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Abstract— In an advanced metering infrastructure (AMI),
the electric utility collects power consumption data from smart
meters to improve energy optimization and provides detailed
information on power consumption to electric utility customers.
However, AMI is vulnerable to data falsification attacks, which
organized adversaries can launch. Such attacks can be detected
by analyzing customers’ fine-grained power consumption data;
however, analyzing customers’ private data violates the
customers’ privacy. Although homomorphic encryption-based
schemes have been proposed to tackle the problem, the
disadvantage is a long execution time. This paper proposes a
new privacy-preserving data falsification detection scheme to
shorten the execution time. We adopt elliptic curve
cryptography (ECC) based on homomorphic encryption (HE)
without revealing customer power consumption data. HE is a
form of encryption that permits users to perform computations
on the encrypted data without decryption. Through ECC, we
can achieve light computation. Our experimental evaluation
showed that our proposed scheme successfully achieved 18 times
faster than the CKKS scheme, a common HE scheme.

Keywords—Elliptic =~ Curve  Cryptography,
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I. INTRODUCTION

Advanced Metering Infrastructure (AMI) refers to the entire
infrastructure, from smart meters to two-way communication
networks, controlling electric appliances and transferring
energy usage data. AMI enables two-way communication
with customers and serves as the smart grid's backbone. A
smart grid allows bidirectional energy flow and integrates
two-way communication and control capabilities, offering
several new features and applications [1].

At the same time, customer data from smart meters raises
privacy concerns and confidentiality issues [2]. The major
concern is that it is vulnerable to cyber-attacks. As the energy
consumption data collected from smart meters are sensitive
consumer information, providing data privacy is a key
concern. Hence, the data must be protected from malicious
parties that attack the system to generate falsified data to
manipulate the customer’s power consumption data.

Ishimaki et al. [3] proposed a privacy-preserving anomaly-
based attack detection scheme, which adopts the CKKS
scheme for privacy-preserving anomaly detection. Note that
the CKKS scheme is one of the homomorphic encryption
(HE) schemes enabling the calculation over encrypted data.
Other approaches include differential privacy and
blockchain. Wen et al. [4] performed privacy-preserving

anomaly detection for power grids by adopting local
differential privacy (LDP) and a deep learning model. Keshk
et al. [5] used blockchain technology to verify the data
integrity and deep learning technology to perform anomaly
detection. Though the methods above protect the security and
privacy of the consumers’ data, the computational overhead
of previous works [3-5] still has been an issue.

Therefore, this paper proposes an elliptic curve cryptography
(ECC) based HE scheme, which needs smaller memory space
and shorter computation time than the HE schemes like
CKKS, while ensuring the privacy of the data. Moreover, ECC
supports bilinear pairing over encrypted data, detecting
computation manipulations over meter readings. Whereas,
homomorphic operations can be performed on encrypted data,
which safeguards the secret information from unauthorized
access.

Contributions: Our contributions are as follows.

i) We first propose an ECC-based HE scheme for privacy-
preserving data falsification detection in smart grids,
enabling faster computation than the previous CKKS-based
schemes.

ii) We perform validation checking for encrypted data using
pairing operations over encrypted data, which can detect
maliciously encrypted data. That is, maliciously encrypted
meter readings can be detected not to send to the utility. The
solution uses the bilinear pairing property of ECC, which is
not possible for other encryption schemes.

iii) For a fair comparison, our proposed scheme and the
CKKS-based scheme are implemented on the same platform
to compare the performance.

The rest of the paper is organized as follows. Section II
describes related work, followed by Section III describing
preliminary knowledge. The system architecture is explained
in Section IV. Section V proposes our ECC-based HE
scheme. The experimental evaluation is performed in Section
VI. Finally, we conclude our work in Section VII.

II. RELATED WORK
The existing privacy-preserving techniques and privacy-
preserving anomaly detection schemes are summarized.
A. Privacy-Preserving Techniques

The literature includes three privacy-preserving techniques,
differential privacy (DP), secure multiparty computation
(SMC), and homomorphic encryption (HE).
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DP preserves privacy by adding a controlled amount of
randomness (noise) to the raw data. Since the randomness is
controlled, the resulting data is still accurate. However, DP
adds much noise when the data has large diversity, which
results in reducing the data utility. Moreover, balancing the
best trade-off is an open problem [6].

Secure multiparty computation (SMPC) is a cryptographic
approach that allows two or more parties to jointly compute
without revealing any information to one another in
decentralized scenarios. Though smart meters can outsource
the desired computation to a set of servers, it is assumed that
non-colluding servers are controlled by distinct third parties
[7-8]. One of the disadvantages of SMPC is communication
overhead among parties.

To perform data aggregation [9] and billing [10]
computations in smart grids, additive HE (AHE), which can
perform addition and constant multiplication, is sufficient.
However, identifying anomalous behavior requires complex
calculations such as division and logarithms, which prevents
HE implementation.

B. Privacy-Preserving Anomaly Detection

A framework for privacy-preserving anomaly-based attack
detection was proposed by Ishimaki et al. [3]. The CKKS
scheme, one of the popular HE schemes, was adopted for
privacy-preserving anomaly detection with the harmonic to
the arithmetic mean (HM-AM) metric. However, the HM-
AM ratio involves various HE-incompatible operations,
resulting in computational overhead in execution time.

Wen et al. [4] tackled the issue of energy theft detection in
smart grids with a novel privacy-preserving federated
learning framework, FedDetect. The local differential
privacy (LDP) scheme is adopted to preserve consumers’ data
privacy. Besides, a deep learning model called the temporal
convolutional network (TCN) is used to detect energy thefts
in smart grids. However, LDP adds noise to the original data,
resulting in degradation of the detection accuracy. Moreover,
noise-added data cannot be used for billing calculations.

Keshk et al. [S] proposed a privacy-preserving framework
to protect data and find anomalous behavior in smart power
networks. The framework uses blockchain technology to
verify the integrity of the data and a deep learning technique
for anomaly detection. For privacy-preserving, they adopt a
variational autoencoder to transform raw data into an encoded
format before inputting it into the deep learning model.
However, the raw data might be revealed before transforming
the raw data to an encoded format.

In this paper, we tackle the heavy computation load of HE
by adopting an ECC-based HE scheme as ECC provides the
same security as a 3,072-bit RSA key with a 256-bit ECC key
and supports the property of bilinear pairing. Then, we ensure
the integrity of the data and detect data falsification over
encrypted data. In the experiment, we compare our proposed
scheme with Ishimaki’s scheme [3].

III. PRELIMINARIES
This section explains the fundamental concepts required for

our proposed scheme, including preliminaries of ECC,

Elliptic Curve Discrete Logarithm Problem (ECDLP),
bilinear pairing, and anomaly detection ratio metric.

A. Elliptic Curves and ElGamal Encryption

Elliptic curve cryptography is based on the properties of
algebraic curves over fields [11]. To keep the
comprehensiveness of this paper, the Elliptic curves and
ElGamal encryption is described by quoting the explanation
by Deepak et al. [11]. Mathematically, an elliptic curve is
represented by an equation of the form: 3? = x*+ ax + b with
a constraint that the discriminant A = —16(4a’+27b?) is non-
zero. The security of elliptic curve cryptography is based on
the ECDLP [12]. In other words, given two points, P and O,
on the curve such that one is a scalar multiple of the other,
i.e., P=x.0Q (here ‘.’ (dot) represents scalar multiplication),
it is computationally difficult to find x. The ElGamal
encryption scheme with additive homomorphism can be
implemented using elliptic curve cryptography.

B. Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP [12] is the fundamental assumption for
elliptic-curve-based protocols. Computing the discrete
logarithm of a random elliptic curve element concerning a
publicly known base-point is infeasible. The inability to
compute the multiplicand given the original and product
points is required for elliptic curve encryption. To be secure,
the inability of the potential to compute an elliptic curve
scalar multiplication is also required. The difficulty of the
problem is determined by the size of the elliptic curve, as
measured by the total number of discrete integer pairs
satisfying the curve equation.

Consider an elliptic curve E defined over a finite field F,.
Let A be a point of order n on the elliptic curve, where A €
E (F,). The ECDLP is based on identifying integer z, where
0 <z < n— 1. Fora given point B on the elliptic curve, B €
(A) and B is a scalar multiplication of the integer z and the
point on elliptic curve A, such that B = z-A. Here ‘-’ is the
scalar multiplication. The property of bilinear pairing is
supported by ECC. In this paper, we adopt bilinear pairing to
detect malicious meter readings over encrypted data.

C. Bilinear Pairing

Let G be an additively written group of order n with identity
oo and let Grbe a multiplicatively written group of order n
with identity 1. A bilinear pairing on (G1, Gr) is a map & G
x (G = Grthat satisfies the following conditions [ 13].

i) (bilinearity) For all R, S, T € Gi, e(R+ S, T)=¢e(R, T),e
(S, 7). This is equivalent to &(aS, bT) =&(S, T)*

i) (non-degeneracy) e (P, P) # 1

iii) (computability) e can be efficiently computed.

D. Anomaly Detection Metric

The harmonic to arithmetic mean (HM-AM) ratio is an
efficient standard for identifying anomalous behavior in
smart grid data [3]. Hence, the HM-AM ratio is adopted for
anomaly-based attack detection in the proposed scheme
because 1) it deals with additive, deductive, and camouflage
attacks, and ii) it can detect the minute changes in data that
occurred due to data falsification attacks.

Here, N is denoted as the total number of smart meters in
an AMI located in a neighborhood area network, and each
timeslot is denoted as . A set of timeslots 7 is represented by
T, where (Vt ET). The power consumption of the i-th smart



meter is represented as pt(i), where pt(i) € R". The i-th smart
meter performs natural logarithm transformation (Pt(i)) on
each power consumption pgi) and computes its inverse
(P, @) as follows: PO = log(p® + 2), B, ¥ =1/,
Finally, the HM-AM ratio Q; for the d-th date is computed.

Yte THM;
== 1
Qd Yie 1AM, 9 ( )

N

VPP
N
=1 Pgt)

where AM, = and HM, =

2

IV. SYSTEM ARCHITECTURE

The system architecture is shown in Figure 1 which
consists of three main components: the utility, a
computational server (operated by a third party), and N smart
meters, which is the same as the model used by Ishimaki et
al. [3]. In Figure 1 SM; is the i-th smart meter, HAN is Home
Area Network, and NAN is Neighborhood Area Network.

Calculation of |48 . Secret Key (sk)
HM-AM ratio =2 A p e Key (pk)
Utility

" N
. > Enc(R™) Enc (8"
Calcularion of Z ned and Z' nete)

Computatuonal server
o

Encryption of power
consumption data using pk

Neighborhood Area Network (NAN)

Home Area Network (HAN; )
Figure 1: System Architecture
The function of each component is as follows:

Utility:

e  The utility performs the system initialization step of
key generation (public and secret keys).

e  The utility sends the public key (only known to the
smart meters) to the smart meters to perform
encryption operations and keeps the secret key.

e  The utility computes the HM-AM ratio (Equation 1)
and performs the anomaly detection.

Smart meters:

e  The smart meters use the public key provided by the
utility to encrypt the power consumption data to
send to the computational server.

Computational server:

e The computational server receives the encrypted
power consumption data from the smart meters and
computes the summation of AM (Equation 2) and
the summation of HM (Equation 3).

e The computed summations are then sent to the
utility to perform anomaly detection.

The details of the scheme are provided in Section 4.

Threat Model The proposed scheme attempts to protect the
consumer’s private data from both the computational server
and the utility if the following conditions hold.

The utility, the computational server, and the smart meters
are assumed to be semi-honest, i.e., honest but curious [3].

They obey the protocol; however, they try to collect the
consumers’ data while communicating the data from the
smart meters to the utility through the computational server.
Another assumption is that the computational server does not
collude with the utility that has the secret key. Note that if the
server and a subset of smart meters collude, only the meter
readings of those smart meters are revealed, whereas readings
from other smart meters are protected. Thus, we do not
restrict the collusion among smart meters and between smart
meters and the computational server.

Data integrity threat, where an adversary attacks the smart
meters to falsify the meter readings, is assumed to occur
before encrypting the power consumption data in smart
meters.

V. PROPOSED SCHEME

We propose a novel privacy-preserving data falsification
detection scheme with ECC-based HE to encrypt data and
perform HM-AM ratio calculations over the encrypted data.
ECC-based encryption is additively homomorphic, which
uses smaller keys to improve performance end-to-end and
supports bilinear pairing. Moreover, the bilinear pairing
function over the elliptic curve group allows us to validate
the encrypted data without decryption.

The proposed scheme consists of four phases, as shown in
Figure 2: 1) system initialization by the utility, 2) meter report
generation by smart meters, 3) HM-AM computation over
encrypted data by the computational server, and 4) anomaly
attack detection by the utility. Table I shows the variables
used in this paper.

TABLE L DESCRIPTION OF VARIABLES
Variable Description
P Independent point on the elliptic curve
Q Independent point on the elliptic curve
G1 Elliptic curve group
T A set of timeslots in a day
t A timeslot
T A random value generated at timeslot t
pfi) Power consumption of i-th smart meter at timeslot
t,wherel <i <N.
Pt(i) Natural log transformation of pfi) (log(pt(i) + 2))
Pt, @ Inverse of Pt(i) (1/log(p§i) + 2))
SHA-256 A cryptographic hash function that outputs a 256-bit
long value
é Bilinear map
AMym Summation of Enc (Pt(i)) attimeslott (1 <i <N)
t s
HMsum Summation of Enc (P, (l)) attimeslott (1 <i < N)
N Total number of smart meters
Q4 HM-AM ratio for a day

Tnitial Setup « Performed by the utility

(Key Generation)
Meter
Report + Performed by the smart meters
Encrypti
Generation (Encryption)
HM-AM

a « Performed by the computational
Computation over server
encrypted data

Anomaly * Performed by the utility
Detection (Decryption)

Figure 2: Proposed Scheme



A. System Initialization

The utility performs the initial setup. First, the utility
chooses an appropriate elliptic curve group G; and two
independent points on the elliptic curve, P, Q € G; of order
n. Second, the utility generates two keys (key; and key») that
are shared between the smart meters and the utility only. Both
the keys are kept secret from the computational server.

B. Meter Report Generation

The HM-AM ratio involves lo g(pt(‘)+ 2) and its inverses that
are not HE-friendly operations. Therefore, we first need to
compute P = log(p” + 2) and Pt/ ® = 1/P® for i-th
smart meter. Log-transformation results in decimal places;
however, we can perform encryption over integers only.

Thus, we first round both Pt(i) and Pt/ ® up to four decimal
places and then remove decimal points to make it an integer.

First, every smart meter computes a random value 7; using

the shared key; and corresponding timeslot . Note that for
timeslot #, every smart meter uses the same random value 7.

1, = SHA256(key|7) @)

Second, we need to encode Pt(i) into a group element to
apply ECC-based ElGamal encryption. We round Pt(l) to
three decimal places and then convert Pt(l) into integer. After

that, we encode it as (Pt(i) — 1)r,P, where r; is the random
value generated by Equation 4. The corresponding encryption

of Pt(i) is shown s below.

Enc (") = (P, (PY = P +1,P )= (P, PO1) (5)

Similarly, encryption of m’ = Pt/ @ is shown below.

Enc(m’)=(" QO m’ r." Q), (6)
where r, © = SHA256(keys|lt)  (7)

The algorithm of smart meter-side encryption is shown below.

pair (Enc (Pt(i)), Enc (Pt/ @ )) using bilinear pairing as
follows:

“(rPr’ Q)= @(mTtP, m’ .’ Q)y/ ) (®)
where m = Pt(L) andm’ = P, @

Note that since mXm’ = 1, we have the following
equation.

NmrPom ! Q)=2(P,QM T =2 (P, Q)
—e(nP 1’ Q) ©)

If and only if the above equation does not hold for each
reading set of Enc (Pt(l)) and Enc (Pt/ (l)), where 1 < i <N,
the reading set has been manipulated, which results in
discarding the data set to detect the malicious meter readings.
After confirming the above equation holds, the computational
server computes AM¢,,, and HM{,,, for each timeslot ¢ as
shown below, where N is the total number of smart meters.

N .
AME,.. = z;] Enc (pt(l)) (10)
N

HMyn= ) Enc @ D an

i

The computational server then sends
{AMS,, HM!, 1 vee 7 to the utility to calculate the HM-AM
ratio. The algorithm of server-side computation is shown
below.

Algorithm 2 (Server-side computation for each timeslot)

Algorithm 1 (Smart meter-side encryption)

Input:
. pt(l): Power consumption data of i-th meter at time t
e pk: Elgamal public key

Output: Enc(pt(i)), Enc(Pt(i))’ Enc (Pt/ (i))

1 ¢y = Encyy (pt(i)) P Encryption using Elgamal public key
2: Compute P = log(p® + 2)

3: ¢, = Encyy (Pt(i))

4: Compute Pt/ ®=1/p®

5: ¢y =Ency, (B, ©)

6: return ¢y, C;, C3

Input:
. {Enc(Pt(l))}lsiSN: A set of encrypted log power

consumption data in an area

e ‘
. {Enc <Pt ¢ )} : A set of encrypted inverse log
1<i<N
power consumption data in an area
Output: Enc(3X, ), Enc (Z?’ﬂ P (i))

1: fracsum¢ < 0, sum¢ < 0
2:fori < 1to N do

3: sum¢ < sum¢ (4 EnC(Pt(i))
4. fracsum: « fracsum¢ [ Enc ( Pt/ (i))
5: end for

6: return sumyg, fracsume

C. HM-AM Computation over Encrypted Data

After receiving the encrypted data from each smart meter,
the computational server first checks for the validity of each

D. Anomaly Detection by the Utility

After  receiving {AMLn, HMEmYier from  the
computational server, the utility first decrypts them and then
computes AM,; and HM; as follows:

_ Dec(AMEym) N

AM,; , HM; = —————
N Dec( HMb,m)

., (12)

where N is the total number of smart meters.
Finally, the utility computes the HM-AM ratio as follows:
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Then, the utility adopts the residual under the curve (RUC)
metric proposed in [14] to detect the anomaly. The algorithm
of utility-side computation is shown below.

Algorithm 3 (Utility-side computation)

Input:

o {sum,},cr: A set of the encrypted sum of log power
consumption data in an area

o {fracsum.}.r: A set of the encrypted sum of inverse
log power consumption data in an area

Output: Anomaly detection result
1:HM < 0, AM < 0

2:fort €T do
3. AM < AM + Dec(sum¢)
’ N
4: HM « HM + ————
Dec(fracsumg)

5: Calculate ik
AM

6: Apply the RUC metric [14] to detect the anomaly.

E. System Goals

The goal of our proposed scheme is as follows:

e Perform anomaly-based attack detection in a secured
manner without disclosing each consumer’s power usage
details to the server and the utility.

e  Verify the validity of the encrypted data to ensure that
the consumers’ data are not manipulated to pass through
the anomaly-based detection process.

F. Security Analysis

The proposed scheme ensures the security of the
consumers’ data from both the computational server and the
utility, as shown below.

e The proposed scheme adopts the ECC-based El-Gamal
system, and its security depends on the discrete
logarithm (DL) problem [12] in the elliptic curve (EC)
group. Therefore, the proposed scheme is as secure as the
DL in the EC group.

e As the computational server evaluates encrypted data,
the privacy of the data is maintained, and consumers’
data is protected from leaking.

e In the proposed scheme, AM; and HM; (the arithmetic
mean and the harmonic mean of power consumption data
at each time slot) will be visible to the utility; however,
this does not leak individual readings of the meter;
thereby, the utility cannot find the reading of any meter
from either AM, or HM,.

VI. EXPERIMENTAL EVALUATION

To confirm the effectiveness of our proposed scheme, we
compared our scheme with the CKKS scheme, which is one
of the popular HE schemes.

A. Setup

For all the experiments, we used a Windows 10 operating
system, 11 Gen Intel(R) Core (TM) i5 (2.4 GHz) processor,
8 GB RAM, SageMath 9.2 compiler, and Python 3.8.10.

The proposed scheme was implemented in Jupyter
Notebook and NumPy library in Python-based SageMath'.
The proposed scheme uses elliptic curve E: y? = x3 — 4 over
a finite field F, with prime of form p = 36u* + 36u® +
24u® + 6u + 1, where u =2114+2101 — 214 1 which is
the recommended setting to achieve 128-bit security for
bilinear pairing and ECC-based encryption [15].

For the CKKS-based scheme, the HEAAN Python library?
and the Python wrapper® for the HEAAN C++ library* were
used. For division over ciphertext operation, an inbuilt cipher
inverse function of the HEAAN library is used. Parameters
are set as (n, log Q, p) = (25, 491, 35), in which a fresh
ciphertext size is calculated as 2n-logQ bits. As 21° =
32,768, it supports 128-bit security [16].

We used the same dataset used in the paper [3], a smart grid
dataset collected from the Pecan Street Project. The dataset
includes the power consumption data of 200 households in
Texas, USA, over three years (2014-2016). The differences
in the implementation of the proposed scheme and the CKKS
scheme are listed in Table II.

TABLE II. IMPLEMENTATION COMPARISON
ECC-based HE (proposed) CKKS
Library NumPy HEAAN C++
Tool Python binding for C++ libraries | Python based SageMath
Inverse not supported over ciphertext supported over
function ciphertext
Linking supported through bilinear unsupported
pairing

HM-AM computed by the utility computed by the
ratio computational server

B. Performance comparison

In this experiment, we compared the performance of use-
side encryption, server-side computation, utility-side
decryption, and the total execution time.

a) Performance of user-side encryption

Each smart meter performs three encryptions per timeslot,
i.e., Enc (pt(i)), Enc (Pt(i)) and Enc (Pt/ (i)). Table III shows
the runtime for three times encryption, including Enc (pt(i)),
Enc (P”) and Enc (P, ©).

TABLE III. RUNTIME COMPARISON OF USER-SIDE ENCRYPTION
Scheme Runtime of user-side encryption
(sec)
ECC-based HE (proposed) 0.074
CKKS (Enc(0) +m) 0.016
CKKS(Enc(m)) 2.112

When encrypting with the CKKS, direct encryption takes
longer than an addition with ciphertext; thereby, Enc(0) is
pre-computed, consuming 0.984 sec, followed by addition.

! https://www.sagemath.org/download.html
*https://awesomeopensource.com/project/Huelse/HEA AN-Python
3 https://github.com/Huelse/HEAAN-Python

4 https://github.com/snucrypto/HEAAN



Table III shows that the ECC-based HE scheme has a longer
encryption time than the CKKS with pre-computation;
however, the ECC-based HE is much faster than the CKKS
without pre-computation.

b) Performance of server-side computation

Table IV shows the server-side computation runtime, which
confirms that the ECC-based HE scheme performs better with
and without bilinear pairing operation than the CKKS
scheme. Our proposed scheme can adopt bilinear pairing on

the server to check if the individual encryptions Enc (Pt(i))

and Enc (Pt/ @) are related to each other. In the CKKS
scheme, the computational server computes the HM-AM
ratio; thereby, the runtime without HM-AM ratio
computation is also shown in Table IV for a fair comparison.
Note that the ECC-based HE scheme omits the calculation of
the HM-AM ratio in the computational server to delegate it
to the utility.

TABLE IV. RUNTIME COMPARISON OF SERVER-SIDE COMPUTATION
Scheme Runtime of server-
side computation
(sec)

ECC-based HE w/o bilinear pairing (proposed) 0.051
ECC-based HE w/ bilinear pairing (proposed) 112.457
CKKS (w/ HM-AM ratio computation) 191.590
(w/o HM-AM ratio computation) (63.962)

¢) Performance of utility-side computation

Table V shows the runtime of utility-side computation,
which confirms that the CKKS scheme is faster than the
ECC-based HE scheme. The reason is that the ECC-based HE
scheme needs to compute the HM-AM ratio after the
decryption of HM and AM, while the CKKS scheme needs
only the decryption of the HM-AM ratio.

TABLE V. RUNTIME COMPARISON OF UTILITY-SIDE COMPUTATION

Scheme Runtime of utility-side
computation(sec)
ECC-based HE (proposed) 10.377
CKKS 0.273

d) Total performance

The total execution time is compared in Table VI, which
confirms that the ECC-based HE scheme performs better with
and without bilinear pairing operation than the CKKS
scheme. Especially without bilinear pairing, our proposed
ECC-based HE scheme performed 18 times faster than the
CKKS scheme. Furthermore, we still have 1.56 times
speedup even with bilinear pairing to check if the individual

encryptions Enc (Pt(i)) and Enc (Pt/ (i)) are related to each
other to increase the security level.

TABLE VI. TOTAL RUNTIME

Scheme Total runtime (sec)
ECC-based HE w/o bilinear pairing 10.502
(proposed)
ECC-based HE w/ bilinear pairing (proposed) 122.908
CKKS 191.879

VII. CONCLUSION

We proposed the first implementation of ECC-based HE
with HM-AM ratio-based anomaly detection and confirmed
18 times speedup of the anomaly detection compared to the
previously proposed CKKS scheme. Our proposed scheme is
as secure as the CKKS scheme and ensures that the
consumers’ private data is protected from the server and the
utility.
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