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Abstract

Reliability analysis is a core element in engineering design and can be performed with physical
models (limit-state functions). Reliability analysis becomes computationally expensive when the
dimensionality of input random variables is high. This work develops a high dimensional
reliability analysis method through a new dimension reduction strategy so that the contributions
of unimportant input variables are also accommodated after dimension reduction. Dimension
reduction is performed with the first iteration of the first order reliability method (FORM), which
identifies important and unimportant input variables. Then a higher order reliability analysis is
performed in the reduced space of only important input variables. The reliability obtained in the
reduced space is then integrated with the contributions of unimportant input variables, resulting in
the final reliability prediction that accounts for both types of input variables. Consequently, the
new reliability method is more accurate than the traditional method which fixes unimportant input

variables at their means. The accuracy is demonstrated by three examples.
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1. Introduction

In engineering design, physics-based reliability is commonly used to predict the probability of
failure using physical models derived from physical principles. Such a model is called a limit-state

function and is given by

Y =g9X) (D

where X is a vector to represent input random variables, and Y is a response that indicates the

occurrence of a failure.

Physics-based reliability methods can be divided into three categories: numerical methods [1-
5], surrogate methods [6-11], and simulation methods [12-15]. Typically, numerical methods
simplify the limit-state function using the first or second order Taylor expansion. The reliability is
approximated by the simplified function. The surrogate methods construct an easy-access model
utilizing sensitivity analysis, Design of Experiments (DOE), active learning methods, etc., and the
reliability obtained by calling the surrogate model instead of the original limit-state function.
However, both numerical and surrogate methods suffer from the curse of dimensionality that
makes reliability analysis computationally expensive for high-dimensional problems. Because
reliability prediction repeatedly calls limit-state functions which are typically complex, resource-
intensive numerical models. The number of function calls grows drastically as the increase of
dimensionality of the input variables. Although the efficiency of simulation methods, such as
Monte Carlo Simulation (MCS) [16] and Importance Sampling (IS) method [17], is not affected
by the dimensionality, they are still computationally expensive when the reliability is high and

may not be practically used in engineering design.



High-dimensional reliability analysis is encountered in many engineering and science fields
[18-23]. Current high-dimensional reliability analysis methods are roughly classified into three
types. The first type [24-27] uses high-dimensional model representation (HDMR) to decompose
a high dimensional limit-state function g(X) into the sum of several lower-dimensional functions.
The moments (means, variance, etc.) of the response can be approximated by several low
dimensional numerical integrations. However, the accuracy of the reliability obtained by HDMR
may not be accurate enough if the interaction terms are dominant. The low dimensional functions
are usually approximated by Taylor expansion, which also could introduce errors. Although the
accuracy of the reliability assessment can be improved by increasing the approximation order, the
number of function evaluations may increase drastically. Several recent studies [28-30] combine
adaptive metamodeling approaches (Polynomial Chaos Expansion, Kriging) and statistical model
selection methods. Their goal is to find the optimal integration points or training points for

metamodeling. The balance between the prediction accuracy and efficiency is still a challenge.

The second type of method [31-34] combines dimension reduction with surrogate modeling
and machine learning. Three steps are usually involved. Step 1 is the dimension reduction
performed by the sliced inverse regression (SIR) [34, 35], or other methods [24, 33] at specific
training points , usually generated through DOE [36]. Important input variables are identified. In
Step 2, a surrogate model is constructed with respect to important input variables in the reduced
dimensional space. Many regression and machine learning methods could be used for this purpose,
including Polynomial Chaos Expansion (PCE) [37], Gaussian Process Regression (GPR) [38],
Support Vector Machines (SVM) [39], and Neural Networks (NNs) [32]. Step 3 is the surrogate
model validation. After the accuracy of the surrogate model is validated by MCS, it is used to

estimate the reliability. Sufficient training points are needed to ensure good accuracy of the



surrogate model. The number of training points, thereby the number of function calls, increases

greatly with the increase of dimensionality of input variables.

The third most commonly used method is principal component analysis (PCA) [40, 41]. PCA
reduces the dimension of the input variables by making use of the correlations between the input
variables. Therefore, PCA works well for the elements of input variables that are strongly
correlated. When the input variables are independent or only weakly correlated, PCA may not
work well for dimension reduction. Besides, PCA does not use the information of the response Y,
and it is, therefore, an unsupervised dimension reduction technique. Although dimension reduction

is optimal in the given data space, it may be suboptimal for the entire regression space.

Overall, despite the progress, numerous challenges remain in the path toward routinely
accommodating high dimensional problems in reliability analysis. In most of the successful
applications, only dozens of random input variables can be practically handled except the special
cases involving functional data [31, 37]. However, the dimension in input variables could easily
add up to hundreds or thousands in system design. For example, the aircraft wing optimization
design [42] involves structural mechanics and aerodynamics. The numbers of design variables,
random variables, and constraints could be in hundreds or thousands. Moreover, when the
reliability requirement is high, accurately predicting the reliability is extremely computational

demanding.

In real engineering applications, not all the elements of X contribute significantly to the
response Y. The majority elements of X may have insignificant effects that are therefore
unimportant variables. Their total effect, however, may not be negligible because the unimportant

variables may count for most of X. Traditional dimension reduction methods usually neglect the



contribution of the unimportant variables because they are fixed at their means, which can lead to

a €1Tor.

In this study, we account for the total effect of unimportant variables by fixing them at their
percentiles so that the dimension is reduced but the influence of unimportant variables is not
neglected. The proposed method does not require random sampling for dimension reduction;
instead, it bases on a numerical method, specifically the First Order Reliability Method (FORM).
After dimension reduction, any reliability method with higher accuracy can be used to predict the
reliability since the computational effort will be reduced significantly in the reduced space. Then
the predicted reliability is integrated with the contribution of the unimportant variables to produce

the final reliability prediction.

The remainder of this paper is organized as follows. Section 2 reviews the methodologies that
this study uses. Section 3 discusses the details of the proposed method, followed by three examples

in Section 4. The conclusions are provided in Section 5.

2. Review

In this section, we briefly review the basic knowledge that is related to the proposed method,
including FORM, the Second Order Reliability Method (SORM), and the Second Order
Saddlepoint Approximation (SOSPA). The rules of symbols in this paper are: 1) a capitalized letter
in bold denotes a vector of random variables (e.g. X or U), 2) a italicized lower-case letter in bold
denotes a vector of deterministic variables (e.g. x or u), 3) an italicized capital letter denotes a
random variable (e.g. X or U), and 4) an italicized lowercase letter of denotes a deterministic

variable (e.g. x or u).



2.1 FORM and SORM
The reliability is defined by the following probability:
R = Pr{g(X) > 0} (2)

The probability of failure py is then given by

pf=1—R=Pr{g(X)<O}=f() fr(x) < 0dx (3)
g(X)<o

where fx(x) is the joint probability density function (PDF) of X. The limit-state function g(X) is
usually a nonlinear function. In this study, we assume all the elements in X are independent.
Directly integrating the PDF in the failure region ( g(X) < 0) is often impractical and
computationally expensive. It is the reason that many approximation methods have been developed,

including FORM [1] and SORM [3], where three steps are involved.

1) Transform X to be the standard normal variables U by

Fy,(X;) = @(U;) (4)

where Fy, (*) and ®(-) represent the cumulative density function (CDF) of X; and U;,

respectively. Denote the transformation by X = T'(U), and Eq. (3) is rewritten as

Pr{g(X) < 0} = f fo(Tw) < 0 du )

g(T(U))<0

where fy(+) is the joint PDF of U.
2) Find the most probable point (MPP) which is a point with the highest PDF on the surface
of g(U) = 0. Geometrically, MPP has the shortest distance from the surface to the origin

in U-space, and then MPP (u*) is found by



{muin £ = lul ©

subjectto g(U) =0
where ||-|| stands for the length of a vector. § = ||u*|| is the reliability index because it is
related to the probability of failure as will be shown in Eq. (9).
3) Approximate the limit-state function linearly (FORM) or quadratically (SORM) at u*. The

use of u* can minimize the error of the approximation. The two approximations are given

by
g(U) ~ gu") + Vg(u)"(U —u") (7)
* *\T * 1 *\T * *

g0) » g(u) + Vg(u) (U —u) + 75U -u) Hu)(U —u’) )
where Vg(u*) and H(u") are the gradient and the Hessian matrix of g (7T (U)) with respect

to u*, respectively.

After the three steps, the probability of failure calculated by FORM is given by

pr = @(=p) 9

As mentioned previously, f is called the reliability index. When FORM is used, £ also is the
magnitude of the MPP as indicated in Eq. (6). Therefore, we call f from FORM the FORM-
reliability index throughout the paper. The solution from SORM is more accurate in general and

is obtained by multiplying Eq. (9) with a correction term [3].
2.2 SOSPA

SOSPA [43] is a second-order approximation method based on SORM and saddlepoint

approximation (SPA) [44, 45]. SOSPA uses the cumulant generating function (CGF) Ky (t), which



can be derived analytically from the approximated response in Eq. (8). Once Ky (t) is available,

the saddlepoint ¢, is obtained by solving
Ky(t) =0 (10)
where K (t) is the first order derivative of the CGF. Then, pf is computed by [46]

1 1
pr = () +d(w) (=) (11)

where ¢ (+) represents the PDF of the standard normal distribution.

o = sgn(ty) 2[—Ky (t)])2 (12)

v = t, Ky ()2 (13)

where sgn(+) is the signum function, which equals to 1, —1, or 0 when ¢ is positive, negative or

zero; Kj'(t,) is the second order derivative of the CGF with respect to t.
3. Methodology

The distinctive strategy of the proposed method is to use an accurate reliability method in the
reduced space and accounts for the contributions of both important and unimportant input variables

to the reliability.
3.1 Overview

The purpose of dimension reduction is to identify important and unimportant variables in X.
We will use FORM to perform dimension reduction since the MPP from FORM can directly

measure the importance of input variables for two reasons. First, the reliability is determined by

the FORM-reliability index or the magnitude of the MPP since § = [[u*|| = \/Xi~,(u;)?; second,



the components of the MPP u* = (u;);=1 ,, determine the importance of the elements of X or their
contributions to the reliability. As shown in Fig. 1, a farther distance from the mean (or median)
means a larger value of the MPP component and therefore a higher contribution. Hence, we can
use the MPP components to identify both important and unimportant input variables. Since the
MPP components of the unimportant input variables do not change significantly during the MPP
search, we propose to use the MPP obtained from the first iteration of the MPP search. This can

greatly reduce the computational effort.

¢t

Low contribution

High contribution High contribution

Fig. 1 Percentile of a random variable

Once the MPP is obtained from the first iteration, important and unimportant input variables
are identified by their MPP components. Then, the subsequent analysis will be conducted with
only important variables. A reliability method with higher accuracy can be used with the
unimportant input variables fixed at their MPP components. Using a high accurate reliability
method is affordable because the number of function calls can be reduced in the reduced space.
Then the final reliability is obtained by integrating the reliability obtained in the reduced space and

the FORM-reliability index of unimportant input variables.



The proposed method involves three steps: 1) dimension reduction, 2) reliability analysis in

the reduced space, and 3) reliability analysis in the original space.
3.2 Dimension Reduction

The purpose of the first step is to identify important and unimportant input variables. This step
involves the first iteration of the MPP search that starts from the origin of the U-space. By Setting
the initial point at the origin uy, = (0,0, ...,0)T, we obtain the gradient Vg(u,) and approximate

the limit-state function by

g(U) ~ g(uo) +Vg(up)™U (14)

The unit vector a of Vg(U) at u, is given by

Vg(up)
7gCul (15)
Then the FORM-reliability index of one-step MPP is obtained by
g(up) 9(up)
Br = Bo + o = o (16)

I7gCu)ll ~ I7gCup)ll
Using the fact that the MPP vector is in the opposite direction of the gradient [47], we have the

first iteration of the MPP u;.

_ _ _g(uO)Vg(uO)
N 7O 17

And it can be proved that §; = ||uy || holds for Egs. (16) and (17).

We now discuss how to distinguish important input variables from unimportant ones by using

the first-iteration MPP. The probability of failure is approximated by pyr = ®(—p;) =

® (—\/uf1 +u?, + ---ufn), where uy; is the i-th component of u;. The magnitudes of the
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components of u; therefore indicate their importance to the probability of failure. More
specifically, we examine the sensitivity of p with respect to the components of u,. The sensitivity

is defined by

_ opy _ Uy
S; = o, —<P(—ﬁ1)E (18)

Since @ (—p,) is a constant in Eq. (18), % indicates the relative importance of each component.
1

We can therefore use the following indicator to identify unimportant input random variables:

_ |y

C;i = B
1

(19)

If ¢; is less than a threshold c¢ip;e5, X; 1S considered unimportant. The higher is the threshold,
the more input random variables will be classified as unimportant ones, and the higher dimensions
will be reduced. Using different thresholds, a user can know how many important variables will
be included for the subsequent accurate reliability analysis. The user will then be able to determine
an appropriate threshold given his or her computational budget. Based on our experience with from
the test problems, we recommend that the user could start from c;p,,.s=3% or 5% when searching

for a suitable threshold.

We group the important variables into a vector U and group the unimportant variables into a
vector U with the dimensions of 71 and n, respectively. Then the input variables are partitioned into

two parts.
U = (T; U) (18)
Accordingly, the first-iteration MPP is also partitioned into two parts.

u; = (; uy) (19)

11



where W; and u, are the important and unimportant elements of u,, respectively. Therefore, we

have

B =yl = [ wll = 1,0 + | (20)

We let El and f; to be the FORM-reliability index of the important and unimportant portion

of u,, respectively, which are denoted by
B, = llull 1)
Br = ||u | (22)

The overall FORM-reliability index is obtained by

B = [B: + 57 (23)

The final MPP elements of the unimportant variables will be different from u,, but the
difference will be insignificant because the contributions of the unimportant variables are

relatively small. For this reason, we fix the unimportant variables U at u, but we will still consider

their contributions indicated by their FORM-reliability index f; in the final stage of the reliability

analysis. Then the limit-state function becomes a function of U with reduced dimension. The new

function is given by
Y =6(0) =g(U;u,) (24)

For brevity, we denote the limit-state function as G (U).

12



3.3 Reliability Analysis in the Reduced Space

We next perform reliability analysis in the reduced dimensional space (U space). Once the
dimension is reduced, the reliability can be solved either by numerical methods (FORM, SORM,
SOSPA, etc.) or surrogate methods (Kriging, PCE, Machine Learning, etc.).

In this study, we use SOSPA for demonstration. SOSPA is a second order numerical method
and is used to obtain the probability of failure of G (U). The first step of SOSPA is to find the MPP

of G(U) which is Ug by Eq. (6). The magnitude of U or the FORM-reliability index is

ug (25)

Be = |
Once g is available, we approximate G (U) at U, by the second order Taylor expansion using
Eq. (8) and have
— — T oy L e T
G(U) ~ G(ug) + V6 (ug) (U—wug) + E(U —ug) H(ug)(U—1ug) (26)
Then the CGF K, (t) of G(U) is derived analytically by Eq. (26). The detail derivations can be

found in [43]. The Saddlepoint tg is obtained by solving K/ (t) = 0. The probability of failure of

G (U) is calculated by Eq. (11), whose solution is denoted by p ¢ The reliability index from SOSPA
then is given by

Bespa = |CI)_1 (23f)| (27)

If all the derivatives are evaluated by the finite difference method, the number of function
evaluations with respect to the dimension of U is k(71 + 1) + %ﬁ(ﬁ + 1), where k is the number

of iterations of the MPP search.
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3.4 Final Reliability Analysis

The final step is to integrate the reliability results from Steps 1 and 2 so that the contributions
of both important and unimportant variables are accommodated. Next, we derive the equation for
the integration. We first look at the case where we do not do any dimension reduction. Let the

MPP obtained without any dimension reduction be u*, it is partitioned into
u' = (u; u) (28)
where u* and u” are the important and unimportant elements of the MPP u*. According to Egs.

(21), (22), and (23), we have B = [[U*||, 8 = |

u*||, and therefore

‘= B p 29)

g = JIwl +]

u*

We now look at the case with dimension reduction. As discussed in Step 1, we assume the
MPP of unimportant variables to be the MPP from the first iteration, namely, u* = u,. Then we

have
B~ wll (30)

In Step 2, we also perform the MPP search in the reduced space with unimportant variables

fixed at u;. This produces the MPP ug and FORM-reliability index EG = ||ﬁz;|| Next, we prove

that Ug = W*, and therefore E = EG. Then we can use Eq. (29) to integrate the results in Steps 1

and 2.

Because, in the original space, u* is found at the limit state g(T(U)) = 0, which means
g(T(u) = g(T@*;u)) =0 1)

14



In the reduced space, for the same reason we have
G(ug) =0 (32)
Assume that the MPPs of g(T(I_J; g)) and G(U) are unique, in other words, u* = (u*; u*)
and U, are unique.

By substituting the MPP u* into Egs. (15) and (17), we have

(ag (T(u*)))
1,2,..,n

ou;
u=—-pLa=-— (33)
N TG O]
Therefore, the important elements of the MPP can be expressed as
)
oU; 17l dg
U=-pfa=—-Pf——=-p'|—= (34)
Pe= P iwgaann - 7 (aui)m *
4 u
B
= (35)
P = Mg
dg .
Now we relate (T) with the reduced space.
Wi/ 17l -
(2) | -(2CC) | () | coowy o
aU; 1l aU; 1l aU; 17l
where VG (u*) is the gradient of G (U) at u*.
Then U™ is rewritten as
u=-p'vé(u”) (37)
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which indicates that U* is perpendicular to G(U) = 0. Since g(u*) = g(u*;u*) = 0, we have
G(u*) = 0, which means that U* is on the surface of G(U) = 0 and is in the opposite direction of
the gradient VG (u*). Therefore, u* is the shortest distance point from the original to the limit state

surface G (U*) = 0 in the space of U and is the MPP of G (U), namely
o = ug (38)

SinceE = |[|u*|| and EG = ||ﬁ*G| , we have

B, =B (39)

Then Eq. (29) can be rewritten as

B=JK+£2 (40)

Because uy <c, ff = ||gl|| is far less than EG, namely, f < EG, which means that EG
dominates the accuracy of f. We now replace the FORM-reliability index EG with the more

in Eq. (27), and then we obtain the final reliability index

accurate reliability index EG spa

—2
Boverau = ﬁG,SpA + Ez (41)
Then the final probability of failure is obtained by

Pfoverall = D (—Poverair) (42)

3.5 Numerical Procedure

The numerical procedure of the proposed high dimensional reliability analysis method is

summarized below.
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1)

Dimension reduction: Perform one-iteration FORM to obtain one-step MPP u;; identify
the important and unimportant random variables by u;; < ¢ and partition input variables

the corresponding MPP as U = (I_J; g) and u; = (u;; uy); then calculate FORM-

reliability index 8 = || gl| ; by fixing the unimportant variables U at u,;, a new limit-state

function G(U) = g(T(U; u,)) is obtained with reduced dimension.

2) Reliability analysis in U space: Use an accurate reliability method such as SOSPA to find
the probability of failure 5}“ based on G(U) and calculate the corresponding reliability
index, which is B ,, if SOSPA is used.

3) Final reliability analysis: Calculate the final reliability index by Boperan = Etz;,sp AT E 2
and the final probability of failure by ps oyeran = P(—Poverair)-

4. Examples

In this section, we use three examples to demonstrate the proposed method. Example 1 is a

mathematical problem with all the input variables normally distributed. It is presented step by step
to show all the details of the proposed method so that an interested reader can easily repeat the
process and reproduce the result. Example 2 involves a cantilever beam with over 200 random
variables, some of which follow non-normal distributions. Example 3 shows a truss system with
52 bars and 110 random variables, some of which follow extreme value distributions, and the limit-
state function is a black-box function. For all the examples, we use the same threshold value

Cinres = 3% to divide the input variables into important and unimportant variables.

For comparison, we use MCS, FORM, SOSPA, HDMR-SOSPA (specifically univariate

dimension reduction), and DR-SOSPA for all examples. MCS, FORM, and SOSPA are performed

17



without dimension reduction. For HDMR-SOSPA, we first decompose the original limit-state
function into n univariate functions and then create surrogate models for all univariate functions
with three and five points; after this the reliability is calculated by SOSPA based on the surrogate
models. The two HDMR methods denoted by HDMR-3-SOSPA and HDMR-5-SOSPA. DR-
SOSPA is the proposed method that employs SOSPA in the reduced dimensional space and
accounts for the effects of eliminated variables. To evaluate the advantage of accounting for the
effects of eliminated variables, we also compare DR-SOSPA with the method that employs
SOSPA in the reduced dimensional space, but the eliminated variables are fixed at their means.
We denoted the latter method DR-SOSPA-M. The result of MCS is served as a reference for
accuracy comparison, and the relative error of a non-MCS method with respect to MCS is defined

by

Pr = Prmes| 100% (43)

= ‘
PrmMcs

where pr and py vcs are the probabilities of failure obtained by non-MCS and MCS, respectively.

The number of function calls (FC) and the coefficient of efficiency (CoE) are used to measure the

efficiency. The latter is defined by

CoF = The number of function calls (44)
o8 = The dimension of original limit state function

4.1 A Mathematical Problem

The mathematical problem is a parabolic function given by

5 100
g(U) = ZO—BZUi(1+0.1Ui)—ZkiUi (45)
i=1 i=6
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where U;,i =1,2,...,100 are all independent standard normal random variables, namely

U;~N(0,12), k; is the coefficient of a linear term, k; = 0.08 for i = 6,7, ...,100.

Following the procedure in Sec. 3.5, we first perform one-iteration FORM to obtain the one-

iteration MPP u,; . By setting the threshold c;p,s = 3% and using % > Cipres to identify

important variables, we find that five variables are important that are U = (Uy, Uy, U3, Uy, Us)T.
The unimportant variables are U = (Ug, Uy, ..., U1go)T. Then w4 is partitioned into (U;; u,),

accordingly. The reliability index of unimportant variables is given by S = ||gl|| = 0.3419. It

represents the contribution of the unimportant variables to the reliability. Then, we fix U at u; and

have
100

5
g ~GO)=20-3 ) U;(1+0.1U) - Y ki, (46)

Thus, the dimension is reduced to 5 from 100.

Next, we conduct reliability analysis in the U space. We first perform the MPP search for G (U),
which results in the MPP ﬁ*G =(1.1770,1.1770,1.1770,1.1770,1.1770)T. We then calculate the

Hessian matrix of G(U) at u;. Using SOSPA, we have the probability of failure that is p ;=

6.7352 x 1073. Then the reliability index of the important variables is obtained that is EG spa =

2.4711. The total reliability index, which accommodates both important and unimportant variables,

,_z
is calculated by Boverau = B spa T B2 = 2.4946. The final probability of failure is given by

Pfoverail = P(—PBoveran) = 6.3044 x 1073 The results of all the methods are summarized in

Table 1.
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Table 1 Results of different methods for Example 1

Methods 12 Error (%) FC CoE
MCS 6.3416 x 1073 - le7 10°
FORM 3.9966 x 1073 36.98 404 4.04
SOSPA 6.3515 x 1073 0.16 5,555 55.55
DR-SOSPA-M 6.1501 x 1073 3.02 146 1.46
HDMR-3-SOSPA 1.792 x 1073 71.7 201 2.01
HDMR-5-SOSPA 1 - 401 4.01
DR-SOSPA 6.3044 x 1073 0.59 146 1.46

As shown in Table 1, SOSPA, DR-SOSPA, and DR-SOSPA-M accurately predict the
probability of failure. Compared with the results of SOSPA with 5,555 function calls and an error
of 0.16%, the proposed method needs 146 function calls and CoE = 1.46, only increasing the error
to 0.59%. Although DR-SOSPA-M maintains the same efficiency as the proposed method, the
accuracy of DR-SOSPA-M is worse than DR-SOSPA because it ignores the joint influence of the
unimportant variables. FORM does not produce an accurate result. The two HDMR methods
cannot produce accurate results for this example either. To find the cause of inaccuracy, we
perform MCS directly using the surrogate models from HDMR instead of SOSPA and obtain
almost the same results as those of HDMR-SOSPA. This indicates that the surrogate models from
HDMR are not accurate. The Hessian matrixes of the surrogate models are significantly different

from those of the original limit-state function.
4.2 A Cantilever Beam

A cantilever is shown in Fig. 2. It is subjected to 106 random forces on the top surface, in
which six of them (F;,i = 1,2, ...,6) are lognormally distributed and the rest (F;,i = 7,8, ...,106)
follow normal distributions. The locations of the forces are random variables that are normally

distributed, which are denoted by lpi,i = 1,2,...,106. The width w, height h, and yield strength
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S, are normally distributed. All the random variables are independent. The distributions are shown

in Table 2.
F,,i=178,..,106 F,i=12,..,6
20 - 1
Ih
7, : -]
» Fq h-‘ w
- L=5m >
Fig. 2 A cantilever beam
Table 2 Distributions of random variables in Example 2
Random variables Distribution Mean Standard deviation
S, (MPa) Normal 720 60
w (m) Normal 0.2 0.001
h (m) Normal 0.4 0.001
F;,i =1,2,...,6 (kN) Lognormal 30 + 5i 2.4+ 0.4i
lp,i=12,..,6 (m) Normal 4.3+ 0.1i 0.01
F;,i=17,8,...,106 (kN) Normal 10 1
lp,i=178,..,106 (m) Normal 0.02i 0.01

The serviceability state depends on the stress in the beam. The maximal stress should not

exceed the yield strength, and then the limit-state function is given by

6 Xi2 Fil,
g = 5, — == (47)

We first perform the one-iteration FORM to obtain the first-step MPP u4. Using ¢;pp0s = 3%,
we obtain nine important variables U = Sy, w, h, Fy, Fy, .., F)T and the reliability index of

unimportant variables § = 0.1666. By performing reliability analysis in U space using SOSPA,
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we have ﬁf = 1.9481 x 107° and the corresponding reliability index is EG gpa = 4.6168. The

total reliability index, which accommodates both important and unimportant variables, is

,_2
calculated by Boverau = |B; gpa + B2 = 4.6199. The probability of failure for the original limit

state function is given by Proveran = P(—Poveran) = 1.9201 X 107¢ . The results are

summarized in Table 3.

Table 3 Results of different methods for Example 2

Methods 12 Error (%) FC CoE
MCS 1.9106 x 107° - 1.6 x 10° 7.4 x 10°

FORM 1.7964 x 10~° 6.0 648 3.0

SOSPA 1.9200 x 107° 0.5 24,084 112.0
DR-SOSPA-M 1.8926 x 107° 1.0 301 1.4
HDMR-3-SOSPA 1.8158 x 107° 5.0 431 2.0
HDMR-5-SOSPA 3.4526 x 107 80.7 861 4.0
DR-SOSPA 1.9201 x 107° 0.5 301 1.4

As the results indicate, FORM is the least accurate although it is efficient. SOSPA has an error
of 0.5%, but its efficiency is the worst with 24,084 function calls and CoE = 112. DR-SOSPA
outperforms other methods with the same accuracy (0.5%) as SOSPA and the highest efficiency

(FC = 301 and CoE = 1.4).

4.3 A Truss System

This example is modified from [48]. The dome truss system consists of 52 bars with 21 nodes,
as shown in Fig. 3. The truss structure is similar to the roof of a stadium. To distinguish the
difference between nodes and bars, the numbers with a dot mean nodes and the numbers without
dot denote bars. All the nodes lie on the imaginary hemisphere with a radius of 240 in. The young’s
moduli and the cross-sectional areas of bars follow normal distributions. The structure is subjected

to six random forces at nodes 1-13, where F; is applied to node 1, F, is applied to nodes 2 and 4,
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F; is applied to nodes 3 and 5, F, is applied to nodes 6 and 10, F5 is applied to nodes 8 and 12, and
Fg is applied to nodes 7, 9, 11, and 13. The directions of all the forces point to the center of the
imaginary hemisphere. All the random variables are independent and their distributions are shown

in Table 4.

i,

z
We ;32 -
X V3R/2 -
- R -
(a) Top view (b) Side view
Fig. 3 A 52-bars truss system
Table 4 Distributions of random variables in Example 3
Random variables Distribution Mean Standard deviation
E;, i = 1~50 (ksi) Normal 2.5 x 10* 1000
A;, i = 1~8,and 29~36 (in?) Normal 2 0.001
A;, i = 9~16 (in?) Normal 1.2 0.0006
A;, i = 17~28,and 37~52 (in?) Normal 0.6 0.0003
F; (kip) Normal 45 3.6
F, (kip) Extreme 40 6.0
F5 (kip) Extreme 35 5.25
F, (kip) Normal 30 4.5
Fs (kip) Normal 25 3.75
F (kip) Normal 20 3
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The limit-state function is given in Eq. (48) and is solved by the finite element method (FEM).

Y =6, —g(E A;F) (48)
where, §; the threshold displacement of node 1. A failure occurs when the displacement of node
1 exceeds 8y = 0.7 in. E = [E;, E,, ..., Es;]T and A = [A4, A,, ..., As, |7 are vectors of the young’s

moduli and cross-sectional areas, respectively. F = [F;, F,, ..., F6]T 1s the vector of the loads.

Following the procedure in Section 3.5, we obtain the one-iteration MPP. Nine variables are
identified as important variables by setting c;pres = 3%, which are [Fy, ..., Fs, Ey, ..., E4]T. Then,
the probability of failure is obtained by integrating the influence of important and unimportant
variables. The results are summarized in Table 5. FORM produces a large error. SOSPA produces
the most accurate result, but its efficiency is poor as it needs 6,660 function calls with CoE =
60.54. The error of DR-SOSPA is 2.29%, which is smaller than the error of DR-SOSPA-M and is
larger than SOSPA, and its computational burden is relieved significantly with only 206 function
calls and CoE = 1.87. The proposed method DR-SOSPA is better than HDMR-SOSPA both in

accuracy and efficiency.

Table S Results of different methods for Example 3

Methods pr Error (%) FCs CoE
MCS 5.10 x 1073 - 107 9.09 x 10*
FORM 5.7678 x 1073 13.09 444 4.03
SOSPA 5.0481 x 1073 1.02 6,660 60.54
DR-SOSPA-M 48532 x 1073 4.84 179 1.63
HDMR-3-SOSPA  4.3053 x 1073 15.6 221 2.01
HDMR-5-SOSPA  4.6776 x 1073 8.3 441 4.01
DR-SOSPA 49833 x 1073 2.29 206 1.87

We also modify this example to examine a case with a large probability of failure by reducing

the threshold value &, in Eq. (48) to 0.5 in. The threshold is still 3% and nine variables are
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important. The results show that the proposed method is effective for a large probability of failure

problems as well.

Table 6 Results of large probability of failure for Example 3

Methods Dr Error (%) FCs CoE
MCS 0.2781 - 10° 909
FORM 0.2978 7.10 333 3.03
SOSPA 0.2763 0.65 6549 59.54
DR-SOSPA-M 0.2756 0.90 196 1.78
HDMR-3-SOSPA 0.2669 4.02 221 2.01
HDMR-5-SOSPA 0.4730 70.1 441 4.01
DR-SOSPA 0.2758 0.84 196 1.78

The main computer code of the truss example can be found in Supplementary Material A.
Interested readers can test the proposed method or other methods based on the code using the truss

example.

5. Conclusions

The proposed method partitions the input random variables into two parts, important and
unimportant variables, which is achieved by using the information from the first iteration of FORM.
With the unimportant random variables fixed at their percentile values obtained from one-iteration
FORM, the dimension is reduced to the dimension of important input random variables. Then the
probability of failure is found by an accurate reliability method in the reduced space. The final
probability of failure is obtained by integrating the probability of failure in the reduced space and
the contributions of unimportant variables. Hence, the dimension is reduced, and the contributions
of all input variables are also accommodated, resulting in high accuracy and efficiency of high-

dimensional reliability analysis.

The proposed method works better if fewer important input variables are important. It cannot

effectively reduce the dimension, however, when all input variables are important. If dimension
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is not reduced, the proposed dimension reduction strategy will not affect the performance of the
method used in the second step (the high accurate reliability method in the reduced space in Sec.
3.5). In this case, one may use other dimension reduction methods that can reduce the dimension
of the linear combinations of the original input variables. Another limitation is that the proposed
method may not be accurate for highly nonlinear problems since the one-iteration MPP may not
be accurate to identify the real importance of random variables. More iterations of the MPP search

may be helpful in finding the real importance of the variables, but the efficiency will deteriorate.

Our future work will improve the proposed method when most of the input variables are
important. We will also study the possibility of applying the proposed method to reliability-based

design optimization.
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