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Abstract The formation of clusters at sub-saturation den-
sities, as a result of many-body correlations, constitutes an
essential feature for a reliable modelization of the nuclear
matter equation of state (EoS). Phenomenological models
that make use of energy density functionals (EDFs) offer a
convenient approach to account for the presence of these
bound states of nucleons when introduced as additional
degrees of freedom. However, in these models clusters dis-
solve, by construction, when the nuclear saturation density
is approached from below, revealing inconsistencies with
recent findings that evidence the existence of short-range
correlations (SRCs) even at larger densities. The idea of
this work is to incorporate SRCs in established models for
the EoS, in light of the importance of these features for the
description of heavy-ion collisions, nuclear structure and in
the astrophysical context. Our aim is to describe SRCs at
supra-saturation densities by using effective quasi-clusters
immersed in dense matter as a surrogate for correlations,
in a regime where cluster dissolution is usually predicted
in phenomenological models. Within the EDF framework,
we explore a novel approach to embed SRCs within a rela-
tivistic mean-field model with density dependent couplings
through the introduction of suitable in-medium modifica-
tions of the cluster properties, in particular their binding
energy shifts, which are responsible for describing the clus-
ter dissolution. As a first exploratory step, the example of
a quasi-deuteron within the generalized relativistic density
functional approach is investigated. The zero temperature
case is examined, where the deuteron fraction is given by
the density of a boson condensate. For the first time, suit-
able parameterizations of the cluster mass shift at zero tem-
perature are derived for all baryon densities. They are con-
strained by experimental results for the effective deuteron
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fraction in nuclear matter near saturation and by microscopic
many-body calculations in the low-density limit. A proper
description of well-constrained nuclear matter quantities at
saturation is kept through a refit of the nucleon meson cou-
pling strengths. The proposed parameterizations allow to also
determine the density dependence of the quasi-deuteron mass
fraction at arbitrary isospin asymmetries. The strength of the
deuteron-meson couplings is assessed to be of crucial impor-
tance. Novel effects on some thermodynamic quantities, such
as the matter incompressibility, the symmetry energy and its
slope, are finally discerned and discussed. The findings of
the present study represent a first step to improve the descrip-
tion of nuclear matter and its EoS at supra-saturation densi-
ties in EDFs by considering correlations in an effective way.
In a next step, the single-particle momentum distributions
in nuclear matter can be explored using proper wave func-
tions of the quasi-deuteron in the medium. The momentum
distributions are expected to exhibit a high-momentum tail,
as observed in the experimental study of SRCs by nucleon
knockout with high-energy electrons. This will be studied in
a forthcoming publication with an extensive presentation of
the theoretical method and the results.

1 Introduction

The Equation of State (EoS) of strongly interacting matter
is a fundamental ingredient in the theoretical description of
compact stars. It plays also a crucial role in many astrophys-
ical simulations of, e.g., core-collapse supernovae and neu-
tron star mergers [1–4]. Tight links have been also estab-
lished between the properties of the EoS and those of finite
nuclei, concerning both their structure and reaction dynam-
ics [5–7]. A large variety of approaches has been employed
therefore in the last decades to develop reliable models for
the EoS, which are constrained by both nuclear physics
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experiments and astronomical observations. For astrophysi-
cal simulations, tables of global, multi-purpose EoSs are in
particular needed, being provided by sophisticated theoreti-
cal methods available in literature [8].

One class is given by microscopic ab-initio models, which
try to solve the nuclear many-body problem using advanced
methods and realistic interactions that are constrained by
scattering data and properties of few-nucleon systems, see,
e.g., Refs. [9,10]. Other approaches based on the effective-
field theory exploit systematic developments from quantum
chromodynamics and symmetry concepts, e.g. in chiral per-
turbation theory, providing also uncertainty estimates [11–
13]. However, these models fail in properly describing the
formation of clusters at densities below nuclear saturation,
where these bound states of nucleons emerge as many-body
correlations generated by the short-range nucleon-nucleon
interaction. Such low-density conditions are encountered in
various systems: the debris of heavy-ion collisions (HIC),
the post-bounce evolution of core-collapse supernovae, and
the surface of nuclei [14,15] where the formation of clusters
is a prerequisite for cluster radioactivity and, in particular,
α-decay of heavy nuclei. The emergence of clusters is defi-
nitely an essential feature for the modelization of a realistic
EoS [16].

Phenomenological models, whose parameters are con-
strained from experimental results of HIC and astronomi-
cal observations and/or by directly fitting properties of finite
nuclei and nuclear matter near saturation, offer a convenient
alternative to microscopic models to approach this prob-
lem. A widely used class of phenomenological approaches
is based on energy density functionals (EDFs), which are
usually derived in the self-consistent mean-field approxi-
mation with an effective in-medium interaction without a
direct connection to the nucleon-nucleon interaction in free
space [17]. There are various versions of this approach, e.g.,
non-relativistic models using Skyrme or Gogny type inter-
actions [18,19] or relativistic models based on the exchange
of mesons [20]. In recent years, several attempts have been
made to also directly link EDFs to microscopic ingredients
[21–23]. For example, a special class of functionals inspired
by effective field theories (EFTs) and bench-marked on ab-
initio predictions have been designed [24,25]. They were
applied to finite nuclei [26] and finite temperature EoS cal-
culations of pure neutron matter (PNM) [27]. Moreover, few
steps were made towards the construction of a power count-
ing in EDF [28,29].

However, EDFs derived from phenomenological mean-
field models fail as well, when only nucleons are considered
as basic constituents. Further progress is only achieved if
clusters are introduced as additional explicit degrees of free-
dom at low densities [30]. The dilute matter is then depicted
as an ideal mixture of nucleons and all nuclei from the table
of isotopes in thermodynamic equilibrium. Such a model is

called nuclear statistical equilibrium (NSE) and is widely
used in the astrophysical context, where it leads to a reliable
description for the chemical composition of stellar matter at
sub-saturation densities [16,31]. However, models like NSE
are considered valid only as long as the interaction between
the constituents can be neglected. Thus they fail at higher den-
sities where in-medium effects become important, leading to
the dissolution of clusters and the transition to cluster-free
nuclear matter. The dissolution of a cluster, i.e., the so-called
Mott effect, which is expected when approaching nuclear
saturation density from below, can be produced through the
introduction of an excluded-volume mechanism, which is
just a simple geometric concept [16,32–34]. More micro-
scopically, the formation and dissolution of light clusters
in nuclear matter can be treated using a quantum statistical
approach with thermodynamic Green’s functions, see, e.g.,
Refs. [35,36].

An alternative scenario was proposed in the last decade,
when interacting clusters were introduced as explicit degrees
in relativistic density functionals, firstly concentrating on
light hydrogen and helium isotopes, whose properties are
modified in the medium [30]. Contrary to the chemical pic-
ture traditionally adopted in NSE-like models, where the
properties of the correlated states of nucleons are assumed
to be independent of the medium, in such a physical picture,
the in-medium effects are addressed by introducing a proper
modification of the masses of the clusters, as inspired by the
quantum statistical approach. Following this idea, the effec-
tive binding energies are expected to decrease with density
[37].

Many-nucleon correlations in the continuum, which still
survive above the Mott density, are then described in terms
of effective resonances or quasi-clusters. In current phe-
nomenological approaches with the excluded-volume mech-
anism or with medium-dependent mass shifts, these states
are statistically suppressed by construction beyond satura-
tion, so that only nucleons should remain as independent
quasi-particles [38]. Mean-field type descriptions of nuclear
matter above saturation consider thus the system as a free
Fermi gas, with the usual step function in the single-particle
momentum distribution at zero temperature. Such a picture is
however inconsistent with recent experimental results from
nucleon knock-out reactions on nuclei using inelastic elec-
tron scattering [39,40]. These studies clearly evidence the
smearing of the nucleon Fermi surface and the emergence a
high-momentum tail (HMT) in the single-nucleon momen-
tum distribution of cold nucleonic matter, ascribable to the
existence of sizeable nucleon-nucleon short-range correla-
tions (SRCs) even at saturation density [40–42].

Experimental investigations assessed that SRCs pairs are
formed by approximately 20% of nucleons in various mea-
sured nuclei [43–45]. They are characterized by large rela-
tive and small center-of-mass (c.m.) momenta. Moreover,
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some results concluded that their magnitude is spin- and
isospin-dependent, with a clear dominance in the neutron-
proton channel [44–47], that affects the ratio of minority and
majority species in asymmetric nuclear matter, in the bulk
part and tail of the single-particle momentum distributions
[46,48]. Extrapolating these experimental results from finite
nuclei to infinite nuclear matter, useful information around
saturation density was then deduced. At higher densities, only
numerical investigations exist to predict the density depen-
dence of these SRC pairs. From the analysis, the probability
for nucleons to form SRC pairs seems to have a minimum
in the neighbourhood of the saturation density, owing to the
interplay between the tensor component and the repulsive
core of the nuclear force [49–51].

SRCs may also change the balance between kinetic and
potential contributions to the energy of the system. Thus their
introduction is expected to significantly affect the contro-
versial density dependence, in particular at supra-saturation
densities, of the nuclear symmetry energy [52,53], which
quantifies the difference between the total energy of PNM
and symmetric nuclear matter (SNM). Many theoretical and
experimental investigations are currently investigating the
density dependence of this quantity [54–58].

The purpose of the present work is to incorporate SRCs in
established models for the EoS, in light of the key-importance
of these features for the description of HIC, nuclear structure
and in the astrophysical context [59–62]. Our aim is to explic-
itly treat SRCs at supra-saturation densities by using effective
quasi-clusters immersed in dense matter as a surrogate for
correlations, through the introduction of proper in-medium
modifications of the cluster mass shifts. In this regime clus-
ter dissolution is usually predicted in actual realizations of
phenomenological models. Within the EDF framework, we
propose thus a novel approach to embed the SRCs within
a relativistic mean-field model (RMF) with density depen-
dent couplings [63] through a substantial modification of the
cluster mass shift at high densities.

Given its phenomenological nature, the adopted approach
does not allow to investigate the origin of the SRCs. Sev-
eral effects coexist in the high-density regime that can lead
to a smearing of the single-particle distribution functions
and the appearance of HMTs as known from the descrip-
tion of heavy-ion collisions in transport theory [64]. They
are due to different (repulsive) components of the nucleon-
nucleon interaction and can be hardly disentangled. A deeper
insight on these features would indeed require a more micro-
scopic treatment of these SRCs, going beyond the scope of
the present work.

As a first exploratory step, the example of a quasi-
deuteron within this generalized relativistic density func-
tional (GRDF) is currently explored, since two-body SRCs
in the neutron-proton 3S1 channel are much more impor-
tant than other many-body correlations. The zero tempera-

ture case is examined, where the deuteron is represented by
a boson condensate that determines the mass fraction and
leads to specific conditions to the parameterization of the
mass shift. The purpose of this work is then to propose pos-
sible mass shift parameterizations that will be employed to
determine the density dependence of the quasi-deuteron mass
fraction at arbitrary isospin asymmetries. The final ambitious
goal is to investigate the effect of accounting for the SRCs
in an effective way on the EoS, and some related thermody-
namic quantities, at supra-saturation densities. In this con-
text, it is worthwhile to mention that a recent study employed
the concept of a mass shift in a similar approach to model the
effective interaction of a possible heavy particle with baryon
number B = 2, the so-called sexaquark, in nuclear matter. It
is treated as a boson condensate like the deuteron and affects
the EoS of compact-star matter and thus the properties of
neutron stars [65].

The present work concentrates on the relation between
the parameterisation of the cluster mass shift and the quasi-
deuteron mass fraction. The investigation of the single-
nucleon momentum distribution requires to determine the
quasi-deuteron wave function in the medium. The corre-
sponding self-consistent approach and the results will be pre-
sented in detail in a future publication.

The manuscript is structured as follows. In Sect. 2 the the-
oretical formalism is illustrated and the fundamental princi-
ples and basic formulas of the GRDF are given. The case of
zero temperature is studied, where quasi-deuteron condensa-
tion is expected, and the role of the deuteron-meson coupling
strength is discussed. Section 3 explores the different con-
straints for the deuteron mass shifts. Section 4 concentrates
on the mass shift parameterization, as suitably derived for
nuclear matter at zero temperature. Then, the corresponding
density dependence of the quasi-deuteron mass fraction is
obtained. The impact on the EoS and on some general prop-
erties of nuclear matter at arbitrary neutron-proton asymme-
tries is shown in Sect. 5. Conclusions and an outlook are
finally given in Sect. 6. Details on the formal derivation of
some quantities, on the conversion of parameters and analyti-
cal expressions for the mass shift parameters are furthermore
collected in four appendices.

2 Theoretical formalism

2.1 Generalized relativistic density functional

The GRDF is a density functional derived from a RMF with
nucleons and further degrees of freedom. Their effective
interaction in the medium is described by the exchange of
mesons with density dependent couplings [30,63]. In such a
model, light clusters are explicitly introduced, allowing for
a unified treatment from matter with bound nucleons at low
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densities to matter possibly made of only neutrons (n) and
protons (p) at high densities. All degrees of freedom are
represented by quasi-particles with self-energies that incor-
porate the effects of the interaction. For sake of simplicity,
only 2H nuclei (labeled as d in the following) are added to
nucleons as degrees of freedom in light of their expected
prevalent importance discussed in Sect. 1.

Let us thus consider the general case of asymmetric
nuclear matter (ANM) composed of neutrons, protons and
deuterons with particle number densities ni (i = n, p, d),
baryon numbers Ai and charge numbers Zi . The system is
usually characterized by specifying the baryon density nb =
nn + n p + 2nd , the isospin asymmetry β = (nn − n p)/nb
and the temperature T . In this section, the basic formulas
of the theoretical formalism are given for the most general
case of finite temperature. However, the zero temperature
case will be considered in the analysis performed in the fol-
lowing sections, leaving the analysis at finite T for future
work. In this work, the masses of neutrons and protons will
be taken as equal to the average nucleon mass mnuc so that
mn = mp = mnuc. The same values as given in Ref. [30] are
considered.

Following the framework illustrated in Refs. [38,66],
the thermodynamic properties of nuclear matter are com-
pletely determined once the grand canonical potential density
ω̃(T, {μi }) is specified. It depends, apart from the tempera-
ture, on the chemical potentials μi of all constituents i . In
the present work, three types of mesons are considered: an
isoscalar scalar σ meson to describe the attraction between
nucleons, an isoscalar vector ω meson for their repulsion and
an isovector vector ρ meson for the isospin dependence of
the strong force. The interaction between a baryon i and a
meson j ( j = σ, ω, ρ) is realized by a minimal coupling with
a strength that is given by the product of a scaling factor χi j ,
the mass number Ai , and a coupling � j . The latter quantity
depends on the baryon density nb to describe the medium
dependence of the effective interaction. Different prescrip-
tions might be adopted as recently discussed in Ref. [67]. In
this work the functional form of the couplings as introduced
in Ref. [63] is used. In the application of the GRDF to homo-
geneous nuclear matter, only the ratio � j/m j of coupling and
mass m j of the mesons j is relevant. Hence it is convenient
to introduce the coefficients

C j = �2
j

m2
j

(1)

and their derivatives

C ′
j = dC j

dnb
= 2

� j

m2
j

d� j

dnb
(2)

with respect to the baryon density.

The total grand canonical potential density of the system
can be written as

ω̃(T, {μi }) =
∑

i

ω̃i + ω̃
(cond)
d + ω̃meson − ω̃(r)

meson

−ω̃(r)
mass (3)

containing the standard expression for the single quasi-
particle (non-mesonic) contribution

ω̃i = −T
gi
σi

∫
d3k

(2π)3 ln

[
1 + σi exp

(
− Ei − μ∗

i

T

)]
(4)

with the well-known integral over the momentum k that
appears in the quasi-particle energy

Ei =
√
k2 + (

m∗
i

)2 (5)

assuming natural units such that h̄ = c = 1. In Eq. (4), the
sign factor σi distinguishes the particle statistics (σi = 1 for
fermions and σi = −1 for bosons, respectively) and gi is the
spin-degeneracy factor. The boson condensate term

ω̃
(cond)
d = 1 − σd

2
n(cond)
d (m∗

d − μ∗
d) (6)

in Eq. (3) with the density of the condensate, n(cond)
d , is only

relevant for deuterons.
The effective chemical potential

μ∗
i = μi − Vi . (7)

and the effective mass

m∗
i = mi + 
mi − Si (8)

depend on scalar

Si = χiσ AiCσnσ (9)

and vector

Vi = χiωAiCωnω + χiρ AiCρnρ + AiV
(r) + W (r)

i (10)

potentials, respectively. They are defined in terms of the dif-
ferent source densities

nσ =
∑

i

χiσ Ain
(s)
i (11)

nω =
∑

i

χiωAin
(v)
i (12)

nρ =
∑

i

χiρ Ain
(v)
i (13)

where the single-particle scalar densities (n(s)
i ) and vector

densities (n(v)
i ) appear.
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The mass shift 
mi in the effective mass (8) appears only
for the deuteron and is assumed to depend on the baryon
density nb. This dependence leads to a rearrangement con-
tribution

W (r)
i = n(s)

d
∂
md

∂n(v)
i

(14)

in the vector potentials (10) of nucleons and the deuteron.
The further rearrangement contribution

V (r) = 1

2

(
C ′

ωn
2
ω + C ′

ρn
2
ρ − C ′

σn
2
σ

)
(15)

in the vector potential (10) is due to the density dependence
of the couplings � j and can be expressed with the coefficients
C j and source densities n j of the three mesons considered
here.

Corresponding to the two rearrangement contribution in
(10), there are also two such terms in the total grand potential
density (3): the meson term

ω̃(r)
meson = V (r)nb (16)

and the mass shift term

ω̃(r)
mass =

∑

i

n(v)
i W (r)

i (17)

Furthermore, the meson contribution in (3) is given by

ω̃meson = −1

2

(
Cωn

2
ω + Cρn

2
ρ − Cσn

2
σ

)
(18)

similar in structure to (15).
The single-particle number densities can be derived from

(3) using the thermodynamic definitions

n(v)
i = − ∂ω̃

∂μi

∣∣∣∣
T,{μ j } j �=i

(19)

n(s)
i = ∂ω̃

∂mi

∣∣∣∣
T,{μ j }

(20)

that give

n(v)
i = gi

∫
d3k

(2π)3 di + 1 − σi

2
n(cond)
i (21)

n(s)
i = gi

∫
d3k

(2π)3

m∗
i

Ei
di + 1 − σi

2
n(cond)
i (22)

with a thermal and a condensate contribution, once the dis-
tribution function

di (T, k,m∗
i , μ

∗
i ) =

[
exp

(
Ei − μ∗

i

T

)
+ σi

]−1

(23)

is defined. These expressions are consistent with the usual
definitions of the densities. The vector densities can be
expressed as

n(v)
n = 1 + β − Xd

2
nb (24)

n(v)
p = 1 − β − Xd

2
nb (25)

n(v)
d = Xd

2
nb (26)

using the baryon density nb, the asymmetry β, and the
deuteron fraction Xd .

The deuteron fraction has to stay below a maximum value
of

X (max)
d = mnuc

χCσnb
(27)

in order to ensure positive effective masses of the nucle-
ons. This limit is reached when the effective masses of the
nucleons are zero, i.e., Sn = Sp = Cσnσ = mnuc with the

source density nσ = 2χn(s)
d = χX (max)

d nb of the σ meson.
It only has a contribution from the quasi-deuterons because
the scalar densities of the nucleons vanish for m∗

nuc = 0. A
second limitation of the deuteron fraction arises from the fact
that for every neutron a proton is needed, or vice versa, to
form the cluster. This translates to the condition Xd ≤ 1−|β|
depending on the isospin asymmetry β. So, in total, one has

0 ≤ Xd ≤ min
{
X (max)
d , 1 − |β|

}
.

At high densities or temperatures, a mixture of deuterons,
neutrons and protons might be expected. If all three particle
species have non-zero densities, the condition of chemical
equilibrium

μd = μn + μp, (28)

applies between the chemical potentials of the degrees of
freedom involved. Using the definitions (7) and (8) with the
potentials (9) and (10), this relation can be written as


md = μ∗
n + μ∗

p − md + Sd + Vn + Vp − Vd , (29)

and thus an expression for the deuteron mass shift is obtained.
All thermodynamic quantities of the system can be easily

obtained from the grand canonical thermodynamic potential
(3). For instance, the pressure is given by

P = −ω(T, {μi }) (30)

and the free energy density F can be expressed as

F =
∑

i=n,p,d

μi n
(v)
i + ω =

(
μb + 1 − β

2
μc

)
nb − P (31)

with the baryon chemical potential μb = μn and the charge
chemical potential μc = μp−μn . The entropy density finally
can be written as

S = − ∂ω

∂T

∣∣∣∣
{μi }

+ Scond

= −
∑

i

gi

∫
d3k

(2π)3

[
di ln di + 1 − σi di

σi
ln (1 − σi di )

]

+n(cond)
d ln gd (32)
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with the distribution functions (23) and a contribution of the
condensed deuterons. The latter contribution arises because
deuterons have spin 1 and thus the ground state of nuclear
matter at T = 0 contains a mixture of the different spin
substates.

2.2 Zero temperature and quasi-deuteron condensation

If the temperature vanishes, the vector and scalar densities
of the the nucleons q = n, p can be expressed in analytical
form as

n(v)
q = gq

6π2 k
3
q (33)

with gq = 2 and

n(s)
q = gqm∗

q

4π2

[
kqμ

∗
q − (m∗

q)
2 ln

kq + μ∗
q

m∗
q

]
(34)

with the Fermi momentum kq and the effective chemical
potential

μ∗
q =

√
k2
q +

(
m∗

q

)2
. (35)

Since quasi-deuterons are bosons, they can exist only as a
condensate in the zero temperature case we are focusing on.
For the deuteron there is no thermal contribution to the den-
sity but the condensate term

n(v)
d = n(s)

d = n(cond)
d (36)

with equal vector and scalar densities and the effective chem-
ical potential becomes

μ∗
d = m∗

d . (37)

In nuclear matter at very low densities, it is advantageous
to form quasi-deuterons, which still have a positive binding
energy, to gain energy as compared to a system composed of
neutrons and protons only. In SNM, all protons and neutrons
will be bound in quasi-deuterons in the low-density limit and
no free nucleons remain. The binding energy per nucleon will
approach half of the deuteron binding energy for nb → 0 and
not zero as for homogeneous nucleonic matter without clus-
ters. For ANM, only quasi-deuterons and neutrons (protons)
will be the active constituents in case of positive (negative)
isospin asymmetry β.

With the help of the nucleon and deuteron densities, a
simple expression for the pressure P is found. Since the the
momentum integral (4) can be calculated explicitly after par-
tial integration, one obtains

P =
∑

q=n,p

1

4

(
μ∗
qn

(v)
q − m∗

qn
(s)
q

)
+ 1

2

(
Dωn

2
ω

+Dρn
2
ρ − Dσn

2
σ

)
+

∑

i=n,p,d

n(v)
i W (r)

i (38)

with

Di = Ci + C ′
i nb (39)

for the meson couplings (i = σ , ω, and ρ). Because the
entropy density (32) vanishes for T = 0, the internal energy
density E is identical to the free energy density (31).

2.3 Coupling strength scaling factors

In Eqs. (9)–(13), the scaling factors χi j appear. These factors
are always unitary for nucleons and, in particular,

χnσ = χnω = χnρ = 1

χpσ = χpω = −χpρ = 1 (40)

for the three mesons. For the nucleons bound in clusters, the
choice of the scaling factors is instead widely debated [68].

It is a natural choice to assume that the nucleons inside
the deuteron couple to the mesons with the same strength as
the unbound nucleons. Nevertheless, previous studies have
already shown that, to take into account in-medium effects in
calculation of the EoS for astrophysical applications, a uni-
versal scaling factor smaller than 1 should be assumed for the
cluster-meson coupling strength [69,70]. A reduced value
for the coupling of the σ -meson to different light clusters,
including deuterons, allows also a good description of the
chemical equilibrium constants determined from the NIM-
ROD data [71]. However, recent Bayesian analysis [72,73]
have highlighted that a larger value should be taken for the
cluster σ -meson coupling, to describe recent results from
INDRA collaboration as well [74]. Moreover, a possible
model-dependence of this result was recently assessed [75],
calling for further microscopic analysis to get more stringent
constraints. On the other hand, the possible choice of differ-
ent values for the σ and ω coupling strength factors is known
to produce a strong imbalance between the corresponding
scalar and the vector potentials. This would, in turn, reflect
itself in an unrealistic behavior of the nuclear EoS, owing to
a corresponding change of the central potential given by the
difference Vi − Si of very large potentials in lowest order
non-relativistic approximation. A reasonable choice would
be therefore to assume the same scaling factor for both σ

and ω meson (χdσ = χdω = χ ) and explore the sensitiv-
ity of our results to this ingredient (χdρ = 0 because the
deuteron has zero isospin.) This is thus the strategy that will
be adopted in the following.

3 Quasi-deuteron mass shift constraints

In the GRDF, a mass shift 
md is introduced in the effec-
tive mass defined in Eq. (8) in order to suppress the clus-
ter formation at supra-saturation densities. This mass shift
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may generally receive several contributions. For example, in
compact star matter, where electrons are included to fulfill
the requirement of charge neutrality, a possible contribution
comes from the screening of the Coulomb potential produced
by the electronic background.

In the nuclear matter case, the mass shift is usually pro-
vided just from Pauli blocking, which plays a crucial role in
suppressing the cluster formation. Indeed, the Pauli exclusion
principle implies that a single-particle state in momentum
space would not be longer available for formation of a cluster
when it is already occupied by nucleons of the medium. The
Pauli blocking of states strongly reduces at high temperatures
with increasing diffuseness of the Fermi sphere or when the
c.m. momentum of the cluster is much larger than the typical
radius of the Fermi sphere. This effect can be represented
effectively as a repulsive, medium-dependent potential or a
change of the cluster binding energy. A quantitative value can
be calculated by solving the many-body Schrödinger equa-
tion when proper potentials for the nucleons in matter are
introduced. The corresponding results, which are explicitly
calculated for various conditions of temperature, density and
isospin asymmetry of the medium, are then usually approxi-
mated by suitable parameterizations in a wide range of ther-
modynamic variables [30,76–78].

The change of the cluster binding energy, calculated in this
approach, is valid only at sub-saturation densities and has to
be extrapolated to higher densities, in particular above the
cluster dissociation (Mott) density, where the binding energy
vanishes, and only a many-body correlation in the continuum
remains. For this purpose, suitable heuristic parameteriza-
tions were introduced within the GRDF [66,79]. Focusing
on deuteron-like correlations, the aim of our work is to pro-
vide a unified parameterization of the quasi-deuteron binding
energy shifts, so that it can be used as effective means to treat
SRCs at supra-saturation densities. In this context, the pio-
neering analysis developed in Ref. [37] already suggests that
a substantial modification of the cluster mass shift has to
be expected in the regime beyond the deuteron dissociation
density, in comparison to the traditionally adopted form.

Such a parameterization should be appropriately chosen
to interpolate between the low-density limit constrained by
microscopic many-body calculations and the high-density
behavior postulated under the assumed boson condensation
condition. In the following subsections the different con-
straints to be imposed to the deuteron binding-energy shifts
will be discussed. As will be seen, various scenarios will
emerge depending also on the value of the deuteron-meson
scaling factors χ = χdσ = χdω introduced in Eqs. (9)–(13).

3.1 Low-density constraint

Several parameterizations of the binding energy or mass shift
of the deuteron at sub-saturation densities have been devel-

oped to account for the Pauli blocking effects. In particular,
when neglecting the dependence of the mass shift on the
momentum of the deuteron with respect to the medium and
limiting to the zero temperature case, the simplified func-
tional form


m(low)
d = δBd(0)n(eff)

d (41)

can be assumed, where the effective vector density n(eff)
d , as

defined in Ref. [37]

n(eff)
d = 2

Ad

[
Nd

(
n(v)
n + n(v)

d

)
+ Zd

(
n(v)
p + n(v)

d

)]
(42)

with Nd = Zd = 1 and Ad = 2, turns out to be equal to the
total baryon density nb, independent of the global isospin
asymmetry β of the system. The quantity δBd generally reg-
ulates the temperature dependence; its zero temperature limit
which appears in Eq. (41) is δBd(0) = 3634.16 MeV fm3,
as given in Ref. [30], where explicit expressions for finite
temperature calculations are also provided.

A linear increase of the mass shift proportional to nb at
low baryon densities is consistent with the results obtained
in [30,76–78], at least for density values lying below the
dissociation or Mott density defined as

n(diss)
d = Bd

δBd(0)
, (43)

where Bd = mn + mp − md = 2.225 MeV [80] is the
deuteron binding energy in vacuum.

3.2 High-density limit

In the traditional treatment of cluster dissolution using
the concept of mass shifts, a heuristic density dependence
stronger than linear in nb is customarily assumed at baryon
densities above the dissociation density to prevent the clusters
to reappear. A divergence of the mass shift ensures in partic-
ular the deuteron removal from the system when approach-
ing saturation density, resulting in pure nucleonic matter
above saturation. The possibility of using quasi-deuterons to
effectively embed nuclear SRCs at supra-saturation densities
requires thus a proper change of the usual parameterization
adopted in the GRDF, as first noticed in Ref. [37].

3.2.1 Deuteron mass shift

Assuming a dependence on the effective density n(eff)
d = nb,

as defined in Eq. (42), the quasi-deuteron mass shift expres-
sion derived in Eq. (29) simplifies to


m(high)

d = μ∗
n + μ∗

p − md + 2χCσnσ

+2(1 − χ)Cωnω (44)
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because

W (r)
n + W (r)

p − W (r)
d = n(s)

d
∂
md

∂nb
(1 + 1 − 2) = 0 . (45)

Eq. (44) can be used to calculate the deuteron mass shift as a
function of the baryon density nb, the deuteron fraction Xd

and the isospin asymmetry β.
An impression of the density dependence of the quasi-

deuteron mass shift is depicted in Fig. 1 for given, constant
mass fractions Xd and two values of the scaling factor χ of
the deuteron. A unitary value of χ is considered in panel (a),
whereas a reduced scaling factor of χ = 1/

√
2 is assumed in

panel (b). The choice of the latter χ value will be explained
below. In both panels, for sake of simplicity, the SNM case
is considered. Moreover, the DD2 parameterization [30] of
the nucleon-meson effective interaction is adopted.

Figure 1 shows that the deuteron mass shift 
md depends
quite strongly on the value assumed for the scaling factor
χ . This is deduced by comparing the results of panel (a)
with the corresponding ones of panel (b), especially in the
high-density regime, we are focusing on. Indeed, for large
densities, the effective chemical potentials of the nucleons in
Eq. (44) are dominated by the Fermi momenta kq as defined

in Eq. (33) and thus exhibit a n1/3
b behavior. Since the meson

couplings Cσ and Cω approach constants at high densities,
the mesonic contributions to the mass shift are determined by
the behavior of the source densities nσ and nω. For χ �= 1,
the source density nω rules the dominating term. Since the
deuteron fraction has to vanish for nb → ∞ due the con-
straint (27), a linear asymptotic increase of 
md with the
baryon density is expected. Indeed, such a dependence is

observed in panel (b) of Fig. 1 for χ = 1/
√

2. A softer
increase of the mass shift with the baryon density is seen in
panel (a) because the last term in Eq. (44) does not contribute
for χ = 1 and the high-density behavior is driven by the σ

meson term. However, the source density nσ may asymp-
totically receive contributions only from the scalar densities
of the nucleons because the deuteron fraction asymptotically
approaches zero. An asymptotic dependence proportional to
n2/3
b is then expected for the σ meson term and the deuteron

mass shift of Eq. (44).
In the (unrealistic) case when all nucleons are bound inside

the deuteron (Xd = 1), independent of the density, both the
scalar and vector densities of the nucleons vanish. The mass
shift defined in Eq. (44) assumes the following form


m(high)

d (Xd = 1) = Bd(0) + 2χ(1 − χ)(Cω − Cσ )nb ,

(46)

i.e., a linear dependence on nb is generally predicted, for any
finite value of the scaling factor χ , as shown by the dotted
line of panel (b). An exception is the case with χ = 1, when
the deuteron mass-shift coincides with the deuteron binding
energy, see dotted line in panel (a).

Furthermore, Fig. 1 shows that the largest deuteron frac-
tion generally corresponds to the lowest mass shift, with a
clear ordering in panel (b). However, in the case when a uni-
tary scaling factor is adopted, such a statement actually holds
only below the region where the lines cross each other, which
is observed above 0.45 fm−3. This region is also emphasized
in the inset of panel (a) of Fig. 1 to evidence the fact that there
is no single crossing point between the different curves.
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Fig. 1 Panel (a): Deuteron mass shift as function of the baryon den-
sity, as determined according to Eq. (44) in the SNM case, by assuming
a unitary scaling factor χ for the deuteron-meson coupling strengths.
Panel (b): the same as in panel (a), but assuming a reduced scaling fac-
tor χ = 1/

√
2. In both panels, the DD2 parameterization [30] of the

nucleon-meson effective interaction is adopted. The inset in panel (a)
shows a zoom around the density values where the curves cross each
other. The thin blue line indicates in both panels the binding energy of
the deuteron in vacuum Bd
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Fig. 2 Panel (a): difference between the deuteron mass shift 
md , as
determined according to Eq. (44) and its value in the case with zero
deuteron mass fraction 
m(0)

d , as function of the deuteron mass frac-
tion Xd for different, but constant, values of the baryon number density

nb. The SNM case is considered and a unitary scaling factor χ for the
deuteron-meson coupling strengths are assumed. Panel (b): the same as
in panel (a), but assuming a reduced scaling factor χ = 1/

√
2. In both

panels, the DD2 parameterization [30] of the nucleon-meson effective
interaction is adopted

The emergence of this crossing can be easily understood
when looking at the explicit form of Eq. (44). Indeed, for
χ = 1, the vector contribution vanishes, and there exists
a delicate interplay between the remaining terms. At low
densities, the leading role is played by the effective chemical
potentials, which reduce when the deuteron mass fraction
increases. However, at larger densities, the importance of
the term involving the source density of the scalar meson
is enhanced. Since the corresponding contribution increases
with the deuteron fraction, a crossing among the curves is
observed at a certain baryon density ncross

b and an inversion
of their previous ordering is expected at higher densities. On
the other hand, for smaller values of the scaling factor, as the
one considered in panel (b) of Fig. 1, the vector term plays
also a role. The source density of the ω meson field does not
change with the deuteron mass fraction at constant nb. Since
the vector term dominates asymptotically over the scalar one,
in light of the power of density involved there, for scaling
factor values small enough, such as the one considered in
panel (b) of Fig. 1, no crossing is observed and the same
ordering for all allowed densities is preserved.

Moreover, it is worthwhile to notice in panel (a) that the
dotted-dashed line, which corresponds to the deuteron mass
shift obtained for a fixed deuteron mass fraction Xd = 0.5,
ends at a density around 0.84 fm−3. Beyond this value, the
deuteron mass fraction would exceed its maximum allowed
value, see Eq. (27). The same occurs also for the two largest
deuteron mass fraction values considered in both panels of
Fig. 1, although at smaller densities. It is also worth noticing
that Eq. (27) implies that any finite asymptotic value for the
deuteron mass fraction is not allowed. As a result, the cluster

is forced to dissolve asymptotically, at least as n−1
b , for any

finite value of χ .
The observation of the line crossing in panel (a) of Fig. 1

motivates to study the dependence of the deuteron mass shift
on the deuteron mass fraction for constant baryon density nb
and constant asymmetry β. A deeper insight into this behav-
ior can be achieved, by looking at Fig. 2, where 
md is plot-
ted as a function of the deuteron mass fraction for different
baryon density values. In order to facilitate the comparison
among the curves, in Fig. 2 the differences with respect to
the deuteron mass shift evaluated in the limiting case without
deuteron (denoted as 
m(0)

d ) are actually considered. These
differences turn out to be systematically lower than zero, at
least for the reduced value of the scaling factor considered
in panel (b). A change of sign is instead observed for χ = 1
at larger densities, i.e., beyond the crossing point observed
in the panel (a) of Fig. 1 and already discussed above. Quite
interestingly, one observes in both panels that the (negative)
slope of the curves strongly increases for those lines that
approach Xd = 1. This represents the ideal, but unrealistic,
case where no free nucleons exist in the system also at supra-
saturation densities. The reason behind this behavior will be
clarified in the following, when the mass shift derivatives are
investigated in detail.

3.2.2 Mass shift derivatives

In Appendix A, an explicit, general expression for the mass
fraction derivative of the mass shift is derived. For sake
of simplicity, the case of SNM is considered here, where
the Fermi momenta, effective masses and effective chemical
potentials of the nucleons are identical, i.e., knuc = kn = kp,
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m∗
nuc = m∗

n = m∗
p, μ∗

nuc = μ∗
n = μ∗

p. Then the simple form

∂
m(high)

d

∂Xd

∣∣∣∣
nb,β=0

=
[

2Cσ

1 + fnucCσ

(
χ − m∗

nuc

μ∗
nuc

)2

− π2

knuc

1

μ∗
nuc

]
nb (47)

with the factor

fnuc = 3

(
n(s)

nuc

m∗
nuc

− n(v)
nuc

μ∗
nuc

)
(48)

and the total nucleon densities n(v)
nuc = n(v)

n +n(v)
p and n(s)

nuc =
n(s)
n + n(s)

p is obtained. The derivative (47) is the difference
of two positive contributions and depending on the choice of
χ there can be a zero at a certain baryon density.

The dependence of the derivative (47) on the baryon den-
sity nb is depicted in Fig. 3 panel (a) for χ = 1 and in panel
(b) for χ = 1/

√
2. The same constant values of Xd as in

Fig. 1 are considered. Only the limit case with Xd = 1 is not
shown because for this deuteron mass fraction, knuc vanishes
and a (negative) divergent mass shift derivative is obtained.
Moreover, as already observed in Fig. 2, this result is inde-
pendent of the adopted value for the scaling factor.

Even though we are interested here in the investigation
of the high-density limit, it is instructive to study both the
low- and high-density behaviors of the derivative (47). One
observes that, for knuc → 0, the derivative is dominated
by the negative, diverging contribution inside the brack-
ets and the derivative approaches thus zero from negative
values, as shown in both panels of Fig. 3. For knuc →

∞, the total nucleonic vector and scalar densities scale as
n(v)

nuc ∼ [2/(3π2)]k3
nuc and n(s)

nuc ∼ (1/π2)m∗
nuck

2
nuc, respec-

tively. Furthermore, nb ∼ n(v)
nuc, m∗

nuc ∼ π2/(Cσ k2
nuc), and

μ∗
nuc ∼ knuc, so that fnuc ∼ k2

nuc/π
2 and the simple asymp-

totic form

∂
m(high)

d

∂Xd

∣∣∣∣
nb,β=0

∼
(

2χ2 − 1
) 2

3
knuc (49)

remains. For χ < 1/
√

2 the derivative in the high-density
limit is negative as for knuc → 0 and no zero at finite baryon
densities is expected. In contrast, for χ = 1, the derivative
approaches asymptotically a positive value and a zero at a cer-
tain baryon value, ncross

b , appears, as depicted in Fig. 3, panel
(a). The curves cross the zero line at similar values above
0.45 fm−3 with a weak dependence on the deuteron fraction,
highlighted in the inset. Below the crossing an ordering of the
lines as observed in panel (b) of Fig. 1 follows, whereas an
inversion will appear above ncross

b . For χ = 1/
√

2, however,
the derivative of the mass shift with respect to the deuteron
mass fraction of Eq. (47) is always non-positive, as evidenced
in the panel (b) of Fig. 3. Then, the zero line is only asymp-
totically approached and χ = 1/

√
2 constitutes the largest

value for which the ordering of the lines with respect to Xd ,
depicted in Fig. 1, panel (b) persists, for all baryon densities.

In the following, also the derivative of the mass shift with
respect to the baryon density will be studied. It can be calcu-
lated explicitly from Eq. (44). The general case for arbitrary
values of β is treated in Appendix B. Again, the result for
the simplified case of SNM is given here. It can be written

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baryon number density n
b
 [fm

-3
]

-600

-500

-400

-300

-200

-100

0

100

200

300

∂Δ
m

d/ ∂
X

d [
M

eV
]

0.45 0.5 0.55 0.6
-25

0

25

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baryon number density n
b
 [fm

-3
]

-600

-500

-400

-300

-200

-100

0

100

200

300

∂Δ
m

d/∂
X

d [
M

eV
]

X
d
 = 0.0

X
d
 = 0.2

X
d
 = 0.5

X
d
 = 0.8

(b)

Fig. 3 Panel (a): mass fraction derivative of the deuteron mass shift
as function of the baryon density, as determined according to Eq. (47)
for different, but constant values of the deuteron mass fraction Xd . The
SNM case is considered and a unitary scaling factor χ for the deuteron-
meson coupling strengths is assumed. Panel (b): the same as in panel

(a), but assuming a reduced scaling factor χ = 1/
√

2. In both panels,
the DD2 parameterization [30] of the nucleon-meson effective interac-
tion is adopted. The thin blue line indicates the zero of the deuteron
mass fraction derivative of the mass shift. The inset in panel (a) shows
a zoom around the density where the derivative vanishes
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Fig. 4 Panel (a): Baryon density derivative of the deuteron mass shift
as function of the baryon density, as determined according to Eq. (50)
for different, but constant values of the deuteron mass fraction Xd . The
SNM case is considered and a unitary scaling factor χ for the deuteron-

meson coupling strengths is assumed. Panel (b): the same as in panel (a),
but assuming a reduced scaling factor χ = 1/

√
2. In both panels, the

DD2 parameterization [30] of the nucleon-meson effective interaction
is adopted

for χ = χdω = χdσ as

∂
m(high)

d

∂nb

∣∣∣∣
β=0

= WSNM
d − ZSNM

d
∂(nbXd)

∂nb

∣∣∣∣
β=0

(50)

with the quantities

ZSNM
d = π2

μ∗
nucknuc

+ 2 (1 − χ)2 Cω

− 2Cσ

1 + fnucCσ

(
χ − m∗

nuc

μ∗
nuc

)2

(51)

and

WSNM
d = π2

μ∗
nucknuc

+ 2(1 − χ)
(
Cω + C ′

ωnω

)

+ 2

1 + fnucCσ

(
C ′

σnσ + Cσ

m∗
nuc

μ∗
nuc

)(
χ − m∗

nuc

μ∗
nuc

)

(52)

that contain again the factor (48). The dependence of the
derivative (50) for the SNM case is depicted in the two pan-
els of Fig. 4 for the selected scaling factors of χ = 1 (left)
and χ = 1/

√
2 (right). In the zero-density limit, a diver-

gent behavior is observed, owing to the contribution origi-
nating from the density derivatives of the effective chemi-
cal potentials that lead to the terms proportional to k−1

nuc in
ZSNM
d and WSNM

d . The divergence of (50) for nb → 0 will
disappear only for constant Xd = 1. The relative impor-
tance of the terms proportional to k−1

nuc strongly reduces with
increasing density, so that a rise driven by the σ meson con-
tribution is observed at larger nb values, until a maximum is
reached. Then, a continuous decrease of the density deriva-
tive of the deuteron mass shift emerges, which asymptoti-

cally approaches zero or a constant value for the unitary or
the reduced value of χ , respectively. An interplay among the
different involved terms takes place, analogously to the one
illustrated to describe the results of Fig. 1. As a consequence,
the ordering of the curves in Fig. 1 is reflected in Fig. 4. As
discussed before, for any finite deuteron fraction value Xd ,
the corresponding curve ends again at the baryon density
where X (max)

d , as a function of nb, attains this value.

4 Mass shift parameterization

The condensation condition allows to calculate, for a given
mass-fraction function, the quasi-deuteron mass shift and its
derivatives at high-densities through Eqs. (44), (47) and (50),
respectively. However, the density dependence of the mass
fraction Xd is not known a priori, in particular at supra-
saturation densities. It should originate from microscopic
calculations in a similar manner as the fractions of light clus-
ters are determined by their mass shifts in the low-density
domain, see Ref. [30]. Since calculations of the deuteron
mass shift using proper interactions and many-body meth-
ods are only available at very low densities, it is necessary to
resort to exemplary forms of the mass shift in the full range
of baryon densities to study the properties of the system.
Instead of calculating the mass shift and its derivatives for a
given mass fraction function, the main aim is then to choose
a density dependent parameterization of the mass shift and
to determine the deuteron fraction, not only for symmetric
but also asymmetric matter. Although such a function is not
yet available from microscopic models, the proposed form
should comply with the available constraints.
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4.1 Piecewise mass-shift parameterization

The most simple choice for the deuteron mass shift function
is the piecewise parameterization


md(nb)

= min
{

m(low)

d (nb),
m(high)

d (nb, Xd)
}

(53)

that combines the low-density form (41) with the high-
density function (44) assuming, e.g., a constant deuteron frac-
tion in the high-density region as discussed in the previous
subsection. Although Eq. (53) provides a continuous func-
tion, the same does not apply for its derivatives. In addition, a
constant deuteron fraction at high densities is not compatible
with the asymptotic constraint which imposes a vanishing
mass fraction Xd for nb → ∞.

Despite these shortcomings, it is informative to investi-
gate the effect of finite deuteron fractions on the energy per
nucleon E/A. Fig. 5 depicts the density behavior of E/A in
SNM as obtained with the piecewise mass shift parameter-
ization (53) for different, but constant mass fractions in the
high-density regime. For comparison, the energy per nucleon
obtained from the deuteron free case of the standard DD2
parameterization is also shown. One observes that an extra
binding is predicted in the energy per nucleon around satura-
tion density, with respect to the case without deuterons. This
result is independent of the adopted choice of the scaling
factor χ of the deuteron-meson couplings. Moreover, Fig. 5
shows that the overbinding persists much beyond the satura-
tion density, especially in panel (b), where a reduced value
of χ is considered. However, the stiffness of these curves
in the high-density regime increases with the deuteron mass

fraction. As a result, a crossing among the curves is gen-
erally observed at larger densities in case when χ ≥ 1/

√
2,

except for deuteron fraction values for which the correspond-
ing curves end at lower densities.

Both insets of Fig. 5 highlight that the correct low-density
limit is reproduced because the low-density constraint is
properly taken into account. As a result, differently from the
standard DD2 model without clusters, the curves tend to half
the deuteron binding energy in the limit nb → 0.

The overbinding observed in Fig. 5 in a broad range of
densities around saturation seems to be surprising in light of
the large positive mass shift of the deuteron depicted in Fig.
1. The increase of the binding energy per nucleon is a result
of two main effects. When nucleons are replaced by quasi-
deuterons at a given baryon density, the value of nω does not
change when χ = 1. At the same time, the source density
nσ increases because the scalar and vector densities of the
condensed deuterons are identical whereas n(s)

q /n(v)
q < 1 for

nucleons. Hence, on the one hand, a stronger attraction from
the σ meson is induced. This effect will be smaller for χ < 1
when nucleons are replaced by deuterons. Here, the source
density of the ω meson will reduce but the corresponding
decrease of the σ meson source density is also less strong. On
the other hand, nucleons at the Fermi surface with energies
close to the nucleon chemical potential

μ(0)
q =

√(
k(0)
q

)2 +
(
mq − S(0)

q

)2 + V (0)
q (54)

of the deuteron-free system, indicated by a superscript (0),
are replaced by deuterons with energy

Ed = μd = md − Sd + Vd + 
md = μn + μp . (55)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baryon number density n
b
 [fm

-3
]

-100

0

100

200

300

400

en
er

gy
 p

er
 n

uc
le

on
 E

 / 
A

 [
M

eV
]

DD2
X

d

(high)
 = 0.0

X
d

(high)
 = 0.2

X
d

(high)
 = 0.5

X
d

(high)
 = 0.8

X
d

(high)
 = 1.0

10
-5

10
-4

10
-3

10
-2

10
-1

-16

-8

0

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baryon number density n
b
 [fm

-3
]

-100

0

100

200

300

400

en
er

gy
 p

er
 n

uc
le

on
 E

 / 
A

 [
M

eV
]

10
-5

10
-4

10
-3

10
-2

10
-1

-16

-8

0

(b)

Fig. 5 Panel (a): energy per nucleon as function of the baryon density
as determined in the SNM case, by assuming a unitary scaling factor χ

for the deuteron-meson coupling strengths. A simple piecewise param-
eterization, as given by Eq. (53) and interpolating between the low- and
high-density constraints for the mass shift is adopted. Different, but con-

stant, values of the deuteron mass fraction X (high)

d at high density are
considered. Panel (b): the same as in panel (a), but assuming a reduced
scaling factor χ = 1/

√
2. In both panels, the DD2 parameterization

[30] of the nucleon-meson effective interaction is adopted
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Since kq < k(0)
q , Sq > S(0)

q , and Vq ≈ V (0)
q , the chemical

potentials of the nucleons μq are lowered, i.e., μq < μ
(0)
q ,

even for a positive deuteron mass shift 
md . This corre-
sponds to a stronger binding of the system.

4.2 Specific features in the determination of deuteron mass
fractions from mass shifts

In principle, it would be sufficient to use the condensation
condition (44) to find Xd for a given 
m(high)

d . In practice,
however, it is found that, in the high-density regime, Eq. (44)
can have multiple solutions when a meson coupling scaling
factor χ ≥ 1/

√
2 is considered. As a consequence, Eq. (44)

can not be inverted uniquely in all cases. The correct solution
has to be selected such that a continuous function of the
density is obtained for the deuteron mass fraction.

In this context, further insight can be obtained from the
explicit functional form of the mass shift derivative with
respect to the density, given by Eq. (50). It is, in fact, a first-
order differential equation for Xd . The expression can be
analyzed most easily for SNM. It is convenient to write Eq.
(50) in the form

∂(nbXd)

∂nb

∣∣∣∣
β=0

= 1

ZSNM
d

(
WSNM

d − ∂
md

∂nb

∣∣∣∣
β=0

)
(56)

with the functions ZSNM
d and WSNM

d as defined in Eqs. (51)
and (52), respectively. A special role is played by ZSNM

d that
can be written as

ZSNM
d = 2 (1 − χ)2 Cω − 1

nb

∂
md

∂Xd

∣∣∣∣
nb,β=0

(57)

with the help of the mass fraction derivative defined in Eq.
(47). The superscript (high) is no longer added to the mass
shift because a mass shift parameterization is considered now
in the whole density range. For χ = 1, the term from the
ω meson does not contribute. The remaining term in Eq.
(57) develops a zero at a certain density ncross

b as discussed
in Sect. 3.2 close to Eq. (49). Thus the density derivative
(56) develops a pole at xcross

b and a continuous solution of
the differential equation can only be obtained if the term in
parentheses in Eq. (56) vanishes at the same density. For χ ≤
1/

√
2, however, the mass-fraction derivative (47) is negative,

implying a positive ZSNM
d because also the contribution of

the ω meson is positive. Then, a continuous solution of the
differential equation (56) can be found for all densities. The
discussion developed above justifies the choice of the reduced
scaling factor. Thus, two different values of the scaling factor,
namely χ = 1 and χ = 1/

√
2, will be considered in the

following analysis. It is worthwhile to notice that the value of

χ = 1/
√

2 is significantly smaller than the universal scaling
factor for the cluster-meson coupling strength proposed in
some recent works [69,70]. Our choice complies, however,
with the aim to consider two extreme values of χ with two
distinct paths, bearing in mind that any intermediate behavior
may also occur.

4.3 Saturation constraints

The overbinding observed around saturation density in both
panels of Fig. 5 implies that a proper refit of the nucleon-
meson couplings to the saturation properties of SNM is
mandatory if one wants to keep nuclear matter quantities
around the saturation point n0 well constrained. The actual
deuteron fraction at saturation, Xd,0, which has to be speci-
fied to fix the couplings, can be imposed from recent exper-
imental investigations of SRCs by extrapolating results of
nuclei to infinite nuclear matter. They assess that SRCs pairs
amount to approximately 20% of the nucleon density [43–
45]. Here, as in the following, the index 0 on the quantities
indicates the values at saturation.

In order to reproduce the properties at saturation in SNM,
e.g., of the DD2 model, the binding energy per nucleon
B0 and the effective nucleon mass m∗

nuc,0 at the saturation
density should be obtained also in the model with a finite
deuteron fraction Xd,0. This will be realized by rescaling the
meson-nucleon couplings assuming no change in their den-
sity dependence as given in a reference parameterization. The
values of n0, B0, mnuc,0 and Xd,0 together with the pressure
P0 = 0 MeV fm−3 give four conditions that allow to deter-
mine the rescaled couplings �σ,0, �ω,0, the deuteron mass
shift 
md,0 and its derivative d
md/dnb|n0 at saturation.
Owing to the rescaling of the σ and ω coupling strengths,
also the energy per nucleon of PNM would be modified. A
proper rescaling also of the ρ-nucleon coupling strength is
hence in order if one wants to keep the symmetry energy at
saturation J0 unaltered, with respect to the selected reference
parameterization. Here, the symmetry energy is calculated
in the parabolic approximation as the difference between the
energies per nucleon in PNM and SNM. This recipe gives
finite values at sub-saturation densities in models with clus-
ters or liquid-gas phase transition differently than the original
definition using second derivatives of the energy per nucleon
in SNM with respect to the isospin asymmetry, see, e.g., Ref.
[81]. The full conversion procedure is illustrated in detail in
Appendix C. The actual values of these quantities are given
in Table 1 for the two considered values of the deuteron cou-
pling scaling factor χ and a deuteron fraction Xd,0 = 0.2.
The standard DD2 model is chosen as reference parame-
terization with n0 = 0.149065 fm−3, B0 = 16.0224 MeV,
m∗

nuc,0 = 0.562544mnuc and J0 = 32.73 MeV. The σ , ω, and
ρ nucleon-meson couplings are given by �σ,0 = 10.686681,
�ω,0 = 13.342362 and �ρ,0 = 3.626940 in this case.
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Table 1 Values at saturation density of nucleon-meson coupling
strengths � j,0 ( j = σ, ω, ρ), deuteron mass shift 
md,0 and its slope,
for the two different scaling factors χ considered in this work. The mass

shift and its slope are expressed in MeV and MeV fm3, respectively,
whereas all other quantities are dimensionless

χ �σ,0 �ω,0 �ρ,0 
md,0 [MeV] d
md
dn

∣∣∣∣
n0,β=0

[MeV fm3]

1 10.580042 13.217226 3.556424 104.92 813.98

1/
√

2 10.919963 13.719324 3.400187 58.23 570.80

Quite interestingly, one observes that, in the case with
a unitary scaling factor χ , a small reduction of the three
nucleon-meson coupling strengths is obtained at saturation,
with respect to the original DD2 parameterization. On the
other hand, these quantities turn out to be larger for both
σ - and ω-meson, when the smaller χ value is considered.
This change reflects the balance between the couplings and
scaling factors to achieve the same strength of the effective
interaction at saturation density. Concerning the mass shifts,
larger values and stronger density slopes are predicted at
saturation when assuming that the nucleons bound inside the
deuterons couple to the mesons with the same strength as the
unbound nucleons, see also Fig. 1.

A possible mass shift parameterization will be proposed
in the following section. It will be constrained at saturation
density, in the low-density limit by microscopic many-body
calculations and at high-density by an assumed mass-fraction
behavior that respects the condensation condition and the
constraint on the maximum deuteron fraction.

4.4 Unified mass shift parameterization

Different forms of the mass shift density parameterization
might be employed to interpolate among the low- and the
high-density constraints discussed in the previous section,
while keeping the required saturation properties. A unified
form, adopted for the SNM case, might be then employed
also for ANM to obtain predictions at arbitrary isospin asym-
metries. The mass shift parameterization introduced in this
work combines two limiting dependencies on the density
that reproduce by construction the linear increase in the zero-
density limit of the dilute region and the high-density asymp-
totic behavior. Taking into account also the two constraints
imposed at saturation, such a parameterization has to depend
on at least four parameters and satisfy 
md(0) = 0. How-
ever, some additional parameters should enter in the proposed
parameterization to guarantee a smooth transition between
the different density regimes and leave some freedom in the
high-density behavior of the deuteron fraction.

A possible choice, among others, is the function


md(x) = 
md,1(x) + 
md,2(x) + 
md,3(x) (58)

depending on x = nb/n0 with three contributions


md,1(x) = ax

1 + bx
(59)


md,2(x) = cxη+1 [1 − tanh (ex)] (60)


md,3(x) = f xγ tanh (gx) (61)

with γ = 1 or 2/3 for χ = 1/
√

2 or 1, respectively, and
seven coefficients a, b, c, η, e, f , g, which allow to comply
with the constraints by a proper choice.

The different terms in Eqs. (58)–(61) are chosen so that
the density derivative of the mass shift is given by

d
md

dnb

∣∣∣∣
nb=0

= a

n0
(62)

at vanishing nb and the high-density behavior is dominated
by the third term 
md,3. The second contribution acts mainly
in an intermediate density range. The coefficient a is deter-
mined as δBd(0)n0 by the limiting form of the deuteron
mass shift parameterization from microscopic calculations,
c.f., Eq. (41). There is no a priori constraint for the param-
eter b. Here, it is set to b = a/Bd = n0/n

(diss)
d so that

limnb→∞ 
md,1 = Bd with the deuteron binding energy Bd

and the dissociation density n(diss)
d defined in Eq. (43). In the

asymptotic limit, for χ = 1/
√

2, the mass shift approaches a
linear function in the baryon density and a slope determined
by the ratio of f and the saturation density n0. On the other
hand, the asymptotic form


md(nb) ∼ f

(
nb
n0

)2/3

(63)

is expected for the deuteron mass shift, in the case when
χ = 1.

The coefficients c and η, whose analytical expressions
are given in Appendix D, are finally determined by the con-
straints introduced on the mass shift and its derivative at sat-
uration. The remaining parameters e and g are free and allow
to tune the relative role of the different contributions 
md,2

and 
md,3 in Eq. (58). Only a tiny sensitivity of the results
was assessed by varying the parameter e. Thus, this parameter
was kept fixed to 1 and only different values for the parameter
g were considered. Different choices of g permit indeed to
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produce alternative supra-saturation scenarios while keeping
the same asymptotic behavior.

4.4.1 Deuteron mass shift and mass fraction for χ = 1

Let us consider first the case with χ = 1. For such a scaling
factor, three different sets of parameters will be considered.
They are determined according to the parameterization pro-
posed in Eqs. (58)–(61) with γ = 2/3 and are labeled in
the following as DD2-d1, DD2-d2 and DD2-d3. The values
of the parameters for these mass shift parameterizations are
listed in the first three lines of Table 2. They were obtained by
employing the DD2 nucleon-meson effective interaction with
properly rescaled meson coupling strengths at saturation as
given in Table 1. Panel (a) of Fig. 6 shows the deuteron mass

shift as function of the baryon density for these three different
sets. The red shaded area corresponds to the range of possible
mass shift values that are explored by assuming, for each den-
sity, deuteron fractions within the range [0, min{1, X (max)

d }].
First of all, Fig. 6 highlights the validity of the proposed
parameterization to comply with the constraints imposed on
the deuteron mass-shift. The three lines lie indeed within the
red area for the whole range of displayed baryon densities.

However, as shown in Table 2, a rather small range of the
parameter g may be actually explored, owing to the shrink-
age of the red area in the density region around the crossing
points, which were observed in Fig. 1, panel (a). Despite their
proximity, when these parameterizations are employed in Eq.
(56) to determine the density behavior of the deuteron frac-
tion, extremely different outcomes are obtained, at least when

Table 2 Values of the parameters in the deuteron mass shift parameteri-
zation defined by Eqs. (58)– (61) for six different sets. They are obtained
by employing the DD2 nucleon-meson effective interaction, with prop-
erly rescaled meson coupling strengths at saturation. The parameters a,

c and f are expressed in MeV, b, η, e, g and γ are dimensionless. The
first three sets refer to the case with deuteron-meson coupling scaling
factor χ = 1, the others to χ = 1/

√
2

a b c η e f g γ

DD2-d1 541.726060 243.472387 −83.230901 3.491787 1.0 214.368137 0.65 2/3

DD2-d2 541.726060 243.472387 −98.923123 3.200967 1.0 214.368137 0.67632 2/3

DD2-d3 541.726060 243.472387 −140.309501 2.715545 1.0 214.368137 0.75 2/3

DD2-χd1 541.726060 243.472387 99.677247 1.656159 1.0 181.113975 0.18 1

DD2-χd2 541.726060 243.472387 70.476986 1.230947 1.0 181.113975 0.22 1

DD2-χd3 541.726060 243.472387 41.777908 0.257252 1.0 181.113975 0.26 1
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Fig. 6 Panel (a): deuteron mass shift as function of the baryon den-
sity, as determined according to the parameterization proposed in Eqs.
(58)–(61). The SNM case is considered and a scaling factor χ = 1
is assumed for the deuteron-meson coupling strengths. Three different
set of parameters were employed. The red shaded areas evidence the
region of allowed mass shift or deuteron mass fraction values. Panel
(b): deuteron mass fraction Xd as function of the baryon density, as

determined by employing the same sets of parameters considered in
panel (a). In both panels, the DD2 nucleon-meson effective interac-
tion, with properly rescaled meson coupling strengths at saturation, is
adopted. Two curves with symbols (not shown in panel (a)) are consid-
ered in panel (b), as a result of slightly varying the g parameter of the
set labeled as DD2-d2 (see text for more details)
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approaching the region of the crossings. As clearly depicted
in Fig. 6, panel (b), the three adopted parameterizations cor-
rectly reproduce the low-density limit, corresponding to the
situation in which the matter is entirely clusterized (Xd = 1),
and account also for the constraints at saturation.

Nonetheless, highly diverse scenarios are predicted at
high-densities. The dashed curve, which is the lowest one
in the region around the shrinkage observed in panel (a), cor-
responds to a deuteron mass fraction which tends to exceed,
at a certain density, the maximum allowed value for X (max)

d .
We remind that the density region beyond this point would be
characterized by a negative value of the Dirac effective mass
of the nucleons. To exclude this opportunity, the curve in Fig.
6, panel (b) is thus stopped beyond that density. Owing to the
unfeasible high-density scenario, this set of parameter will
not be further employed in the following. Conversely, the
DD2-d3 parameterization, plotted as the dotted line, lying
above the other curves around 0.5 fm−3 in panel (a), predicts
a sudden disappearance of the deuterons, when approaching
the pole of Eq. (56). Actually, even in this case, the curve is
not plotted beyond the region of the crossing, to exclude the
unrealistic situation in which the clusters reappear at very
high densities. As already anticipated in Sect. 4.2, a quasi-
continuous solution of Eq. (56) might be arranged for all den-
sities with a fine tuning of the parameters. The corresponding
curve is plotted in both panels of Fig. 6 as the full line. In
this case, a smooth behavior is apparently recovered for the
density behavior of the deuteron mass fraction. However, a
strong sensitivity persists in correspondence of the pole, as
manifested by the two thin lines with symbols plotted in panel
(b). These curves are obtained with mass shifts functions that
are found by varying the g parameter only by 1% of the set
labeled as DD2-d2. Owing to the presence of the pole, the
DD2-d2 set of parameters will be set aside hereafter too. A
more refined method to find a continuous function would be
to consider a more general form of the mass shift parameteri-
zation with respect to the one proposed in Eqs. (58)–(61). By
enlarging the number of the involved parameters, it would
be possible to constrain the mass-shift and its slope values
such that the pole will be definitely washed out. Nonethe-
less, none of such possible parameterizations would allow
to accomplish our aim to extend the predictions to ANM.
Since the position of the pole evolves with the asymmetry,
a divergence of the mass fraction would emerge once again
as soon as the asymmetry of the matter is changed, despite
its removal in the SNM case. The same holds, obviously,
for any deuteron-meson coupling scaling factor χ > 1/

√
2.

However, one should bear in mind that, for values of the scal-
ing factor smaller than 1, the pole is expected to appear at
higher densities. Since for χ = 1 the pole emerges already
at rather large densities (around 3n0), one expects that for
more realistic values of χ , its position will be located much
beyond the range that is relevant in the applications of the

model. Then its emergence could be neglected in practice. For
χ = 1, only the DD2-d3 parameterization will be employed
in the following, when the general properties of both SNM
and ANM matter will be investigated.

4.4.2 Deuteron mass shift and mass fraction for χ = 1/
√

2

As discussed in the previous sections, a possible way out to
overcome the issue of the pole might be to assume a smaller
scaling factor which is, at maximum, equal to 1/

√
2. For such

a scaling factor, three different sets of parameters, labeled as
DD2-χd1, DD2-χd2, and DD2-χd3, are proposed here. The
values of the parameters in Eqs. (58)–(61) for these sets are
listed again in Table 2.

One observes a strong sensitivity to the g parameter of
the deduced values for c and η. Moreover, when increas-
ing g, both parameters to account for the saturation con-
straints decrease. A further increase of g beyond a maxi-
mum value gmax ≈ 0.26 is excluded, since it would imply
a negative value for d and thus a dominant role of 
md,2

in the zero-density limit, where a pole could even emerge.
However 
md,1 returns already, by construction, the correct
low-density trend.

Further insights may be achieved by looking at both pan-
els of Fig. 7. The density behaviors of these mass shifts are
shown in Fig. 7 panel (a). The same parameterizations are
then employed in panel (b) of Fig. 7 to determine the corre-
sponding density behavior of the deuteron mass fraction Xd .
In the two panels, the red shaded area evidences the allowed
region between the (upper) curve, related to the deuteron-free
case, i.e. Xd = 0, and the (lower) one, obtained by assuming

Xd = min
{

1, X (max)
d

}
.

First of all, looking at panel (a), one notices that the black
curves lie always within the red shaded area up to very large
baryon densities, so validating the choice of the adopted
parameter sets. In light of the constraints imposed in the
extremely dilute regime and at saturation, the full, dashed
and dottes black curves remain rather close up to n0. All the
curves also converge to the line characterized by Xd = 0, in
the asymptotic limit. Some differences emerge instead in the
high-density behavior, around and beyond 3n0.

The observed differences in the mass shifts are then
reflected in the density behavior of the deuteron mass frac-
tion, which is plotted in panel (b). Independent on the param-
eterization, in the zero-density limit, the matter is completely
clusterized and the deuteron mass fraction Xd is equal to 1.
With increasing density, a considerable reduction of Xd is
observed and a local minimum emerges in a density region
around the saturation density. There the value Xd = 0.2 is
reached, as required in agreement with the experimental evi-
dences concerning the emergence of SRCs pairs. At supra-
saturation densities, several scenarios take place. The curves
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Fig. 7 Panel (a): deuteron mass shift as function of the baryon density,
as determined according to the parameterization proposed in Eqs. (58)–
(61). The SNM case is considered and a scaling factor χ = 1/

√
2 is

assumed for the deuteron-meson coupling strengths. Three different set
of parameters were employed. The red shaded area evidences the region
between the (upper) curve, related to the deuteron-free case, i.e. Xd = 0,

and the (lower) one, obtained by assuming Xd = min
{

1, X (max)
d

}
.

Panel (b): deuteron mass fraction Xd as function of the baryon den-
sity as determined by employing the same sets of parameters of panel
(a). In both panels, the DD2 nucleon-meson effective interaction, with
properly rescaled meson coupling strengths at saturation, is adopted

never overshoot the line indicating the maximum allowed
value for Xd , which ensures a non-negative value for the
Dirac effective mass of the nucleons. Then, at higher den-
sities, a decreasing trend is observed for all curves, which
converge each other, approaching zero asymptotically.

It is worthwhile to notice that alternative scenarios, simi-
lar to the ones displayed by the dotted and the dashed lines
in panel (b) of Fig. 6, would be possible also in the case with
χ = 1/

√
2. Solutions with deuteron mass fraction values

which tend to exceed the maximum allowed at a certain den-
sity or abruptly vanishing might accidentally occur, when
considering mass shift parameterizations which cross the
lowest or the highest border, respectively, of the red shaded
area shown in panel (a) of Fig. 7. Differently than the case
with χ = 1, these solutions are not connected to the emer-
gence of any pole. The three sets of parameters proposed
in panel (b) of Fig. 7 avoid these scenarios. Solutions with
the disappearance of the clusters at a certain baryon density
would be likewise acceptable, even though none of the three
chosen sets of parameters for χ = 1/

√
2 provides a similar

result. Indeed, for this class of solutions, the density behavior
of the deuteron mass fraction would closely resemble the one
obtained with the DD2-d3 parameterization. The main dif-
ference will be only the possible wider density range with a
non-vanishing deuteron mass fraction values before the clus-
ter is suppressed. For χ = 1/

√
2, we will consider three set

of parameters, such that the mass shifts are characterized by
similar smooth trends as functions of the baryon density, but
different sizes of the deuteron mass fractions in the supra-
saturation density regime. In such a way, we could assess
and isolate the role of this ingredient.

The sets of parameters DD2-d3, DD2-χd1, DD2-χd2, and
DD2-χd3 listed in Table 2 return a smooth behavior of the
mass fraction for the whole range of baryon densities and
for any asymmetry. Thus, they will be employed in the next
section to study various properties, both for SNM and ANM.

5 Thermodynamic quantities

Once the density behavior of the mass shift and of the
corresponding deuteron mass fraction is determined, it is
interesting to see how the embedding of quasi-clusters at
supra-saturation densities affects some general thermody-
namic quantities.

5.1 SNM: EoS and incompressibility

Let us focus in this section on the results for SNM. The den-
sity dependence of the energy per nucleon E/A is plotted
in Fig. 8. The sets of parameters DD2-d3, DD2-χd1, DD2-
χd2, DD2-χd3 listed in Table 2 are employed. The standard
DD2 parameterization, describing the deuteron free case, is
also shown as reference for comparison. The inset of Fig. 8
depicts in particular the differences between the energy per
nucleon derived with each set and the chosen reference. First
of all, one notices that, in light of the fit performed at satu-
ration, all the curves remain rather close in the low-density
regime. However, the parameterizations with deuterons dif-
fer from the standard DD2 result in the zero-density limit,
approaching one half of the deuteron binding energy in vac-
uum. Moreover, remarkable differences also emerge in the
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Fig. 8 Energy per nucleon as a function of the baryon density, as deter-
mined by employing four selected set of parameters listed in Table 2, for
the mass shift parameterization given in Eqs. (58)–(61). For comparison,
the curve obtained for the DD2 parameterization in the deuteron-free
case is also shown, as the red full line. The inset shows the differences
with respect to the predictions of the standard DD2 parameterization in
a larger baryon density range

high-density behavior of the energy per nucleon. Despite the
fit performed at saturation, as in Fig. 5, a stronger binding is
generally observed in the neighbourhood of n0 in the param-
eterizations accounting for the presence of deuterons. This
stronger attraction persists also to all densities in the case of
the DD2-d3 set, despite the disappearance of the deuterons
which is expected to occur at nb around 0.45 fm−3 with this
parameterization (see Fig. 6). The reduction in the energy
per nucleon observed at higher densities with the DD2-d3 is
thus only driven by the changed balance between the scalar
and vector components, which is a result of the rescaling of
the meson coupling strengths at saturation.

A different scenario manifests itself with the parameter-
izations derived with a reduced scaling factor χ . There, no
systematic increased binding, as compared to the DD2 case,
is observed. A delicate interplay takes place between the
stronger attraction, which is produced by the presence of
the deuterons, and the repulsion determined by the increased
stiffness of the EoS. This is a result of the modification intro-
duced in the strengths of the σ and ω meson couplings. A
global repulsive contribution is seen at large baryon densi-
ties, while a significant reduction of the energy per nucleon
might be observed up to approximately 3n0, depending on
the value reached by the deuteron mass fraction in correspon-
dence of the local maximum observed in Fig. 7. However, as
highlighted in the inset of Fig. 8, the three black curves con-
verge in the asymptotic limit, where a smooth disappearance
of the clusters was depicted in panel (b) of Fig. 6.

The incompressibility characterizes the curvature of the
energy per nucleon. It is defined here as

K (nb) = 9n2
b
∂2(E/A)

∂n2
b

(64)

through a second derivative with respect to the baryon den-
sity.1 We recall that the incompressibility was not constrained
within the approach adopted in this work. A constraint on
the incompressibility would translate to a constraint on the
second density derivative of the mass shift at saturation. In
addition, it would require, as a further input at saturation,
the knowledge of the density derivative of the deuteron mass
fraction. Although some numerical analyses have suggested
that SRC pairs have a minimum in the neighbourhood of the
saturation, owing to the interplay between the tensor com-
ponent and the repulsive core of the nuclear force [49–51],
we preferred to prescind from applying such a constraint.
Instead, the predictions for the density behavior of K are
numerically extracted from the energy per nucleon. They are
plotted in Fig. 9 for the four selected parameterizations of
Table 2 considered before. The related inset shows the dif-
ferences with respect to the standard DD2 reference, which
is also shown in the main plot for comparison. As a general
feature, one observes that a softening of the EoS is recovered
in the region beyond saturation, up to a density around 3n0.
Furthermore, the size of this effect depends on the magnitude
of the deuteron mass fraction.

As clearly evidenced in Table 3, the predictions for the
incompressibility at saturation lie within or below the range
of values generally assumed for this quantity [82–85] for all
the parameterizations here employed. Strong differences are
observed in the high-density region, depending on the value
for the scaling factor χ . A much stiffer EoS is envisaged in
particular at very large baryon densities, when a scaling factor
χ = 1/

√
2 is assumed, as a consequence of the significant

change introduced in the balance between the scalar and the
vector components in this case.

Fig. 9 also exhibits another aspect to be discussed. The
blue curve, which corresponds to the DD2-d3 parameteriza-
tion, reveals the emergence of a discontinuity at a baryon den-
sity around 0.45 fm−3. This striking feature signals the abrupt
disappearance of the cluster, which was observed in Fig. 6,
panel (b) and already discussed before. It is worthwhile to
mention that a discontinuity in the matter incompressibility
or in any other quantity related to the second derivative of
a thermodynamic potential is the signature for the possible
emergence of a second-order phase transition. One notices,
by the way, that this feature is in complete analogy to the

1 The original definition of K uses a second derivative with respect
to the Fermi momentum and gives different results as compared to the
definition used here but can not be used at finite temperatures. However,
both definitions coincide at saturation.

123



Eur. Phys. J. A (2022) 58 :120 Page 19 of 29 120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baryon number density n
b
 [fm

-3
]

0

40

80

120

160

200
in

co
m

pr
es

si
bi

lit
y 

K
 [

10
2  M

eV
]

DD2
DD2 - d3
DD2 - χd1
DD2 - χd2
DD2 - χd3

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

K
 -

 K
D

D
2 [

10
2  M

eV
]

Fig. 9 Incompressibility K as a function of the baryon density as deter-
mined by employing four selected set of parameters listed in Table 2
and for the mass shift parameterization given in Eqs. (58)–(61). For
comparison, the curve obtained for the DD2 parameterization in the
deuteron-free case is also shown as the red full line. The inset shows the
differences with respect to the predictions of the standard DD2 param-
eterization in a larger baryon density range

Table 3 Values of the incompressibility K0, in MeV, at saturation den-
sity as derived according to Eq. (64), for four selected parameterizations
employed in this work. The result for the DD2 is also given for com-
parison

DD2 DD2-d3 DD2-χd1 DD2-χd2 DD2-χd3

K0 [MeV] 242.7 199.6 185.3 207.3 240.3

disappearance of pairing correlations that was observed in
previous works at low density [86,87]. Another discounti-
nuity would emerge moreover at larger densities, if the cal-
culation with the DD2-d3 parameterization is not stopped
when the cluster dissolves, so that a further reappearance of
the deuterons at higher density is allowed. The inset of Fig.
9 shows that no discontinuity is instead observed when the
deuteron mass fraction smoothly decreases with the density.
The latter situation may however occur only for the param-
eterizations characterized by a reduced value of the scaling
factor χ .

5.2 Predictions for ANM

5.2.1 Deuteron mass fraction and EoS

Let us finally concentrate on the predictions for ANM. In Fig.
10, panel (a), the density dependence of the deuteron mass
fraction is plotted for different values of the isospin asymme-
try |β|. The DD2-χd1 parameterization is employed for sake
of illustration. The adopted parameterization allows one to
get the largest value for the deuteron mass fraction around

the local maximum, which was observed beyond 0.5 fm−3

in panel (b) of Fig. 7. In such a way, the effect of embed-
ding the quasi-deuterons at supra-saturation densities is bet-
ter emphasized. However, similar results, at least from a qual-
itative point of view, would be obtained with the other sets of
parameters accounting for the presence of the deuterons. The
red line indicates the maximum allowed deuteron mass frac-
tion values, which are compatible with a non negative value
of the Dirac effective mass of the nucleons. Let us recall that
this curve corresponds to Xd = min{1−|β|, X (max)

d }, so that
it evolves with |β|. Then only the border for SNM (β = 0) is
plotted in panel (a) of Fig. 10 to avoid to overload the figure.

As a quite interesting result, Fig. 10 highlights that,
although the mass shift function defined in Eqs. (58)–(61)
has no explicit dependence on the isospin asymmetry, the
corresponding deuteron mass fraction evolves with |β|, giv-
ing rise to a continuous overall reduction when increasing
the neutron-proton asymmetry of the matter. Moreover, the
smooth transition to the cluster-free matter realized in SNM
with the DD2-χd1 is preserved also in the ANM case.

The density behavior of the energy per nucleon is depicted
in panel (b) of Fig. 10, for the same parameterization and the
same asymmetry values considered in panel (a). The inset
of panel (b) displays moreover the difference in the energy
per nucleon, as determined with the DD2-χd1 and the DD2
parameterization. Although not clearly visible, differently
than in the deuteron-free DD2 case, the zero-density limit
does not approach zero, except for the PNM case (β = 1) in
which deuterons are obviously not formed. This feature will
be more visible below, when studying the symmetry energy.

The results shown in the inset of panel (b) help to disen-
tangle the effect induced on the stiffness of the EoS, owing
to the rescaling of the meson couplings at saturation and
the changes ascribable to the presence of the deuterons. The
curve related to |β| = 1, being characterized by Xd = 0,
demonstrates that, apart from a tiny enhancement of the
attraction below saturation (not clearly visible in the figure),
a much more repulsive PNM EoS is produced for DD2-χd1
beyond saturation as compared to DD2. This is the result
of the modification induced on the effective interaction by
changing the meson coupling strengths. However, for the
curves characterized by smaller asymmetry values, such a
repulsion is counterbalanced by the attraction produced by
the deuterons. An interplay analogous to the one discussed
in the SNM case takes place. In such a way, a reduction
of the energy per nucleon of ANM might be observed with
the DD2-χd1 parameterization, in the intermediate density
region beyond saturation. This region may actually extend up
to very large densities, close to nb = 0.9 fm−3 in SNM. On
the other hand, in the asymptotic limit the quasi-deuterons
tend to dissolve, so that their extra-binding vanishes and the
black curves depicted in the inset converge to the |β| = 1
one.
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Fig. 10 Panel (a): deuteron mass fraction Xd as function of the baryon
density, as determined by employing the DD2-χd1 parameterization.
The results for SNM (β = 0) are compared with the corresponding
ones deduced with different values of the asymmetry |β|. Panel (b):
Energy per nucleon as a function of the baryon density, as determined

by employing the same parameterization and the same asymmetry val-
ues as in panel (a). The inset shows the difference of the energy per
nucleon between the DD2-χd1 and DD2 parameterizations for the same
asymmetry values, in a wider range of baryon densities
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Fig. 11 Left panels: Deuteron mass fraction as function of the isospin
asymmetry β, for four selected parameterizations accounting for the
presence of the deuterons considered in this work. Right panels: Energy
per nucleon as a function of β as determined by employing the same
parameterizations as in the left panels. For comparison, the curve

obtained for the DD2 parameterization in the deuteron-free case is also
shown. Three different values of the total baryon density are considered:
n(low)
b = 10−4 fm−3 (panels (a) and (d)), n0 (panels (b) and (e)) and

n(high)

b = 100 fm−3 (panels (c) and (f))

A further insight into the dependence of the deuteron
mass fraction and the energy per nucleon on the isospin
asymmetry might be achieved by looking at Fig. 11. Three
different values of the total baryon density are considered:

n(low)
b = 10−4 fm−3 (panels (a) and (d)), n0 (panels (b) and

(e)) and n(high)

b = 100 fm−3 (panels (c) and (f)). The standard
DD2 parameterization is also plotted in the right panels.
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First of all, one observes that all the quantities are sym-
metric with respect to the SNM (β = 0) case. At the lowest
density value considered in Fig. 11, n(low)

b , the deuteron frac-
tion Xd equals the maximum allowed fraction and behaves
thus like Xd = 1−|β|, for the parameterizations accounting
for the presence of the deuterons. As a result, a characteristic
triangular shape of Xd and E/A is observed in panels (a)
and (d). The energy per nucleon does not follow the standard
parabolic law which is predicted in the deuteron-free DD2
case and reaches smaller values in SNM. It approaches half
of the deuteron binding energy in vacuum in the zero-density
limit. The energy per nucleon determined with the parame-
terizations accounting for the deuterons coincides with the
DD2 result only for matter composed exclusively of neutrons
or protons.

Secondly, a different picture is observed at the saturation
density n0. There, by varying the isospin asymmetry, the
deuteron mass fraction departs from the value Xd = 0.2
imposed for β = 0 (see panel (b)). A mild dependence of
the deuteron mass fraction on β is assessed for the param-
eterization characterized by a reduced scaling factor χ . A
larger sensitivity exists in the case of the DD2-d3 parame-
terization. Let us recall that, for this parameterization, the
clusters disappear for SNM at density around 0.45 fm−3.
Panel (b) shows that the clusters may dissolve already at sat-
uration density for finite β values, at least in the case of the
DD2-d3 parameterization. On the other hand, the presence
of the deuteron persists at n0 for all asymmetry values except
|β| = 1, for parameterizations with χ = 1/

√
2. However,

the parabolic dependence of the energy per nucleon on the
isospin asymmetry of the DD2 parameterization is perfectly
reproduced with all the considered parameterizations. This
result is clearly shown in panel (e). It originates from the
requirement to keep the energy per nucleon at saturation con-
strained, both for SNM and for matter composed exclusively
of neutrons or protons.

Thirdly, it is interesting to discuss what happens at the
highest density value,n(high)

b , considered in Fig. 11, panels (c)
and (f). Here, different results are obtained among the param-
eterizations characterized by a scaling factor χ = 1/

√
2.

However, for this density value, the deuterons survive at all
asymmetries only with the DD2-χd1 parameterization, for
which the largest value was already predicted in the SNM
case. For the other two parameterizations with χ = 1/

√
2,

the clusters dissolve already for |β| values smaller than 1. On
the other hand, since n(high)

b lies beyond the density at which
the cluster dissolution is predicted in SNM, the deuteron mass
fraction identically vanishes in case of the DD2-d3 parame-
terization. The corresponding asymmetry dependence of the
energy per nucleon, which is depicted in panel (f), is then
driven only by the modification in the coupling strengths
which was needed to keep the saturation properties well

constrained. As in Fig. 8, a slightly larger attraction is fore-
seen with the DD2-d3 parameterization, with respect to the
DD2 reference case. The opposite happens instead when the
parameterizations with a reduced value of the scaling factor
are considered. In this case, a stronger repulsion is envisaged,
partially mitigated, at least for small asymmetry values, by
the stronger binding provided by the presence of deuterons.
Quite interestingly, one observes that the parameterizations
plotted by black curves always converge when approaching
|β| = 1, where Xd = 0. A change of the parameterization,
which implies an according change of the deuteron fraction at
supra-saturation densities, affects the curvature of the depen-
dence of the energy per nucleon on β and thus the symmetry
energy. The latter quantity will be studied in detail below.

5.2.2 Symmetry energy and its slope

In the present work, the symmetry energy J is calculated as
the difference between the energies per nucleon in PNM and
SNM

J (nb) = E

A

∣∣∣∣
β=1

(nb) − E

A

∣∣∣∣
β=0

(nb) . (65)

The quantity obtained through this equation is identical to
the symmetry energy calculated from the usual definition

J (nb) = 1

2

∂2(E/A)

∂β2

∣∣∣∣
β=0

(66)

using a second derivative of the energy per nucleon with
respect to the asymmetry, if E/A follows a quadratic depen-
dence on β. The density dependence of J is plotted in Fig.
12, panel (a). The inset of panel (a) shows a zoom at sub-
saturation densities. Once again, the inset highlights the dis-
similar behavior in the zero density limit, when the presence
of the clusters is taken into account or not. It reflects the dif-
ferences existing in the very dilute regime of the SNM EoS
with respect to the deuteron-free case. If clustering is taken
into account, the symmetry energy approaches indeed half of
the deuteron binding energy in the zero-density limit in con-
trast to the simple description without explicit two-particle
correlations. Some differences emerge among the parame-
terizations which account for the presence of the deuterons
below n0. Apart from the constraint at saturation, no restric-
tions have been imposed on the density behavior of J .

Concerning the behavior beyond saturation density, despite
the presence of the deuterons, at least up to 0.45 fm−3, the
blue curve remains close to the result of the standard DD2
parameterization. Huge differences are instead observed in
the supra-saturation density region when the parameteriza-
tions with a reduced value of the deuteron-meson coupling
scaling factor is considered. Furthermore, the size of the
effect depends quite strongly on the mass fraction of the
deuterons. The differences vanish in the asymptotic limit,

123



120 Page 22 of 29 Eur. Phys. J. A (2022) 58 :120

0 0.5 1 1.5 2 2.5 3

baryon number density n
b
 [fm

-3
]

0

50

100

150

sy
m

m
et

ry
 e

ne
rg

y 
J 

[M
eV

]
DD2
DD2 - d3
DD2 - χd1
DD2 - χd2
DD2 - χd3

10
-4

10
-3

10
-2

10
-1

10
-1

10
0

10
1

(a)

0 0.5 1 1.5 2 2.5 3

baryon number density n
b
 [fm

-3
]

-50

0

50

100

150

200

250

300

350

sy
m

m
et

ry
 e

ne
rg

y 
sl

op
e 

L
 [

M
eV

]

0.14 0.16
50

60

70

80(b)

Fig. 12 Panel (a): symmetry energy J as function of the baryon den-
sity, as determined through Eq. (65) for four selected parameterizations
employed in this work. The inset shows a zoom at sub-saturation densi-
ties. Panel (b): slope L of the symmetry energy as function of the baryon

density, as determined through Eq. (67), for the same parameterizations
as in panel (a). The inset shows a zoom around the saturation density
n0

where the deuterons disappear. The black and blue curves
approach the result of the standard DD2 parameterization
as the contribution of the ρ meson to the symmetry energy
vanishes due to the suppression of its coupling, leaving the
imbalance of the Fermi momenta of the nucleons as the main
contribution to J .

Finally, it is interesting to look at the density derivative of
the curves plotted in panel (a). The slope L of the symmetry
energy is numerically calculated here as

L(nb) = 3nb
d J

dnb
(67)

and the result is shown in Fig. 12, panel (b). Except for the
different behavior in the zero-density limit, the blue curve
roughly coincides with the standard DD2 in the whole range
of densities. A small kink is only observed for the DD2-d3
parameterization around 0.45 fm−3. This kink is related to the
disappearance of the deuterons in the SNM case. We recall
that this feature was also responsible for the emergence of
the discontinuity in the matter incompressibility discussed
before. A huge double oscillation around the result obtained
with the standard DD2 parameterization is observed for the
parameterizations with a reduced scaling factor χ . The mag-
nitude of this oscillation depends again on the deuteron mass
fraction predicted at supra-saturation densities, thus reflect-
ing the result shown in panel (a) of Fig. 12. The inset of panel
(b) displays the predictions for the symmetry energy slope
around saturation. In spite of the extremely large differences
in the high-density regime, reasonable values are obtained
at saturation density with all the parameterizations consid-
ered in this work. These values, which are collected in Table
4, lie within the range usually assumed for the slope of the

Table 4 Values of the slope of the symmetry energy L0, in MeV, at
saturation density as derived according to Eq. (67), for four selected
parameterizations employed in this work. The result for the DD2 is also
given for comparison

DD2 DD2-d3 DD2-χd1 DD2-χd2 DD2-χd3

L0 [MeV] 57.94 56.49 67.50 67.50 67.50

symmetry energy, see, e.g., [88] and references therein. The
three black curves, crossing each other at saturation, natu-
rally provide the same value. Alternative scenarios manifest
for the high-density behavior of the symmetry energy and its
slope. The stiffness of the EoS in the supra-saturation density
regime turns out to be strongly affected by the value of the
scaling factor. It is less dependent on the mere presence of
the deuterons. Thus, as a general feature, one concludes that
smaller values of the scaling factor correspond to higher stiff-
ness values in the density region beyond saturation relevant
for the applications of the model.

6 Conclusions and outlook

In this paper, we have proposed and explored a novel
approach to embed SRCs within the GRDF, a well-established
phenomenological EDF based on nucleon and cluster degrees
of freedom. In such a way, we aim to overcome the incon-
sistencies between recent experimental evidences, which
brought to light the existence of SRCs, and the predic-
tions of phenomenological models derived from mean-field
approaches without explicit correlations at densities around
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saturation. Previous generalisations of these EDFs represent
many-body correlation by cluster which dissolve, by con-
struction, when the nuclear saturation density is approached
from below. Within an extended relativistic mean-field model
with density dependent couplings, the idea of this work was to
effectively account for the existence of SRCs through proper
in-medium modifications of the cluster properties around sat-
uration and above. They are considered as quasi-particles
with density-dependent binding energies. Quasi-deuterons
immersed in dense matter are used as surrogate for correla-
tions in this first exploratory step. For the time being, the zero
temperature case, where the deuteron fraction is determined
by the density of a boson condensate, was addressed.

Suitable parameterizations of the cluster mass shift were
derived, for the first time, for all baryon densities. The pro-
posed mass shift functions comply with the available con-
straints and were employed to determine the density depen-
dence of the quasi-deuteron mass fraction at arbitrary isospin
asymmetries, thus for symmetric as well as for asymmet-
ric nuclear matter. They were constrained by microscopic
many-body calculations in the low-density limit, by specify-
ing the actual deuteron fraction at saturation and by assuming
a deuteron mass fraction behavior that respects the boson
condensation condition at higher densities. The effective
deuteron fraction around saturation was specified by extrap-
olating the experimental results on SRC pairs in nuclei
to infinite nuclear matter. Further constraints were more-
over imposed at supra-saturation densities by the maximum
allowed deuteron fraction, compatible with a non-negative
value of the Dirac effective mass of the nucleons.

A proper description of well-constrained nuclear matter
quantities at saturation required a refit of the nucleon-meson
coupling strengths. An important role of the coupling scaling
factor χ was revealed. It rules the coupling strength of the
mesons with nucleons bound in the clusters. Such a scaling
factor plays actually a primary role in the whole analysis
developed in this work.

The natural choice was supposed to be that the nucle-
ons inside the deuterons couple to the mesons with the same
strength as the unbound nucleons. However, with this choice,
the deuteron mass shift is not a monotonic function of the
deuteron mass fraction for all baryon densities. As a result,
the relation between the mass shift and the deuteron mass
fraction can not be inverted uniquely in all cases. The same
holds for any scaling factor χ larger than 1/

√
2. Thus, as

possible extreme values of two well distinct behaviors, two
different values of the scaling factor, namely χ = 1 and
χ = 1/

√
2 were chosen, in the calculations performed in

this work. The latter value is however significantly smaller
than the universal scaling factor for the cluster-meson cou-
pling strength. A value smaller than χ = 1 was proposed
in previous calculations of the EoS to take into account in-
medium effects and to get a good description of the chemical

equilibrium constants determined from recent experimental
data.

As a general feature, our analysis shows that, for χ = 1,
the only possible smooth solution for the density dependence
of the deuteron mass fraction implies a sudden disappear-
ance of the clusters at a density below the one corresponding
to the emergence of a pole. In correspondence of this den-
sity, a discontinuity in the matter incompressibility emerges,
analogous to the one observed at low density, owing to the
disappearance of the pairing correlations and indicating the
emergence of a second order phase transition. The analogy
between the behavior of pairing and SRCs deserves however
further investigation. For χ = 1, the density where the pole
emerges is located around three times the saturation den-
sity. However, for more realistic values of the scaling factor,
the pole is expected to appear at much higher densities, thus
much beyond the range that is relevant in applications of the
model. When the scaling factor value χ = 1/

√
2 is consid-

ered, alternative solutions exist, permitting smooth functions
of the density dependence of the deuteron mass fraction for all
densities. Three different parameterizations, providing such
a smooth behavior and characterized by different maximum
deuteron fraction values at supra-saturation densities, were
proposed.

Striking effects on some thermodynamic quantities are
recognized, owing to the presence of the quasi-deuterons in
the neighbourhood of saturation and at supra-saturation den-
sities. In particular, a softening of the SNM EoS is system-
atically observed with respect to the standard DD2 parame-
terization, which does not include deuteron-like correlations.
However, the stronger attraction, which is produced by the
presence of the deuterons, might be counterbalanced by the
repulsion driven by the modified coupling strengths. This
delicate interplay is additionally tuned by the value of the
scaling factor, which determines then alternative scenarios
for the high-density behavior of the symmetry energy and
its slope. In general, one concludes that smaller values of the
scaling factor correspond to higher stiffness of the EoS in the
supra-saturation density regime.

Last, but not least, it is worthwhile to recall that our anal-
ysis permits to also recover the correct low-density limit of
the EoS. Indeed, at zero-density, both the energy per nucleon
of SNM and the symmetry energy tend to be equal to one
half of the deuteron binding energy in vacuum, in contrast to
the predictions of standard mean-field models without cluster
correlations.

The findings of the present study represent a first step
to improve the description of nuclear matter and its EoS at
supra-saturation densities in EDFs by considering correla-
tions in an effective way. In a next step, the single-particle
momentum distributions can be explored using proper wave
functions of the quasi-deuteron in the medium. They have
to be derived consistently with the interaction used in the
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model and will lead to prediction of the cluster mass shifts
and fractions that can be compared to the suggested forms of
the present work. The many-body wave function of a clus-
ter contains correlated nucleons with a specific momentum
distribution. Then an imprint on the single-nucleon momen-
tum distribution in nuclear matter is expected, such that
a high-momentum tail develops even at zero temperature,
as observed in the experimental study of SRCs by nucleon
knockout with high-energy electrons.

The present approach can be generalized to finite tempera-
tures, where a further change of the single-nucleon momen-
tum distribution arises owing to the thermal change in the
distribution functions. Also a momentum dependence of the
mass shift and a more involved dependence on the isospin
asymmetry might be considered in a future work, together
with the effect of including heavier clusters and to investi-
gate their relative importance.

As a perspective, we finally aim at investigating the effect
of SRCs on neutron stars in the EDF framework, similarly
to what was done in some prior studies, see, e.g., [62], but
our approach is to replace heuristic parameterizations of the
momentum distributions with more microscopically founded
descriptions.

More in general, we aim at achieving a more comprehen-
sive description of correlations and clustering phenomena,
which represents still a challenge from a theoretical point of
view, despite the importance of these features in the widest
scope of astrophysical applications and for general aspects
of reactions dynamics in heavy-ion collisions.
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Appendix A: Mass fraction derivative of the deuteron
mass shift

The deuteron mass shift (44) is in general a function of the
baryon density nb, the asymmetry β, the deuteron fraction
Xd , and the temperature T. In this section, the derivative of

m(high)

d with respect to Xd is derived for constant nb and β

at T = 0. In a first step, the derivative of the nucleon effective
chemical potential with respect to Xd is expressed as

∂μ∗
q

∂Xd

∣∣∣∣
nb,β

= 1

μ∗
q

(
kq

∂kq
∂Xd

∣∣∣∣
nb,β

+ m∗
q

∂m∗
q

∂Xd

∣∣∣∣
nb,β

)
(A1)

using Eq. (35). The derivative of the Fermi momentum of a
nucleon q = n, p is found with help of the relation

∂n(v)
q

∂Xd

∣∣∣∣
nb,β

= −nb
2

= 3n(v)
q

kq

∂kq
∂Xd

∣∣∣∣
nb,β

(A2)

for the vector density (19). Using Eqs. (A1) and (A2), the
derivative of the scalar density of the nucleons can be written
as

∂n(s)
q

∂Xd

∣∣∣∣
nb,β

= −nb
2

m∗
q

μ∗
q

+ fq
∂m∗

q

∂Xd

∣∣∣∣
nb,β

(A3)

with the factor

fq = 3

(
n(s)
q

m∗
q

− n(v)
q

μ∗
q

)
(A4)

after several steps of recasting the individual contributions.
Eq. (A3) contains again the derivative of the effective mass
that assumes the simple form

∂m∗
q

∂Xd

∣∣∣∣
nb,β

= −Cσ

∂nσ

∂Xd

∣∣∣∣
nb,β

(A5)

because Cσ depends only on nb. With the derivatives

∂n(v)
d

∂Xd

∣∣∣∣
nb,β

= ∂n(s)
d

∂Xd

∣∣∣∣
nb,β

= nb
2

(A6)

of the deuteron densities, the derivative of the σ meson source
density (11) is found as

∂nσ

∂Xd

∣∣∣∣
nb,β

= nb
1 + (

fn + f p
)
Cσ

Ud (A7)

with

Ud = χdσ − m∗
nuc

2

(
1

μ∗
n

+ 1

μ∗
p

)
(A8)

whereas

∂nω

∂Xd

∣∣∣∣
nb,β

= −nb(1 − χdω) (A9)
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for the source density of the ω meson. Finally, the derivative
of the mass shift with respect to the mass fraction is obtained
in the compact form

∂
m(high)

d

∂Xd

∣∣∣∣
nb,β

=
[

2Cσ

1 + ( fn + f p)Cσ

U2
d − π2

2μ∗
nkn

− π2

2μ∗
pkp

]
nb

(A10)

with a contribution from the σ meson and kinetic terms.

Appendix B: Density derivative of deuteron mass shift

In this section, the derivative of 
m(high)

d with respect to nb
is derived for an arbitrary function Xd(nb) and constant β at
T = 0. It requires again several steps. First, the derivatives of
the source densities have to be determined. For the ω meson
one finds

∂nω

∂nb

∣∣∣∣
β

= 1 − (1 − χdω) Yd (B1)

with the quantity

Yd = ∂(nbXd)

∂nb

∣∣∣∣
β

= Xd + nb
∂Xd

∂nb

∣∣∣∣
β

(B2)

that contains the derivative of the deuteron mass fraction.
For the σ meson, the calculation is more involved. Here, the
relations

∂nσ

∂nb

∣∣∣∣
β

= (
fn + f p

) ∂m∗
nuc

∂nb

∣∣∣∣
β

+ χdσYd

+m∗
nuc

2μ∗
n

(1 + β − Yd) + m∗
nuc

2μ∗
p

(1 − β − Yd)

(B3)

with the factor fq defined in Eq. (A4) and

∂m∗
nuc

∂nb

∣∣∣∣
β

= −Cσ

∂nσ

∂nb

∣∣∣∣
β

− C ′
σnσ (B4)

for the derivative of the effective nucleon mass can be com-
bined to obtain the form

∂nσ

∂nb

∣∣∣∣
β

= [
1 + (

fn + f p
)
Cσ

]−1

[
−

(
fn + f p

)
C ′

σnσ + χdσYd

+m∗
nuc

2μ∗
n

(1 + β − Yd) + m∗
nuc

2μ∗
p

(1 − β − Yd)

]

(B5)

with an explicit dependence onYd . In the next step, the deriva-
tive of the mass shift assumes the form

∂
m(high)

d

∂nb

∣∣∣∣
β

= kn
μ∗
n

∂kn
∂nb

∣∣∣∣
β

+ kp
μ∗

p

∂kp
∂nb

∣∣∣∣
β

+
(

1

μ∗
n

+ 1

μ∗
p

)
m∗

nuc
∂m∗

nuc

∂nb

∣∣∣∣
β

+2(1 − χdω)

(
Cω

∂nω

∂nb

∣∣∣∣
β

+ C ′
ωnω

)

+2χdσ

(
Cσ

∂nσ

∂nb

∣∣∣∣
β

+ C ′
σnσ

)
(B6)

with

∂kn
∂nb

∣∣∣∣
β

= kn

3n(v)
n

(
1 + β − Yd

2

)
(B7)

and

∂kp
∂nb

∣∣∣∣
β

= kp

3n(v)
p

(
1 − β − Yd

2

)
. (B8)

Using the expressions (B1) and (B5), the final result can be
expressed in compact form as

∂
m(high)

d

∂nb

∣∣∣∣
β

= Wd − ZdYd (B9)

with the auxiliary quantities

Zd = π2

2μ∗
nkn

+ π2

2μ∗
pkp

+ 2 (1 − χdω)2 Cω

− 2Cσ

1 + (
fn + f p

)
Cσ

U2
d (B10)

Wd = π2

2μ∗
nkn

(1 + β) + π2

2μ∗
pkp

(1 − β)

+2(1 − χdω)
(
Cω + C ′

ωnω

)

+ 2

1 + (
fn + f p

)
Cσ

Ud

[
C ′

σnσ + Cσ

m∗
nuc

2

(
1 + β

μ∗
n

+ 1 − β

μ∗
p

)]
(B11)

and Ud as given in (A8).

Appendix C: Conversion of parameters at saturation

In order to find the coupling strengths �σ,0 and �ω,0 as well
as the deuteron mass shift and its density derivative at satura-
tion, a step-by-step procedure can be followed. These quan-
tities are determined as soon as the saturation density n0, the
binding energy per nucleon B0, the effective nucleon mass
m∗

nuc,0 and deuteron fraction Xd,0 of SNM are specified.
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In a first step, the scalar and vector densities

n(s)
d,0 = n(v)

d,0 = n0
Xd,0

2
(C1)

of the deuteron and the total vector density

n(v)
nuc,0 = n0

(
1 − Xd,0

)
(C2)

of the nucleons are immediately obtained from n0 and Xd,0

in SNM. Then the Fermi momentum

knuc,0 =
[

6π2

gnuc
n(v)

nuc,0

]1/3

(C3)

with degeneracy factor gnuc = 4 and the effective chemical
potential

μ∗
nuc,0 =

√
k2

nuc,0 +
(
m∗

nuc,0

)2
(C4)

allow to calculate the scalar density

n(s)
nuc,0

gnucm∗
nuc,0

4π2

=
[
knuc,0μ

∗
nuc,0 − (

m∗
nuc,0

)2 ln
knuc,0 + μ∗

nuc,0

m∗
nuc,0

]

(C5)

using the effective nucleon mass m∗
nuc,0. Then the source

densities

nσ,0 = n(s)
nuc + 2χn(s)

d,0 (C6)

and

nω,0 = n(v)
nuc + 2χn(v)

d,0 (C7)

with the deuteron-meson coupling scaling factor χ are found
and the pressure contribution

pnuc,0 = 1

4

[
μ∗

nuc,0n
(v)
nuc,0 − m∗

nuc,0n
(s)
nuc,0

]
(C8)

of the nucleons can be calculated immediately.
In the next step, the effective nucleon mass determines the

scalar potential

Snuc,0 = mnuc − m∗
nuc,0 (C9)

of the nucleons and thus the scalar coupling

Cσ,0 = Snuc,0

nσ,0
(C10)

and finally the coupling strength

�σ,0 = mσ

√
Cσ,0 (C11)

of the σ meson. The binding energy per nucleon B0 gives the
chemical potential

μnuc,0 = mnuc − B0 (C12)

at saturation and then the vector potential

Vnuc,0 = μnuc,0 − μ∗
nuc,0 (C13)

of the nucleons. The latter quantity can be expressed in gen-
eral as

Vnuc,0 = Cω,0nω,0 + Cρ,0nρ,0 +U (r)
0 (C14)

with the auxiliary quantity

U (r)
0 = V (r)

0 + W (r)
0 (C15)

that also appears in the total pressure

P0 = pnuc,0 + 1

2

(
Cω,0n

2
ω,0 + Cρ,0n

2
ρ,0

−Cσ,0n
2
σ,0

)
+U (r)

0 n0 .

(C16)

For SNM, however, the ρ-meson contribution does not
appear, since nρ is identically zero. The two equations (C14)
and (C16) allow to solve for the ω coupling

Cω,0 =
(

2nω,0n0 − n2
ω,0

)−1

(
2pnuc,0 + 2Vnuc,0n0 − Cσ,0n

2
σ,0

)
(C17)

and further the coupling strength

�ω,0 = mω

√
Cω,0 (C18)

using P0 = 0. With known Cσ,0 and Cω,0, their deriva-
tives C ′

σ,0 and C ′
ω,0 can be determined using the same func-

tional density dependence of the couplings as in the reference
parameterization. Thus also the rearrangement contribution

V (r)
0 = 1

2

(
C ′

ω,0n
2
ω,0 + C ′

ρ,0n
2
ρ,0 − C ′

σ,0n
2
σ,0

)
(C19)

is given.
Finally, from Eqs. (C14) and (C15) one finds

W (r)
0 = Vnuc,0 − Cω,0nω,0 − V (r)

0 (C20)

and the deuteron mass shift derivative

d
md

dnb

∣∣∣∣
n0

= W (r)
0

n(s)
d,0

(C21)

at saturation. The deuteron mass shift itself is determined as


md,0 = Bd + 2
(
μ∗

nuc,0 − m∗
nuc,0

)

+2(1 − χdω)Cωnω − 2(1 − χdσ )Cσnσ (C22)

from the condensation condition with the binding energy of
the deuteron in vacuum Bd .

The rescaling of the σ and ω coupling strengths induces
a modification of the energy per nucleon in PNM at satura-
tion and thus of the symmetry energy. Within the parabolic
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approximation, the symmetry energy at saturation is indeed
given by

J0 = E

A

∣∣∣∣
n0,β=1

− E

A

∣∣∣∣
n0,β=0

= E

A

∣∣∣∣
n0,β=1

+ B0 . (C23)

Then, constraining the value of J0 implies a constraint on
E/A of PNM at n0. Taking into account Eq. (31), the condi-
tion above writes

μ∗
n,0 + Vn,0 − Pn

n0

∣∣∣∣
n0,β=1

= mnuc + J0 − B0 (C24)

with the effective chemical potential

μ∗
n,0 =

√
k2
n,0 +

(
m∗

n,0

)2
(C25)

of the neutron at the saturation density n0. The effective mass
of the neutron m∗

n,0 = mnuc − �σn
(s)
n,0 has to be determined

self-consistently with the scalar density n(s)
n,0, defined in Eq.

(34), using the Fermi momentum kn,0 = (
3π2n0

)1/3
of the

neutron. Since there are no deuterons in PNM, the vector
potential of the neutron is given by

Vn,0 = Cω,0nω + Cρ,0nρ

+1

2

(
C ′

ω,0n
2
ω + C ′

ρ,0n
2
ρ − C ′

σ,0n
2
σ

)
(C26)

and the pressure assumes the simple form

Pn(n0) = 1

4

(
μ∗
n,0n

(v)
n,0 − m∗

n,0n
(s)
n,0

)

+1

2

[
Dω,0n

2
ω + Dρ,0n

2
ρ − Dσ,0n

2
σ

]
(C27)

with nω = nρ = n(v)
n,0 = n0 and nσ = n(s)

n,0. The rescaled
couplings Cω,0, Cσ,0, C ′

ω,0, C ′
σ,0, Dω,0, and Dσ,0, c.f., Eq.

(39), at saturation are already known and thus Cρ,0 can be
deduced from

Cρ,0 = 2

n0

[
mnuc + J0 − B0 − 3

4
μ∗
n,0

−1

4
m∗

n,0

n(s)
n,0

n0
− 1

2
Cω,0nω − 1

2n0
Cσ,0n

2
σ

]
(C28)

and, finally,

�ρ,0 = mρ

√
Cρ,0 (C29)

for the coupling of the ρ meson at saturation.

Appendix D: Analytical expressions for the mass shift
parameters

The following analytical expressions permit to calculate the
parameters c and d appearing in Eq. (58):

c = [1 − tanh(e)]−1

[

md,0 − a

1 + b
− f tanh(g)

]
(D1)

η = [1 − tanh(e)]−1
{

∂
md

∂nb

∣∣∣∣
n0

n0 − a

(1 + b)2 + ce

cosh2(e)

− f γ tanh(g) − f g

cosh2(g)
− c[1 − tanh(e)]

}
(D2)

where the values for a, b, e, f and g are determined as

explained in Sect. 4.4, while 
md,0 and
∂
md

∂nb

∣∣∣
n0

indicate

the mass shift and its density slope at saturation density n0.
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