
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

SmartDeal: Remodeling Deep Network Weights
for Efficient Inference and Training

Xiaohan Chen , Yang Zhao, Yue Wang , Pengfei Xu, Haoran You , Chaojian Li,

Yonggan Fu, Yingyan Lin, Member, IEEE, and Zhangyang Wang , Senior Member, IEEE

Abstract— The record-breaking performance of deep neural
networks (DNNs) comes with heavy parameter budgets, which
leads to external dynamic random access memory (DRAM) for
storage. The prohibitive energy of DRAM accesses makes it
nontrivial for DNN deployment on resource-constrained devices,
calling for minimizing the movements of weights and data
in order to improve the energy efficiency. Driven by this
critical bottleneck, we present SmartDeal, a hardware-friendly
algorithm framework to trade higher-cost memory storage/access
for lower-cost computation, in order to aggressively boost
the storage and energy efficiency, for both DNN inference
and training. The core technique of SmartDeal is a novel
DNN weight matrix decomposition framework with respective
structural constraints on each matrix factor, carefully crafted
to unleash the hardware-aware efficiency potential. Specifically,
we decompose each weight tensor as the product of a small
basis matrix and a large structurally sparse coefficient matrix
whose nonzero elements are readily quantized to the power-of-2.
The resulting sparse and readily quantized DNNs enjoy greatly
reduced energy consumption in data movement as well as
weight storage, while incurring minimal overhead to recover
the original weights thanks to the required sparse bit-operations
and cost-favorable computations. Beyond inference, we take
another leap to embrace energy-efficient training, by introducing
several customized techniques to address the unique roadblocks
arising in training while preserving the SmartDeal structures.
We also design a dedicated hardware accelerator to fully utilize
the new weight structure to improve the real energy efficiency
and latency performance. We conduct experiments on both
vision and language tasks, with nine models, four datasets,
and three settings (inference-only, adaptation, and fine-tuning).
Our extensive results show that 1) being applied to inference,
SmartDeal achieves up to 2.44× improvement in energy efficiency
as evaluated using real hardware implementations and 2) being
applied to training, SmartDeal can lead to 10.56× and 4.48×
reduction in the storage and the training energy cost, respectively,
with usually negligible accuracy loss, compared to state-of-the-art
training baselines. Our source codes are available at:
https://github.com/VITA-Group/SmartDeal.

Index Terms— Data movement, deep network training, efficient
machine learning, hardware accelerator.

Manuscript received January 1, 2021; revised August 16, 2021 and
November 18, 2021; accepted December 4, 2021. This work was supported
by the National Science Foundation (NSF) through the Real-Time Machine
Learning Program under Award 1937592 and Award 2053279. (Xiaohan Chen
and Yang Zhao contributed equally to this work.) (Corresponding author:
Xiaohan Chen.)

Xiaohan Chen and Zhangyang Wang are with the Department of Electrical
and Computer Engineering, The University of Texas at Austin, Austin,
TX 78712 USA (e-mail: xiaohan.chen@utexas.edu; atlaswang@utexas.edu).

Yang Zhao, Yue Wang, Pengfei Xu, Haoran You, Chaojian Li,
Yonggan Fu, and Yingyan Lin are with the Department of Electrical
and Computer Engineering, Rice University, Houston, TX 77005 USA
(e-mail: zy34@rice.edu; yw68@rice.edu; px5@rice.edu; hy34@rice.edu;
cl114@rice.edu; yf22@rice.edu; yingyan.lin@rice.edu).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2021.3138056.

Digital Object Identifier 10.1109/TNNLS.2021.3138056

I. INTRODUCTION

A. Background and Core Idea

THE performance breakthrough of deep neural net-
works (DNNs) motivates a growing demand to bring

DNNs into storage- and energy-constrained edge devices, such
as mobile phones, wearables, and IoT sensors, using domain-
specific accelerators.

However, the excellent performance comes at a heavy
parameter cost, which needs external dynamic random access
memory (DRAM) for storage. The prohibitive energy of
DRAM accesses makes DNN deployment on resource-
constrained devices nontrivial. Take the accelerator in [1] as an
example: >95% of the energy is consumed by DRAM. Thus,
it is crucial to minimize weights and data movements in order
to improve the energy efficiency of DNNs.

We present a holistic algorithm-hardware co-design frame-
work, called SmartDeal, to aggressively reduce both the
energy consumption of data movement and the storage
for weights: the two major limiting factors for DNN on-
device deployment. Our underlying philosophy is to seek
a “smart deal”: trading the more “expensive” memory
storage/access for “cheaper” computation, to eliminate the
dominant data movement cost. Our technical contributions
highlight three major aspects: 1) inference algorithm: whose
core is a novel SmartDeal weight representation and a unified
optimization framework; 2) inference hardware accelerator,
which is co-designed to maximize the benefit of our inference
algorithm; and 3) training algorithm, which extends the
SmartDeal benefits to energy-efficient training in nontrivial
ways. We will go through each of them with more details in
Section I-B.

This article significantly extends our previous conference
version [2]. First, our prior work [2] only covers the inference
algorithm and its hardware accelerator, while this work
proposes SmartDeal-compatible training techniques for the
first time, exploring the new horizon of energy-efficient
training. We also extensively benchmark the efficient training
performance, in two common edge-based training settings
(adaptation and fine-tuning), using a training-specific hardware
accelerator. Second, we offer a comprehensive suite of ablation
studies to carefully investigate the impact of each proposed
component in the SmartDeal weight decomposition. Besides,
more datasets and application scenarios are included in
experiments, such as a language-modeling dataset.

B. Overview of Major Technical Contributions

We start by introducing SmartDeal for inference, whose
core is a new weight representation: a layer-wise weight matrix
is decomposed as the product of a small basis matrix and a
large coefficient matrix (see Fig. 1). We simultaneously enforce
two important properties on the latter coefficient matrix.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0360-0402
https://orcid.org/0000-0001-5889-0729
https://orcid.org/0000-0002-2873-2153
https://orcid.org/0000-0002-2050-5693

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Overview of the proposed weight restructuring in SmartDeal.

1) (Structurally) Sparse: Most elements are zero. Besides
element-wise sparsity, we also exploit structured spar-
sity [3] for more hardware-friendliness.

2) Specially Quantized: The nonzero elements take only
power-of-2 values, which not only have compact bit
representations, but also (more importantly) turn the dot-
product multiplication with the nonzero elements into
much lower cost shift-and-add operations.

It is worth emphasizing that we never claim to have invented
any new weight factorization, or quantization, or structured
sparsity algorithm in this article. The essential novelty of
SmartDeal lies in its unique angle and motivation, as well
as the unified optimization framework dedicated to achieving
our goal. The core theme of SmartDeal is trading higher
cost memory storage/access for lower cost computation: this
is beyond simply compressing weights to save storage or
FlOPs. Our weight restructure could be interpreted as an
innovative, well-motivated integration of sparsification (or
pruning), factorization, and quantization on DNN weights that
can be solved under one unified optimization algorithm.

To fully unleash SmartDeal algorithm’s potential, we further
develop a dedicated DNN inference accelerator that takes
advantage of the much reduced weight storage and readily
quantized weights resulting from the algorithm to enhance
hardware acceleration performance. Experiments show that
the proposed accelerator outperforms state-of-the-art DNN
inference accelerators in terms of acceleration energy
efficiency and latency by up to 6.7× and 19.2×, respectively.

We then take another big leap to extend SmartDeal from
inference to DNN training. The current practice of edge-based
training typically starts from a pretrained and preloaded model,
and then continues tuning the model with more data collected
from the same training domain (denoted as fine-tuning),
or from a different new domain (denoted as adaptation) due
to customization or personalization [4]–[6]. Although fine-
tuning or adaptation costs much less compared to training from
scratch, their large resource consumption stands at odds with
the limited computing and energy resources at the edge [7].
To enable SmartDeal for energy-efficient on-device training,
we aim to preserve the SmartDeal restructured weight form
during training. To do so, we have to cope with two roadblocks
in the resulting optimization.

TABLE I

UNIT ENERGY COST PER 8-bit EXTRACTED FROM
A COMMERCIAL 28 nm TECHNOLOGY

1) The weights, and therefore their sparse coefficient
matrices, keep changing during training: that was known
to be very hardware-unfriendly. To deal with this
challenge, we perform a SmartDeal decomposition on
the pretrained weight initializations, and then maintain
the (structured) sparsity map (i.e., the locations of
nonzero elements) unchanged during training, while
their magnitudes can be updated. This greatly saves
memory access and energy overhead with little impact
on achievable performance.1

2) The other challenge arises from our enforced structure
that nonzero coefficients could only take discrete values
(power-of-2). The gradient descent cannot be directly
applied to the discrete domain; meanwhile it is highly
inefficient to keep a copy of continuous/higher-precision
latent weight for updating. Instead, we design a special
and lightweight update rule for the coefficient matrix that
turns floating-point additions into quantization bucket
switches, to be decided by gradient signs [8].

We evaluate SmartDeal on one state-of-the-art training
accelerator [9] with necessary modifications to demonstrate the
generality where SmartDeal achieves up to 4.48× improve-
ment in energy efficiency over state-of-the-art competitors for
training, at the negligible accuracy losses.

II. BACKGROUND AND RELATED WORK

A. A Motivating Example for SmartDeal

Table I summarizes the unit energy cost of accessing
different-level memories with different storage capacities
and computing an MAC/multiplication/addition (the main
computation operation in DNNs) designed in a commercial
28-nm CMOS technology. We can see that the unit energy
cost of memory accesses is much higher (≥9.5×) than that
of the corresponding MAC computation. Therefore, it is
promising in terms of more efficient acceleration if we can
potentially enforce higher order of weight structures to more
aggressively trade higher cost memory accesses for lower
cost computations, motivating our SmartDeal idea. That is,
the resulting higher structures in DNN weights’ decomposed
matrices, e.g., Ce in Fig. 1, will enable much reduced memory
accesses at a cost of more computation operations (i.e., shift-
and-add operations in our design), as compared to the vanilla
networks.

B. Basics of Deep Neural Networks

Modern DNNs usually consist of a cascade of multiple
convolutional (CONV), pooling, and fully connected (FC)
layers through which the inputs are progressively processed.

1While it is not directly applicable to training from random scratch, such
setting is unlikely in resource-constrained training.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 3

The CONV and FC layers can be described as

O[co][e][f]

= σ

⎛
⎝

C,R,S�
ci ,kr ,ks

W[co][ci][kr][ks] · I[ci][eU + kr][f U + ks]

+ B[ci]
⎞
⎠, 0 ≤ co < M, 0 ≤ e < E, 0 ≤ f < F (1)

where W, I, O, and B denote the weights, input activations,
output activations, and biases, respectively. In the CONV
layers, C and M , E and F , R and S, and U stand for
the number of input and output channels, the size of input
and output feature maps, and the size of weight filters, and
stride, respectively; while in the FC layers, C and M represent
the number of input and output neurons, respectively; with
σ denoting the activation function, e.g., a ReLU function
(ReLU(x) = max(x, 0)). The pooling layers reduce the
dimension of feature maps by average or max pooling. The
recently emerging compact DNNs (e.g., MobileNet [10] and
EfficientNet [11]) introduce depth-wise CONV layers and
squeeze-and-excite layers, which can be expressed in the above
description as well [12].

C. Overview of Efficient Deep Learning

To reduce the large quantity of weight parameters, numerous
DNN compression techniques have been proposed to shrink
the weight redundancy and accelerate the inference, including
matrix decomposition [13], [14], quantization [15]–[17], prun-
ing [3], [18], [19], knowledge distillation [17], [20], [21], and
dynamic inference [22]–[25]. Combinations of two techniques
have also been studied, e.g., decomposition with pruning [26],
distillation with quantization [27], [28], and distillation with
pruning [29]. Some latest works [30], [31] start to combine
and jointly optimize three compression ideas, but for different
motivations and applications (e.g., compressing robust models,
and GANs). To our best knowledge, SmartDeal features a
new joint formulation that combines the three ideas of weight
pruning, matrix decomposition, and power-of-2 quantization:
a unification never being considered by peer works. Also
differently from [30], [31], SmartDeal is the first to associate
with hardware co-design, especially with the unique goal to
reduce the memory/storage-access costs. It is also the first of
its kind to extend to efficient training.

Besides combining and jointly optimizing multiple com-
pression techniques, another direction of work focuses on
improving the performance of quantized models by utilizing
more flexible quantization schemes. Mixed-precision training
methods [15], [32], [33] quantize weights, activations,
and gradients to different precisions instead of using
single precision for the whole model. Quantization-aware
training (QAT) co-optimizes the quantization schemes and the
model parameters [34], [35]. SmartDeal is orthogonal to mixed
precision and QAT methods, which can be easily integrated
into SmartDeal to find its optimal precision configuration.

Moreover, current DNNs are typically trained in resource-
rich servers or data centers. Nevertheless, we see a growing
necessity for the model to continue learning and updating itself
in situ, such as for user personalization, or incremental/lifelong
learning in open-ended environments. On-device local learning
can avoid communication forth-and-back between data centers

and devices, reducing system latency and enhancing privacy
protection. Despite a number of recent efforts [4]–[6], [36],
limited progress has been witnessed so far in this field,
partially due to the even larger gap between the training
resource demands and the available on-device resources.

D. Compression-Aware DNN Accelerators

In general, the three typical compression approaches, weight
factorization, data quantization, and weight sparsification,
have been exploited in DNN accelerator’s design to boost
energy efficiency. Huang et al. [14] demonstrate DNNs
with tensorized factorization using ASIC. For the weight
sparsification accelerators, [19], [37], [38] have been proposed.
Quantization is widely used by inference accelerators [14],
[19], [37], [38]. In comparison, our proposed SmartDeal
inference accelerator also unifies three techniques to simul-
taneously shrink the memory footprint and simplify the
computations when recovering the weight matrix during
runtime.

III. SmartDeal FOR EFFICIENT INFERENCE

In this section, we introduce the weight decomposition
structure in SmartDeal, as can be naturally applied to feed-
forward inference to reduce energy and time consumption of
data movement as well as storage.

A. Problem Formulation

Given a weight matrix W ∈ R
m×n , we seek to decompose it

as the product of a coefficient matrix Ce ∈ R
m×r and a basis

matrix B ∈ R
r×n , where r ≤ min{m, n}, such that

W ≈ Ce B. (2)

In practice, n is usually set to be very small (thus small B),
and m � n (thus much larger Ce). Here we assume a 2-D
weight matrix in a FC layer as an example for the simplicity
of notation. We will later show that SmartDeal algorithm can
be easily applied to weight tensors in CONV layers.

In addition to suppressing the reconstruction error (often
defined as ||W − Ce B||2F), we expect the decomposed
matrix factors to display more favorable structures for
compression/acceleration. For the much larger Ce, we enforce
the following two structures simultaneously: 1) Ce needs to be
highly sparse (a typical goal of pruning) and 2) the nonzero
elements in Ce are exactly the powers of 2, so that their
bit representations can be very compact and their involved
multiplications to rebuild the original weights from B and Ce

are simplified into extremely cheap shift-and-add operations.
As a result, instead of storing the whole weight matrix, the new
structure requires storing only a very small B; and a large, yet
highly sparse and readily quantized Ce. We call this process
SmartDeal (SD) decomposition and the resulting {Ce, B} pair
the SD form of W .

SmartDeal decomposition hence can be written as the
following constrained optimization:

arg min
Ce ,B

�W − Ce B�2
F

s.t.
�

j
�Ce[:, j]�0 ≤ Sc

Ce[i, j] ∈ �P ∀i, j, |P| ≤ Np (3)

where �P := {0,±2p|p ∈ P} with P being a chosen
integer set that includes the possible degrees of the power-
of-2 numbers and has cardinality no more than Np , i.e.,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

|P| ≤ Np . In (3), Sc controls the total number of nonzero
elements in Ce, i.e., the sparsity, while Np controls the bit-
width required to represent an element in Ce. An innovative
assumption of SD is to require nonzero elements in Ce to take
one of a few predefined, specifically picked discrete values.
That is different from previous compression using weight
clustering, whose quantized values are adaptively learned from
data [39], [40]. This special design is to facilitate 1) compact
storage, and more crucially, and 2) extremely cheap weight
reconstruction using only shift-and-add operations—the latter
cannot be fulfilled by other arbitrary quantization.

B. SmartDeal Decomposition Algorithm

Solving (3) is nontrivial due to the nonconvex and
integer set constraints. We propose a coordinate descent-type
algorithm that iterates between objective fitting and feasible
set projection, as outlined in Algorithm 1, and the explanation
of three key steps to be iterated are discussed follows. Here,
δ(Ce) is the difference between two iterates of Ce, tol is a
small number indicating the convergence of the algorithm, and
max_iter is the max number of iterations.

Algorithm 1 SmartDeal Decomposition Algorithm
1: Initialize Ce and B; k = 0
2: While �δ(Ce)� ≥ tol or k < max_iter:
3: Step 1: Quantizing Ce to powers of 2;
4: Step 2: Fitting B and Ce;
5: Step 3: Promoting (structured) sparsify Ce;
6: k = k + 1;
7: Re-quantize Ce and re-fit B .

We empirically find that simply initializing Ce = W and
B = I can produce robust and good performing decomposition
results. Hence, we use this initialization in all experiments.
After the initialization, we iteratively perform the following
three steps to gradually obtain better decompositions.

Step 1 (Quantizing Ce): The quantization step projects the
nonzero elements in Ce to �P . Specifically, we will first
normalize each column in Ce to have a unit norm in order
to avoid scale ambiguity. We will then round each nonzero
element to its nearest power-of-two value. We define δ(Ce) to
be the quantization difference of Ce.

Step 2 (Fitting B and Ce): We will first fit B by
solving arg minB�W − Ce B�2

F , and then fit Ce by solving
arg min Ce �W − Ce B�2

F . When fitting either one, the other is
fixed to be its current updated value. The step simply deals
with two unconstrained least squares.

Step 3 (Sparsifying Ce): We then prune the nonzero
elements in Ce with smallest magnitudes to promote more
sparsity. In practice, we use hard thresholds for element-wise
and structured sparsity to zero out small magnitudes in Ce for
implementation convenience. When promoting element-wise
sparsity in Ce, as sparsity level Sc usually needs to be manually
adjusted for each layer, we instead use a heuristic threshold θ
to zero out elements. The structured sparsity is discussed in
detail in Section III-D.

After sufficiently iterating between the above three steps
(i.e., quantization, fitting and sparsification), we conclude the
iterations by requantizing the nonzero elements in Ce to ensure
Ce[i, j] ∈ �P and then refitting B with the updated Ce.

An example of how the Ce and B matrices evolve along
the iterations is given in Appendix A in the Supplementary
Material.

C. Applying the SmartDeal Algorithm to DNNs

1) SmartDeal Algorithm as Post-Processing: The selection
of the dimensions of the coefficient matrix Ce and the basis
matrix B is a design knob of SmartDeal for trading-off the
achieved compression rate and model accuracy, i.e., a smaller
r (see notations in Section III-A) favors a higher compression
rate yet might cause a higher accuracy loss. Note that r is equal
to the rank of the basis matrix B , i.e., r = n when B is a full
matrix, otherwise r ≤ n. To minimize the memory storage,
we set the basis matrix B ∈ R

r×n to be small. In practice,
we choose n = R = S with R × S being the CONV kernel
size. Since n is small, we choose r = n = S too. We next
discuss applying the proposed algorithm to the FC and CONV
layers.

1) SmartDeal on FC Layers: Consider a fully connected
layer W ∈ RM×C . We reshape each row of W into a
new matrix W̃i ∈ RC/S×S , and then apply SmartDeal
algorithm. Specifically, zeros are padded if C is not
divisible by S, and SmartDeal algorithm is applied
to W̃i , where i = 1, . . . , M . When C � S, the
reconstruction error might tend to be large due to the
imbalanced dimensions. We alleviate it by slicing W̃i

into smaller matrices along the first dimension.
2) SmartDeal on CONV Layers: Consider a convolutional

layer W in the shape (M, C, R, S). Case 1: R = S > 1.
We reshape the M filters in W into matrices of shape
(S × C, S), on which SmartDeal algorithm is applied.
The matrices can be sliced into smaller matrices along
the first dimension if S × C � S. Case 2: R = S = 1.
The weight is reshaped into a shape of (M, C) and then
is treated the same as an FC layer.

The above procedures are easily parallelized along the axis of
the output channels for acceleration.

Applying SmartDeal algorithm to a VGG19 network2

pretrained on the CIFAR-10 [41], with θ = 4 × 10−3,
tol = 10−10 (introduced in Section III-B), and a maximum
iteration of 30, the accuracy drop in the validation set is
as small as 3.21% with an overall compression rate of over
10× without retraining after the decomposition. The overall
compression rate of a network is defined as the ratio between
the total number of bits to store the weights (including the
coefficient matrix Ce, basis matrix B , and encoding overhead)
and the number of bits to store the original FP32 weights.

2) Enhancing Accuracy With Retraining: After a DNN has
been post-processed using SmartDeal algorithm, a retraining
step can be used to remedy the accuracy drop. As the unregu-
larized retraining will break the desired property of coefficient
matrix Ce, we take an empirical approach to alternate between
1) retraining the DNN for one epoch and 2) applying
SmartDeal algorithm to ensure the Ce structure. The default
iteration number is 50 for CIFAR-10 [41] and 25 for
ImageNet [42]. As shown in the ablation experiments in VI-B,
the alternating retraining process improves the accuracy while
maintaining the favorable weight structure. More analytic
solutions will be explored in future work, e.g., incorporating
SmartDeal algorithm as a regularization term [40].

2https://github.com/chengyangfu/pytorch-vgg-cifar10

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 5

3) Time Complexity of SmartDeal: SmartDeal algorithm
is efficient in terms of running time with fully parallelized
implementation. In practice, running one pass of the paral-
lelized SmartDeal algorithm takes less than 30 s for VGG-19
and ResNet-18 networks and less than 2 min for ResNet-50.
In combination with the alternating retraining approach
mentioned above, the computational cost of SmartDeal is
negligible compared to the cost for training on data. The above
running time is measured on Intel Xeon Platinum 8168 CPU
platform (we only implement SmartDeal on CPU currently).

D. SmartDeal With Structured Sparsity
Customized accelerators for sparse models can utilize the

sparsity to reduce the associated computations and memory
accesses [37], [38]. However, the irregularity in element-
wise/unstructured sparse models prevents hardware from
fully leveraging reduction. Coarse-grained sparsity brings
more regular sparsity pattern, making it easier for hardware
acceleration [43]. Hereby, when we design the dedicated
hardware accelerator for SmartDeal, we introduce two types
of structured sparsity, channel-wise and vector-wise sparsity,
to Ce.

1) We first prune channels whose corresponding scaling
factor in batch normalization layers is lower than a
threshold, which is manually controlled for each layer.
In practice, we only apply channel-wise sparsifying at
the first training epoch once, given the observation that
the pruned channel structure will not change much.

2) We then zero out elements in Ce based on the
magnitudes to meet the vector-wise sparsity constraint:�

j �Ce[:, j]�0 ≤ Sc, where Sc is manually controlled
per layer.

Structured sparsity being more regular and hardware efficient,
it also brings much more aggressive constraints on the model
capacity and thus more performance degradation. This is
empirically verified in the ablation study in Section VI-A.
Although vector-wise sparsity has been investigated in [44],
we are the first to consider vector sparsity in a unified frame-
work with quantization, sparsification, and decomposition.

After we obtain Ce and B via SmartDeal algorithm,
we further desire storage-economic and hardware-friendly
representations to store them on-device. We explain the
encoding schemes of Ce and B in Appendix B in the
Supplementary Material. We also discuss more on the rationale
behind our algorithm, in Appendix C in the Supplementary
Material.

IV. SmartDeal FOR EFFICIENT TRAINING

Extending SmartDeal to energy-efficient training is highly
nonstraightforward. As pointed out in Section I, the dynamic
sparsity pattern and the discrete values in Ce constitute
two grand challenges. Also, directly involving optimization
like solving (3) into training is not acceptable due to
its own complexity. We hereby discuss how to transplant
the methodology of SmartDeal to energy-efficient training,
with two dedicated techniques presented to address the two
challenges. The two key points of the proposed techniques
are 1) to optimize the decomposed Ce and B matrices in the
special discrete space constrained by sparsity and power-of-2
quantization so that the model preserves SmartDeal structure
and thus the economic memory access throughout training and

2) to avoid using any “shadow weights,” i.e., the latent high-
precision copies of weights that are actually trained and will
introduce large overhead in model storage.

Basic Routine [SD-Training (SD-T)]: Considering the
practice of on-device learning, we assume a pretrained DNN
to start with, where the goal is either fine-tuning or adaptation.
For a layer with pretrained weight W , we first perform one-
pass SD to get the initial Ce and B . We use Ce and B as hidden
weights that will be used to reconstruct W run-time during a
feed-forward pass. Note that the reconstruction step introduces
little overhead but significantly lowers the data movement cost
due to the fixed sparsity structure and the power-of-2 nonzero
values in Ce.

During the back-propagation pass, the gradient is passed
back to the intermediate W as usual. The gradients of B and
Ce are calculated with W ’s gradient and matrix multiplications.
We update B using the standard gradient descent. For updating
Ce, we explicitly require Ce to be within its original feasible
domain: a (structurally) sparse matrix with power-of-2 nonzero
elements. Such a challenging requirement is met thanks to the
next two customized techniques.

1) For Ce Zeros (Fixed Sparsity Mask): We fix the
sparsity pattern in Ce throughout training: the initial
zero entries in Ce are “frozen” to zero, while the
initial nonzero entries can be updated to either zero
or nonzero flexibly. Experiments show that such a
fixation does not noticeably impact the tuned/adapted
model accuracy. This fixed sparsity brings in twofold
advantages: 1) fixing the sparse pattern of Ce saves
the gradient computations of its zero elements during
training, which cannot be skipped in classic pruning
with a dynamic sparse pattern and 2) the static sparsity
pattern can be utilized to avoid the dynamic indexing
sparse weights and/or adjusting processing schedules.
Extensive experiments in Section VI-C show that
the fixed sparsity implementation is effective across
different models and datasets for saving more energy.

2) For Ce Nonzeros (Bucket Switch Updating): The next
dilemma is on updating nonzero power-of-2 elements:
if we update Ce using floating-point add operations,
the floating-point numbers have to be recovered before
updating incurring overheads. Instead, we propose a
Bucket Switch updating scheme for Ce nonzero updating:
inspired by [8] showing that taking only gradient signs
(i.e., 1-bit gradients) suffices to training DNNs, we refer
to gradient signs to guide the switch of nonzero values,
from one discrete “bucket” to another.

Specifically, if the gradient w.r.t. a nonzero element (whose
current value is 2p) is positive, then we will switch up its value
from 2p to 2p+1 (or no change if p = P already reaches
the upper range bound). Similarly, a negative gradient will
switch 2p down to 2p−1, and a zero gradient will not change
it. In this way, the nonzero element in Ce is directly updated
over the discrete domain, without any overhead of floating-
point number operations. Notice that we never aggregate high-
precision updates, and there also exists no high-precision latent
weight for Ce in our implementation, because such will go
against our goal of saving storage and energy for efficient
training. Instead, we only record update directions (signs)
and accumulate using an integer counter. Once the counter’s
integer record passes a threshold, we “switch the bucket.”

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

While the above gradient quantization rule could suffer from
high variance to learning rates, in practice, we apply two
methods to mitigate the effect of noisy gradients. Before taking
the sign, gradients whose magnitudes are below a threshold
θg are zeroed out. We also adopt an “update delay and
aggregation” scheme, in which we only really update an entry
in Ce (switch the bucket) when it receives switch signals in
the same direction for enough times. The number of required
times is controlled by an integer hyperparameter θc. That
is inspired by the lazy update and trajectory smoothing in
gradient-based optimization [45], [46]: applying the similar
idea to bucket switch is found to help training stability (as
our update directions are “noisy”). The detailed description of
this strategy is laid out in Appendix D in the Supplementary
Material. We note that a similar idea of “bucket switch”
and “update decay and aggregation” was coincidentally found
useful in another latest work on optimizing binary neural
networks (BNNs) [47]. We leave more discussions on the
potential theoretical underpinnings for future work. We also
apply the stochastic weight averaging (SWA) technique [45]
that could stabilize training too without incurring noticeable
overhead.

V. DEDICATED HARDWARE-ALGORITHM CODESIGN

In this section, we present our proposed SmartDeal
accelerator. We first introduce the design principles and
considerations (Section V-A) for fully making use of the
proposed SmartDeal algorithm’s properties to maximize
energy efficiency and minimize latency, and then describe the
proposed accelerator (Section V-B) in detail.

A. Design Principles and Considerations

1) Minimizing Overhead of Rebuilding Weights: Thanks to
the sparse and readily quantized coefficient matrices resulting
from the SmartDeal algorithm, the memory storage and data
movements associated with these matrices can be greatly
reduced (see Section VI-B; e.g., up to 80×). Meanwhile,
to fully utilize the advantages of the SmartDeal algorithm,
the overhead of rebuilding weights should be minimized.
To do so, it is critical to ensure that the location and time
of the rebuilding units and process are properly designed.
Specifically, for a SmartDeal accelerator: 1) the rebuild
engine (RE) that restores weights using both the basis matrix
and corresponding weighted coefficients should be located
close to the PEs for minimizing the data movement costs of
the rebuilt weights and 2) as the basis matrices are reused most
frequently, the dataflow for these matrices should be weight
stationary, i.e., once being fetched from the memories, they
stay in the REs until all the corresponding weights are rebuilt.

2) Taking Advantage of the Structured Sparsity: The
enforced vector-wise sparsity in the SmartDeal algorithm’s
coefficient matrices offers benefits of 1) vector-wise skipping
both the memory accesses and computations of the corre-
sponding activations [see Fig. 2(a)] and 2) reduced coefficient
matrix encoding overhead [see Fig. 2(b)]. Meanwhile, there is
an opportunity to make use of the vector-wise/bit-level sparsity
of activations for improving efficiency.

First, one promising benefit of the SmartDeal algorithm’s
enforced vector-wise sparsity in the coefficient matrices is the
possibility to vector-wise skip both the memory accesses and
computations of the corresponding activations [see Fig. 2(a)].

Fig. 2. Illustration of (a) vector-wise skipping the corresponding activations
and (b) reduced indexing overhead, thanks to the enforced vector-wise weight
sparsity of the SmartDeal algorithm.

Fig. 3. Bit-level sparsity in activations for six models on three datasets.

This is because those vector-wise sparse coefficient matrices’
corresponding weight vectors naturally carry their vector-wise
sparsity pattern/location, offering the opportunity to directly
use the sparse coefficient matrices’ encoding index to identify
the weight sparsity and skip the corresponding activations’
memory accesses and computations. Such a skipping can lead
to large energy and latency savings because weight vectors are
shared by all activations of the same feature maps in CONV
operations, see Fig. 2(b).

Second, commonly used methods for encoding weight
sparsity, such as the 1-bit direct weight indexing [48],
compressed row storage (CRS) [19], and Huffman encoding,
store both the values and sparsity encoding indexes of weights.
Our SmartDeal algorithm’s vector-wise weight sparsity reduce
both the sparsity encoding overhead [see Fig. 2(b)] and
skipping control overhead. The resulting energy and latency
benefits depend on the sparsity ratio and pattern, and hardware
constraints (e.g., memory bandwidths).

Third, the accelerator can further make use of bit-
level and vector-wise sparsity of activations to improve
energy efficiency and reduce latency, where the bit-/vector-
wise sparsity means the percentage of the zero activation
bits/rows over the total activation bits/rows. Fig. 3 shows
the bit-level sparsity of activations w/ and w/o 4-bit Booth
encoding [49] in popular DNNs, including VGG11, ResNet50,
and MobileNetV2 on ImageNet, VGG19 and ResNet164 on
CIFAR-10, and DeepLabV3+ on CamVid. We can see that
the bit-level sparsity is 79.8% under an 8-bit precision and
66.0% using the corresponding 4-bit Booth encoding even
for a compact model such as MobileNetV2; for vector-wise
sparsity, it can be widely observed among the CONV layers
with 3 × 3 kernel size, e.g., up to 27.1% in the last several
CONV layers of MobileNetV2 and up to 32.4% in ResNet164.

3) Support for Compact Models: The recently emerged
compact models, such as MobileNet [10] and EfficentNet [11],
often adopt depth-wise CONV and squeeze-and-excite layers
other than the traditional 2-D CONV layers to restrict the
model size, which reduces the data reuse opportunities. Taking
a depth-wise CONV layer as an example, it has an “extreme”
small number of CONV channels (i.e., 1), reducing the input

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 7

Fig. 4. Illustration of the proposed SmartDeal accelerator. (a) Architecture and (b) lock diagram of the PE line, each of which includes two REs and eight
MAC units.

reuse over the standard CONV layers; for squeeze-and-excite,
similar to that of FC layers, there are no weight reuse
opportunities in squeeze-and-excite layers. On-device efficient
accelerators should consider these features of compact models
for their wide adoption and leveraging compact models for
more efficient processing.

B. Architecture of the SmartDeal Accelerator

1) Architecture Overview: Fig. 4(a) shows the architecture
of the proposed SmartDeal accelerator, which consists of a 3-D
PE array with a total of dimM PE slices, input/index/output
global buffers (see the blocks named Input GB, Weight
Index GB, and Output GB, where GB denotes global buffer)
associated with an index selector for sparsity (see the
blocks named Index sel.), and an controller. The accelerator
communicates with an off-chip DRAM through DMA (direct
memory access) [38]. Following the aforementioned design
principles and considerations (see Section V-A), the proposed
accelerator features the following properties: 1) an RE design,
which is inserted within PE lines to reduce the rebuilding
overhead [see the top part of Fig. 4(b)]; 2) a hybrid dataflow:
a 1-D row stationary dataflow is adopted within each PE
line for maximizing weight and input reuses, while each PE
slice uses an output stationary dataflow for maximizing output
partial sum reuses; 3) an index selector [named Index Sel.
in Fig. 4(a)] to select the nonzero coefficient and activation
vector pairs as inspired by [48]. This is to skip not only
computations but also data movements associated with the
sparse rows of the coefficients and activations. The index
selector design in SmartDeal is the same as that of [48] except
that Huffman encoding is used here and the index values of
0/1 stand for vector (instead of scalar) sparsity; and 4) a
data-type driven memory partition in order to use matched
bandwidths (e.g., a bigger bandwidth for the weights/inputs
and a smaller bandwidth for the outputs) for different types of
data to reduce the unit energy cost of accessing the SRAMs,
which is used to implement the GB blocks [50]. We adopt
separated centralized GBs to store the inputs, outputs, weights,
and indexes, respectively, and distributed SRAMs [see the
Weight Buffer unit in Fig. 4(a)] among PE slices to store
weights (including the coefficients and basis matrices); and
5) a bit-serial multiplier-based MAC array in each PE line to
make use of the activations’ bit-level sparsity together with a
Booth Encoder as inspired by [49].

2) PE Slices and Dataflow: We here describe the design of
the PE Slice unit in the 3-D PE slice array of Fig. 4(a):

Fig. 5. Illustration of the proposed 1-D row stationary along each PE slice
(in this particular example, FIFO size is 5, and in general it should be dimF +
S − 1). (a) 1-D CONV and (b) processing flow of 1-D row stationary.

a) First, the 3-D PE Slide array: Our SmartDeal
accelerator enables paralleled processing of computations
associated with the same weight filter using the PE slice array
of size dimM (with each PE slice having dimC PE lines) and
dimC number of input channels, where the resulting partial
sums are accumulated using the adder trees at the bottom of
the PE lines [see the bottom right side of Fig. 4(a)]. In this way,
a total of dimM consecutive output channels (i.e., dimM weight
filters) are processed in parallel to maximize the reuse of input
activations. Note that this dataflow is employed to match the
way we reshape the weights as described in Section III-C.

b) Second, the PE line design: Each PE line in Fig. 4
includes an array of dimF MACs, one FIFO (using double
buffers), and two RE units, where the REs at the left restore
the original weights in a row-wise manner. During operations,
each PE line processes one or multiple 1-D CONV operations,
similar to the 1-D row stationary in [51] except that we stream
each rebuild weight of one row temporally along the MACs for
processing one row of input activations. In particular, the 1-D
CONV operation is performed by shifting the input activations
along the array of MACs within the PE line (see Fig. 5) using
an FIFO; this 1-D CONV computation is repeated for the
remaining 1-D CONV operations to complete one 2-D CONV
computation in ≤(S × R) cycles (under the assumption of w/
sparsity and w/o bit-serial multiplication) with 1) each weight
element being shared among all the MACs in each cycle and
2) the intermediate partial sums of the 2-D CONV operations
are accumulated locally in each MAC unit [see the bottom
right part of Fig. 4(b)].

c) Third, the RE design: As shown in the bottom left
corner of Fig. 4(b), an RE unit includes an RF (register file)
of size S × S to store one basis matrix and a shift-and-
add unit to rebuild weights. The time division multiplexing
unit at the left, i.e., MUX1, is to fetch the ❶ coefficient

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

matrices, ❷ basis matrices, or ❸ original weights. This design
enables the accesses of these three types of data to be
performed in a time division manner in order to reduce the
weight bandwidth requirement by taking advantage of the
fact that it is not necessary to fetch these three types of
data simultaneously. Specifically, the basis matrix is fetched
first and stored stationary within the RE until the associated
computations are completed; the weights are then rebuilt in
an RE where each row of a coefficient matrix stays stationary
until all its associated computations are finished. The third
path of MUX1 ❸ for the original weights is to handle DNNs’
layers where SmartDeal is not applied on.

d) Fourth, the handling of compact models: When
handling compact models, we consider an adjusted dataflow
and PE line configuration for improving the utilization of both
the PE slice array and the MAC array within each PE line.
Specifically, for depth-wise CONV layers, since the number
of CONV channels is only 1, the dimC PE lines will no longer
correspond to input channels. Instead, we map the R number
of 1-D CONV operations along the dimension of the weight
height to these PE lines. For squeeze-and-excite/FC layers,
each PE line’s MAC array of dimF MACs can be divided into
multiple clusters [e.g., two clusters for illustration in the top
part of Fig. 4(b)] with the help of the two REs in one PE line
(denoted as ❹ and ❺) and multiplexing units at the bottom
of the MAC array, where each cluster handles computations
corresponding to a different output pixel in order to improve
the MAC array’s utilization and thus latency performance.
In this way, the proposed SmartDeal accelerator’s advantage is
maintained even for compact models, thanks to this adjustment
together with 1) our adopted 1-D row stationary dataflow
within PE lines; 2) the employed bit-serial multipliers; and
3) the possibility to heavily quantized coefficients.

3) Buffer Design: For making use of DNNs’ (filter-/vector-
wise or bit-level) sparsity for skipping corresponding compu-
tations/memory accesses, it in general requires a larger buffer
(than that of corresponding dense models) due to the unknown
dynamic sparsity patterns. We here discuss how we balance
between the skipping convenience and the increased buffer
size. Specifically, to enable the processing with sparsity, the
row pairs of nonzero input activations and coefficients are
selected from the Input GB and the Index GB (using the
corresponding coefficient indexes), respectively, as inspired
by [48], which are then sent to the corresponding PE lines
for processing with the resulting outputs being collected to
the output GB.

a) First, input GB: To ensure a high utilization of the PE
array, a vanilla design requires (dimC ×dimF ×bitsinput)× input
activation rows (than that of the dense model counterpart)
to be fetched for dealing with the dynamic sparsity patterns,
resulting in (dimC × dimF × bitsinput)× increased input GB
bandwidth requirement. In contrast, our design leads to a
≥1/S reduction of this required input GB bandwidth, with
dimC × dimF × bitsinput inputs for every (S + “Booth
encoded nonzero activation bits”) cycles. This is because
all the FIFOs in the PE lines are implemented in a ping-
pong manner using double buffers, thanks to the fact that
1) the adopted 1-D row stationary dataflow at each PE line
helps to relieve this bandwidth requirement, because each
input activation row can be reused for S cycles and 2) the

bit-serial multipliers takes ≥1 cycles to finish an element-wise
multiplication.

b) Second, weight/index/output buffer: Similar to that
of the input GB, weight/index buffer bandwidth needs to
be expanded for handling activation sparsity, of which the
expansion is often small thanks to the common observation
that the vector-wise activation sparsity ratio is often relatively
low. Note that because basis matrices need to be fetched and
stored into the RE before the fetching of coefficient matrices
and the weight reconstruction computation, computation stalls
occur if the next basis matrix is fetched after finishing the
coefficient fetching and the computation corresponding to the
current basis matrix. Therefore, we leverage the two REs
(❹ and ❺ paths) in each PE line to operate in a “ping-pong”
manner to avoid the aforementioned computation stalls. For
handling the output data, we adopt an FIFO to buffer the
outputs from each PE slice before writing them back into the
GB, i.e., a cache between the PE array and the output GB. This
is to reduce the required output GB bandwidth by making use
of the fact that each output is calculated over several clock
cycles.

VI. EXPERIMENTS

In this section, we present a thorough evaluation of
SmartDeal. We lay out our plan below.

On the algorithm level, as SmartDeal unifies three
mainstream model compression ideas: sparsification/pruning,
decomposition, and quantization into one framework, we first
present a carefully designed ablation study in Section VI-A
that investigates the effects of different components in
SmartDeal and the interactions among them.

We then perform extensive experiments (benchmark
over two structured pruning and four quantization, i.e.,
state-of-the-art compression techniques on four standard
DNN models with two datasets) to validate its superiority.
In addition, we evaluate SmartDeal on two compact
DNN models (MobileNetV2 [52] and EfficientNet-B0 [11])
on the ImageNet [42] dataset, one segmentation model
(DeepLabv3+ [53]) on the CamVid [54] dataset, two MLP
models on MNIST, and language-modeling tasks.

Following the validation of SmartDeal inference, we evalu-
ate SmartDeal for training on fine-tuning and adaptation tasks
given pretrained models, which is the common practice in
edge-based training [55], [56]. Extensive training experiments
in Section VI-C1 of two lightweight networks show the
storage and energy efficiency of SmartDeal during training
without trading too much model performance. We also provide
evaluation over state-of-the-art GPUs in terms of their energy
efficiency in Section VI-C2 by using a state-of-the-art training
accelerator [9].

On the hardware level, as the goal of the proposed
SmartDeal is to boost hardware acceleration energy efficiency
and speed, we evaluate SmartDeal’s algorithm-hardware co-
design results with state-of-the-art DNN accelerators in terms
of energy consumption and latency when processing repre-
sentative DNN models and benchmark datasets. Furthermore,
to provide more insights about the proposed SmartDeal,
we perform various ablation studies to visualize and validate
the effectiveness of SmartDeal’s component techniques.
A. An Ablation Study on SmartDeal’s Building Blocks

We first investigate the influence of different components
of the SmartDeal algorithm: 1) Decomposition—decomposing

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 9

TABLE II

ABLATION STUDY OF THE COMPONENTS IN SmartDeal USING RESNET18 ON CIFAR-10 [41] AND FPGA ENERGY RESULTS. EXP. 7, 8, SD,
SD† USE HUFFMAN CODING REPRESENTATIONS FOR Ce AND 8-bit FIXED-POINT REPRESENTATIONS FOR B AND ACTIVATIONS.

OTHER EXPERIMENTS USE 32-bit FLOATING-POINT REPRESENTATIONS

each layer W into B and Ce with no constraint on Ce;
2) Quantization—requiring Ce elements to either power-of-
2 values or zero; 3) Unstructured Sparsification—promoting
element-wise sparsity in Ce; 4) Structured Sparsity—
incorporating structured sparsity for Ce; and 5) Retrain-
ing—iteratively performing retraining and SmartDeal. For
simplicity, we term the above five components as DE
(DE composition), Q2 (Quantization to Power-of-2), US
(Unstructured Sparsity), SS (Structured Sparsity), and RT
(Re-Training), respectively.

Table II summarizes the results of ResNet18 [57] on
CIFAR-10 dataset [41], with the accuracy, FLOPs,3 the
model storage (total memory size to save all parameters
including index if necessary), sparsity levels, and normalized
energy efficiency results measured on an edge FPGA (i.e.,
Ultra 96 FPGA [59]) reported. For US, we pick the
sparsity threshold θ = 8 × 10−3. For RT, we iteratively
perform retraining and SmartDeal algorithm (with fixed θ)
for 80 epochs and report best performing models among. For
SS, the pruning ratios for different layers are manually tuned.
We provide the reproducible details for selecting layer-wise
pruning ratios in Appendix E in the Supplementary Material,
as well as the general rule how we select them. We use
Huffman coding representations for Ce (refer to Section B)
and 8-bit fixed-point representations for B and input-output
activations for SmartDeal (Exp. 7, 8, SD, and SD†).
Other experiments use standard 32-bit floating-point repre-
sentations for input/activations. We further use a Ultra96
FPGA [59] platform for real-device energy measurement and
report the energy efficiency (normalized to the implementation
without any components of the SmartDeal algorithm). The
difference in utilized computation resource on the FPGA board

3We use the method in [58] to compare fixed-point and 32-bit floating-point
where the highest bit precision of the operands determines the equivalent
floating-point operation. Only CONV and FC layers are considered.

[i.e., digital signal processing (DSP) unit and lookup table
(LUT)] among all implementations is within 5% so that the
influence of computation resources is negligible.

1) Quantization: Comparing Exp. 2 and 3, the power-of-
2 quantization has aggressive advantage in reducing
the model size, without incurring much accuracy loss:
>3.7× reduction in model size while incurring <0.6%
accuracy loss. Note that because we don’t quantize B
in Exp. 3, the equivalent FLOPs is the same as Exp. 2.

2) (Structured) Sparsity: Comparing Exp. 7 with 3, sparsity
trades slightly more accuracy drop for higher storage
saving and has an immediate influence on FLOPs.
Structured sparsity can bring much more aggressive
size/FLOPs advantage but will suffer from significant
performance loss as shown in Exp. 8. Fortunately,
however, model performance can be recovered by
retraining in both cases (see last three rows).

3) Decomposition: The benefit brought by decomposition
can be supported by comparing multiple pairs of
experiments in different cases. For example, when we
compare Exp. 6 and 7 (we compress the models to
around the same FLOPs number for fair comparison),
the model in Exp. 7 (with decomposition) achieves near
2% higher accuracy with even lower FLOPs.

4) Comparison With Sparsity-Only Models: Comparing
(4+, 5) and (9+, SD) shows that under the same tight
storage budget, DE induces a much smaller accuracy
drop (93.36% vs. 52.98% and 94.32% vs. 93.02%)
at the cost of more FLOPs, which further supports
the important role that DE plays in SmartDeal by
identifying a higher-order structure. The higher FLOPs
of Exp. 5 and SD are mainly due to lower sparsity in
reconstructed W , which has direct influence on FLOPs.
Overheads for rebuilding W only account for <1% of

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Accuracy versus model size comparison of SmartDeal (SE) and
SOTA compression techniques on (a) ImageNet and (b) CIFAR-10, where
different colors differentiate the SE and baseline techniques. We use 16-bit
floating weight representation for the pruning-alone methods.

total FLOPs thanks to the high sparsity and readily
quantized-to-2 structure of Ce.

5) Energy Efficiency on FPGA: SmartDeal trades higher
cost memory storage/access for lower cost computation.
Therefore, energy efficiency is a better way than FLOPs
to show its power. We can see that SD enjoys near 2%
better accuracy than Exp. 9+ and comparable energy
efficiency despite higher FLOPs. When favored with
structured sparsity, SD† still outperforms Exp. 9+ with
smaller model size and further improves the energy
efficiency.

6) Controlling Pruning Ratios for Structured Sparsity:
Exp. 8 from Table II shows that structured sparsity
improves energy efficiency but at the cost of a drastic
accuracy drop, although retraining can recover most of
the accuracy in Exp. SD†. Here, we use the additional
Exp. 8� and SD†

�, in which we use larger pruning ratios
for structured sparsity, to show that we can easily trade-
off between storage and energy efficiency with accuracy
by controlling the pruning ratios.

B. Evaluation of the SmartDeal Algorithm

1) Experiment Settings: To evaluate the algorithm perfor-
mance of SmartDeal algorithm, we conduct experiments on
1) a total of six DNN models using both the CIFAR-10 [41]
and ImageNet [42] datasets; 2) one segmentation model on the
CamVid [54] dataset; and 3) two MLP models on the MNIST
dataset and compare the performance with state-of-the-art
compression techniques in terms of accuracy and model size,
including two structured pruning techniques (Network Slim-
ming [60] and ThiNet [61]),4 Four quantization techniques
(scalable 8-bit (S8) [62], FP8 [63], WAGEUBN [64], and
DoReFa [15]), one power-of-2 quantization technique [65],
and one pruning and quantization technique [48].

2) SmartDeal Versus Existing Compression Techniques:
As SmartDeal unifies the three mainstream ideas of pruning,
decomposition, and quantization, we evaluate the SmartDeal
algorithm performance by comparing it with state-of-the-
art pruning-alone and quantization-alone algorithms,5 under

4We reimplement ThiNet [61] and report the best numbers that we reproduce
in the same computation environment for fair comparison, because we obtain
better baseline accuracies than the original ThiNet article. Note that we report
model size in megabytes (MB) (with 16-bit weight representation) while
the number of parameters in million (M) is reported in [61].

5We did not include decomposition-alone algorithms since their results are
not as competitive and also less popular.

TABLE III

RESULT SUMMARY OF THE PROPOSED SmartDeal WITH RETRAINING ON
1) VGG11 AND RESNET50 USING THE IMAGENET DATASET [42];
2) VGG19 AND RESNET164 USING THE CIFAR-10 DATASET [41];

AND 3) MLP-1 [65] AND MLP-2 [48] USING

THE MNIST DATASET

four DNN models and two datasets. Note that we use
16-bit floating-point weight representation for the pruning-
alone algorithms for more fair comparison. The experiment
results are shown in Fig. 6. SmartDeal in general outperforms
all other pruning-alone or quantization-alone competitors
in terms of the achievable trade-off between the accuracy
and the model size. Taking ResNet50 on ImageNet as an
example, the quantization algorithm DoReFa [15] seems to
aggressively shrink the model size yet unfortunately cause
a larger accuracy drop; while the pruning algorithm ThiNet
[61] maintains competitive accuracy at the cost of larger
models. In comparison, SmartDeal combines the best of both
worlds: it obtains almost as high accuracy as the pruning-only
ThiNet [61], which is 2.66% higher than the quantized-only
DoReFa [15]; and on the other hand, it keeps the model as
compact as DoReFa [15]. SmartDeal also outperforms more
recent and competitive model compression works [a1, a3].
When compared with the state-of-the-art quantization method
LSQ [66] that uses 3-bit weight representation, SmartDeal
costs much less storage for a ResNet50 network than using
LSQ (6.51 MB vs. 9.61 MB) while inducing less accuracy
drop (0.82% vs. 1.10%) on ImageNet. Moreover, SmartDeal
also outperforms CLIP-Q [67], a state-of-the-art joint pruning-
quantization method, yielding smaller model size than Clip-
q (6.51 MB vs. 6.70 MB) but much higher top-1 accuracy
(75.31% vs. 73.80%).

Apart from the aforementioned works, we also evaluate
the SmartDeal algorithm with a state-of-the-art power-of-2
quantization algorithm [65] based on the same MLP model
with a precision of 8 bits: while having a significantly higher
compression rate of 188.3× (vs. 128× in [65]), SmartDeal
achieves a comparable accuracy (97.32% vs. 97.35%), even if

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 11

SmartDeal is not specifically dedicated for FC layers while
the power-of-2 quantization [65] does. In addition, compared
with the pruned and quantized MLP model in [48], SmartDeal
achieves a higher compression rate of 66.88× (vs. 40× in [48])
with a comparable accuracy (98.11% vs. 98.42%).

A more extensive set of evaluation results is summarized in
Table III, in order to show the maximally achievable gains (and
the incurring accuracy losses) by applying SmartDeal over the
original uncompressed models. In Table III, “CR” means
the compression rate in terms of the overall parameter size;
“Param.,” “B ,” and “Ce” denote the total size of the model
parameters, the basis matrices, and the coefficient matrices,
respectively; “Spar.” denotes the ratio of the pruned and total
parameters (the higher the better). Without too much surprise,
SmartDeal compresses the VGG networks by 80× to 120×,
all with negligible (less than 1%) top-1 accuracy losses. For
ResNets, SmartDeal is still able to achieve a solid >10×
compression ratio. For example, when compressing ResNet50,
we find SmartDeal to incur almost no accuracy drop, when
compressing the model size by 15× to 18×.

3) SmartDeal Applied on Compact Models: We also
validate that the proposed SmartDeal algorithm remains to be
beneficial when adopted for well-known compact models, i.e.,
MobileNetV2 (MBV2) [52] and EfficientNet-B0 (Eff-B0) [11].
SmartDeal only incurs ∼2% top-1 accuracy and 1% top-5
accuracy losses when compressing MBV2 and Eff-B0 for
7.69∼7.82× CR, in contrast to a 7.07% top-1 accuracy
loss with 8× compression (4-bit quantization) of MBV2 as
reported in the latest work [68]. Detailed experimental settings
and empirical results can be found in Appendix F in the
Supplementary Material.

4) Extending SmartDeal Beyond Classification and
Computer Vision: We further demonstrate the effectiveness of
SmartDeal is beyond one specific task setting by evaluating
it on the semantic segmentation task with CamVid [54]
dataset and on the character-level language modeling task
with Penn Treebank dataset [69]. Refer to the Appendix F in
the Supplementary Material for detailed experiment settings
and the empirical results.

C. SmartDeal Training Evaluation

1) Fine-Tuning and Adaptation Study: We present exper-
iment results of SD-T in fine-tuning and adaptation tasks to
support the efficacy of SmartDeal for resource-constrained on-
device training. We run training experiments in two settings on
partitioned CIFAR-10/100 datasets. Our experiments are based
on ResNet18 [57] and MobileNetV2 [52]. We compare SD-T
(with and without structured sparsity) with standard training.
We denote SD-T as SD and SD-T with structured sparsity as
SS. Besides accuracies, we also compare the model sizes and
normalized energy efficiency.

We consider two datasets split strategies on CIFAR-10/100,
corresponding to two scenarios, fine-tuning and adaptation
in which a dataset is divided into two parts and we pre-
train a model on one part and then fine-tune on the other.
However, in fine-tuning, both parts contain all classes, while
in adaptation the two parts contain non-overlapping classes.
Refer to the Appendix E in the Supplementary Material for
detailed splitting strategies.

Results of fine-tuning and adaptation experiments of
ResNet18 and MobileNetV2 on CIFAR-10 dataset are shown

TABLE IV

RESULT OF RESNET18 AND MOBILENET-V2 EXPERIMENTS
FOR FINE-TUNING AND ADAPTATION TASKS ON CIFAR-10

in Table IV. Refer to the Appendix E for detailed experiment
settings and the Appendix H for results on CIFAR-100 dataset
in the Supplementary Material. We evaluate the hardware
quantified benefits of SmartDeal for training using a state-
of-the-art accelerator [9] using the method in [70]. We can
see SD-T saves energy during fine-tuning/adaption for both
networks. When combined with structured sparsity, SD-T can
further save the energy cost with tolerable accuracy drop.
We also include the convergence analysis of SD-T in the
Appendix G in the Supplementary Material.

2) Hardware-Quantified Benefits of SmartDeal On-Device
Training: In this set of experiments, we deploy SD-T on
a state-of-the-art training accelerator [9] and compare the
accelerator’s performance over SOTA GPUs in terms of
energy efficiency. Here, we use the state-of-the-art training
accelerator [9] instead of designing a dedicated one in order
to demonstrate the generality of SD-T algorithm, which
can potentially improve the performance of training process
regardless of the deployment hardware design. We follow
the evaluation method in [70] to evaluate the accelerator by
implementing a cycle-accurate simulator, aiming to model
the Register-Transfer-Level (RTL) behavior of the hardware
circuits [9]. As summarized in Table V, by running SD-T-
based ResNet18, [9] achieves 1.3× and 4.48× improvement
in energy efficiency (E.E.) over powerful GPUs with
vanilla ResNet18, which are designed in more advanced
technologies.

D. Evaluation of the Dedicated SmartDeal Accelerator

In this section, we present experiments to evaluate
the performance of the dedicated SmartDeal accelerator.
Specifically, we first introduce the experiment setup and
methodology, and then compare SmartDeal accelerator with
four state-of-the-art DNN accelerators (covering a diverse
range of design considerations) on seven DNN models
(including four standard DNNs, two compact models, and
one segmentation model) in terms of energy consumption and
latency when running on three benchmark datasets. Details
and ablation studies of the accelerator can be referred from
Section V of our prior work [2].

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

PEAK ENERGY EFFICIENCY OF ASIC TRAINING ACCELERATOR [9]
WITH SD-T-BASED RESNET18 VERSUS SOTA EDGE [71]

AND CLOUD GPU [72] WITH RESNET18

TABLE VI

DESIGN CONSIDERATIONS OF THE BASELINE AND OUR ACCELERATORS

1) Experiment Setup and Methodology:
a) Baselines and configurations: We benchmark the

SmartDeal accelerator with four state-of-the-art accelerators:
DianNao [1], SCNN [37], Cambricon-X [38], and Bit-
pragmatic [73]. These representative accelerators have demon-
strated promising acceleration performance, and are designed
with a diverse design considerations as summarized in
Table VI. Specifically, DianNao [1] is a classical architecture
for DNN inference, which is reported to be over 100× faster
and over 20× more energy efficient than those of CPUs. While
DianNao considers dense models, the other three accelerators
take advantage of certain kinds of sparsity in DNNs. To ensure
fair comparisons, we assign the SmartDeal accelerator and
baselines with the same computation resources and on-chip
SRAM storage in all experiments, as listed in Table VII. For
example, the DianNao, SCNN, and Cambricon-X accelerators
use 1K 8-bit nonbit-serial multipliers and SmartDeal and Bit-
pragmatic employ an equivalent 8K bit-serial multipliers.

For handling the dynamic sparsity in the SmartDeal
accelerator, the on-chip input GB bandwidth and weight GB
bandwidth with each PE slice are set to be four and two
times of those in the corresponding dense models, respectively,
which are empirically found to be sufficient for handling all
the considered models and datasets. Meanwhile, because the
computation resources for the baseline accelerators may be
different from their original articles, the bandwidth settings
are configured accordingly based on their articles’ reported
design principles. Note that 1) we do not consider FC
layers when benchmarking the SmartDeal accelerator with the
baseline accelerators (see Figs. 7–9) for a fair comparison
as the SCNN [37] baseline is designed for CONV layers,
and similarly, we do not consider EfficientNet-B0 for the
SCNN accelerator as SCNN is not designed for handling
the squeeze-and-excite layers adopted in EfficientNet-B0 and
2) our ablation studies consider all layers in the models can
be referred from Section V of our prior work [2].

b) Benchmark models, datasets, and precision: We use
seven representative DNNs (ResNet50, ResNet164, VGG11,
VGG19, MobileNetV2, EfficientNet-B0, and DeepLabV3+)

TABLE VII

SUMMARY OF THE COMPUTATION AND STORAGE RESOURCES IN THE
SmartDeal AND BASELINE ACCELERATORS. THE AREA OVERHEAD

FOR THE RE MODULES IN SmartDeal IS AROUND 0.64%

Fig. 7. Normalized energy efficiency (over DianNao) achieved by the
SmartDeal accelerator over the four state-of-the-art baseline accelerators on
seven DNN models and three datasets.

Fig. 8. Normalized number of DRAM accesses (over the SmartDeal
accelerator) of the SmartDeal and four state-of-the-art baseline accelerators
on seven DNN models and three datasets.

and three benchmark datasets (CIFAR-10 [41], ImageNet [42],
and CamVid [54]). Regarding the precision, we adopt 1) 8-bit
activations for both the baseline-used and SmartDeal-based
DNNs and 2) 8-bit weights in the baseline-used DNNs, and
8-bit precision for the basis matrices and Huffman coding for
the coefficient matrices in the SmartDeal-based DNNs.

c) Technology-dependent parameters: For evaluating the
performance of the SmartDeal accelerator, we implemented a
custom cycle-accurate simulator, aiming to model the RTL
behavior of synthesized circuits, and verified the simulator
against the corresponding RTL implementation to ensure its
correctness. Specifically, the gate-level netlist and SRAM
are generated based on a commercial 28-nm technology
using the Synopsys Design Compiler and Arm Artisan
Memory Compilers, proper activity factors are set at the input
ports of the memory/computation units, and the energy is
calculated using a state-of-the-art tool PrimeTime PX [74].
Meanwhile, thanks to the clear description of the baseline
accelerators’ articles and easy representation of their works,
we followed their designs and implemented custom cycle-
accurate simulators for all the baselines. In this way, we can
evaluate the performance of both the baseline and our
accelerators based on the same commercial 28-nm technology.
The resulting designs operate at a frequency of 1 GHz and the
performance results are normalized over that of the DianNao
accelerator, where the DianNao design is modified to ensure

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 13

Fig. 9. Normalized speedup (over DianNao) achieved by the SmartDeal
accelerator over the four state-of-the-art baseline accelerators on seven DNN
models and three datasets.

that all accelerators have the same hardware resources (see
Table VII). We refer to [70] for the unit energy of DRAM
accesses, which is 100 pJ per 8 bit, and the unit energy costs
for computation and SRAM accesses are listed in Table I.

2) SmartDeal Versus State-of-the-Art Accelerators:
a) Energy efficiency over that of the baseline accelera-

tors: Fig. 7 shows the normalized energy efficiency of the
SmartDeal and the baseline accelerators. It is shown that
the SmartDeal accelerator consumes the least energy under
all the considered DNN models and datasets, achieving an
energy efficiency improvement ranging from 2.0× to 6.7×.
The SmartDeal accelerator’s outstanding energy efficiency
performance is a result of SmartDeal’s algorithm-hardware
co-design effort to effectively trade the much higher cost
memory storage/accesses for the lower cost computations
(i.e., rebuilding the weights using the basis and coefficient
matrices at the least costly RF and PE levels versus fetching
them from the DRAM). Note that SmartDeal nontrivially
outperforms all baseline accelerators even on the compact
models (i.e., MobileNetV2 and EfficientNet-B0) thanks to both
the SmartDeal algorithm’s higher compression ratio and the
SmartDeal accelerator’s dedicated and effective design (see
Section V-B) of handling depth-wise CONV and squeeze-and-
excite layers that are commonly adopted in compact models.

Fig. 8 shows the normalized number of DRAM accesses
for the weights and input-output activations. We can see that:
1) the baselines always require more (1.1× to 3.5×) DRAM
accesses than the SmartDeal accelerator, e.g., see the ResNet
and VGG models on the ImageNet and CIFAR-10 datasets as
well as the segmentation model DeepLabV3+ on the CamVid
dataset; 2) SmartDeal’s DRAM-access reduction is smaller
when the models’ activations dominate the cost (e.g., compact
DNN models); and 3) the SmartDeal accelerator can reduce
the number of DRAM accesses over the baselines by up to
1.3× for EfficientNet-B0, indicating the effectiveness of our
dedicated design for handling the squeeze-and-excite layers
(see Section V-B).

b) Speedup over that of the baseline accelerators:
Similar to benchmarking the SmartDeal accelerator’s energy
efficiency, we compare its latency of processing one image
(i.e., batch size is 1) over that of the baseline accelerators
on various DNN models and datasets, as shown in Fig. 9.
We can see that the SmartDeal accelerator achieves the
best performance under all the considered DNN models and
datasets, achieving a latency improvement ranging from 8.8×
to 19.2×. Again, this experiment validates the effectiveness
of SmartDeal’s algorithm-hardware co-design effort to reduce
the latency on fetching both the weights and the activations
from the memories to the computation resources. Since the

SmartDeal accelerator takes advantage of both the weights’
vector-wise sparsity and the activations’ bit-level and vector-
wise sparsity, it has a higher speedup over all the baselines
that make use of only one kind of sparsity. Specifically, the
SmartDeal accelerator has an average latency improvement
of 3.8×, 2.5×, and 2.0× over SCNN [37] and Cambricon-
X [38], which consider unstructured sparsity, and Bit-
pragmatic [73], which considers the bit-level sparsity in
activations, respectively.

VII. CONCLUSION

The trade-off between the model performance and its
speed/computational cost pervasively exists in the research
community and industry. In this article, we propose a more
smart trade-off strategy, SmartDeal, an algorithm-hardware co-
design framework with a unique goal to trade higher cost
memory storage/access for lower cost computation, in order
to achieve storage- and energy-efficient DNN inference and
training. Extensive experiments including both algorithm and
hardware aspects show that SmartDeal can effectively resolve
the practical bottleneck of high-cost memory storage/access
and can aggressively trim down energy cost and model
size, while incurring minimal accuracy drops, for both
inference and training. Moreover, SmartDeal provides a
handy way for the users to freely balance such trade-off by
controlling hyperparameters in SmartDeal to favor either better
performance or higher speed. Our immediate future goal is
to automate the hyper parameter tuning in SmartDeal using
AutoML.

REFERENCES

[1] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269–284, Feb. 2014.

[2] Y. Zhao et al., “SmartExchange: Trading higher-cost memory
storage/access for lower-cost computation,” in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 954–967.

[3] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[4] Y. Wang et al., “E2-train: Training state-of-the-art CNNs with over
80% less energy,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5139–5151.

[5] H. You et al., “Drawing early-bird tickets: Towards more efficient
training of deep networks,” 2019, arXiv:1909.11957.

[6] C. Li, T. Chen, H. You, Z. Wang, and Y. Lin, “Halo: Hardware-aware
learning to optimize,” in Proc. Eur. Conf. Comput. Vis. Berlin, Germany:
Springer, 2020, pp. 500–518.

[7] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5687–5695, doi: 10.1109/CVPR.2017.643.

[8] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SignSGD: Compressed optimisation for non-convex problems,” 2018,
arXiv:1802.04434.

[9] C. Kim, S. Kang, D. Shin, S. Choi, Y. Kim, and H.-J. Yoo, “A 2.1
TFLOPS/W mobile deep RL accelerator with transposable PE array
and experience compression,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 136–138.

[10] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[11] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” 2019, arXiv:1905.11946.

[12] Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[13] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 442–450.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CVPR.2017.643

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[14] H. Huang, L. Ni, K. Wang, Y. Wang, and H. Yu, “A highly parallel and
energy efficient three-dimensional multilayer CMOS-RRAM accelerator
for tensorized neural network,” IEEE Trans. Nanotechnol., vol. 17, no. 4,
pp. 645–656, Jul. 2018.

[15] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016, arXiv:1606.06160.

[16] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A 50.6
TOPS/W unified deep neural network accelerator with 1b-to-16b fully-
variable weight bit-precision,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 218–220.

[17] H. You et al., “ShiftAddNet: A hardware-inspired deep network,” 2020,
arXiv:2010.12785.

[18] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[19] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Architecture (ISCA), Jun. 2016, pp. 243–254.

[20] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 2654–2662.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[22] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet:
Learning dynamic routing in convolutional networks,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 409–424.

[23] J. Shen, Y. Wang, P. Xu, Y. Fu, Z. Wang, and Y. Lin, “Fractional
skipping: Towards finer-grained dynamic CNN inference,” Proc. AAAI
Conf. Artif. Intell., vol. 34, no. 4, pp. 5700–5708, Apr. 2020.

[24] T.-K. Hu, T. Chen, H. Wang, and Z. Wang, “Triple wins: Boosting
accuracy, robustness and efficiency together by enabling input-adaptive
inference,” 2020, arXiv:2002.10025.

[25] Y. Wang et al., “Dual dynamic inference: Enabling more efficient,
adaptive, and controllable deep inference,” IEEE J. Sel. Topics Signal
Process., vol. 14, no. 4, pp. 623–633, May 2020.

[26] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by
low rank and sparse decomposition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 7370–7379.

[27] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2018.

[28] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” 2018, arXiv:1802.05668.

[29] M. Wang, Q. Zhang, J. Yang, X. Cui, and W. Lin, “Graph-adaptive
pruning for efficient inference of convolutional neural networks,” 2018,
arXiv:1811.08589.

[30] S. Gui, H. Wang, C. Yu, H. Yang, Z. Wang, and J. Liu, “Adversarially
trained model compression: When robustness meets efficiency,” 2019.

[31] H. Wang, S. Gui, H. Yang, J. Liu, and Z. Wang, “GAN slimming: All-in-
one GAN compression by a unified optimization framework,” in Proc.
Eur. Conf. Comput. Vis. Berlin, Germany: Springer, 2020, pp. 54–73.

[32] P. Micikevicius et al., “Mixed precision training,” in Proc. Int.
Conf. Learn. Represent., 2018. [Online]. Available: https://openreview.
net/forum?id=r1gs9JgRZ

[33] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed
precision quantization of ConvNets via differentiable neural architecture
search,” 2018, arXiv:1812.00090.

[34] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8612–8620.

[35] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:
Quantization-aware training for graph neural networks,” in Proc. Int.
Conf. Learn. Represent., 2021. [Online]. Available: https://openreview.
net/forum?id=NSBrFgJAHg

[36] Y. Fu et al., “Fractrain: Fractionally squeezing bit savings both
temporally and spatially for efficient dnn training,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 12127–12139.

[37] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 27–40.

[38] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, p. 20.

[39] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convo-
lutional networks using vector quantization,” 2014, arXiv:1412.6115.

[40] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, “Deep
k-means: Re-training and parameter sharing with harder cluster assign-
ments for compressing deep convolutions,” 2018, arXiv:1806.09228.

[41] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

[42] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, Jun. 2009,
pp. 248–255.

[43] H. Mao et al., “Exploring the regularity of sparse structure in
convolutional neural networks,” 2017, arXiv:1705.08922.

[44] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: Customizing dnn pruning to the underlying
hardware parallelism,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 2, pp. 548–560, 2017.

[45] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and
A. G. Wilson, “Averaging weights leads to wider optima and better
generalization,” 2018, arXiv:1803.05407.

[46] G. Yang, T. Zhang, P. Kirichenko, J. Bai, A. G. Wilson, and
C. De Sa, “SWALP : Stochastic weight averaging in low-precision
training,” 2019, arXiv:1904.11943.

[47] K. Helwegen, J. Widdicombe, L. Geiger, Z. Liu, K.-T. Cheng, and
R. Nusselder, “Latent weights do not exist: Rethinking binarized neural
network optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 7531–7542.

[48] X. Zhou et al., “Cambricon-S: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2018, pp. 15–28.

[49] A. D. Lascorz et al., “Bit-tactical: A software/hardware approach to
exploiting value and bit sparsity in neural networks,” in Proc. 24th Int.
Conf. Architectural Support Program. Lang. Operating Syst., Apr. 2019,
pp. 749–763.

[50] Z. Du et al., “Shidiannao: Shifting vision processing closer to the
sensor,” ACM Sigarch Comput. Archit. News, vol. 43, no. 3, pp. 92–104,
2015.

[51] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43th Annu. Int. Symp., Jun. 2016, pp. 367–379.

[52] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[53] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[54] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in Proc. Eur.
Conf. Comput. Vis. Berlin, Germany: Springer, 2008, pp. 44–57.

[55] T. Chen et al., “The lottery ticket hypothesis for pre-trained BERT
networks,” 2020, arXiv:2007.12223.

[56] T. Chen et al., “The lottery tickets hypothesis for supervised
and self-supervised pre-training in computer vision models,” 2020,
arXiv:2012.06908.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[58] (2020). N. Advances in Neural Information Processing Systems
Workshop. Micronet Challenge. [Online]. Available: https://micronet-
challenge.github.io/

[59] Xilinx Inc. AvNet Ultra96. Accessed: Sep. 1, 2019. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/1-vad4rl.html

[60] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2736–2744.

[61] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis., Oct. 2017, pp. 5058–5066.

[62] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” in Proc. 32nd Int. Conf. Neural Inf.
Process. Syst., 2018, pp. 5151–5159.

[63] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and
K. Gopalakrishnan, “Training deep neural networks with 8-bit floating
point numbers,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2018,
pp. 7675–7684. [Online]. Available: https://papers.nips.cc/paper/7994-
training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf

[64] Y. Yang, S. Wu, L. Deng, T. Yan, Y. Xie, and G. Li, “Training
high-performance and large-scale deep neural networks with full 8-bit
integers,” Neural Netw., vol. 125, pp. 70–82, 2019.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SmartDeal: REMODELING DEEP NETWORK WEIGHTS FOR EFFICIENT INFERENCE AND TRAINING 15

[65] Z. Qin et al., “Accelerating deep neural networks by combining block-
circulant matrices and low-precision weights,” Electronics, vol. 8, no. 1,
p. 78, Jan. 2019.

[66] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” 2019, arXiv:1902.08153.

[67] F. Tung and G. Mori, “CLIP-Q: Deep network compression learning
by in-parallel pruning-quantization,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 7873–7882.

[68] R. Gong et al., “Differentiable soft quantization: Bridging full-precision
and low-bit neural networks,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2019, pp. 4852–4861.

[69] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of English: The Penn treebank,” Comput. Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[70] X. Yang et al., “Interstellar: Using Halide’s scheduling language to
analyze DNN accelerators,” 2018, arXiv:1809.04070.

[71] NVIDIA. NVIDIA Jetson TX2 Delivers Twicethe Intelligence
to the Edge. Accessed: Sep. 9, 2019. [Online]. Available:
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/

[72] NVIDIA. NVIDIA Tesla V100 Tensor Core GPU. Accessed:
Sep. 9, 2019. [Online]. Available: https://www.nvidia.com/en-us/data-
center/tesla-v100/

[73] J. Albericio et al., “Bit-Pragmatic deep neural network computing,” in
Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017,
pp. 382–394.

[74] Synopsys. PrimeTime PX: Signoff Power Analysis. Accessed:
Aug. 6, 2019. [Online]. Available: https://www.synopsys.com/support/
training/signoff/primetimepx-fcd.html

[75] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

Xiaohan Chen received the B.S. degree in applied
mathematics from the University of Science and
Technology of China, Hefei, Anhui, China, in 2017.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX, USA.

His research interests include machine learning,
sparse optimization, and sparse neural networks.
He is currently focused on automated learning-based
optimization, lottery ticket hypothesis, and efficient
deep learning.

Yang Zhao received the B.S. and M.S. degrees
from Fudan University, Shanghai, China, in 2012
and 2015, respectively. She is currently pursuing
the Ph.D. degree with the Efficient and Intelligent
Computing Laboratory (EIC), Department of Elec-
trical and Computer Engineering, Rice University,
Houston, TX, USA.

Her current research interests include algorithm-
hardware co-design for efficient DNN systems and
computer architecture.

Yue Wang received the M.S. degree in electrical
and computer engineering from Rice University,
Houston, TX, USA, in 2020.

He is currently a Research Engineer with Ford
Motor Company, Dearborn, MI, USA. His research
concentrates on computer vision and efficient
machine learning.

Pengfei Xu received the B.S. degree in information
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2017, and the master’s degree
in ECE from Rice University, Houston, TX, USA, in
2019. He is currently pursuing the Ph.D. degree in
computer science with the University of California
at Santa Barbara, Santa Barbara, CA, USA.

His research interests include deep learning and
computer architecture.

Haoran You received the bachelor’s degree from
the School of Electronic Information and Com-
munications, Huazhong University of Science and
Technology, Wuhan, China, in 2019. He is currently
pursuing the Ph.D. degree in machine learning
realm with the Electronic and Computer Engineering
Department, Rice University, Houston, TX, USA.

His research interests include resource-constrained
machine learning, computer vision, deep learning,
and algorithm/accelerator co-design.

Chaojian Li received the B.S. degree from Tsinghua
University, Beijing, China, in 2019. He is currently
pursuing the Ph.D. degree with the Efficient and
Intelligent Computing Laboratory, Rice University,
Houston, TX, USA, under the supervision of
Dr. Y. Lin.

His research interests include neural architecture
search, DNN deployment tools, and graph neural
networks.

Yonggan Fu received the bachelor’s degree in
applied physics and computer science (dual major)
from the School of Gifted Young, University of
Science and Technology of China, Hefei, Anhui,
China, in 2019. He is currently pursuing the Ph.D.
degree with the Efficient and Intelligent Computing
Laboratory, Electrical and Computer Engineering
Department, Rice University, Houston, TX, USA,
under the supervision of Dr. Y. Lin.

His current research interests include but are not
limited to efficient deep neural network (DNN)

training and Inference algorithms, vulnerability of machine learning systems
and robust learning algorithms, and algorithm/hardware co-design for efficient
and robust DNN deployment.

Yingyan Lin (Member, IEEE) received the Ph.D.
degree in ECE from the University of Illinois at
Urbana-Champaign, Champaign, IL, USA, in 2017.

She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering
(ECE), Rice University, Houston, TX, USA. Her
research focuses on embedded machine learning,
which is to develop efficient algorithms, accelerators,
and automated tools for enabling ubiquitous on-
device intelligence and promoting green AI.

Dr. Lin was a recipient of a Best Student Paper
Award at the 2016 IEEE International Workshop on Signal Processing Systems
(SiPS 2016), the 2016 Robert T. Chien Memorial Award at UIUC for
Excellence in Research, and was selected as a Rising Star in EECS by
the 2017 Academic Career Workshop for Women at Stanford University.
She received the NSF CAREER Award, the IBM Faculty Award, and
the Facebook Research Award. She served as the Program Co-Chair of
the 32nd IEEE International Conference on Application-specific Systems,
Architectures, and Processors (ASAP 2021), and is currently a Track Chair
for the ACM/EDAC/IEEE Design Automation Conference (DAC) and an
Associate Editor for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II:
EXPRESS BRIEFS.

Zhangyang Wang (Senior Member, IEEE) received
the B.E. degree in EEIS from USTC, Hefei, Anhui,
China, in 2012 and the Ph.D. degree in ECE from
UIUC, Urbana, IL, USA, in 2016.

He was an Assistant Professor of CSE with
TAMU, from 2017 to 2020. He is currently an
Assistant Professor of ECE with UT Austin, Austin,
TX, USA. His research interests are in the fields
of machine learning, computer vision, optimization,
and their interdisciplinary applications. His latest
interests focus on automated machine learning

(AutoML), learning-based optimization, machine learning robustness, and
efficient deep learning.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on September 27,2022 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.

