired form, requires O(N>) operations of
processing [44]. However, through the clever application of
optimization algorithms, the complexity of this task has been
reduced [44], [45]. [46] and classical LDPC codes with a lin-
ear encoding c-::»mplexity8 have been found. Note that based
on the structure of the quantum parity check matrix (QPCM)
of CSS codes (13), we can derive the kernel generator matrix
of a CSS code as

G. 0
Gg:<cx|cz):(0x G;) (14)

8Richardson et al. [44] showed that the encoding complexity is upper
bounded by O(N) + 0(g2 ), where g is the gap to measure the “distance” be-
tween a given PCM and a lower triangular matrix. T'his means that in the ex-
treme case where g = 0, such as for irregular repeat-accumulate codes [49],
G, can be computed with complexity O(N).
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where G/, and G/ are the generator matrices of the binary
classical LDPC codes Cy and C3, respectively. We know that
the matrix given in (14) will actually serve the purpose of
a kernel generator matrix because its rows are all linearly
independent. The difficulty in computing (14) lies in deriving
the generator matrices G, and G, from the PCMs H, and
H’z. However, when constructing CSS QLDPC codes from
classical LDPC codes, it is a prerequisite that the classical
code be known. Thus, it is reasonable to assume that the
generator matrices of the classical codes that make up a CSS
QLDPC code are available.’ Against this backdrop, because
this does not require finding the standard form of the QPCM
and deriving its encoded Pauli operators, the method we
propose herein will have a complexity advantage over the
encoded Pauli operator method when computing the logi-
cal error rate of sparse CSS quantum codes. More specif-
ically, when using classical LDPC codes to build QLDPC
CSS codes, because the generator matrices associated with
the corresponding parity check matrices of these codes are
known, the complexity of our method is negligible, as no
calculations will be necessary to obtain the kernel generator
matrix [it can be derived by simply introducing the appropri-
ate generator matrices in (14), i.e., the complexity is O(1)].
In the case that the generator matrix of a particular classical
LDPC code is not known, it can be derived as shown in [44]
with complexity O(N) + O(gz), where g is the gap to mea-
sure the “distance™ between the PCM and a lower triangular
matrix. This means that the computational complexity of
calculating the kernel generator matrix of a CSS code will
be at most O(N) + 0(52), which implies that, in the context
of CSS codes, our strategy is less computationally complex
than the one based on using encoded Pauli operators, which
has complexity O(N 3.

IV SIMULATION RESULTS

We close this section by using our method to show how
end-to-end errors with identical syndromes and end-to-end
degenerate errors can account for a significant percentage of
the end-to-end errors that occur when using QLDPC codes.
For this purpose, we simulate the CSS quantum low density
generator matrix (QLDGM) codes of [21], [22]. and [26]
with different rates and blocklengths over the depolarizing
channel. The characteristics of these codes are detailed in Ta-
ble 2. The underlying classical low density generator matrix
(LDGM) matrices and the structure of the M matrix, critical
to the performance of the QLDGM codes, have been chosen
according to the optimization guidelines detailed in [21],
[22],126],50], and [51]. The results of these simulations are
shown in Fig. 1, where each subfigure groups the results by
blocklength, i.e.. each of the subfigures portrays the results
for all the codes with the same value of N. The graphs plot

%1f the LDPC codes have previously been used in the classical paradigm,
then these generator matrices are known (they must have been employed in
the classical encoding procedure).
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TABLE 2 Parameter Values and Configurations of Simulated Codes

N Ro  Classical LDGM [m, p,x,y]
100 0.1 P(3,3) [45,24,6,3]
100 0.2 P(3,3) [40, 18, 6, 3]
100 0.25 P(3,3) [38,15,6,3]
100 0.5 P(3,3) [25,6,7.57,3]
500 0.1 P(5,5) [225,170,11, 3]
500 0.2 P(5,5) [200, 144,11, 3]
500 0.25 P(5,5) [188,130,11,3]
500  0.33 P(5,5) [163,102,11,3]
500 0.5 P(5,5) [125,60,11,3]
2000 0.1 P(9,9) [900, 691, 11, 3]
2000 0.2 P(9,9) [800, 581,11, 3]
2000 0.25 P(9,9) [750, 526,11, 3]
2000 0.33 P(9,9) [670, 438,11, 3]
2000 0.5 P(9,9) [500,251,11, 3]

the ratio of a specific type of end-to-end error against the de-
polarizing probability. The aforementioned ratio is computed
as EE—; where E; denotes the total number of end-to-end errors
of a specific type (i = 1, 2, 3):

1) E; — end-to-end errors with different syndromes;
2) E; — end-to-end errors with identical syndromes;
3) E; — end-to-end degenerate errors,

and Er represents the total number of end-to-end errors. To
ensure that the simulation results are precise, the ratios have
been computed after a total of 1000 decoding mistakes have
been made (following the Monte Carlo simulation rule of
thumb provided in [52]), i.e., Er = 1000.

The outcomes portrayed in Fig. 1 confirm our initial in-
tuition that sparse quantum codes are degenerate. It is easy
to see that for all of the simulated blocklengths and rates
(except for Ry = 0.5), the percentage of end-to-end errors
that are not of the E; type is not negligible, i.e., E_z + E—; #0.
Furthermore, these results speak toward the higﬂer precision
of the logical error rate compared to the physical error rate
when assessing the performance of these codes. For instance,
at a noise level of p = 0.005, E—; = 0.198 for the N = 500
and Rg = 0.1 code. This means that 19.8¥ of the end-to-end
errors are degenerate and should not be counted as decoding
failures. Thus, in this scenario, the physical error rate overes-
timates the number of decoding failures and does not provide
an accurate representation of the performance of the code.
In fact, regardless of the noise level of the channel, the rate
of the code (except for Rg = 0.5), and the blocklength of
the code, end-to-end degenerate errors take place, and so the
physical error rate will always provide an inaccurate repre-
sentation of the performance of these sparse quantum codes.
Therefore, as is stated in [18], it is clear that performance
results assessed based on the physical error rate (E=E as
the decoding success criterion) [21], [22], [23], [24], [25],
[26] are inaccurate (they report an upper bound).

Furthermore, the results shown in Fig. 1 also reveal how
the frequency with which each type of end-to-end error takes
place varies as a function of different parameters.
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FIGURE 1 Ratios of end-to-end different syndrome, identical syndrome,
and degenerate errors for codes of various rates and blocklengths: a)
N 100; b)N 500; )N 2000.

1) End-to-end errors with different syndromes represent
a large percentage of the total number of end-to-end
errors when the rate of the code is high. This per-
centage decreases as the rate of the codes goes from
Rp =0.5 to Rg = 0.1 (see ratio E—; in Fig. 1). This
trend becomes further exacerbated as the blocklength
of the simulated codes increases, i.e., for low rate large
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blocklength codes, the ratio E—l will be significantly
T

smaller than for low rate short codes.

2) End-to-end identical syndrome errors represent the
smallest percentage of the total number of end-to-end
errors in most of the simulated cases. This is reflected
by the fact that E2 < E' E3 in all of our simulation

Er T
outcomes.

3) As the noise level of the channel grows, the ratio E—l
becomes larger and the ratio & diminishes The ra-

tio of end-to-end degenerate errors
constant.

stays relatively

The relationships between these parameters and different
types of end-to-end errors serve to draw conclusions, some
of which should be explored in future work. For instance, the
large values of m many of the simulated instances can be
understood as a 51 en that performance gains may be attained
by improving the decoding algorithm. This means that ap-
plying modified decoding strategies, such as those of [15],
[16], [17], [20], [24], will aid in reducing the presence of
end-to-end errors with different syndromes (they estimate the
syndrome correctly when the original decoder does not) and
improve performance. A matter that should be considered is
how often these strategies produce failed error corrections
in the form of end-to-end identical syndrome errors. For the
methodology of [24], such events were shown to be rare;
hence, we expect these strategies to be a good approach to
improve the performance of QLDPC codes. On the other
hand, the large values of E3_ when compared to ET espe-
cially at higher blocklengths show that end-to-end identical
syndrome errors are the least frequent of all the end-to-end
error types. Despite the relatively small percentage that end-
to-end identical syndrome errors represent, it is possible that
their relevance will grow when the amount of end-to-end
errors with different syndromes is reduced (using modified
decoding strategies) or when the degenerate content of the
code is increased (through design). At this point, it may be
that further improvements in performance will only be pos-
sible by designing an optimal degenerate decoder with the
capability to correct end-to-end identical syndrome errors.
Finally, given that the method proposed in this work is valid
to detect end-to-end degenerate errors, it may be interesting
in future work to employ this methodology to specifically
design codes to be degenerate. This could result in code
constructions in which the likelihood of end-to-end degen-
erate errors is maximized, which would allow the positive
effects of degeneracy (improved error correction capabilities
without a decoding complexity increase) to be completely
exploited for QEC purposes.

V CONCLUSION

We have presented a method to detect degenerate errors in
sparse quantum codes in a computationally efficient manner.
We have also shown how this method is less complex than
other existing strategies to compute the logical error rate of
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sparse CSS quantum codes. Making use of our scheme, we
have shown how sparse quantum codes have a significant
percentage of degenerate errors. This means that the discrep-
ancy between the logical error rate and the physical error rate
is exacerbated for sparse quantum codes. Our results show
that, for specific families of QLDPC codes, performance may
be up to 208 better than would be expected from previous
results in the literature that are based on the physical error
rate. In addition, these simulation outcomes serve to show
how performance may be improved by constructing degen-
erate quantum codes, and they also speak toward the positive
impact that modified decoding strategies can have on the
performance of sparse quantum codes.
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