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Privacy-Preserving Data Falsification Detection in 

Smart Grids using Elliptic Curve Cryptography and 

Homomorphic Encryption

Abstract— In an advanced metering infrastructure (AMI), 

the electric utility collects power consumption data from smart 

meters to improve energy optimization and provides detailed 

information on power consumption to electric utility customers. 

However, AMI is vulnerable to data falsification attacks, which 

organized adversaries can launch. Such attacks can be detected 

by analyzing customers’ fine-grained power consumption data; 

however, analyzing customers’ private data violates the 

customers’ privacy. Although homomorphic encryption-based 

schemes have been proposed to tackle the problem, the 

disadvantage is a long execution time. This paper proposes a 

new privacy-preserving data falsification detection scheme to 

shorten the execution time. We adopt elliptic curve 

cryptography (ECC) based on homomorphic encryption (HE) 

without revealing customer power consumption data. HE is a 

form of encryption that permits users to perform computations 

on the encrypted data without decryption. Through ECC, we 

can achieve light computation. Our experimental evaluation 

showed that our proposed scheme successfully achieved 18 times 

faster than the CKKS scheme, a common HE scheme. 

 

Keywords—Elliptic Curve Cryptography, Homomorphic 

Encryption, smart grids, bilinear pairing 

I. INTRODUCTION 

  Advanced Metering Infrastructure (AMI) refers to the entire 

infrastructure, from smart meters to two-way communication 

networks, controlling electric appliances and transferring 

energy usage data. AMI enables two-way communication 

with customers and serves as the smart grid's backbone. A 

smart grid allows bidirectional energy flow and integrates 

two-way communication and control capabilities, offering 

several new features and applications [1]. 

  At the same time, customer data from smart meters raises 

privacy concerns and confidentiality issues [2]. The major 

concern is that it is vulnerable to cyber-attacks. As the energy 

consumption data collected from smart meters are sensitive 

consumer information, providing data privacy is a key 

concern. Hence, the data must be protected from malicious 

parties that attack the system to generate falsified data to 

manipulate the customer’s power consumption data. 

  Ishimaki et al. [3] proposed a privacy-preserving anomaly-

based attack detection scheme, which adopts the CKKS 

scheme for privacy-preserving anomaly detection. Note that 

the CKKS scheme is one of the homomorphic encryption 

(HE) schemes enabling the calculation over encrypted data. 

Other approaches include differential privacy and 

blockchain. Wen et al. [4] performed privacy-preserving 

anomaly detection for power grids by adopting local 

differential privacy (LDP) and a deep learning model. Keshk 

et al. [5] used blockchain technology to verify the data 

integrity and deep learning technology to perform anomaly 

detection. Though the methods above protect the security and 

privacy of the consumers’ data, the computational overhead 

of previous works [3-5] still has been an issue.  
  Therefore, this paper proposes an elliptic curve cryptography 
(ECC) based HE scheme, which needs smaller memory space 
and shorter computation time than the HE schemes like 
CKKS, while ensuring the privacy of the data. Moreover, ECC 
supports bilinear pairing over encrypted data, detecting 
computation manipulations over meter readings. Whereas, 
homomorphic operations can be performed on encrypted data, 
which safeguards the secret information from unauthorized 
access.   

Contributions: Our contributions are as follows. 

i) We first propose an ECC-based HE scheme for privacy-

preserving data falsification detection in smart grids, 

enabling faster computation than the previous CKKS-based 

schemes. 

ii) We perform validation checking for encrypted data using 

pairing operations over encrypted data, which can detect 

maliciously encrypted data. That is, maliciously encrypted 

meter readings can be detected not to send to the utility. The 

solution uses the bilinear pairing property of ECC, which is 

not possible for other encryption schemes. 
iii) For a fair comparison, our proposed scheme and the 
CKKS-based scheme are implemented on the same platform 
to compare the performance. 

   The rest of the paper is organized as follows. Section II 

describes related work, followed by Section III describing 

preliminary knowledge. The system architecture is explained 

in Section IV. Section V proposes our ECC-based HE 

scheme. The experimental evaluation is performed in Section 

VI. Finally, we conclude our work in Section VII. 

II. RELATED WORK 

  The existing privacy-preserving techniques and privacy-

preserving anomaly detection schemes are summarized. 

A. Privacy-Preserving Techniques 

  The literature includes three privacy-preserving techniques, 

differential privacy (DP), secure multiparty computation 

(SMC), and homomorphic encryption (HE). 
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  DP preserves privacy by adding a controlled amount of 

randomness (noise) to the raw data. Since the randomness is 

controlled, the resulting data is still accurate. However, DP 

adds much noise when the data has large diversity, which 

results in reducing the data utility. Moreover, balancing the 

best trade-off is an open problem [6]. 

  Secure multiparty computation (SMPC) is a cryptographic 

approach that allows two or more parties to jointly compute 

without revealing any information to one another in 

decentralized scenarios. Though smart meters can outsource 

the desired computation to a set of servers, it is assumed that 

non-colluding servers are controlled by distinct third parties 

[7-8]. One of the disadvantages of SMPC is communication 

overhead among parties. 

  To perform data aggregation [9] and billing [10] 

computations in smart grids, additive HE (AHE), which can 

perform addition and constant multiplication, is sufficient. 

However, identifying anomalous behavior requires complex 

calculations such as division and logarithms, which prevents 

HE implementation. 

B. Privacy-Preserving Anomaly Detection 

  A framework for privacy-preserving anomaly-based attack 

detection was proposed by Ishimaki et al. [3]. The CKKS 

scheme, one of the popular HE schemes, was adopted for 

privacy-preserving anomaly detection with the harmonic to 

the arithmetic mean (HM-AM) metric. However, the HM-

AM ratio involves various HE-incompatible operations, 

resulting in computational overhead in execution time.  

  Wen et al.  [4] tackled the issue of energy theft detection in 

smart grids with a novel privacy-preserving federated 

learning framework, FedDetect. The local differential 

privacy (LDP) scheme is adopted to preserve consumers’ data 

privacy. Besides, a deep learning model called the temporal 

convolutional network (TCN) is used to detect energy thefts 

in smart grids. However, LDP adds noise to the original data, 

resulting in degradation of the detection accuracy. Moreover, 

noise-added data cannot be used for billing calculations. 

  Keshk et al. [5] proposed a privacy-preserving framework 

to protect data and find anomalous behavior in smart power 

networks. The framework uses blockchain technology to 

verify the integrity of the data and a deep learning technique 

for anomaly detection. For privacy-preserving, they adopt a 

variational autoencoder to transform raw data into an encoded 

format before inputting it into the deep learning model. 

However, the raw data might be revealed before transforming 

the raw data to an encoded format. 

  In this paper, we tackle the heavy computation load of HE 

by adopting an ECC-based HE scheme as ECC provides the 

same security as a 3,072-bit RSA key with a 256-bit ECC key 

and supports the property of bilinear pairing. Then, we ensure 

the integrity of the data and detect data falsification over 

encrypted data. In the experiment, we compare our proposed 

scheme with Ishimaki’s scheme [3]. 

III. PRELIMINARIES 

  This section explains the fundamental concepts required for 

our proposed scheme, including preliminaries of ECC, 

Elliptic Curve Discrete Logarithm Problem (ECDLP), 

bilinear pairing, and anomaly detection ratio metric. 

A. Elliptic Curves and ElGamal Encryption 

  Elliptic curve cryptography is based on the properties of 

algebraic curves over fields [11]. To keep the 

comprehensiveness of this paper, the Elliptic curves and 

ElGamal encryption is described by quoting the explanation 

by Deepak et al. [11]. Mathematically, an elliptic curve is 

represented by an equation of the form: y2 = x3 + ax + b with 

a constraint that the discriminant ∆ = −16(4a3+27b2) is non-

zero. The security of elliptic curve cryptography is based on 

the ECDLP [12]. In other words, given two points, P and Q, 

on the curve such that one is a scalar multiple of the other, 

i.e.,  P = x.Q (here ‘.’ (dot) represents scalar multiplication), 

it is computationally difficult to find x. The ElGamal 

encryption scheme with additive homomorphism can be 

implemented using elliptic curve cryptography. 

B. Elliptic Curve Discrete Logarithm Problem (ECDLP) 

   The ECDLP [12] is the fundamental assumption for 

elliptic-curve-based protocols. Computing the discrete 

logarithm of a random elliptic curve element concerning a 

publicly known base-point is infeasible. The inability to 

compute the multiplicand given the original and product 

points is required for elliptic curve encryption. To be secure, 

the inability of the potential to compute an elliptic curve 

scalar multiplication is also required. The difficulty of the 

problem is determined by the size of the elliptic curve, as 

measured by the total number of discrete integer pairs 

satisfying the curve equation. 

   Consider an elliptic curve E defined over a finite field 𝐹𝑝. 

Let A be a point of order n on the elliptic curve, where A ∈ 

E (𝐹𝑝). The ECDLP is based on identifying integer z, where 

0 ≤ 𝑧 ≤ n − 1. For a given point B on the elliptic curve, B ∈ 

⟨A⟩ and B is a scalar multiplication of the integer z and the 

point on elliptic curve A, such that B = z∙A. Here ‘∙’ is the 

scalar multiplication. The property of bilinear pairing is 

supported by ECC. In this paper, we adopt bilinear pairing to 

detect malicious meter readings over encrypted data.   

C. Bilinear Pairing  

  Let G1 be an additively written group of order n with identity 

∞, and let GT be a multiplicatively written group of order n 

with identity 1. A bilinear pairing on (G1, GT) is a map ê: G1 

× G1 → GT that satisfies the following conditions [13].  

i) (bilinearity) For all R, S, T ∈ G1, ê (R + S, T) = ê (R, T), ê 

(S, T). This is equivalent to ê (aS, bT) = ê (S, T)ab 

ii) (non-degeneracy) ê (P, P) ≠ 1 

iii) (computability) ê can be efficiently computed. 

D. Anomaly Detection Metric 

   The harmonic to arithmetic mean (HM-AM) ratio is an 

efficient standard for identifying anomalous behavior in 

smart grid data [3]. Hence, the HM-AM ratio is adopted for 

anomaly-based attack detection in the proposed scheme 

because i) it deals with additive, deductive, and camouflage 

attacks, and ii) it can detect the minute changes in data that 

occurred due to data falsification attacks. 

   Here, N is denoted as the total number of smart meters in 

an AMI located in a neighborhood area network, and each 

timeslot is denoted as t. A set of timeslots t is represented by 

T, where (∀𝑡∈𝑇). The power consumption of the 𝑖-th smart 
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meter is represented as 𝑝𝑡
(𝑖)

, where 𝑝𝑡
(𝑖)

∈ 𝑅+. The 𝑖-th smart 

meter performs natural logarithm transformation (𝑃𝑡
(𝑖)

) on 

each power consumption 𝑝𝑡
(𝑖)

 and computes its inverse 

(𝑃𝑡
′(𝑖)

) as follows: 𝑃𝑡
(𝑖)

= 𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2) , 𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

. 

Finally, the HM-AM ratio 𝑄𝑑   for the 𝑑-th date is computed.  

                                  𝑄𝑑 = 
∑ 𝐻𝑀𝑡𝑡∈  𝑇

∑ 𝐴𝑀𝑡𝑡∈  𝑇
 ,       (1) 

where  𝐴𝑀𝑡 = 
∑ (𝑃𝑡

(𝑖)
)𝑁

𝑖=1

𝑁
 and 𝐻𝑀𝑡 = 

𝑁

∑ (
1

𝑃𝑡
(𝑖))𝑁

𝑖=1

      (2) 

IV. SYSTEM ARCHITECTURE  

   The system architecture is shown in Figure 1 which 

consists of three main components: the utility, a 

computational server (operated by a third party), and N smart 

meters, which is the same as the model used by Ishimaki et 

al. [3]. In Figure 1  𝑆𝑀𝑖 is the i-th smart meter, HAN is Home 

Area Network, and NAN is Neighborhood Area Network.  

 

Figure 1: System Architecture 

The function of each component is as follows: 

Utility:  

• The utility performs the system initialization step of 

key generation (public and secret keys). 

• The utility sends the public key (only known to the 

smart meters) to the smart meters to perform 

encryption operations and keeps the secret key. 

• The utility computes the HM-AM ratio (Equation 1) 

and performs the anomaly detection. 

Smart meters:  

• The smart meters use the public key provided by the 

utility to encrypt the power consumption data to 

send to the computational server. 

Computational server: 

• The computational server receives the encrypted 

power consumption data from the smart meters and 

computes the summation of AM (Equation 2)  and 

the summation of HM (Equation 3). 

• The computed summations are then sent to the 

utility to perform anomaly detection. 

The details of the scheme are provided in Section 4. 

Threat Model The proposed scheme attempts to protect the 

consumer’s private data from both the computational server 

and the utility if the following conditions hold.  

   The utility, the computational server, and the smart meters 

are assumed to be semi-honest, i.e., honest but curious [3]. 

They obey the protocol; however, they try to collect the 

consumers’ data while communicating the data from the 

smart meters to the utility through the computational server. 

Another assumption is that the computational server does not 

collude with the utility that has the secret key. Note that if the 

server and a subset of smart meters collude, only the meter 

readings of those smart meters are revealed, whereas readings 

from other smart meters are protected. Thus, we do not 

restrict the collusion among smart meters and between smart 

meters and the computational server. 

   Data integrity threat, where an adversary attacks the smart 

meters to falsify the meter readings, is assumed to occur 

before encrypting the power consumption data in smart 

meters. 

V. PROPOSED SCHEME 

   We propose a novel privacy-preserving data falsification 

detection scheme with ECC-based HE to encrypt data and 

perform HM-AM ratio calculations over the encrypted data. 

ECC-based encryption is additively homomorphic, which 

uses smaller keys to improve performance end-to-end and 

supports bilinear pairing. Moreover, the bilinear pairing 

function over the elliptic curve group allows us to validate 

the encrypted data without decryption. 

   The proposed scheme consists of four phases, as shown in 

Figure 2: 1) system initialization by the utility, 2) meter report 

generation by smart meters, 3) HM-AM computation over 

encrypted data by the computational server, and 4) anomaly 

attack detection by the utility. Table I shows the variables 

used in this paper. 

TABLE I.  DESCRIPTION OF VARIABLES 

Variable Description 

P Independent point on the elliptic curve 

Q Independent point on the elliptic curve 

G1 Elliptic curve group 

T A set of timeslots in a day 

t A timeslot 

𝑟𝑡  A random value generated at timeslot 𝑡 

𝑝𝑡
(𝑖)

 Power consumption of 𝑖-th smart meter at timeslot 
𝑡, where 1 ≤ 𝑖 ≤ N.  

𝑃𝑡
(𝑖)

 Natural log transformation of 𝑝𝑡
(𝑖)

 (𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2))  

𝑃𝑡

′(𝑖)
 

Inverse of 𝑃𝑡
(𝑖)

 (1/𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2))  

SHA-256 A cryptographic hash function that outputs a 256-bit 
long value 

ê Bilinear map 

𝐴𝑀𝑠𝑢𝑚
𝑡  Summation of Enc (𝑃𝑡

(𝑖)
) at timeslot t (1 ≤ 𝑖 ≤ N) 

𝐻𝑀𝑠𝑢𝑚
𝑡  

Summation of Enc (𝑃𝑡

′(𝑖)
) at timeslot t (1 ≤ 𝑖 ≤ N) 

N Total number of smart meters 

𝑄𝑑 HM-AM ratio for a day 

 

 
Figure 2: Proposed Scheme 
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A. System Initialization 

   The utility performs the initial setup. First, the utility 

chooses an appropriate elliptic curve group G1 and two 

independent points on the elliptic curve, P, Q ∈ G1 of order 

n. Second, the utility generates two keys (key1 and key2) that 

are shared between the smart meters and the utility only. Both 

the keys are kept secret from the computational server. 

B. Meter Report Generation 

  The HM-AM ratio involves log(𝑝𝑡
(𝑖)

+ 2) and its inverses that 

are not HE-friendly operations. Therefore, we first need to 

compute 𝑃𝑡
(𝑖)

= log(𝑝𝑡
(𝑖)

+  2)  and 𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

 for 𝑖 -th 

smart meter. Log-transformation results in decimal places; 

however, we can perform encryption over integers only. 

Thus, we first round both 𝑃𝑡
(𝑖)

 and 𝑃𝑡
′(𝑖)

 up to four decimal 

places and then remove decimal points to make it an integer.  

  First, every smart meter computes a random value 𝑟𝑡 using 

the shared key1 and corresponding timeslot t. Note that for 

timeslot t, every smart meter uses the same random value 𝑟𝑡. 

𝑟𝑡 = SHA256(key1||t)                    (4) 

 

  Second, we need to encode 𝑃𝑡
(𝑖)

 into a group element to 

apply ECC-based ElGamal encryption. We round 𝑃𝑡
(𝑖)

 to 

three decimal places and then convert 𝑃𝑡
(𝑖)

 into integer. After 

that, we encode it as (𝑃𝑡
(𝑖)

− 1)𝑟𝑡P, where 𝑟𝑡  is the random 

value generated by Equation 4. The corresponding encryption 

of 𝑃𝑡
(𝑖)

 is shown s below. 

Enc (𝑃𝑡
(𝑖)

) = (𝑟𝑡𝑃, ((𝑃𝑡
(𝑖)

− 1)𝑟𝑡𝑃 + 𝑟𝑡𝑃 ) = (𝑟𝑡𝑃, 𝑃𝑡
(𝑖)

𝑟𝑡)   (5) 

 

Similarly, encryption of  𝑚′ =  𝑃𝑡
′(𝑖)

 is shown below. 

Enc (m′) = (𝑟𝑡′Q, m′𝑟𝑡′Q),  (6)  

                   where 𝑟𝑡′
 = SHA256(key2||t)       (7)  

 

The algorithm of smart meter-side encryption is shown below. 

Algorithm 1 (Smart meter-side encryption) 

Input:  

• 𝑝𝑡
(𝑖)

: Power consumption data of 𝑖-th meter at time 𝑡  

• pk: Elgamal public key 

Output: 𝐸𝑛𝑐(𝑝𝑡
(𝑖)

), 𝐸𝑛𝑐(𝑃𝑡
(𝑖)

), 𝐸𝑛𝑐 (𝑃𝑡
′(𝑖)

) 

1: 𝑐1 = 𝐸𝑛𝑐𝑝𝑘 (𝑝𝑡
(𝑖)

) ► Encryption using Elgamal public key 

2: Compute 𝑃𝑡
(𝑖)

= 𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2)   

3: 𝑐2 = 𝐸𝑛𝑐𝑝𝑘 (𝑃𝑡
(𝑖)

) 

4: Compute 𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

 

5: 𝑐3 = 𝐸𝑛𝑐𝑝𝑘 (𝑃𝑡
′(𝑖)

) 

6: return 𝑐1, 𝑐2, 𝑐3 

 

C. HM-AM Computation over Encrypted Data   

  After receiving the encrypted data from each smart meter, 

the computational server first checks for the validity of each 

pair ( Enc (𝑃𝑡
(𝑖)

),  Enc ( 𝑃𝑡
′(𝑖)

)) using bilinear pairing as 

follows: 

 ̂(𝑟𝑡P,𝑟𝑡′Q) = ê (m𝑟𝑡P, m′𝑟𝑡′Q),        (8) 

                    where  𝑚 = 𝑃𝑡
(𝑖)

 and 𝑚′ =  𝑃𝑡
′(𝑖)

 

 

Note that since 𝑚 × 𝑚′  = 1, we have the following 

equation. 

 ̂(m𝑟𝑡P, m′𝑟𝑡′
 Q) = ê (𝑃, Q)𝑚𝑟𝑡𝑚′𝑟𝑡′ = ê (𝑃, Q)𝑟𝑡𝑟𝑡′   

                   = ê (𝑟𝑡P, 𝑟𝑡′Q)                (9) 

 

   If and only if the above equation does not hold for each 

reading set of  Enc (𝑃𝑡
(𝑖)

) and  Enc (𝑃𝑡
′(𝑖)

), where 1 ≤ 𝑖 ≤ N, 

the reading set has been manipulated, which results in 

discarding the data set to detect the malicious meter readings. 

After confirming the above equation holds, the computational 

server computes 𝐴𝑀𝑠𝑢𝑚
𝑡 and 𝐻𝑀𝑠𝑢𝑚

𝑡  for each timeslot t as 

shown below, where N is the total number of smart meters. 

𝐴𝑀𝑠𝑢𝑚
𝑡  = ∑ Enc (𝑃𝑡

(𝑖)
)

N

i=1

     (10) 

𝐻𝑀𝑠𝑢𝑚
𝑡 = ∑ Enc (𝑃𝑡

′(𝑖)
)

N

i=1

   (11) 

 

  The computational server then sends 

{𝐴𝑀𝑠𝑢𝑚
𝑡 ,  𝐻𝑀𝑠𝑢𝑚

𝑡 }∀𝑡∈𝑇 to the utility to calculate the HM-AM 

ratio. The algorithm of server-side computation is shown 

below. 

Algorithm 2 (Server-side computation for each timeslot) 

Input:  

• {𝐸𝑛𝑐(𝑃𝑡
(𝑖)

)}
1≤𝑖≤𝑁

: A set of encrypted log power 

consumption data in an area 

• {𝐸𝑛𝑐 (𝑃𝑡

′(𝑖)
)}

1≤𝑖≤𝑁

: A set of encrypted inverse log 

power consumption data in an area 

Output: 𝐸𝑛𝑐(∑ 𝑃𝑡
(𝑖)𝑁

𝑖=1 ), 𝐸𝑛𝑐 (∑ 𝑃𝑡
′(𝑖)𝑁

𝑖=1 ) 

1: fracsumt ← 0, sumt ← 0 

2: for 𝑖 ← 1 to 𝑁 do 

3: sumt ← sumt ⊞ 𝐸𝑛𝑐(𝑃𝑡
(𝑖)

) 

4: fracsumt ← fracsumt ⊞ 𝐸𝑛𝑐 (𝑃𝑡
′(𝑖)

) 

5: end for 

6: return sumt, fracsumt  

 

D. Anomaly Detection by the Utility 

  After receiving {𝐴𝑀𝑠𝑢𝑚
𝑡 ,  𝐻𝑀𝑠𝑢𝑚

𝑡 }𝑡∈𝑇  from the 

computational server, the utility first decrypts them and then 

computes AMt   and HMt   as follows: 

   

𝐴𝑀𝑡 = 
𝐷𝑒𝑐(𝐴𝑀𝑠𝑢𝑚

𝑡 )

𝑁
  ,  𝐻𝑀𝑡 = 

𝑁

𝐷𝑒𝑐( 𝐻𝑀𝑠𝑢𝑚
𝑡 )

 ,        (12) 

     

   where N is the total number of smart meters. 

   Finally, the utility computes the HM-AM ratio as follows: 
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        𝑄𝑑 = 
∑ 𝐻𝑀𝑡𝑡∈  𝑇

∑ 𝐴𝑀𝑡𝑡∈  𝑇
       (13) 

 

  Then, the utility adopts the residual under the curve (RUC) 

metric proposed in [14] to detect the anomaly. The algorithm 

of utility-side computation is shown below. 

Algorithm 3 (Utility-side computation) 

Input:  

• {𝒔𝒖𝒎𝒕}𝑡∈𝑇 : A set of the encrypted sum of log power 

consumption data in an area  

• {𝒇𝒓𝒂𝒄𝒔𝒖𝒎𝒕}𝑡∈𝑇: A set of the encrypted sum of inverse 

log power consumption data in an area 

Output: Anomaly detection result 

1: HM ← 0, AM ← 0 

2: for 𝑡 ∈ 𝑇 do 

3:  AM ← AM + 
𝐷𝑒𝑐(𝑠𝑢𝑚𝑡)

𝑁
 

4: 𝐻𝑀 ← HM + 
𝑁

𝐷𝑒𝑐(𝑓𝑟𝑎𝑐𝑠𝑢𝑚𝑡)
 

5: Calculate 
𝐻𝑀

𝐴𝑀
 

6: Apply the RUC metric [14] to detect the anomaly. 

 

E. System Goals 

The goal of our proposed scheme is as follows: 

• Perform anomaly-based attack detection in a secured 

manner without disclosing each consumer’s power usage 

details to the server and the utility.  
• Verify the validity of the encrypted data to ensure that 

the consumers’ data are not manipulated to pass through 

the anomaly-based detection process. 

 

F. Security Analysis 

  The proposed scheme ensures the security of the 

consumers’ data from both the computational server and the 

utility, as shown below. 

• The proposed scheme adopts the ECC-based El-Gamal 

system, and its security depends on the discrete 

logarithm (DL) problem [12] in the elliptic curve (EC) 

group. Therefore, the proposed scheme is as secure as the 

DL in the EC group. 

• As the computational server evaluates encrypted data, 

the privacy of the data is maintained, and consumers’ 

data is protected from leaking. 

• In the proposed scheme, 𝐴𝑀𝑡  and 𝐻𝑀𝑡  (the arithmetic 

mean and the harmonic mean of power consumption data 

at each time slot) will be visible to the utility; however, 

this does not leak individual readings of the meter; 

thereby, the utility cannot find the reading of any meter 

from either  𝐴𝑀𝑡 or 𝐻𝑀𝑡. 

VI. EXPERIMENTAL EVALUATION 

  To confirm the effectiveness of our proposed scheme, we 

compared our scheme with the CKKS scheme, which is one 

of the popular HE schemes. 

 
1 https://www.sagemath.org/download.html 
2https://awesomeopensource.com/project/Huelse/HEAAN-Python 
3 https://github.com/Huelse/HEAAN-Python 

A. Setup 

  For all the experiments, we used a Windows 10 operating 

system, 11th Gen Intel(R) Core (TM) i5 (2.4 GHz) processor, 

8 GB RAM, SageMath 9.2 compiler, and Python 3.8.10. 

  The proposed scheme was implemented in Jupyter 

Notebook and NumPy library in Python-based SageMath1. 

The proposed scheme uses elliptic curve E: 𝑦2 = 𝑥3 − 4 over 

a finite field 𝐹𝑝  with prime of form p = 36𝑢4 + 36𝑢3 +

 24𝑢2 + 6𝑢 + 1 , where 𝑢  =2114 +2101 − 214 −1, which is 

the recommended setting to achieve 128-bit security for 

bilinear pairing and ECC-based encryption [15].  

  For the CKKS-based scheme, the HEAAN Python library2 

and the Python wrapper3 for the HEAAN C++ library4 were 

used. For division over ciphertext operation, an inbuilt cipher 

inverse function of the HEAAN library is used. Parameters 

are set as (n, log Q, p) = (215, 491, 35), in which a fresh 

ciphertext size is calculated as 2𝑛 ∙ 𝑙𝑜𝑔𝑄  bits. As 215 =
32,768, it supports 128-bit security [16]. 

  We used the same dataset used in the paper [3], a smart grid 

dataset collected from the Pecan Street Project. The dataset 

includes the power consumption data of 200 households in 

Texas, USA, over three years (2014–2016). The differences 

in the implementation of the proposed scheme and the CKKS 

scheme are listed in Table II. 

TABLE II.  IMPLEMENTATION COMPARISON                  

 ECC-based HE (proposed) CKKS 

Library NumPy HEAAN C++  

Tool Python binding for C++ libraries Python based SageMath 

Inverse 
function 

not supported over ciphertext supported over 
ciphertext 

Linking supported through bilinear 
pairing 

unsupported 

HM-AM 
ratio  

computed by the utility computed by the 
computational server 

 

B. Performance comparison 

  In this experiment, we compared the performance of use-

side encryption, server-side computation, utility-side 

decryption, and the total execution time. 

a) Performance of user-side encryption 

  Each smart meter performs three encryptions per timeslot, 

i.e., Enc (𝑝𝑡
(𝑖)

), Enc (𝑃𝑡
(𝑖)

) and Enc (𝑃𝑡
′(𝑖)

). Table III shows 

the runtime for three times encryption, including Enc (𝑝𝑡
(𝑖)

), 

Enc (𝑃𝑡
(𝑖)

) and Enc (𝑃𝑡
′(𝑖)

).  

TABLE III.  RUNTIME COMPARISON OF USER-SIDE ENCRYPTION 

Scheme Runtime of user-side encryption 
(sec) 

ECC-based HE (proposed) 0.074 

CKKS (Enc(0) +m) 0.016 

CKKS(Enc(m)) 2.112 

 

  When encrypting with the CKKS, direct encryption takes 

longer than an addition with ciphertext; thereby, Enc(0) is 

pre-computed, consuming 0.984 sec, followed by addition. 

4 https://github.com/snucrypto/HEAAN 
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Table III shows that the ECC-based HE scheme has a longer 

encryption time than the CKKS with pre-computation; 

however, the ECC-based HE is much faster than the CKKS 

without pre-computation. 
 

b) Performance of server-side computation  

  Table IV shows the server-side computation runtime, which 

confirms that the ECC-based HE scheme performs better with 

and without bilinear pairing operation than the CKKS 

scheme. Our proposed scheme can adopt bilinear pairing on 

the server to check if the individual encryptions Enc (𝑃𝑡
(𝑖)

) 

and Enc (𝑃𝑡
′(𝑖)

)  are related to each other. In the CKKS 

scheme, the computational server computes the HM-AM 

ratio; thereby, the runtime without HM-AM ratio 

computation is also shown in Table IV for a fair comparison. 

Note that the ECC-based HE scheme omits the calculation of 

the HM-AM ratio in the computational server to delegate it 

to the utility. 

TABLE IV.  RUNTIME COMPARISON OF SERVER-SIDE COMPUTATION  

Scheme Runtime of server-
side computation 

(sec) 

ECC-based HE w/o bilinear pairing (proposed) 0.051 

ECC-based HE w/ bilinear pairing (proposed) 112.457 

CKKS   (w/ HM-AM ratio computation) 
(w/o HM-AM ratio computation) 

191.590 

(63.962) 

 

c) Performance of utility-side computation  

  Table V shows the runtime of utility-side computation, 

which confirms that the CKKS scheme is faster than the 

ECC-based HE scheme. The reason is that the ECC-based HE 

scheme needs to compute the HM-AM ratio after the 

decryption of HM and AM, while the CKKS scheme needs 

only the decryption of the HM-AM ratio.  

TABLE V.  RUNTIME COMPARISON OF UTILITY-SIDE COMPUTATION 

Scheme Runtime of utility-side 
computation(sec) 

ECC-based HE (proposed) 10.377 

CKKS 0.273 

 
d) Total performance  

  The total execution time is compared in Table VI, which 

confirms that the ECC-based HE scheme performs better with 

and without bilinear pairing operation than the CKKS 

scheme. Especially without bilinear pairing, our proposed 

ECC-based HE scheme performed 18 times faster than the 

CKKS scheme. Furthermore, we still have 1.56 times 

speedup even with bilinear pairing to check if the individual 

encryptions Enc (𝑃𝑡
(𝑖)

) and Enc (𝑃𝑡
′(𝑖)

) are related to each 

other to increase the security level. 

TABLE VI.  TOTAL RUNTIME 

Scheme Total runtime (sec) 

ECC-based HE w/o bilinear pairing 
(proposed) 

10.502 

ECC-based HE w/ bilinear pairing (proposed) 122.908 

CKKS 191.879 

VII. CONCLUSION 

  We proposed the first implementation of ECC-based HE 

with HM-AM ratio-based anomaly detection and confirmed 

18 times speedup of the anomaly detection compared to the 

previously proposed CKKS scheme. Our proposed scheme is 

as secure as the CKKS scheme and ensures that the 

consumers’ private data is protected from the server and the 

utility. 
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