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Abstract—In advanced metering infrastructure (AMI), the cus-
tomers’ power consumption data is considered private but needs
to be revealed to data-driven attack detection frameworks. In
this paper, we present a system for privacy-preserving anomaly-
based data falsification attack detection over fully homomorphic
encrypted (FHE) data, which enables computations required for
the attack detection over encrypted individual customer smart
meter’s data. Specifically, we propose a homomorphic look-
up table (LUT) based FHE approach that supports privacy
preserving anomaly detection between the utility, customer,
and multiple partied providing security services. In the LUTs,
the data pairs of input and output values for each function
required by the anomaly detection framework are stored to
enable arbitrary arithmetic calculations over FHE. Furthermore,
we adopt a private information retrieval (PIR) approach with
FHE to enable approximate search with LUTs, which reduces
the execution time of the attack detection service while protecting
private information. Besides, we show that by adjusting the
significant digits of inputs and outputs in our LUT, we can
control the detection accuracy and execution time of the attack
detection, even while using FHE. Our experiments confirmed
that our proposed method is able to detect the injection of false
power consumption in the range of 11-17 secs of execution time,
depending on detection accuracy.

Index Terms—anomaly (attack) detection, smart grid, privacy-
preserving, FHE, look-up table

I. INTRODUCTION

Advanced Metering Infrastructure (AMI) in a smart (elec-
trical) grid is an IoT system, consisting of communication
networks, data management systems, and smart meters that
record power consumption from every customer [1], [2]. The
communication network connects the individual customer’s
smart meters to the data management system of the utility.

The smart meters and the AMI communication network
are vulnerable to data integrity attacks where an adversary
injects false power consumption data that pose serious threats
to both the utilities and customers. Data falsification in AMI
mostly focuses on electricity theft [3]-[6], i.e., the power
consumption reported by the smart meter is lower than the
true value, which we call a deductive attack. By contrast, a
false increase in the reported power consumption is called
an additive attack via a physical load-altering. An additive
attack on the smart meters of a competitor company would
increase the bills of its customers, thereby reducing the trust
of customers on that company and also create a false power

surge. The camouflage attack [7] launches the deductive and
additive attacks simultaneously while keeping the mean power
consumption unchanged, i.e., a set of the customer meters
is under a deductive attack while another equal set of the
meters is under an additive attack. Such attacks benefit one
set of customers with lesser bills at the expense of another set
without raising suspicion.

Since the utility controls customer billing, power quality and
efficiency of the smart grid, detecting such attacks in utilities
are critical. A common way of data integrity attack detection
is to deploy an anomaly detection system that learns patterns
in data that do not conform to expected benign behavior [§]
to indicate the presence of attacks. There are two broad
approaches for attack detection in smart grids via anomaly
detection. One approach is to check abnormal information via
hardware, such as the use of power line modems by Passerini
et al. [9]. Another approach is to build an data driven anomaly
detection system using software, such as machine learning
[10]-[12], deep learning [13], and neural networks [14]. Since
data driven approaches do not need extra hardware, they are
feasible for community scale smart living IoT such as AML

A. Motivation and Challenges

From the above discussion, it is clear that data driven ap-
proaches are crucial for increased visibility and vigilance in the
AMI for attack detection. However, paradoxically, an anomaly-
based attack detection system requires the power consumption
data of every customer to be revealed to the anomaly detection
system, thereby compromising the privacy of the customers.
Customers advocacy groups and governments are concerned
about the privacy-sensitive nature of customer’s smart data,
which is misaligned with security goals of the grid utility. This
motivates the need to design privacy-preserving data driven
security frameworks for AMI.

To construct privacy-preserving anomaly detection systems,
many studies have used differential privacy (DP) [15], which
protects sensitive data by adding random noise. A disadvantage
of DP is that it does not support exact computation, thereby
limiting the accuracy of the results. Another approach is
the use of secure multiparty computation (SMC) [16], [17]
to protect sensitive data. SMC is based on joint operations
involving multiple parties via secret sharing. With secret



sharing, sensitive data are divided into different parties for
storage and computations. However, the communication costs
of SMC are huge for streaming data applications like AMI.
A third alternative is the use of homomorphic encryption
(HE) [18], [19] that allows computations without the need
to ever decrypt the individual customer’s data. While HE has
a smaller communication cost, it can only support additions
and multiplications, resulting in difficulty to adopt anomaly
detection techniques that involve advanced math operations.
Furthermore, the execution overhead and the accuracy of an
HE-based anomaly detection framework should not degrade
due to the privacy requirement.

In [20], the authors introduced an anomaly detection system
using fully homomorphic encryption (FHE) [21], which can
also perform anomaly detection on deductive, additive, and
camouflage attacks. Note that FHE is a type of HE enabling
an unlimited number of computations on encrypted data. They
proposed a specific algorithm to adopt FHE to enable anomaly
detection. However, they did not offer flexibility for supporting
arbitrary calculations and did not have provisions that allow
a smart grid AMI utility to choose between desired levels of
achievable anomaly detection accuracy and execution latency.
To solve the above problems, we propose a system with a look-
up table (LUT) based FHE approach integrated with private
information retrieval (PIR) that can support arbitrary calcula-
tions, allow utilities a trade-off between execution latency and
attack detection accuracy.

B. Contributions of This Work
The contributions of this work are fourfold.

o We propose a privacy-preserving anomaly attack detec-
tion system using a LUT-based FHE integrated with
PIR specifically for an AMI infrastructure. Our novel
approach allows a utility to flexibly tune the anomaly
detection accuracy and control the execution latency,
which is a challenge in FHE. Specifically, our LUT-
based FHE approach, i.e., preparing input-output value
pairs as LUT and replacing functions to a search, allows
the implementation of arbitrary functions even if the
traditional FHE itself cannot handle complex functions
(e.g., logarithm, inverse, division). To the best of our
knowledge, this is the first implementation of flexible
control of the detection accuracy and the execution la-
tency over FHE. Furthermore, a PIR is adopted to enable
approximate search without revealing any information to
both the utility and the data management system. Note
that approximate search enables the search even if LUT
has no exact match input and returns the result whose
input is nearest to the query.

o To control the detection accuracy, we provision for a
flexible precision parameter that is learned based on the
utility’s desired anomaly detection accuracy, which allows
a utility to understand the trade-offs between execution
time and the anomaly detection accuracy. The precision
parameter adaptively controls the number of rows in the
LUT for FHE. Therefore, the execution time of LUT

processing will be shorter when using fewer rows in the
LUT but this comes at the cost of the anomaly detection
accuracy. The suitable precision parameter of the LUT is
found based on the training data set.

o To speed up the FHE processing, we add a dropping of
least significant bits feature in our LUT-based FHE sys-
tem. This allows that each of the entries in the LUT has
a smaller plaintext space to compute the large numbers
involved in FHE, which further reduces the execution
time of our system.

o We implemented our framework with a Raspberry PI as
a proxy for a smart meter. We deployed the look-up table
based privacy-preserving anomaly detection system on a
server and measured the real execution time for varying
utility specified accuracy levels. Our results show that our
method can detect the presence of attacks over encrypted
data within 11-17 seconds on the server, depending on
the desired accuracy level.

The rest of the paper is organized as follows. Preliminary
techniques used in this study are presented in Section II. We
introduce the proposed technique in Section III. Section IV
presents the experimental evaluation and we conclude this
work in Section V.

II. PRELIMINARIES AND BACKGROUND

This section introduces the background, preliminaries and
assumptions of the work. In our system, the smart meters are
assumed honest, and the other parties are assumed honest-
but-curious parties, i.e., they follow the protocol but try to
find out as much as possible about the data. We assume the
data integrity attack occurs before the smart meters encrypts
the data, which is practical for many transactions and load
altering exploits that lead to data falsification.

A. Anomaly Detection Metric

For the anomaly detection, we adopt the framework pro-
posed in [7] which detects attacks with high detection sensitiv-
ity while minimizing the false alarms. In [7], the basic anomaly
detection metric is the ratio between the harmonic mean (HM)
and arithmetic mean (AM) of the power consumption from all
smart meters in a micro-grid of size N. The authors show
that another stateful metric known as residual under the curve
(RUC) can be derived from the HM-AM ratio can detect
various attacks, including deductive, addictive, and camouflage
attacks. We denote N as the number of meters in each region,
where the anomaly detection is performed in each region.
The power consumption from a set of meters is denoted by
p: = [pt,...,pl¥] at a time slot ¢. The power consumption from
the i-th meter is shown as pi € RT. Let P} := In(pi+2). We
denote the harmonic mean and arithmetic mean at time slot ¢
as HM; and AM;, where

N N P
sV AM, = Ll}l L.
i=1 Pj

HM,; = )

HM,; and AM, are calculated for each time slot ¢ over a time
window T'. Each T' contains 24 time-slots, i.e., hourly. Then



T € 1,...,365 represents each day of a year. The HM-AM
ratio Q" of the day T is computed as follows:
, Dver HM(T)
Q(T) = S=F ®)
EteT AMt (T)

This is a highly stable metric for anomaly detection in a smart
grid, as demonstrated in [7]. Due to the page limitation, we
only give a high-level description of it. (For further details,
refer to the paper [7].) There are two phases in anomaly
detection: the training and test phases. In the training phase, a
utility determines the safe margin for the ratio metric. The
threshold parameter x is determined by the mean pg and
standard deviation sg of the daily ratio distribution, where
k € (0,3s4). The standard limit range of the safe margin
is [ua — K, pa + k]. Besides, by adopting the residual under
the curve (RUC) metric [7], which shows the transition of
the residuals between the HM-AM ratio and the chosen safe
margin over a sliding time frame, the tier two detector is
constructed to detect the anomaly.

B. Brakerski-Fan-Vercautere (BFV) scheme

Our work is based on the Microsoft/SEAL homomorphic
encryption library [23], which implements the Brakerski-Fan-
Vercautere (BFV) scheme [24]. The BFV scheme performs
modular arithmetic on the encrypted integers. A set of integers
is encrypted into a single ciphertext for SIMD-style execution
using the BFV scheme and packing technique [25] based on
the Chinese remainder theorem (CRT). We denote the number
of integers that can be packed into one ciphertext as /, and we
call [ as the number of slots in the FHE setting.

C. Look-up Table with FHE

The general philosophy of an LUT-based FHE system [21]
is that we can implement the privacy-preserving anomaly
detection system with arbitrarily different complex metric
functions. To improve the practicality of FHE, we adopt a
LUT, which evaluates approximations of arbitrary functions
by changing the calculations to a search technique. In a LUT,
input-output data pairs for a function are prepared, so that we
can search the result of the function.

Note that FHE itself cannot handle any arithmetic operation
except additions and multiplications. On the other hand, the
base anomaly detection framework requires more complex
arithmetic operations such as logarithms, division, inverse.
Therefore, adopting an LUT based approach, we can place the
LUT of any specific function in the cloud server and obtain the
result from the LUT directly as a query response mechanism
that allows calculations of arbitrary math functions without
sacrificing privacy. We can omit arithmetic calculations to
speed up.

ITI. PROPOSED APPROACH

Figure 1 presents an overview of our proposed system.
There are five parties: the utility, computation server (CS),
LUT provider, data collector (DC) and N smart meters. All
parties except smart meters are honest but-curious parties, i.e.,

they follow the protocol but try to find out as much as possible
about the data.

We assume the data integrity attack occurs before the smart
meters encrypt their data. Moreover, the five parties do not
collude with each other. All parties hold the same public key;
only the utility holds the secret key; the CS holds the re-
linearization key and the galois key. The public key is used
for encryption and calculation, the secret key for decryption,
while the re-linearization key and the galois key are used for
re-linearization and rotation.

Firstly, the LUT provider constructs the LUTs and sends
them to the CS (Section III-A). Then, the smart meters send
their power consumption data to the DC every time slot (in our
setting, every one hour) (Section III-B). After collecting the
power consumption data in a specific area, the data collector
sends them to the CS every time slot. Subsequently, the
CS computes the HM-AM ratio and sends it to the utility.
During the calculation in the CS, the CS exchanges encrypted
intermediate results with the utility for the LUT processing
(Section III-C). Finally, the utility decides whether there is an

attack or not.
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Fig. 1. Overview of the Proposed Approach

A. Initialization

Key generation (Utility side): The utility generates the se-
cret key sk, the public key pk, the re-linearization key rk and
the galois key gk. Holding sk for itself, sharing pk to other
parties, and rk, gk to the CS.

Construction of LUTs (LUT provider side): The twelve
LUTs including input and output tables shown in Table I are
prepared and also explained in this subsection. Each entry in
input tables are corresponding to the entry in output table.
All tables are constructed by the LUT provider as matrices.
With the ciphertext packing feature, each row of LUT is
represented by one ciphertext.




TABLE I
PREPARED LOOK-UP TABLES

X f(x)
Calculation of | (values in input (values in output
table T5,,) table Tout)
HM, S () h@) =%
AM; XL (P) (@) = %
Hi 24 f3(2) = [155)
70 =1 My f5(x) % 100
Aq 24 fs(x) = LI/IOOJ
Az 2i=1 AM: Jo(z) = I = f5(x) x 100
res2/100 res2 fr(x) = [«/100]

In this work, we adopt the LUTs with the FHE for comput-
ing harmonic mean, arithmetic mean, and anomaly detection
ratio, i.e., HM-AM ratio (Q". Because )" is defined as a daily
HM-AM ratio, we need to calculate each time-slot’s H M,
and AM;. Then, we need to calculate the sums of HM; and
AM;, over a 24 hour period. Finally, Zt 1 HM; is divided
by Z 1 AM; to compute Q.

In our 1mplementation, we replace division with a multipli-
cation (shown in Eqn. 3) to shorten the execution time. The
reason why we do not compute the division function with
FHE using LUT processing, is because the division function
requires a two-input function. Note, that the number of the
entries in the output LUT for a multi-input function is the
product of the entries of each input LUT. This would result in
longer execution time due to the large output size in the LUT.

24 24
HM,
t=1 t
Sl =N HM, x
o AM,

t=1

Q" = 3)

?i1 AM;
We use the integer-based FHE scheme in this work. In order to
increase the accuracy, we scaled the input and output decimals
with a precision parameter 2P and round as integers. After we
retrieve the Zt 1 HM; and W from LUT, the result of
the multiplication between these two values becomes too large,
which results in overflow of the plaintext space that cannot
be encrypted. Thus, we drop the least significant bits of the
result. As the significant digits of maximum scaled ratio Q" in
our experiment is 9 but the significant digits of the plaintext
space is 5, we discard the last 4 digits of the Q" result. By
analyzing the significant digits on the calculation of (5), we
can reduce the " by 10, 000 times to discard the last 4 digits,
thereby we set 100 in (Eqn. 4) (because 100 x 100 = 10 000).
Then, we express each of the 2341 HM; and W as
a polynomial shown below, where H;, Ha, Az and Ao are
coefficients. Eqn. (7) shows the final result.

24

ZHMt =H;1 x 100 + Hq

t:11 4)
— = A; x 100 + A,

2 AM,

Note that, the 100 is not a fixed value; it depends on the
plaintext space in FHE setting and the significant digits we
want to keep.In FHE, the larger plaintext space leads to more
execution time. By dropping of least significant bits, we allow

to compute large numbers with a smaller plaintext space which
can reduce the execution time.

After computing H1, Ha, A1, and Ay with LUTs shown in
Table I, the daily ratio Q" is computed as follows.

24 1
Q" =) HM; x —57——
t=1 t=1 AM;

= (Hl X 100+H2) X (.A1 x 100 +./42) )
=H; x Ay x 10,000
+(H1><A2+H2><A1)X100+H2><A2

Here, we define resl and res2 as follows.

resl = Hi x Ay

6
res2 = Hy; x Ay + Ha x Ay ©

Then, we have the following formula to discard the last four
digits of Q",

res2

100

Q" :=resl + @)

The whole aforementioned LUTSs are constructed by the
LUT provider.

B. Smart Meter (User) Side Computation

Power consumption data is retrieved by smart meters,
encrypted, and sent to the data collector. Because the LUT
method [21], [22] accepts a packed ciphertext whose all
elements are identical to a search query, each smart meter
creates two vectors v(P}) and v(3; ) whose all elements are

same and computed from the power consumption P} as:

A Min

v(P})[k] = Round(2” x PP,
1 HMin 1 (8)
_ p
v( Z)[k] = Round(2 X f)

, where 0 < k < [ and [ represents the length of these
two vectors; P} := In(pi + 2) is described in Section II-A.
To encode multiple integers into one ciphertext, we adopt
plaintext and ciphertext packing technique [25]. Since we
employ integer encoding rather than bit-wise encoding to
speed up the execution time, the data must be converted into
integers before encryption. Thus, the data are scaled with
precision parameters 2P and rounded into integers as described
in III-A.

Though the inverse of P/ can be computed on the CS
using LUTs, the smart meters send both the original power
consumption data, P!, and its inverse to the CS via the DC in
order to reduce the execution time in the CS.

C. Server Side Computation

The processing steps are shown in Figure 2 which includes
three times LUT processing. All the processes need to be
executed with encryption except the decryption of intermediate
results in the utility.
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Fig. 2. LUT Processing (f(x) is shown in Table I)

Step 7: Same as step 2.

Step 8: Retrieve output of f;(x),
i.e., res2/100. Then compute Q".

Stepl: The CS totals all the data sent from smart meters
via DC every time slot. Subsequently, we have two encrypted
vectors whose elements are identical as shown below.

v(P}) = [Zv ,Zv
) z;l L=]\} (9)
o) = (X vl Dol

Each of the above two ciphertexts is input to LUT pro-
cessing to calculate AM; and H M; respectively. The LUT
processing [21], [22] is adopted to compute the function H M,
and AM,; of each time slot t. The CS searches the inputs
ZZ L v(Pf) and ZZ (5 L) in input LUTs Tj,, of function
AM,; shown as fo(x) and HM, shown as fi(z) in Table I,
respectively. Then, the CS sends the intermediate result to the
utility. Note that the intermediate result corresponds to the
output table index which is randomized [22].

Step2: After stepl, the utility receives the intermediate
result from the CS followed by one-time decryption. Then,
the utility obtains the index of the closest entry to the input
and calculates the index of the outputs in T,,:. Subsequently,
the utility makes encrypted PIR queries and sends them to the
CS in order to let the CS extract the output.

Step3: After receiving the PIR queries from the utility, the
CS extracts the corresponding H M; and AM; results from
output LUTs, i.e., T;y¢. The CS sums the 24 hours” H M and
AM to obtain Zfil HM, and Zfil AM; of a day. Because
the 24 hours’ HM (AM) is input to the next LUT processing,
we need to put the 24 hours’ HM (AM) in all slots of the
corresponding input ciphertext. To fill in, we adopt totalSum
operation [26] shown as Algorithm 1.

Then, the CS search the inputs Y-+ HM, and Y+ AM,
in input LUTs (shown as f3(x) to fg(«) in Table I) to obtain
the intermediate result which is sent to the utility from the CS.

Algorithm 1: totalSum

Data: A ciphertext ct
Result: A ciphertext ct’
for « =0 to logol do

ct' = ct;
ct’ = rotate(ct’, 2%);
ct+ = ct’;

end

Step 4: Same as step 2, the utility makes PIR queries,
encrypts them to send to the CS.

Step 5: The CS extracts H1, Hs, A1, and As, each of which
is shown in (4), from the output LUTs by using the received
PIR queries.

Step 6: The CS computes resl and res2 according to (6),
and searches res2 from the input LUT shown as f7(x) in Table
I in order to obtain Tl%sg Then, the CS sends the intermediate
result to the utility.

Step 7: Same as step 2 and step 4.

Step 8: The CS extracts Tfosg from the output LUT followed

by computing the daily ratio according to (7). Finally, the CS
sends the final result, i.e., ", to the utility.

To enhance the above process, we extend our previously
proposed method [22] which adopts random sifting of en-
crypted intermediate results to hide the exact index from the
utility. This can improve the security. In this study, the LUT
provider updates each LUT to add fake values that are different
each time the LUT is updated. Note that the values in LUTs are
encrypted. This operation requires less time than our previous
random shift operation, and it can also be guaranteed that the
index is different every time so that the utility cannot know
or infer any positional information of the exact value in LUT.
To ensure the accuracy does not change every time, we need
to guarantee that the original entries must be included in the
table, and add different confusing entries. For example, if the
original entries in a LUT are [2, 5, 8], an updated LUT is like
[1,2,3,4,5,8] or [2,3,5,6,8,9], so that the LUT holds all
original entries but at the different position every time.

Anomaly detection by HM-AM ratio (Utility side):  The
utility decrypts the final result ). Since the final result is an
integer value with the decimal point raised to a higher digit,
the decimal point position is restored to have the HM-AM
ratio of the day. Finally, the utility adopts the residual under
the curve (RUC) metric proposed in [7] to detect the anomaly.

Security Analysis: We provide an intuitive security analysis
of our protocol. Our goal is to protect the privacy of power
consumption data of households from all parties. Besides, the
utility, the LUT provider, and the smart meters do not collude
with the other parties because the utility has the secret key;
the LUT provider has LUT data; the smart meters have power
consumption data. Because the data owners, i.e., the smart
meters and the LUT provider, do not collude with other parties
and receive nothing, they cannot know anything.




As for the DC and the CS, they only handle encrypted data,
and hence they never access the privacy-sensitive individual
data. Only the information the utility knows is the HM-AM
ratio result which is an aggregate. Although the utility decrypts
the intermediate results sent from the CS, it only knows the
matched indices of LUTs that are updated by the LUT provider
periodically, e.g., every hour. Thus, it guarantees only the
statistics showing how many times each index of the LUTs
is referenced during a specific period leaks to the utility.

IV. EXPERIMENTAL EVALUATION

We  implemented the proposed system  using
Microsoft/SEAL Library 3.2.0 !. One server was prepared for
the operations of three parties: the utility, the LUT provider,
and the CS. Besides, one Raspberry PI 4 Model B was
prepared for the operations of the smart meter. The machine
information is listed in Table II. Although the machine is
equipped with 18 cores, the experiment was conducted with
one thread. Note that, in this implementation, we omit the
DC because the DC only gathers and re-sends the data to
the CS. The initialization is implemented in the server, the
smart meter (user) side computation is implemented in the
Raspberry PI, and the server-side computation is implemented
in the server.

The FHE parameters used are listed in Table III. The total
LUT size including all input (output) LUTs is listed in the
row of LUT provider of Table V.

In this evaluation, we conducted three experiments by
changing the size of LUTs, i.e., different number of data
points, which affects the accuracy.

TABLE I
MACHINE INFORMATION

Server
oS CentOS Linux 7 (Core)
CPU four Intel Xeon E7-8880 v3 @2.3 GHz
(Turbo Boost: 3.1 GHz)
3 TB
Raspberry PI 4

Main memory

RAM 4GB
CPU a 64-bit quad-core Arm Cortex-A72 @1.5 GHz
SD card 64GB
TABLE III
FHE PARAMETERS OF SEAL
Scheme BFV
Poly modulus degree 8,192
Coeff modulus size 218 bits
Plain modulus 786,443

Noise standard deviation 32

Number of slots 8,192
TABLE IV
PRECISION PARAMETERS
: AMi HMi AMout I
Experiment | p meolp wn and p HMout | pInvout
#1 9 21
#2 5 10 7 19
#3 5 17

Thttps://github.com/microsoft/SEAL

The dataset used in this study includes the power consump-
tion data of the smart grids of 200 households in Texas, USA;
these were three-year data (2014 to 2016) from the Pecan
Street Project 2. We used data from 2014 and 2015 in the
training phase and data from 2016 in the testing phase. The
lower and upper power consumption limits were set to 50 and
6000 W during pre-processing, same as to the previous work
[71, [20].

A. Precision Parameters Setting

Table IV shows the precision parameters of LUTs in three
different experiments in which the size of output tables are
different; experiment #1 uses the largest output tables, and
experiment #3 uses the smallest ones.

We set the same precision parameters p
and applied to all the experiments.

In the same way, we set the precision parameters p
and pMout to move the decimal points of AN, and HM,
as shown in (10). The objective of precision parameters is to
change AM; and H M, to integers. By adopting the precision
parameters, the values stored in the output table T,,,; of f;(x)
and fo(x), shown in Table I, are multiplied by 2P and
2p" Mot respectively.

AMin and pH]V[ln

AMout

AMout Zfil Ptl
T
HMout N
x )
1

N
Zi:l P

Next, we also set the precision parameters p/™Vu* to move
the decimal points of A; and A as shown in (11). The
objective of precision parameters is to change 4; and As
to integers. By adopting the precision parameter, the values
stored in the output table Ty, of f5(z) and fg(x), shown in
Table I, are multiplied by 2° """

Round(2¥

(10
Round(2?

Invgyt

Round(2* x Aj),
Round(2phw°m X Asg)

Finally, to remove the effect of precision parameters when
calculating Q", we calculate Q" as shown in (12), where
Dec(Q™) represents decryption of Q.

» _ Dec(Q") x 10,000
Q = 2(pHMout+pInuout)

(1)

12)

B. Computation and Communication cost

Table V lists the computation time and communication cost
for each step under one thread. The computation time is the
average of the five tests. We tested the runtime to compute the
data in 24 time-slots (one day).

Since we know the data points appeared in the training
phrase, i.e., in 2014 to 2015 data, we prepare those data
points in input LUTs and corresponding outputs are prepared
in output LUTs. Then, we omit some of them based on
the precision parameter. Firstly, the entries in the input LUT
are prepared as all the appeared values in the past power

Zhttps://www.pecanstreet.org/



consumption data. Then, the number of significant digits or
less are removed after applying the precision parameter, which
decreases the number of entries in the input LUT. For example,
assume that we have three entries: 1010, 1015, and 1100. By
applying precision parameter 100, i.e., dividing by 100, the
entries become 10 and 11 because 10.10 and 10.15 become
the same 10 by truncating the decimal point, decreasing the
number of entries.

Because the time of data transmission depends on the net-
work configuration, we only provide the size of the transmitted
file. The transmitted files include 1) the keys from the utility
to all parties, 2) LUTs from the LUT provider to the CS, 3)
encrypted power consumption data from the smart meters to
the CS via the DC, 4) intermediate results from the CS to the
utility, and 5) PIR queries and the final result from the utility
to the CS.

The result shows the encryption time by Raspberry PI is
approximately 2.6 seconds. After collecting a day-wise (24
time-slots) encrypted power consumption data from all houses,
the CS can compute the anomaly detection metric Q". In
the experiments, we tested daily Q". The AM; and H M, is
computed per hour (per time slot). In summary, as shown in
the row of SUM in Table V, the anomaly detection needs 11
s to 17 s depending on the size of the LUT, i.e., depending
on the accuracy.

C. Accuracy of Anomaly Detection

Similar to the work of Ishimaki et al. [20], we used the
receiver operating characteristics (ROC) curve to compare the
accuracy of anomaly detection with and without secure com-
putation using LUT-based FHE. To evaluate the performance
of the anomaly detector, ROC curves were obtained using
different standard limits to check the accuracy of the real
anomaly detection and false attack alarms.

Figure 3 to Figure 8 show the ROC curve of deductive
attack, camouflage attack, and additive attack, respectively.
Such attacks are with two extreme A,y = 200W and 800W.

The result shows the stability of Experiment #1 is the best,
and the detector performance in experiments of the ciphertext
calculation is similar to the results of the plaintext calculation.
In Experiment #2, the detector performance drops under the
camouflage attack when A=200 W. And most of the detector
performance drops in Experiment #3.

V. CONCLUSION

We proposed a LUT-based FHE system for privacy-
preserving anomaly-attack detection. The experiments con-
firmed that our proposed method is able to detect the injection
of false power consumption in the range of 11-17 secs of
execution time, depending on the detection accuracy. To the
best of our knowledge, this is the first implementation of
flexible control of the anomaly detection accuracy and the
execution time over FHE. We can detect deductive, additive,
and camouflage attacks with reasonable accuracy. Compared to
the related work [20], our proposed method is flexible where
we can simply change the accuracy and the execution time

by adjusting the LUTs besides applicable to other privacy-
preserving systems.

There remains additional challenges that we plan to tackle
in future work. For example, using the LUT-based FHE to
compute the functions multiple times results in a gradual
increase of the calculation error. Similarly, we do not yet have
a systematic way to prepare data points in input LUTs for
a variety of functions. Therefore, in future we will further
optimize the method to systematically control the accuracy
and execution time for any functions or sequence of functions.
Besides, we will simulate the smart meters using over 100
Raspberry PIs to prepare an actual situation to investigate
problems when applied to real-world situations.
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