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ABSTRACT

Deadlocks are notorious bugs in multithreaded programs, causing
serious reliability issues. However, they are difficult to be fully ex-
punged before deployment, as their appearances typically depend on
specific inputs and thread schedules, which require the assistance of
dynamic tools. However, existing deadlock detection tools mainly
focus on locks, but cannot detect deadlocks related to condition
variables. This paper presents a novel approach to fill this gap. It
extends the classic lock dependency to generalized dependency by
abstracting the signal for the condition variable as a special resource
so that communication deadlocks can be modeled as hold-and-wait
cycles as well. It further designs multiple practical mechanisms to
record and analyze generalized dependencies. In the end, this paper
presents the implementation of the tool, called UnHang. Experimen-
tal results on real applications show that UnHang is able to find all
known deadlocks and uncover two new deadlocks. Overall, UnHang
only imposes around 3% performance overhead and 8% memory
overhead, making it a practical tool for the deployment environment.
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1 INTRODUCTION

Deadlocks are common concurrency bugs of multi-threaded pro-
grams, caused by incorrect synchronizations that could make a
program hang without any progress. In particular, deadlocks can
be divided into two types: resource deadlocks and communication
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deadlocks. In resource deadlocks, a task (e.g., process/thread) can-
not advance without the acquisition of the necessary resource (e.g.,
lock), while a communication deadlock occurs when a task is not
receiving the required communication (e.g., message or signal). It is
very challenging to detect and reproduce deadlocks, as they require
certain thread interleavings to occur.

Existing detection tools mainly focus on resource deadlocks.
Among them, static detection tools are known to have numerous false
positives and scalability issues [16, 17, 19, 30, 37, 41]. In contrast,
dynamic tools typically record the execution trace, and then detect
hold-and-wait cycles among threads and locks [9, 10, 12, 25, 43].
They could predict deadlocks that did not occur in the current exe-
cution but may occur in a different execution. In the remainder of
this paper, detect and predict are used interchangeably. In particular,
iGoodLock [25] introduces lock dependency that describes the rela-
tionship between a thread, its requested lock, and its held locks, as
further discussed in Section 2.2, in order to identity hold-and-wait
relation. Whenever there exists a cycle of hold-and-wait relations,
a deadlock is detected. Deadlock dependency has been adopted by
multiple detectors [9, 10, 12, 43], but they focus more on reduc-
ing the overhead of recording and detecting. For instance, a recent
work—AirLock [12]-reduces the search space of the detection, only
imposing less than 5% overhead.

However, communication deadlocks related to condition variables
do not get much attention that they deserve (possibly due to the dif-
ficulty), although condition variables are also widely employed in
real applications. The condition variable is a type of synchroniza-
tion that enables threads to wait for a particular condition, which
further includes wait (e.g., wait () ) and signal (e.g., signal ()
orbroadcast () ) primitives. Based on our investigation, very few
tools have been developed in the past, but they either suffer from
false positives or require significant manual effort. Among them,
FindBugs [22] reports an alarm when a thread invoking a condition
wait operation is holding more than one lock. This over-simplified
pattern could easily introduce false positives, especially in real appli-
cations like MySQL, and cannot guide bug fixes without the detailed
information of deadlocks that explains how the deadlocks can occur.
CheckMate [24] records the trace of synchronization operations with
manual annotations and then utilizes a model checker to explore
all possibilities of deadlocks. However, it is too expensive to be
employed with an average recording overhead of 10.8x and an even
higher model checking overhead (up to 60x).
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// Work thread t;
// 1°% round

// Maintenance thread t;,

1 lock(ly) - 1 lock(ly) D
2 count++ D, 2 lock(ly) 4_—| ?
3 signal (cv) — 3 while(count < N) |~
4 unlock(l) 4 wait (cv, )
5 lock(ly) - 5 unlock(ly)
6 unlock(ly) 6 unlock(ly)
Dy, ts
// 2" round D,
7 lock(ly)
8 count++
9 signal (cv) —

Figure 1: New deadlock in Memcached-1.5.19. The hold-and-
wait relations D;_4 are shown in the bottom-right corner, where
deadlock-related edges are highlighted with red colors.

This paper presents UnHang, a unified tool that predicts both re-
source and communication deadlocks. UnHang’s major contribution
is to extend the concept of lock dependency to generalized depen-
dency, which includes both locks and condition variables. Its basic
idea is to treat a signal (related to a condition variable) as a special
type of resource. It further extends the “wait” and “hold” concepts to
cover condition variables additionally. In particular, “wait” indicates
a state that the thread is waiting for the signal on a condition vari-
able, while “hold” is a state that the thread has not issued a signal (or
released the resource) via signal () or broadcast (). Based
on such extensions, UnHang constructs generalized dependencies
by tracking synchronization events (e.g., all locks and condition
variables) in an execution, and then detects hold-and-wait cycles of
generalized dependencies to predict both types of deadlocks.

Figure 1 shows a communication deadlock in Memcached (newly-
detected by UnHang). This example involves N worker threads and
one maintenance thread, with multiple rounds of maintenance. For
each round, the maintenance thread will wait (at line 4) for the
signal issued from N workers threads (at line 3). A communication
deadlock can occur if the maintenance thread waits on condition
variable co before a worker thread acquires the lock [ (at line 5, to
exit from a previous maintenance round). Because the maintenance
thread is holding the lock 5, all later worker threads cannot acquire
I; and then cannot send the signal required by the maintenance
thread, causing a deadlock. This example’s hold-and-wait relations
are shown as a graph in the bottom-right corner of Figure 1. In
this graph, every resource (either a lock or a signal) is represented
as a node in the graph, and an edge (related to a thread) indicates
a hold-and-wait relation. When there is a cycle of hold-and-wait
relation, a deadlock is detected. We explicitly put D; there just for the
explanation purpose. Based on these definitions, the worker thread
t; is waiting for the lock /; while holding the resource (or signal)
scp for the second round, which is related to the Do, t; edge. Instead,
the maintenance thread ¢, is waiting for the signal s¢, (related to
cv) while holding the lock Ij, which is related to the Dy, t2 edge.
Therefore, Dy and D4 are consisting of a hold-and-wait cycle as
shown in highlighted edges of Figure 1. Clearly, such a deadlock
cannot be detected by lock dependency, as there is no loop between
locks (with the edge Ds, tz only).

Although the basic idea of generalized dependency is very intu-
itive, there are several technical challenges. Challenge 1: how to
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reduce false positives introduced by condition variables? Condition
variables are fundamentally different from locks, as (1) they are not
mutually exclusive, (2) they have some predicates/conditions that
can control the wait operation. Figure 2 shows an example with a
cycle: the producer thread waits for signal sc,, while holding the
signal scy,, and the consumer thread waits for s¢y, while holding
the signal s¢,, . However, this cycle is not a real deadlock, because
the predicates of cv; and covz conflict with each other, i.e., either
full () or empty () is true at one time. Challenge 2: how to
construct generalized dependencies from an execution, especially
with a low recording overhead? During the execution, we have no
idea initially whether a thread is holding a special resource (i.e., sig-
nal) until the signal () orbroadcast () is invoked. This signal
may consist of hold-and-wait relations with all past locks, even for
situations holding one lock. However, traditional lock dependency
focuses only on situations holding more than one lock. That is, gen-
eralized dependency requires recording orders of magnitude more
events. Challenge 3: how to reduce the prediction overhead? The
huge number of generalized dependencies require efficient detection,
especially for situations with up to hundreds of threads, typical in
real applications.

UnHang is implemented as a library that can be simply preloaded
in order to collect synchronizations of multithreaded applications,
without the modification and recompilation of applications. UnHang
does not require a custom OS or hardware. UnHang has been evalu-
ated on PARSEC benchmarks and several real applications. Based on
our evaluation, UnHang imposes a geomean performance overhead
of less than 3%, including the recording and predicting overhead.
UnHang successfully detects known and new deadlocks in real ap-
plications, such as MySQL and Memcached. Note that UnHang may
report deadlocks that cannot occur in reality, which share the same
shortcomings with existing dynamic detection tools [7, 12, 15, 43].
Overall, this paper has the following contributions:

e It proposes generalized dependency that includes both locks
and condition variables, enabling the detection of both re-
source and communication deadlocks in a unified tool.

o It proposes practical mechanisms to detect deadlocks by over-
coming the correctness and performance issues.

o It presents the implementation of UnHang. Experimental re-
sults show that UnHang only imposes a geomean overhead of
3%, but detects all known deadlocks and two new deadlocks.

The remainder of this paper is organized as follows. Section 2 in-
troduces the proposed generalized dependency and new rules defined
for correctness. Section 3 further describes the design and implemen-
tation of UnHang, our prototype using generalized dependencies
to predict deadlocks. Section 4 describes the experimental evalua-
tion of UnHang. Section 5 discusses UnHang’s weaknesses. After

// Producer // Consumer

1 lock(l) 1 lock (l)

2 while (full()) 2 while (empty())
3 wait (coy, 1) 3 wait (coy, 1)
4 produce () 4 consume ()

5 signal (cvy) 5 signal (coy)

6 unlock (I) 6 unlock (I)

Figure 2: A false cycle of two condition variables.
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that, Section 6 discusses some related work. In the end, Section 7
concludes this paper.

2 METHODOLOGY

In this section, we first revisit the concept of condition variables
and lock dependency, then introduce the proposed generalized de-
pendency and its cycle detection, as well as some terms used in the
remainder of the paper.

2.1 Background

The condition variable is a synchronization mechanism that allows a
thread to wait for a particular condition (i.e., predicate) to be true.
There are two basic operations on condition variables, including
wait () and signal (). A waiting thread typically acquires the
“associated lock” (i.e., the lock used for the parameter in wait ())
to check the predicate and invokes wait () when the correspond-
ing predicate is false. It will release the associated lock before it
starts waiting so that a signaling thread can acquire the lock to
update the predicate. The waiting thread can be woken up by the
signaling thread which typically sets the predicate to true before
invoking signal () or broadcast (). Condition variables are
widely used in multithreaded real applications, such as MySQL and
Memcached. Condition variables may cause deadlocks, if the signal-
ing thread cannot advance to issue the signal or the corresponding
signal is lost (called as “lost signal”).

2.2 Lock Dependency

A lock dependency is defined as a triple D = (t,1, L) [25], indicating
thread ¢ tries to acquire the lock [ while holding all locks in the
lockset L. Multiple lock dependencies may form a dependency chain
C = [D4, Dg, ..., Dy] if (1) the lock [; in D; is in the lockset Lj41 of
Dj41, and (2) there’s no conflict among them. If two dependencies
have a conflict, they cannot cause a deadlock. In one of the following
situations, two dependencies D; and D; are considered to have a
conflict : (1) t; == t; (when two threads are the same thread); (2)
I; == Ij (when two threads acquire the same lock); (3) L N L; # 0
(when two threads hold a common lock).

A dependency chain indicates a hold-and-wait relation in multiple
threads. It becomes a cyclic chain (or cycle for simplicity) when
lock [, from the last dependency Dy, in the chain is in the lockset
Ly of the first dependency D;. A cyclic chain represents a hold-
and-wait cycle, indicating a deadlock. The prediction is to identify
cyclic chains of all lock dependencies. Clearly, the number of lock
dependencies could significantly affect the prediction time.

2.3 Generalized Dependency

The generalized dependency extends lock dependency to include
signals for condition variables (called condition signals, or signals
for simplicity) as a type of resource. A generalized dependency
is also defined as a triple (¢,r,R), where ¢t is the thread, r is the
requested resource (a lock or a condition signal) of the thread t,
and R is a set of held resources (e.g., locks, condition signals) of
the thread t. Based on the type of requested resource, a generalized
dependency can be further divided into two types:

e Mutex Dependency (MD): MD = (t,1, R) represents that a
thread ¢ requests a mutex lock / while holding a set of locks
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and/or signals. A mutex dependency may not have condition
signals in the set R.

e Signal Dependency (SD): SD = (t,scy, R) represents that
a thread t waits for the signal s., (related to the condition
variable cu) while holding a set of resources R, i.e., locks
and/or signals.

We propose two basic rules for building a generalized depen-
dency: (1) the associated lock of cv (i.e., the lock parameter in the
invocation of the corresponding wait () ) is not considered as a
held resource when a waiting thread waits for s¢», such as Iy of
the maintenance thread #, in Figure 1, as the lock is always re-
leased before the waiting begins; (2) a signal is considered as a
held resource before a signaling thread invokes one corresponding
signal () or broadcast (). One example is D in Figure 1.
Based on these definitions and rules, Figure 1’s dependencies are
listed as follows: the worker thread #; has two mutex dependencies
Dy = (t1, o, {sco}) and Dy = (t1,11, {scv}), while the maintenance
thread t; has a mutex dependency D3 = (2,15, {l1}) and a signal
dependency D4 = (t2,5sc0, {l1}) (without I2). However, Iy and {s¢,}
do not form a dependency, as I is the associated lock of condition
variable cv.

2.4 Prediction Using Generalized Dependencies

Based on generalized dependencies, the deadlock prediction is to
identify a cyclic chain among all generalized dependencies. Simi-
larly, multiple generalized dependencies may form a dependency
chain C = [Dy, Dy, ..., Dy] if a requested resource r; (e.g., lock or
condition signal) in D; is in the held resource set R;;; of Dj4;. Fur-
ther, the following definitions on conflicts from lock dependency
can be applied to generalized dependency: (1) t; == tj (when two
threads are the same thread); (2) r; == r; (when two threads are
requesting the same resource, e.g., lock or condition signal); (3)
when two threads are holding a common lock in R; and R;41. That
is, only when two threads do not have a conflict, and also satisfy the
above chaining condition, they will form a dependency chain.

However, generalized dependency should also handle the dif-
ferences caused by condition signals (e.g., they are not mutually
exclusive and have associated predicates), as discussed in Section 1.
We further propose the following additional rules to reduce false
positives. Note that these rules may lead to false negatives, but will
never generate false positives.

2.4.1  Non-Conflicting Condition Signals. Because condition
signals are not mutually exclusive, two generalized dependencies
holding a common condition signal do not indicate a conflict. Fig-
ure 3 shows a real deadlock in MySQL [4] with three generalized
dependencies: SD1 = (11, Sco,, {11, Sco, 1), MDy = (t2,12, {S¢co, }),
MDy = (t3,11,{la, chy})- Because the scy,, is not considered as a
conflict between SD; and MD,, these dependencies can form a cyclic
chain [SD1, MD1, MD;], indicating a deadlock (as underlined lines
in the figure).

2.4.2 Conflicting Condition Signals. As discussed in Section 1,
two waiting threads cannot wait concurrently (thus cannot deadlock
with each other) if only one of the corresponding predicates can be
true at one time. That is, generalized dependencies waiting for differ-
ent condition signals may conflict with each other, which is different
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// Thread t // Thread t, // Thread t3

1 lock (l}) 1 lock (l3) 1 lock (Iy)

2 lock (L) 2 unlock () 2 lock (h)

3 wait (coy, lx) 3 lock (L) 3 signal (coy)
4 unlock (ly) 4 signal (couy) 4 unlock (Iy)
5 Unlock (l}) 5 unlock (ly) 5 unlock (l)
6

signal (couy)

Figure 3: A deadlock in MySQL-5.6.9.

from lock dependency in that lock dependencies acquiring different
locks are never treated as conflicts. To determine such a conflict, one
solution is to analyze the predicates by tracking and analyzing mem-
ory accesses, which can be impractical especially for large-scale
applications. Instead, UnHang employs the following rule: if two
related condition variables in two dependencies share the same asso-
ciated lock, they have a conflict. Figure 2 shows such an example: the
producer thread’s signal dependency is SDp = (tp, Scoy> {Scw, })> and
the consumer thread’s signal dependency is SD¢ = (tc, Sco,, {Sco, })-
Because condition variables related to s¢y, and sy, share the same
associated lock [, these two generalized dependencies are assumed
to have a conflict. That is, there is no deadlock in this example. Note
that this rule could incur false negatives when a deadlock involves
two condition variables with non-conflict predicates but the same
associated lock. However, it will never cause any false positives.

2.4.3 Spurious Cycles. UnHang aims to predict deadlocks la-
tent in real-world applications with the following assumption: real-
world applications are thoroughly tested so that they should not have
“obvious bugs” that will definitely lead to the deadlock. Figure 4
shows a deadlock cycle where thread ¢ and t; wait for the signal
from each other at the same time. This cycle will definitely lead
to deadlocks. That is, programmers should have already identified
and fixed such obvious bugs during testing. Hence, we believe that
applications may utilize some sophisticated mechanisms (e.g., ad
hoc synchronization [42]) to avoid them, and we treat such a cycle as
a spurious cycle. In theory, UnHang may have some false negatives
due to this assumption. To identify a spurious cycle, UnHang checks
if all dependencies in the cycle are signal dependencies. If so, every
thread in the cycle is waiting for a signal from another thread in the
cycle, indicating an obvious deadlock.

// Thread t
1 wait (cor, L)

// Thread t;
1 wait (cvy, b)

2 signal (cvy) 2 signal (coy)

Figure 4: A cycle indicating an obvious deadlock.

Figure 5 shows another example of spurious cycles. In this figure,
thread ¢, cannot send any signal without holding lock /;. If thread #;
acquires lock [; first, the program will deadlock. That is, the deadlock
has a fair chance to occur and should have been exposed and fixed
by the developers. Although a cycle exists between (t1, ¢y, {I1})
and (2, 1, {sco}), UnHang will not report it as it’s a spurious cycle.
More specifically, UnHang also considers a cycle as spurious if the
cycle involves only one thread waiting for a lock while holding a
signal in the cycle and this thread sends the corresponding signal
while holding the lock.
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// Thread # // Thread t;

1 lock (ly) 1 lock (l})
2 lock (k) 2 lock (k)
3 while (p == false) 3 p = true
4 wait (co,lp) 4 signal (cv)
5 unlock (I) 5 unlock (Iy)
6 unlock (ly) 6 unlock (ly)

Figure 5: A cycle indicating a spurious deadlock.

3 IMPLEMENTATION

We implemented UnHang as a dynamic library for C/C++ applica-
tions with Pthreads [5]. It can be deployed easily without changing
and recompiling applications.

3.1 Recording Generalized Dependencies

During the execution, UnHang intercepts synchronization opera-
tions on mutex locks and condition variables to record generalized
dependencies. To reduce contention, UnHang employs a per-thread
recording method so that there is no need to introduce additional
locks when updating the generalized dependencies for each thread.
As mentioned in Section 2, a generalized dependency includes a
requested resource and some held resources. It is relatively easy to
identify the requested resource: if a thread acquires a lock or waits
on a condition variable, then the lock or the corresponding condition
signal is the requested resource. For held resources, it is easy to iden-
tify the held locks of a thread. However, the held condition signal(s)
is unknown until the future invocations of signaling functions (e.g.,
signal () orbroadcast () ). Taking thread ¢; of Figure 1 as an
example, the condition signal s¢,, can be only recognized as the
held resource of #; at line 3 (for line 1-2) and line 9 (for line 4-8).

To record new dependencies when identifying a held signal,
UnHang tracks the recent synchronization statuses (denoted as RS)
and the held locks (denoted as LS). Algorithm 1 shows how UnHang
tracks these information and records generalized dependencies for
each thread. In particular, UnHang tracks three types of statuses in
RS: (1) generalized dependencies, such as mutex dependencies (line
5-6) or signal dependencies (line 14-15), (2) first-level lock acquisi-
tions where the thread holds no locks (line 3), (3) condition waits
where the thread holds no additional locks other than the associated
lock (line 12). It is important to track the latter two types of statuses,
as they may form new dependencies with future condition signals.
When a thread invokes a signaling function, UnHang checks the
RS to update existing dependencies (line 19-20) or record new ones
(line 22-23), where the function Merge() is used to update the RS
with newly recorded dependencies.

Table 1 illustrates how UnHang records generalized dependen-
cies for the threads in Figure 1, assuming one maintenance round.
UnHang constructs new dependencies on three types of synchro-
nization operations: lock acquisitions, waits, and signals. For the
worker thread ¢;, UnHang updates the LS and RS with I, from the
1st synchronization. Since there’s no held resource identified in ¢4,
UnHang does not record any dependency. When t; performs the 2nd
synchronization, UnHang knows that #; has been holding sc,, thus
it checks the thread’s recent status and builds a mutex dependency
MD1 = (t1,12,{sco}). Then, UnHang updates RS with MD; as the
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Algorithm 1: Record Dependencies

LS: per-thread lockset for held locks.
RS: per-thread cache for recent synchronization statuses.
DEP: per-thread hashmap for dependencies.
1 FUNCTION O~NLOCK (I):
if LS.Empty() then
‘ RS.Insert(1)
else
d := DEP.TryRecord(l, LS)
RS.Insert(d)
LS.Insert(l)
FUNCTION OnNUNLOCK (I):
‘ LS.Remove(l)
FUNCTION ONWAIT (cv):
if LS.OnlyContains(lgssoc) then
‘ RS.Insert(cv)
else
d := DEP.TryRecord(cv, LS \ {lgssoc})
RS.Insert(d)
FUNCTION OnNSIGNAL (cv):
RSpew =0
for e € RS do
if e.IsDependency() then
‘ e.AddHeldResource(cv)
else
d := DEP.TryRecord(e, {cv})
RSyew.Insert(d)
RS.Merge(RSpew)

e X 9 R W N

N ) [ T
2B R R EBELE® I m a8~

most recent status. For the maintenance thread t,, UnHang first cre-
ates a mutex dependency MD, upon the 2nd lock acquisition. When
ty performs the wait operation, UnHang examines the held locks
(i.e., I; and I3), then builds a signal dependency SD1 = (2, Sco, {11})
while ignoring I, (the associated lock of cv). UnHang may update
recorded dependencies upon a signal event (line 19-20 in Algo-
rithm 1). For example in Table 1, if thread ¢, sends a signal on
condition variable coy right after the Sth synchronization, UnHang
will update MD; and SD; by adding the sc,, as a new held resource,
respectively: MDy = (to, Iz, {1, sco, }) and SD1 = (12, Sco, {11, Sco, })-

There is an important implementation question related to the most
recent statuses: how many recent statuses should we keep for each
thread. Typically, a larger number of statuses should help reduce
false negatives, but with the cost of more memory consumption,
higher recording overhead, as well as higher prediction overhead
(due to the increased number of generalized dependencies). More-
over, the older a synchronization status is, the more likely it is fol-
lowed by some implicit synchronizations (e.g., ad hoc synchroniza-
tion) neglected by UnHang. That is, an older status may introduce
more false positives. Therefore, UnHang currently only tracks the
eight most recent statuses. Our experiments with real applications
show that this is sufficient to find all known and new deadlocks with
low overhead.
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Table 1: Updating dependencies and other information for the
two threads in Figure 1, assuming one maintenance round. The
first column lists the synchronization operations of each thread
in execution order, respectively.

Worker thread ¢,

Synchronization | LockSet LS | Recent Status RS Dependency

1: lock (L) {l,} < > No Update

2: signal (cv) {L} < lh,,MD; > MD; = (t1, b, {sco })
3: unlock(ly) 0 < bL,,MD; > No Update

4: lock(ly) {l,} < I, MDy,1l; > No Update
5:unlock(Iy) 0 < lh,,MDy,1; > No Update

Maintenance thread ¢,

Synchronization | LockSet LS | Recent Status RS Dependency

1: lock(ly) {L} <l > No Update

2: Tock (1) {h, L} <L, MD, > MD; = (t2, 1, {Li})
3: wait(co, ) {L, b} < 1;,MD,,SDy > | SD; = (t2,5¢0, {l1})
4: unlock (I2) {l} < Il;,MD,,SD; > No Update
5:unlock(ly) 0 < l;,MD,,SD; > No Update

In addition, UnHang collects the call stacks of synchronization
events such that it can provide a meaningful report for program-
mers to understand the bugs. It further utilizes the call stacks for
performance optimizations, as discussed in the following section.

3.1.1 Performance Optimizations. To be employed in the pro-
duction environment, UnHang needs to minimize the recording
overhead. Thus, UnHang first employs some recording policies
from UnDead [43], a dynamic tool that detects resource deadlock
based on lock dependencies. Although UnDead cannot detect dead-
locks caused by condition variables, it defines some policies for
efficient recording: (1) it does not record duplicated dependencies
for each thread (which have the same requested resource and held
resources). (2) It does not collect the call stack for the first-level
lock acquisitions, as some applications (e.g., Fluidanimate) may
have a large number of single-level lock acquisitions. (3) It does not
repeatedly collect the call stack for the same lock acquisition that
occurs multiple times.

In addition to the aforementioned policies, UnHang proposes a
call-stack based optimization to decrease the total number of de-
pendencies as it has a significant impact on detection efficiency and
memory consumption [10, 12], especially in applications that create
numerous synchronization objects (each of which may lead to a
unique dependency). The basic idea is to record a subset of unique
dependencies from each call stack. Since the number of synchroniza-
tion patterns on a call stack is predetermined by the program, a subset
of dependencies on the same call stack can be adequate to represent
most (if not all) patterns on that call stack. More specifically, given
a call stack, UnHang records the first N unique dependencies, then
records new dependencies in a sampling manner with decreasing
sampling rate: the more dependencies UnHang records from a call
stack, the less likely it will record again on that call stack. In Algo-
rithm 1, the function TryRecord() implements these optimizations
to record a dependency (with specified requested resource and held
resources) only if necessary. In addition, UnHang avoids recording
redundant condition variables by grouping them based on their ini-
tialization call stack, and only tracks the first M condition variables
from each group. After that, it also gradually reduces the possibility
of the recording. Currently, UnHang chooses N and M to be 32 and
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2 correspondingly, considering both efficiency and effectiveness for
deadlock prediction.

3.2 Detecting Cycles of Generalized Dependencies

UnHang predicts deadlocks by identifying a cycle of generalized
dependencies, as discussed in Section 2.4. A traditional method
is to start from the threads by scanning the dependencies of every
thread and to confirm whether each dependency can form a potential
cycle with other dependencies in other threads via DFS-based cycle
detection [9, 10, 25, 43]. A recent work AirLock [12] demonstrates
the inefficiency of such a method on a large DFS search space and
proposes the concept of “reachability graph” to reduce the search
space.

The reachability graph is actually a directed graph, where each
node is related to a lock and the edge between nodes implies a direct
or indirect hold-and-wait relation. More specifically, a direct edge
from [; to I indicates a thread is requesting lock I; while holding lock
l;. An indirect edge indicates that there is a path between different
nodes, composed of multiple direct edges. Typically, predicting
deadlocks consists of the following three steps: (1) check whether
there is a cycle between different nodes; (2) construct the detailed
cycle using DFS when the cycle has indirect edges; (3) check the
conflict among dependencies related to the found cycle. If there is a
set of non-conflicting dependencies that matches the found cycle, a
potential deadlock is reported. Otherwise, it is a spurious cycle that
should not be reported. With the reachability graph, one can decide
if a pair of nodes have a cyclic path before starting the DFS search,
thus reducing the search space in previous work [7, 10, 25, 43]. In
addition, AirLock updates the reachability graph during execution
such that it can save some edges to the external storage in order to
reduce memory consumption.

UnHang adopts the idea of reachability graph from AirLock [12]
and extends it as follows: (1) UnHang treats both locks and con-
dition signals as nodes to detect communication deadlocks. (2)
UnHang minimizes the interference to the original execution by only
constructing the graph after recording (at program exits), instead
of at execution time. Based on our understanding, AirLock builds
a global graph and uses a global map to record lock dependencies
without thread-specific data structures. Thus, it can unnecessarily
introduce concurrency issues (e.g., high contention) for applica-
tions with a large number of threads and intensive synchronization.
UnHang trades the memory consumption for the low overhead by
constructing the graph later and reduces the contention by using
thread-local recording. More specifically, UnHang constructs the
graph by examining the recorded dependencies and grouping the
synchronization objects by their initialization call stacks (or memory
addresses if they are statically initialized). During cycle detection,
UnHang maps a group back to the actual objects only if it’s involved
in a cycle. (3) UnHang further reduces the prediction overhead by
embedding the reachability path information (a sequence of depen-
dency groups connecting two nodes) into the graph, and prunes any
path that has conflicts during graph construction. With this improve-
ment, UnHang could directly report a cyclic path, instead of using
the DFS search to construct the cyclic path again as AirLock.
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By default, UnHang performs the prediction at program exits.
It registers its analysis with the destructor attribute and inter-
cepts all failure handling functions, such as SIGHUP, SIGQUIT,
SIGINT, SIGTERM, and SIGSEGV. For long-running applications
such as server applications, UnHang creates a monitor thread that
periodically examines the current program status to provide timely
detection. More specifically, UnHang periodically takes a snapshot
of the threads’ waiting statuses, then detects cycles in the current
snapshot and reports cycles when statuses are not changed across
two periods.

3.2.1 Detecting Lost Signals. There is one type of deadlock
that cannot be represented by a cycle of generalized dependencies,
which is the “Lost Signals”. Lost Signals can happen when the
signaling thread did not hold or is not holding the associated lock,
which may introduce race conditions on the predicate. That is, the
signal can be delivered before a thread is actually waiting on the
related condition variable. Existing tools, such as Valgrind DRD [2,
31], report invocations of pthread_cond_signal () when the
associated lock is not held. However, a signaling thread can release
the lock before sending the signal without causing lost signals. Given
that UnHang records the held locks and recent statuses for each
thread, it reports a lost signal if the associated lock is not acquired
recently by the signaling thread before the signaling.

4 EXPERIMENTAL EVALUATION

The experiments were conducted on a two-socket machine, where
each socket is an Intel(R) Xeon(R) Gold 6230 processor with 20
cores. For the evaluation, we utilize 16 hardware cores in node 0
to exclude the NUMA effect. This machine has 256GB of main
memory, 20MB of L2 cache, and 1280KB L1 cache. The underlying
OS is Ubuntu 18.04.6 LTS, installed with the Linux-5.4.0-81.

4.1 Effectiveness

In this section, we evaluate whether UnHang can predict known
resource and communication deadlocks. In particular, we compare
UnHang with another recent work — UnDead [43]. There exist other
works, such as CheckMate [24] or AirLock [12]. CheckMate is not
open-source. It focuses on Java applications and relies on source
code annotations and model checking. AirLock has a similar predic-
tion ability as UnDead [43] in that they both only predict resource
deadlocks. We have contacted the authors of AirLock for the source
code, but they cannot provide it. However, based on the results shown
in Table 2, UnHang should impose a similar overhead (if not less)
as AirLock.

The evaluation is performed on nine known deadlock bugs from
real-world applications, such as Apache, Bodytrack [8], HawkNL,
Memcached, MySQL, and SQLite. Among these bugs, six of them
are related to condition variables, while the other three are related to
resource deadlocks (collected from existing work [9, 10, 12, 26, 43]).
For Apache, HawkNL, MySQL, and SQLite, we utilized the test
cases collected from the related bug reports, which is similar to
existing work [9, 10, 12, 43]. We did not use specific test cases for
Bodytrack and Memcached as the relevant logic can be exercised
easily using given normal inputs. SQLite-3.25.2 is reported by Air-
Lock to have a cycle inside [12]. In fact, we confirm that this is a
false positive caused by memory reuse, as discussed in the following.
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Table 2: Evaluation of UnHang’s detection effectiveness.

A Deadlock Info Execution Info Report (Known/New/FP) Detection Time
Application Bug ID
Type [ #Thd [ #Lock [ #Cv [ #Thd [ #Lock [ #Cv [ UnDead | UnHang UnDead | UnHang

HawkNL-1.6b3 n/a Resource 2 2 0 401 403 0 1/0/0 1/0/0 2.6s 86ms

MySQL-5.6.10 62614 Resource 3 3 O Vo3 | s | 33| 200 2/0/0 Is Ims
Resource 2 2 0

SQLite-3.3.3 1672 Resource 2 2 0 3 2 0 1/0/0 1/0/0 1ms 1ms

SQLite-3.25.2 [12] None None n/a n/a n/a 81 299 0 0/0/1 0/0/1 67s 3ms

Apache-2.3.0-dev 42031 Communication 2 1 1 6 4 2 0/0/0 1/0/0 Ims Ims

Bodytrack n/a Lost Signal 1 0 1 18 6 3 0/0/0 1/0/0 Ims 8ms

Memcached-15.19 | 567 Lost Signal ! 0 ! 2 | 16719 | 4 | o0 1/1/0 68s 67ms
Communication 2 1 1

MySQL-5.1.57 60682 Communication 3 2 1 237 1458 27 0/0/0 1/0/2 >3h 83ms

MySQL-5.5.8 50038 Communication 2 1 1 24 319 26 0/0/0 1/0/0 Ims 2ms
C icati 3 2 1

MySQL-5.6.9 68251 | _ommunication 29 | 359 | 123 | 000 11110 1ms 3ms
Communication 3 1 2

Table 2 lists more details of these bugs, including the application
names, bug ID, deadlock information, execution information, the
number of reported deadlocks and the time spent on detection. More
specifically, we list the number of threads (“#Thd”), the number
of locks (“#Lock”), and the number of condition variables (“#Cv”)
involved in each deadlock and execution, respectively. In column
“Report”, “Known” indicates the number of the detected deadlocks
corresponding to the known bug, while “New” and “FP” indicate the
number of newly-detected deadlocks and false positives, respectively.
Note that the “Detection Time” is the time spent at program exit,
where both tools perform the detection. In addition, we highlight the
two new bugs detected by UnHang with bold text.

Overall, UnHang can predict all known deadlocks and report
corresponding cycle information, as shown in Figure 6. UnHang
also uncovers one new bug in each of the widely-used applications:
Memcached-1.5.19 and MySQL-5.6.9. UnHang reports three false
positives. In the following, we explain how UnHang could help
guide the bug fixes. Then we explain the new bugs detected by

A communication bug caused by 2 threads.

Thread 1 is waiting for the signal related to
condition variable 0x63d060 at:
0: wait_for_thread_registration at thread.c:125
1: (inlined by) pause_threads at thread.c:188

while it is holding the lock (0x63d140),
0: pause_threads at thread.c:156

acquired at:

1: assoc_maintenance_thread at assoc.c:259

Thread 2 is waiting for the lock (0x63d140)
0: memcached_thread_init at thread.c:851
1: main at memcached.c:9622

while it is holding the signal related to condition
variable 0x63d060 at:
0: register_thread_initialized at thread.c:132
1: thread_libevent_process at thread.c:530

at:

Figure 6: Report for the new deadlock shown in Figure 1.

UnHang. In the end, we further explain why UnHang could in-
troduce false positives, sharing the same shortcoming as existing
work [7, 12, 15, 43].

Reporting deadlock details: Figure 6 shows an example of a bug
report generated by UnHang, corresponding to the new deadlock
in Memcached-1.5.19. Basically, it is able to show the deadlock
type and threads involved in the bug. It also shows the relevant
hold-and-wait relation in each thread, which can help programmers
understand the bug. For the shown bug, if a lock belongs to the first-
level acquisition, UnHang reports the initialization call stack instead,
as it does not record the call stack for first-level lock acquisitions
due to performance concerns.

New deadlocks: UnHang detects two new deadlocks from Mem-
cached and MySQL, respectively. The deadlock from Memcached is
shown in Figure 1, which has been discussed before. The new dead-
lock from MySQL is shown in Figure 7. This deadlock involves three
dependenCieS: (tl) ScOprep_xids> {llog})’ (tz, Scviog_send> {Cvprep_xids})’
and (3, ljog, {Scojog_sena })- These dependencies form a cycle. In par-
ticular, thread t; waits on cvpyep_xiqs (line 2), tz waits on cvjog_send
(line 1), and t,, is blocked on lock llog (line 1) which is held by #;.

False Positives: Similar to existing work [7, 12, 15, 43], UnHang
may report some false positives. There are two types of false pos-
itives. The first type can be caused by ad hoc synchronization, as
shown in Figure 8. MySQL implements a synchronization based
on a custom mutex m which includes a lock I, a condition vari-
able cu,, , and an integer lock_word. It provides two operations
(mutex_enter and mutex_exit) and relies on two operations
(mutex_test_and_set andmutex_reset_lock_word)to

// Thread #
1 lock (log)
2 Wait (Cvprep_xids)

// Thread t
1 Wait (clog_send)

// Thread t3
1 lock (Liog)
2 unlock (llog)
3 Signal (¢Vlog_send)

2 Signal (CUprep_xids)
3 unlock (llog)

Figure 7: A new deadlock found in MySQL-5.6.9. The associ-
ated locks and predicates are omitted for the simplicity.
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mutex_enter (m) { // customized mutex acquisition
1 if (!mutex_test_and_set (m))
2 return
3 wait (¢om, Im)
}
mutex_exit (m) { // cutomized mutex release
1 mutex_reset_lock_word(m))

N

signal (coy,)

}

// Thread 4
1 lock(l)
2 unlock (I)
3 mutex_enter (m)
4 mutex_exit (m)

// Thread t;
1 lock ()
2 mutex_enter (m)
3 mutex_exit (m)
4 unlock (I)

Figure 8: False positive from MySQL. Operations on cv,,’s as-
sociated lock and predicate are omitted for the simplicity.

atomically check and set the lock_word which indicates if the mu-
tex is acquired. When invoking mutex_enter (m), a thread will
wait on cup, if m’s lock_word equals 1 (i.e., m has been acquired).
Otherwise, it will set lock_word to 1 without waiting. When a
thread invokes mutex_exit (m), it will reset lock_word to 0 and
send the corresponding signal. In Figure 8, a cycle exists between
(t1,1, {com}) and (&, com, {I}). However, the two threads will not
deadlock: if t; is waiting for #; to release m while holding [, t; must
have already acquired m and will not wait for I (due to the ad hoc
synchronization based on the lock_word). UnHang is unaware of
such a synchronization, and thus may report a deadlock mistakenly.
To solve this false positive, it is beneficial to employ deadlock con-
firmation techniques or identify ad hoc synchronization, which is
out of the scope.

The second type of false positive can be caused by memory reuse
for dynamically allocated objects, such as the cycle reported in
SQLite-3.25.2. Note that AirLock reports such a cycle as well. How-
ever, we investigate this more carefully, and find that this is not
a real deadlock. The problem is caused by a lock object reusing
the memory address of a previously-freed lock. Such a bug can
be avoided if we could record the timestamps of synchronization
initialization so that we could differentiate synchronizations with dif-
ferent timestamps. However, this method may significantly increase
the recording overhead. As such bugs appear very rarely, UnHang
prefers to reduce the recording overhead.

4.2 UnHang’s Overhead

In this section, we focus on both the performance and memory
overhead of UnHang. To further evaluate UnHang’s prediction
overhead, we also add another version of UnHang — UnHang-Log
that only traces the execution without performing any prediction.

Evaluated Applications: We evaluated the performance and mem-
ory overhead on 19 applications. 13 of them are from the PAR-
SEC suite [8], while others are real applications: Apache, Mem-
cached, MySQL, Pbzip2, Pfscan, and SQLite. For the PARSEC
applications, we used the native input set with 16 threads. Apache
was evaluated by sending 10,000,000 requests via the ab [1] with
16 requests at a time. Memcached was evaluated by running the
Memtier_benchmark [34] with 16 threads for 300 seconds. MySQL
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Figure 9: Normalized performance overhead over the default
Pthreads library.

was evaluated by using the Sysbench to send 100,000,000 queries
with 500 threads. SQLite was tested using “threadtest3.c” [3], a
stress test program for SQLite. Pfscan was evaluated by performing
a keyword search within 500MB of data. Pbzip2 was evaluated by
compressing on a 600MB data file. The results shown in this section
are the average results of 10 executions. Note that UnHang does not
report any false positive for all applications in this evaluation.

4.2.1 Performance Overhead. Figure 9 shows UnHang’s per-
formance overhead. For server applications, including Apache, Mem-
cached, and MySQL, Figure 9 shows their throughput. In this fig-
ure, all results are normalized to the original values without using
the tools. We compared UnHang with UnDead, which can only
predict resource deadlocks. On average (geomean), UnHang only
imposes a performance overhead of 2.7% , which is slightly higher
than UnDead (0.9%). In addition, UnHang imposes more than
5% overhead on only five applications, including Dedup (5.4%),
Facesim (5.4%), Fluidanimate (15.2%), Memcached (5.9%), and
MySQL (5.3%). We also evaluated UnHang—-Log, which is the
performance overhead when UnHang only performs the logging.
By comparing the difference between UnHang—-Log and UnHang,
we can know better about UnHang’s detection overhead (shown
as “UnHang-Detect" in the figure). On average, UnHang-Log
imposes a performance overhead of 2.2%, indicating that UnHang’s
detection overhead is only 0.5%.

Table 2 also lists the detection overhead of UnHang and UnDead
on real deadlocks. Since UnDead neither performs the optimizations
discussed in Section 3.1.1 nor uses the reachability graph, its DFS-
based detection can be quite inefficient given a huge search space.
As shown in the table, UnDead’s detection overhead can be many
orders of magnitude larger than UnHang’s, for example on HawkNL-
1.6b3, SQLite-3.25.2, and MySQL-5.1.57. This also confirms the
results from AirLock [12]. In comparison, UnHang significantly
reduces the detection overhead to the level of dozens of milliseconds.
Although we cannot compare with AirLock directly, we believe that
such overhead is comparable to AirLock.

UnHang imposes a higher overhead than UnDead due to the fol-
lowing reasons: (1) UnHang needs to record all single-level locks
(where a thread only acquires a lock) to identify generalized depen-
dency, while UnDead skips such locks because single-level locks
will not cause traditional resource deadlocks. For generalized depen-
dency, a single-level lock may combine with condition signals to
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Table 3: Characteristic of evaluated applications.

Applications | Time (s) [ i Locks _ i Condition Va}riables ] Dependencie

| Objects | Acquisitions | Objects | Tracked [ Signals | Waits [ UnHang | NoOpt
Blackscholes 20.4 0 0 0 0 0 0 0 0
Bodytrack 15.1 6 1858851 3 3 3397 36856 9 4097
Canneal 31.3 1 15 0 0 0 0 0 0
Dedup 12.9 2199 999527 168362 19 259627 4397 2176 53586
Facesim 256.6 17 8168748 2 2 369247 1970860 423 65536
Ferret 58.7 5 35034 10 10 35034 16696 229 73728
Fluidanimate 20.3 92396 1723264500 1 1 8000 61337 155 10491
Freqmine 58.7 0 0 0 0 0 0 0 0
Raytrace 40.9 16 9431 16 16 3200 3209 85 7502
Streamcluster 36.6 1 2688 1 1 168 2042 6 168
Swaptions 12.6 0 0 0 0 0 0 0 0
Vips 20.7 71 649013 19 13 318687 139385 1345 54940
X264 34.4 35 202776 35 14 34816 4179 1392 | 218060
Apache 440 72 48500155 2 | 13573437 | 13573458 8 4101
Memcached 300 16735 169617675 4 20 15 15151 77824
MySQL 224 4328 939779967 3608 51 38268 215455 20966 | 157863
Pbzip2 6.1 7 304 6 71 24 127 312
Pfscan 0.7 4 36 3 19 12 34 35
SQLite 307 465 170877368 0 0 0 3623 | 169427

form new dependencies (e.g., Figure 1). (2) UnHang further records
call stacks of the initialization of all locks to assist the identification
of locks, which adds significant overhead for applications with a
large number of locks (e.g., Fluidanimate). (3) UnHang records
information related to condition variables, which is unnecessary for
UnDead. In fact, UnHang imposes much less detection overhead
than UnDead, as shown in Table 2.

We further investigate the source of UnHang’s overhead by col-
lecting the characteristics of locks and condition variables as shown
in Table 3. The information related to locks includes the number
of objects and lock acquisitions. For condition variables, we col-
lect the number of condition variables (“Objects”), the number of
condition variables tracked by UnHang (“Tracked”), the number
of condition signals (“Signals”) and waits (“Waits”). Note that the
“Signals” column actually includes the number of signal broadcasts,
which explains why the number of signals can be smaller than that
of waits (e.g., Facesim), since a signal broadcast may wake up all
threads waiting on the related condition variable. We also collected
the number of generalized dependencies recorded by UnHang and
a special build of UnHang (named UnHang-NoOpt, or “NoOpt”
for simplicity), respectively. UnHang-NoOpt does not have the
call-stack based optimizations described in Section 3.1.1 and will
record all dependencies on each call stack.

Based on our investigation, Fluidanimate has around 1.7 billion
lock acquisitions on 92K lock objects, and 69K condition variable
operations in around 20 seconds of execution. Therefore, collecting
the call stack of initializations and intercepting the lock acquisitions
together adds non-negligible overhead. Similarly, UnHang imposes
more overhead for Dedup, Facesim, Memcached, and MySQL, due
to a large number of synchronizations.

We also observed that UnHang can significantly reduce the num-
ber of synchronizations and dependencies to be recorded. For in-
stance, Dedup has 168362 condition variables, but UnHang only
tracked 19 of them. Similarly, UnHang also only tracked 51 out
of 3606 condition variables in MySQL. When collecting data for
UnHang-NoOpt in Table 3, we limited the maximum number of

dependencies recorded for each thread to 4096, instead of allow-
ing UnHang—-NoOpt to keep recording. Even with this limitation,
we can still observe a significant difference between UnHang and
UnHang-NoOpt. For instance, UnHang—-NoOpt records 218060
dependencies from X264, which is 156X more than UnHang. Never-
theless, UnHang—NoOpt does not detect more bugs than UnHang
in our evaluation. Thus, UnHang’s call-stack based optimization is
essential considering its efficiency and effectiveness.

Overall, UnHang imposes little performance overhead for most
applications. Compared to UnDead, UnHang imposes a similar
overhead for almost all applications, except Fluidanimate, while
being capable of predicting deadlocks caused by condition variables.

4.2.2 Memory Overhead. We collected memory overhead in two
ways depending on the application type. For non-server applications,
such as Pbzip2, Pfscan, and all PARSEC applications, the maximum
memory consumption is collected from the maxresident field
in the output of the t ime utility. For server applications, such as
Apache, Memcached, and MySQL, the maximum memory consump-
tion is collected from the VmHWM field in the /proc/PID/status
file.

Table 4 shows the memory consumption of UnHang, compared
with UnDead and the default Pthreads library [5]. We also collected
the memory consumption of UnHang-NoOpt which records all
dependencies on each call stack. We further divided applications
into two types, one with small footprints (less than 100 MB), and
the other one with large footprints (no less than 100MB).

From Table 4, we conclude that UnHang imposes reasonable
overhead for applications with a large footprint, as the geomean
overhead is only 2.7%. For applications with a large number of syn-
chronization objects and events, such as Fluidanimate and MySQL,
UnHang consumes more memory to record the call stacks. Of
course, UnDead’s memory overhead is even smaller, with 1.4% for
these applications. Table 4 also shows that UnHang—NoOpt’s ge-
omean overhead is much larger (10% for the same applications). For
example, UnHang—-NoOpt’s overhead on X264 is 195.2% which
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Table 4: Memory consumption (MB) and overhead over the default Pthreads library.

s UnDead UnHang UnHang-NoOpt
Applications Default } Mem | Overhead % Mem [ Overhead % Mem | Overhead
Large Footprint (> 100MB)

Blackscholes 613 619 0.9% 621 1.3% 622 1.4%
Canneal 851 856 0.6% 858 0.8% 858 0.8%
Dedup 1505 1534 1.9% 1617 7.4% 2389 58.7%
Facesim 310 317 2.2% 320 3.2% 596 92.2%
Ferret 106 113 6.6% 116 9.4% 429 304.7%
Fluidanimate 209 214 2.4% 332 58.8% 377 80.3%
Freqmine 1275 1276 0.1% 1280 0.1% 1280 0.1%
MySQL 319 450 41% 541 69.5% 1560 389.0%
Pbzip2 1285 1291 0.4% 1289 0.3% 1298 1.0%
Pfscan 516 524 1.6% 524 1.5% 524 1.6%
Raytrace 1287 1288 0.1% 1289 0.1% 1289 0.1%
Streamcluster 109 117 7.3% 117 7.3% 118 8.2%
X264 480 490 2.1% 490 2.1% 1417 195.2%
Total 8865 | 9089 2.5% | 9394 6.0% 12757 43.9%
GeoMean Overhead 1.4% 2.7% 10.0%
Small Footprint (< 100MB)
Apache 3 13 333.3% 15 400% 32 966.7%
Bodytrack 34 39 14.7% 41 20.6% 58 70.6%
Memcached 7 50 614.3% 59 742.9% 85 1114.2%
SQLite 31 40 29.0% 42 35.5% 796 2467.7%
Swaptions 7 12 71.4% 14 100% 14 100%
Vips 55 64 16.4% 68 23.6% 293 432.7%
Total 137 218 59.1% 239 74.5% 1278 958.7%
GeoMean Overhead 68.4% 89.5% 448.3 %
Overall Total | 9002 | 9307 | 34% | 9633 | 70% [ 14035 | 55.9%
Overall GeoMean Overhead | 49% | 82% | 33.2%

is 92X more than UnHang. This indicates that UnHang’s opti-
mizations significantly reduce the memory overhead (and the pre-
diction runtime overhead). We also notice that both UnDead and
UnHang impose higher overhead for applications with small foot-
prints, with 68.4% and 89.5% respectively. This is understandable
as they both include some initialization overhead for bookkeep-
ing or other purposes. However, these applications with small foot-
prints should not be a big concern, as their memory consumption
is small in general. On average, UnHang’s memory overhead is
only 8.2%, which is slightly higher than UnDead (4.9%). This is
because UnHang has to record much more information, as dis-
cussed in Section 3. Meanwhile, UnDead’s overhead is significantly
less than UnHang—-NoOpt (33.2%), indicating the effectiveness of
UnHang’s optimizations.

5 LIMITATIONS

As a prototype built on generalized dependency, UnHang still has
some limitations: (1) As discussed in Section 4.1, UnHang may
report some false positives, which shares the same shortcomings
with almost all existing dynamic tools [7, 12, 15, 43]. False positives
can be caused by ad hoc synchronization and memory reuse. One
possible solution for eliminating these false positives is to integrate
some dynamic confirmation tools [9, 11, 25, 35]. As shown in Sec-
tion 4.1, UnHang only reports a small number of false positives,
while it reports all known deadlocks and reports some new bugs. (2)
Similar to all dynamic tools, UnHang cannot predict a deadlock if
its relevant synchronization events are not exercised at runtime. (3)
UnHang currently only predicts deadlocks caused by mutex locks
and condition variables. However, the idea of generalized depen-
dency could be applied to other synchronization primitives, which
will be our future work. (4) Although UnHang detects lost signals

by checking if the signaling thread ever acquired the associated lock
before the signaling (as discussed in Section 3.2.1), it may miss
some lost signals because acquiring the associated lock does not
necessarily ensure race-free on the predicate.

6 RELATED WORK

In the following, we discuss existing tools for detecting communica-
tion and resource deadlocks separately.

Detecting communication deadlocks: Only a few existing works
detect deadlocks caused by condition variables. Among them, Agar-
wal et al. [6] detect lost signals by checking if a wait operation
always happens before the corresponding signaling event. However,
they do not consider the interactions between condition variables
and locks. Pattern-based approaches [22, 40] may have an oversim-
plified pattern that can easily lead to false positives. For instance,
FindBugs [22] reports an alarm if a thread waits on condition vari-
ables while holding multiple locks, although such a pattern does not
necessarily lead to a deadlock. Further, it provides no information
to guide bug fixes, as developers cannot know how deadlocks may
occur.

CheckMate [24] is a previous state-of-the-art detector for both
resource and communication deadlocks. CheckMate records more
information (which relies on source code annotations) than UnHang,
including changes to the predicate, and the wait/notify events that
did not occur because the predicate was false in the execution. It then
builds a simple program based on the records and model-checks the
simple program to find deadlocks. Thus, theoretically, CheckMate
can detect more deadlocks than UnHang. CheckMate can have false
positives, as the deadlocks detected from the simple program may not
be feasible in the original program. It also can have false negatives
as the simple program is built from single execution. CheckMate’s



Deadlock Prediction via Generalized Dependency

overhead is prohibitive: it imposes more than 10X overhead on its
recording phase and 60X on its model checking phase. In addition,
CheckMate requires users to manually annotate the source code for
its recording. These issues can become more serious if CheckMate
is used in large-scale applications.

Some existing work aims to verify or guarantee deadlock-freedom
in a concurrent program built on condition variables: Laneve et
al. [29] propose a behavioral type system to analyze programs that
use wait-notify coordination and guarantee deadlock-free for well-
typed programs. Hamin et al. [21] ensure deadlock-freedom by
verifying that each wait has a corresponding notification. Gomes
et al. [20] apply Petri Net analysis to verify if every thread syn-
chronizing under a set of condition variables eventually exits the
synchronization block. In [28], the authors use a theorem prover
to analyze the boolean conditions related to condition variables,
focusing on the system design rather than the misuse of synchroniza-
tion primitives. These approaches typically rely on sophisticated but
heavy static analysis. They are orthogonal to UnHang.

Detecting resource deadlocks: Resource deadlocks have been
extensively studied in the past. Among them, static approaches [16,
17, 19, 30, 37, 41] detect deadlocks based on the analysis of the
source code. They can easily produce numerous false positives and
often do not scale to large programs. Dynamic detection tools [7, 9,
10, 12, 18, 25-27, 36, 38, 43] perform detection based on observed
events from real executions, thus are more likely to find real dead-
locks. GoodLock [7] constructs a lock order graph based on lock
acquisitions and detects cycles within the graph to identify potential
deadlocks. DeadlockFuzzer [25] introduces the lock dependency
concept and the iGoodLock algorithm to detect cyclic lock depen-
dency chains. Multiple tools are proposed to reduce the search space.
MulticoreSDK [15] performs cycle detection in a location-based
lock order graph, where lock acquisitions from different threads on
the same code location are grouped together and different groups
sharing a lock are further merged. MagicLock [10] prunes locksets
that can never form a cycle and designs a thread-specific strategy
DEFS algorithm to find cycles. AirLock [12] further improves the de-
tection algorithm by using a reachability graph to reduce the search
space and quickly determine if there’s a cycle between two nodes.
UnDead [43] is a deadlock detection and prevention tool with a
novel prevention approach and various optimizations (such as prun-
ing duplicated dependencies and reducing collections of call stacks)
to reduce its performance overhead. It has a similar workflow as
Dimmunix [26] in that they both detect deadlocks in current exe-
cution and prevent these deadlocks in future executions. UnDead’s
detection is based on the existing DFS algorithm [9, 25], thus can be
very inefficient when the search space is huge.

Note that the cycles detected by the aforementioned approaches
are predictive, i.e., they do not necessarily indicate a real dead-
lock. Some tools further try to confirm the detected deadlocks by
controlling the scheduling of threads [9, 10, 25, 38]. For exam-
ple, PickLock [38] predicts the deadlocking schedule based on the
lock-sets and lock-acquisition history from one execution. There are
some works that provide sound deadlock prediction (i.e., without
false positives) [13, 27]. Dirk [27] aims to provide maximal and
sound deadlock prediction, relying on a Satisfiability Modulo The-
ory (SMT) solver to identify if specific constraints can be satisfied
given a feasible trace, similar to RVPredict [23]. However, checking
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satisfiability still remains intractable for large traces, and construct-
ing feasible traces requires data-flow analysis that can introduce
heavy runtime overhead. SeqCheck [13] collects traces of memory
accesses and synchronizations to check if a sequence of these events
in a specified order is feasible and predict concurrency bugs offline.
UnHang can be extended to trace memory accesses and adopt these
approaches to further reduce false positives (but with significantly
more overhead).
Some works aim to reveal concurrency bugs by generating tests [14,

32,33, 39]. With these test generators, UnHang could record more
synchronization patterns and find more deadlocks.

7 CONCLUSION

This paper proposes generalized dependency that can be utilized to
detect deadlocks caused by both locks and condition variables. It
further presents an efficient dynamic tool, UnHang, that predicts
deadlocks based on generalized dependency. UnHang also includes
multiple practical designs to reduce the recording and prediction
overhead. Based on our experiments, UnHang only imposes around
3% performance overhead and 8% memory overhead, while predict-
ing a range of known deadlocks. It further detects two new deadlocks
in widely-used real applications. UnHang has few false positives,
which shares the same issues with most dynamic tools. UnHang can
be an always-on option for detecting program deadlocks due to its
low overhead and high effectiveness.
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