DANCE: DAta-Network Co-optimization for Efficient
Segmentation Model Training and Inference

CHAOQJIAN LI, Rice University, TX, 77005

WUYANG CHEN, University of Texas at Austin, TX, 78712
YUCHEN GU, Rice University, TX, 77005

TIANLONG CHEN, University of Texas at Austin, TX, 78712
YONGGAN FU, Rice University, TX, 77005

ZHANGYANG WANG, University of Texas at Austin, TX, 78712
YINGYAN LIN, Rice University, TX, 77005

Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges
for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation
models are trained and evaluated on massive high-resolution scene images (“data-level”) and suffer from the
expensive computation arising from the required multi-scale aggregation (“network level”). In both folds, the
computational and energy costs in training and inference are notable due to the often desired large input
resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, gen-
eral automated DAta-Network Co-optimization for Efficient segmentation model training and inference.
Distinct from existing efficient segmentation approaches that focus merely on light-weight network design,
DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input
data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slim-
ming which adaptively downsamples/drops input images and controls their corresponding contribution to
the training loss guided by the images’ spatial complexity. Such a downsampling operation, in addition to
slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object
and context scales, therefore motivating us to also adaptively slim the network to match the downsampled
data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular
segmentation datasets under two training settings) demonstrate that DANCE can achieve “all-win” towards
efficient segmentation (reduced training cost, less expensive inference, and better mean Intersection-over-
Union (mloU)). Specifically, DANCE can reduce |25%-]77% energy consumption in training, |31%-]56% in
inference, while boosting the mIoU by |0.71%~-T 13.34%.
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1 INTRODUCTION

The recent record-breaking performance of semantic segmentation using deep networks moti-
vates an ever-growing application demand. However, those segmentation models typically bear
a heavy computational cost to run (i.e., inference), making them extremely challenging to be
deployed into resource-constrained platforms, ranging from mobile phones to wearable glasses,
drones, and autonomous vehicles. Particularly, while existing works on improving inference effi-
ciency are traditionally focused on classification, state-of-the-art (SOTA) segmentation models
are even much more costly. For example, a ResNet50 [18] costs 4 GFLOPs for inference with an
input size of 224 X 224. In comparison, for a DeepLabv3+ [3] with the ResNet50 backbone and
the same 224 X 224 input (associated with an output stride of 16), the inference cost jumps up to
13.3 GFLOPs; the cost could further soar to 435 GFLOPs if we operate on a higher input resolution
of 2,048 X 1,024. A similar trend can be expected in terms of the required energy costs. These
highly required resource costs prohibit segmentation models from edge device deployments or
at least degrade the quality of user experience. Specifically, such expensiveness of segmentation
models arises from two aspects:

— High input resolution and its proportional costs: segmentation, as a dense prediction task, typ-
ically relies on fully convolutional networks whose inference FLOPs are proportional to the
input size. Meanwhile, unlike classification, segmentation is known to be more resolution-
sensitive due to its much finer prediction granularity [5]. Therefore, high-resolution inputs
are preferred for improving algorithmic performance, yet contradicting the resource-saving
needs.

— Multi-scale aggregation: segmentation is well-known for its strong dependency on multiple
scale features [3, 45, 46, 51, 52] for contextual reasoning in combination with full-resolution
outputs. Such a desired feature is often achieved by fusing a multi-resolution stream or ag-
gregating paralleled filters with different sizes. Both the fusion and aggregation modules can
incur heavy resource costs.

The expensiveness of segmentation is further amplified when we come to consider its train-
ing (e.g., continuous learning and adaptation) in resource-constrained settings. Many applications,
such as autonomous vehicles and robots, require real-time and in-situ learning and continuous
adaptation to new data to be considered truly intelligent. As compared to cloud-based (re)training,
local (re)training helps avoid transferring data back and forth between data centers and local plat-
forms, reducing communication loads, and enhancing privacy. Besides, the increasingly prohibi-
tive energy, financial and environmental costs of training ML algorithms have become a growing
concern even for training in the cloud [37]. However, resource-constrained training has not been
explored much until a few recent efforts on classification [22, 39, 44].

Our contributions. This work aims at pushing forward the training and inference efficiency of
SOTA segmentation models to a new level, from the current practice of merely focusing on light-
weight network design, towards a novel data-network co-optimization perspective. Its core
driving motivation can be summarized in two points: (1) not all input samples are born equal [13,
22]; and (2) eliminating input variances reduces the model’s learning workload [12].
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More specifically, we propose DANCE, an efficient training and inference framework that can
be applied to any existing segmentation model. First, DANCE adopts an input adaptive automated
data slimming technique. We propose a spatial complexity indicator to adapt the input images’
spatial resolution, training sampling frequency, and weighted coefficients in the loss function. Thus
DANCE makes the models focus more on the complicated samples during training, while during
testing the input images’ spatial resolution will be similarly reduced (i.e., downsampled).

Meanwhile, adaptively reducing input resolution has direct (proportional) impacts on the train-
ing and inference energy costs (i.e., both computation and memory movement costs). The indi-
rect, yet also the important consequence is that the downsampled inputs become more “normal-
ized” in terms of object and feature scales. Current segmentation models strongly rely on built-in
multi-scale aggregation modules to balance between contextual reasoning and fine-detail preserva-
tion [5, 46]. Interestingly, with spatial-complexity-adaptive downsampled inputs, slimming those
cost-dominant multi-scale aggregation building blocks save both training and inference costs with-
out hampering the algorithmic performance; that is our proposed automated network slimming
in DANCE.

Below we outline the contributions of the proposed DANCE framework:

— DANCE, the first data-network co-optimization framework, boosts the efficiency of both
training and inference for segmentation models while mostly improving the accuracy. Fur-
thermore, DANCE is general and thus can be applied to any existing segmentation backbone.

— DANCE, as shown in this article, simultaneously integrates automated data and network
slimming to manipulate input images and their contribution to the model while slimming
the network architecture in a co-optimization manner. Interestingly, the former can emu-
late the effect of multi-scale aggregation, thus enabling more aggressive slimming of their
corresponding cost-dominant building blocks.

— Extensive experiments and ablation studies demonstrate that DANCE can achieve “all-win”
(i.e., reduced training and inference costs, and improved model accuracy) towards efficient
segmentation, when benchmarking on four SOTA segmentation models and three popular
segmentation benchmark datasets. As shown in Figure 1, DANCE establishes a new record
tradeoff between segmentation models’ accuracy and training&inference efficiency.

2 RELATED WORKS
2.1 Efficient CNN Inference and Training

Extensive works have been proposed to improve the efficiency of CNN inference, most of them
focus on the classification tasks. Network compression has been widely studied to speed up CNN
inference, e.g., by pruning unimportant network weights [16, 20], quantizing the network into
low bitwidths [21], or distilling lighter-weight networks from teachers [34]. For example, a rep-
resentative automated pruning method (Network Slimming [25]) imposes L;-sparsity making use
of the scaling factor from the batch normalization; later progressive pruning methods (i.e., grad-
ually increase the pruning ratio) are developed to improve the resulting models’ accuracy [43].
Another stream of approaches involves designing compact models, such as MobileNet [36] and
ShuffleNet [50]. Energy cost was leveraged in [42] to guide the pruning towards the goal of energy-
efficient inference.

Resource-efficient training is different from and more complicated than its inference counter-
part. However, many insights gained from the latter can be lent to the former. For example, the
recent work [27] showed that performing active channel pruning during training can accelerate
the empirical convergence. Later, Wang et al. [39] proposed one of the first comprehensive energy-
efficient training frameworks, consisting of stochastic data dropping, selective layer updating, and
low-precision back-propagation. They demonstrated its success in training several classification
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Fig. 1. The achieved mloU vs. the required energy cost (Left: the total training energy cost; Right: the aver-
aged inference energy cost per image) on the Cityscapes [8] test dataset. For the three segmentation models
evaluated, DANCE achieves “all-win”: reduced training cost, less expensive inference, and improved mloU.

models with over 80% energy savings. Reference [22] accelerated training by skipping samples
that may lead to low loss values (considered as less informative) at each iteration.

2.2 Semantic Segmentation

Multi-scale aggregation in segmentation. The multi-scale aggregation has been proven to be
powerful for semantic segmentation [3, 45, 51, 52], via integrating multi-scale modules and high-
/low-level features to capture patterns of different granularities. Pyramid Pooling and Atrous Spa-
tial Pyramid Pooling (ASPP) modules were introduced in [52] and [3] to aggregate features
learned in different sizes of receptive fields, adapting the models to objects with different semantic
sizes. Parallel branches of different downsampling rates were proposed by [45, 51] to cover differ-
ent resolutions. Although multi-scale aggregation contributes to segmentation accuracy improve-
ment, it and its associated header introduce extra overhead during both training and inference
(e.g., 52.98% inference FLOPs of Deeplabv3+ with a ResNet50 backbone and output stride of 16).
That motivates us to slim such modules in DANCE.

Efficient segmentation models. A handful of efficient semantic segmentation models have
been developed: ENet [32] used an asymmetric encoder-decoder structure together with early
downsampling; ICNet [51] cascaded feature maps from multi-resolution branches under proper
label guidance, together with network compression; and BiSeNet [45] fused a context path with a
fast downsampling scheme and a spatial path with smaller filter strides.

Remaining challenges. However, the models above were neither customized for nor evaluated
on ultra-high resolution images, and our experiments show that they did not achieve a sufficiently
satisfactory tradeoff in such cases. A knowledge distillation method was also leveraged to boost the
performance of a computationally light-weight segmentation model from a teacher network [19].
Despite their progress, none of them touches the training efficiency, nor any discussion related to
co-optimization with the input data. Besides, the FLOPs number has a correlation to, but is not a
faithful indicator of the actual energy cost, as pointed out by many prior works [42].

3 THE PROPOSED DANCE FRAMEWORK

This section presents our proposed DANCE framework. We will first provide an overview of
DANCE in Section 3.1, and then introduce DANCE’s automated data slimming and automated
network slimming design in Sections 3.2 and 3.3, respectively.
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Fig. 2. An overview of the data-network co-optimization pipeline in the proposed DANCE framework.

3.1 DANCE overview

The driving hypothesis of DANCE is that matching the data and network can potentially boost
both the model performance and hardware efficiency by removing redundancy associated with
both the data and network. As such, DANCE aims at reducing the computational and energy costs
of segmentation tasks during both training and inference via a joint effort from the data-level
and network-level. Specifically, as shown in Figure 2, DANCE integrates both automated data
and network slimming, where the former automatically performs complexity-driven data down-
sampling/dropping before applying the data to a network while the latter automatically and pro-
gressively prunes the network to match the slimmed data. A bonus benefit of DANCE is that
the resulting data-network pipeline after training (i.e., inference) is also naturally cost-efficient.

3.2 DANCE: Automated Data Slimming

DANCE’s automated data slimming strives to automatically downsample or drop input images
and controls their corresponding contribution to the training loss, adapting to the images’ spatial
complexity which is estimated using a spatial complexity indicator.

Spatial complexity indicator. Spatial complexity has been commonly used as the basis for
estimating image complexity [15, 30, 41], such as the one proposed in [48]:

1 2 2
SCrean = M Z Vsh + 5o, (1)

where s;, and s,, denote gray-scale images filtered with horizontal and vertical Sobel kernels, respec-
tively, and M denotes the number of pixels. Developed by [48] to predict the image complexity for
imaging compression/coding purpose, SCpean reflects the pixel-level variances and is extremely
efficient to calculate, e.g., account for only 0.15% FLOPs and <0.5% energy (on-device measurement
when including both computations and data movements) of the DeepLabv3+ model (ResNet50 as
the backbone with an output stride of 16) on one RGB image patch of size 224 x 224. The one
proposed in [48] (1) has a higher correlation coefficient with the compression ratio of JPEG [38],
which is regarded as the length of the shortest binary computer program as described in [48], as
compared to the other image complexity estimators based on the entropy of images [23, 49, 53];
and (2) is computationally more efficient as compared to the estimators based on deep neural net-
works [7, 40].

In DANCE, we first compute all training samples’ SC,¢q, and fit the corresponding cumulative
distribution function (CDF) using a Maxwell-Boltzmann distribution [29], which turns out to
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Fig. 3. The image complexity distribution of the training sets in the three considered urban scene under-
standing datasets.

be well-matched in all considered datasets as shown in Figure 3. Statistical analysis of SCpyeq,, for
a specific dataset is an interesting question, which we leave for future works.

Thanks to the fitted CDF, given an input image, we can project its SCpeqn € [0, inf] to a vari-
able p € [0, 1] via probability integral transform [11]. The resulting p is then directly used as the
corresponding input image’s downsampling ratio, stochastic dropping probability, and weighted
coefficient in the training loss.

Complexity-adaptive downsampling. The proposed complexity-adaptive downsampling
draws inspiration from recent findings, which show that not all input samples are born equal [13,
22], and is motivated by the fact that downsampling input image sizes can most straightforwardly
reduce the training/inference energy costs, as well as directly benefit the memory throughput.
Meanwhile, a few recent works learn to adjust resolution or respective fields [10, 28]. Their promis-
ing results further motivate our complexity-adaptive downsampling.

As prior works show that the minimal acceptable downsampling ratio is 0.5 for most segmen-
tation models [3, 45], we make use of the spatial complexity indicator SCp,eqn to downsample
the input images with a ratio of (0.5p + 0.5) € [0, 0.5], where p is the aforementioned projected
value corresponding to the images’ SCp,eqn- In contrast to the learning-based approaches in prior
works [10, 28] that incur extra training workloads, we seek a reliable indicator that is mostly “train-
ing free” and inexpensive to compute, based on which we can estimate a proper downsampling
rate per image adaptively. In particular, the energy overhead of our complexity-adaptive downsam-
pling is <0.02% when estimated using real-device measurements in all our considered datasets.

Complexity-adaptive stochastic dropping. Recent pioneering CNN efficient works [22, 39]
proposed that dropping a portion of training samples/mini-batches, either randomly or using some
loss-based deterministic rules, can reduce the total training costs without notably sacrificing or
even improving the algorithmic accuracy. Inspired by the stochastic dropping idea of [39], we
incorporate the readily available spatial complexity indicator in Equation (1) to calibrate the drop-
ping probability. Specifically, [39] proposes to randomly skip incoming data (in mini-batch) with
a default probability of 50% (i.e., 50% of the data is discarded without being fed into the models).
The authors demonstrated this naively simple idea (with zero overhead) to be highly effective for
efficient training without hurting and even improving the achieved accuracy. We further hypoth-
esize that the images with larger spatial complexity are more informative and likely to favor the
achieved accuracy if being more frequently trained than the ones with smaller spatial complexity.

Therefore, instead of adopting a uniformly dropping probability for all images, we propose a
simple yet effective heuristic to enable complexity-adaptive stochastic dropping by assigning a
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smaller dropping probability to input images with larger spatial complexity. In particular, we assign
(1 — p) as the dropping probability, where p is the aforementioned projected value of the images’
spatial complexity indicator (SCpeqn)-

Complexity-adaptive loss. Similarly, the losses produced by images with different complexi-
ties have been observed to contribute differently to the training loss [15] or convergence in train-
ing [22]. We thus prioritize the updates generated by samples with larger spatial complexity, and
adopt an adaptive weighted loss as below:

gz _xpihi g,y @)

2 Wi 2 pi

where w; is a scalar weighted coefficient, and /; is the cross-entropy loss of samples, correspond-
ing to the ith image of the current mini-batch with N images. Similar to the dropping probability
assignment in complexity-adaptive stochastic dropping, an input image with larger spatial com-
plexity will be assigned a larger weighted coefficient than the one with smaller spatial complexity.
As such, we adopt weighted coeflicients equal to the aforementioned projected value p of the im-
ages’ spatial complexity indicator (SCpyeqn), i-€., Wi = pi,i = 1,2,...N.

The above three techniques have a different effect on DANCE’s achieved accuracy vs. efficiency
tradeoffs, as shown in Section 4.3.5. Specifically, complexity-adaptive downsampling leads to the
most significant cost (i.e., FLOPs, on-device energy, and latency) reduction, while obviously hurt-
ing the mean Intersection-over-Union (mloU) (e.g., |57% and |61% less FLOPs in training and
inference, respectively, with a |2.54% lower mloU, when being applied on top of DeepLabv3+ [3]
on the Cityscapes [9] dataset); complexity-adaptive dropping can boost the mIoU while slightly
reducing the cost (e.g., a 13.33% higher mloU with |14% and |25% less FLOPs in training and in-
ference, respectively, when being applied on top of DeepLabv3+ [3] on the Cityscapes [9] dataset);
and the complexity-adaptive loss can improve the mloU (e.g., a 71.91% higher mIoU when being
applied on top of DeepLabv3+ [3] on the Cityscapes [9] dataset together with complexity-adaptive
downsampling) but have no influence on the cost of training or inference.

3.3 DANCE: Automated Network Slimming

Various ways to aggregate multi-scale features [3, 45, 51, 52] have been proved to improve seg-
mentation accuracy at a cost of extra parameters and computations, leading to a higher train-
ing/inference energy burden. Thanks to the developed complexity-adaptive downsampling in
DANCE’s automated data slimming (see Section 3.2), the resulting inputs have been re-scaled ac-
cording to their spatial complexity. We conjecture that such downsampled inputs naturally have
more “normalized” object feature scales, i.e., complexity-adaptive downsampling can emulate the
effect of multi-scale aggregation, and thus can potentially rely less on multi-scale aggregation mod-
ules for improving the segmentation accuracy. We thus expect that the network will appear to be
more redundant when handling our automated data slimming’s resulting downsampled inputs as
the cost-dominant building blocks of multi-scale aggregation now become less important.

Progressive pruning during training. Motivated by the above conjecture and targeting re-
duced costs for both the training and inference (e.g., post-training pruning merely reduces infer-
ence costs), we propose an automated network slimming with a progressive pruning schedule
during the training trajectory to prune the header (defined as the network added right after the
backbone network for classification tasks, following [36]) of the networks for segmentation, which
includes the aforementioned multi-scale feature modules and also often dominates both the train-
ing and inference costs, e.g., accounts for 52.98% FLOPs in DeepLabv3+ (with a ResNet50 backbone
and an output stride of 16). Note that DANCE’s effectiveness and insights are extended when other
network pruning methods are considered. Here we consider progressive pruning without loss of
generalization.
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Fig. 4. The percentage of pruned channels for different kinds of layers under various pruning ratios on a
DeepLabv3+ model (with a ResNet50 backbone and an output stride of 16) with the Cityscapes dataset.
Specifically, the Pruning Ratio represents the target pruning ratio (i.e., the ratio of the total pruned channels
as compared to the total channels of the unpruned models) of the whole model, which includes both the
layers corresponding to multi-scale aggregation and other layers, and the Pruned Channels refers to the
number of pruned channels in the layers corresponding to multi-scale aggregation (the top) or other layers
(the bottom).

ALGORITHM 1: The algorithm for automated network slimming

1: Initialize the backbone weights W, from ImageNet pre-trained models, the header weights W,
from random initialization, target pruning ratio (1 — r), and pruning stages S.

2: while ¢ (epoch) < t;,4x do

3 Update W}, and W), using SGD training

4: if + mod t"‘s‘“‘ == 0 then

5 Perform channel-wise pruning (based on [25]) on W}, with the target pruning ratio as
(1-r3)

6: end if

7: end while

To design the progressive pruning schedule, we develop a straightforward heuristic design, fol-
lowing the commonly used schedule in most pruning works [17, 26, 35]. Specifically, as illustrated
in Algorithm 1, we first divide the whole training/adaptation process into several stages w.r.t the
total number of iterations, and then perform channel-wise pruning (based on [25]) at the end of
each stage. Please note that the optimization applied to the multi-scale feature modules are the
same as the optimization used for other layers.

Co-optimization affects pruning patterns. To validate the aforementioned conjecture, we
visualize the percentage of pruned channels in layers corresponding to multi-scale aggregation
and other layers under different pruning ratios in Figure 4, when the models are trained with
DANCE or merely DANCE’s automated network slimming.

We can see that training with both automated data and network slimming, i.e., DANCE, always
prunes more channels in layers corresponding to multi-scale aggregation (e.g., the ASPP module
in DeepLabv3+) and fewer channels on other layers, under all the considered seven pruning ratios
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between 20% and 80%, while merely automated network slimming does the opposite. Specifically,
as compared to training using merely automated data slimming under the same pruning ratio of
50%, the model trained with both automated data and network slimming, i.e., models trained using
DANCE, prunes 1.47x more channels in layers associated with multi-scale aggregation, where the
corresponding accuracy is also higher (e.g., a 5.33% higher mloU on the Cityscapes validation
dataset together with a 54.8% lower inference energy with images of 592 x 592).

The experiment in Figure 4 together with those in the experiment section verifies our conjecture
that (1) matching the data with the network can potentially improve the accuracy (thanks to the
match between slimmed data and unpruned channels’ distribution) and remove redundant costs
associated with both the data and network, thus achieving “all-win”: reducing both the training
and inference costs while improving the achieved model accuracy (mIOU); and (2) DANCE’s auto-
mated data slimming can (partially) emulate the effect of multi-scale aggregation in segmentation
models, enabling a higher pruning ratio on the corresponding multi-scale aggregation modules.
The observations are consistent when other pruning methods and different pruning hyperparam-
eters are used in DANCE’s automated network slimming (more details in Section 4.3.4), again
verifying that the above conclusion (i.e., “co-optimization affects the optimal pruning patterns”)
holds for DANCE regardless of the adopted pruning designs.

3.4 DANCE: Theoretical Cost Saving

To better illustrate why DANCE can reduce both training and inference costs, we perform a theo-
retical analysis below. Taking the FLOPs cost as an example, the cost reduction ratio in inference
(Rinfer) and training (Rtrain) can be formulated as

Iinfer
Rinfer = 1 D [1=(0.5pi +0.57r])], 3)
1 r i=1
S Itrain
1 s
Rirain = i[1=(0.5p; +0.5)%r5], 4
train = 5 ) D, Pill= (0.5pi + 05773 (4)

s=1 i=1

where Iiyfer and Ijrqin are the numbers of images in the dataset for inference and training, re-
spectively, S is the number of total stages during progressive pruning with a target pruning ratio
of (1 —r), and p; € [0, 1] is the indicator output for the ith image. Specifically, p; in Equation (4)
represents the cost reduction ratio caused by the complexity-adaptive stochastic dropping
(CASD); 1 — (0.5p; + 0.5)? in Equations (3) and (4) represents the cost reduction ratio caused
by the complexity-adaptive downsampling (CAD); r in Equation (3) and r5 in Equation (4)
represents the cost reduction ratio caused by the automated network slimming (ANS) during
inference and training, respectively. Thus, the cost reduction resulting from DANCE is quadratic
in terms of p; € [0, 1] for inference and cubic for training.

4 EXPERIMENTS

In this section, we evaluate DANCE on four segmentation models and three popular urban scene
understanding datasets in terms of mloU and the total training/inference FLOPs and energy cost,
where the energy cost is measured when training/inference the corresponding models in a SOTA
edge device (JETSON TX2 [31]). We consider both the computational and energy costs because
the former is commonly adopted and thus helps to benchmark against prior works while the latter
better captures the real hardware cost.
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Table 1. The FLOPs, Energy Cost, and mloU of DANCE on Top of the Four Models
on the Cityscapes Test Dataset

Model FLOPs Energy mloU
Train. (P) Infer.(G) Train. (MJ) Infer. (J) (%)
DeepLabv3+ 198.31 743.64 45.21 41.32 68.05
DANCE Improv. || =35.75% =53.67% —39.69% —45.02% +3.44
PSPNet 153.61 582.54 35.16 30.99 65.59
DANCE Improv. || —=39.28% -—50.23% —34.92% —42.81% +1.93
ICNet 39.33 45.20 10.82 6.51 47.74
DANCE Improv. || —49.77% —55.67% —45.27% —47.69% +13.34
BiSeNet 73.64 157.41 18.40 9.93 71.69
DANCE Improv. || —32.77% =39.29% —25.66% —31.27% —0.71

4.1 Experiment Setting

Considered models and datasets. Our evaluation of DANCE considers four SOTA segmen-
tation models (two complicated models: DeepLabv3+ [3], PSPNet [52], and two compact mod-
els: ICNet [51], and BiSeNet [45]) and three commonly used urban scene understanding datasets
(Cityscapes [9], CamVid [1], and BDD [47]) in many efficient segmentation models [4, 45, 51].

Experimental platforms and training details. All experiments (except the energy measure-
ments) are performed on a workstation with NVIDIA 2080Ti GPU cards using the PyTorch frame-
work [33] for a fair comparison. We use an SGD optimizer with a learning rate of 1 x 1073 for
training all models except ICNet, which adopts a learning rate of 1x 1072 due to the unavailability
of the corresponding ImageNet pre-trained model; and a minibatch size of (1) 8 for the DeepLabv3+
and PSPNet models and (2) 16 for the BiSeNet and ICNet models. Specifically, the pruning stage
S and target pruning ratio (1 — r) in Algorithm 1 are set to 6 and 0.5, respectively, in all our
experiments except for their ablation studies (e.g., Section 4.3.4).

4.2 Performance on Various Datasets/Models

In this subsection, we apply DANCE to the four segmentation models and three datasets and com-
pare the resulting segmentation accuracies and inference/training costs with those of the base
models.

4.2.1 DANCE on the Cityscapes Dataset. Table 1 compares the segmentation accuracy, and
computational and energy costs of DANCE on the four models, i.e., DeepLabv3+ [3], PSP-
Net [52], ICNet [51], and BiSeNet [45], when evaluated on the Cityscapes dataset. We can see that
(1) DANCE saves about 36%-39% and 35%-40% computational and energy costs in training (a sim-
ilar trend in inference), while boosting the mIoU in the cases of DeepLabv3+ [3] and PSPNet [52]
by 3.44% and 1.93%, respectively; (2) In the case of ICNet, DANCE achieves a 13.34% higher mIoU
with up to 45% energy savings than those of the base model, where the lower mlIoU of the base
model might be due to the lack of a corresponding ImageNet pre-trained model; and (3) Though
DANCE does not boost the mIoU on the compact model of BiSeNet, it does save in training energy
cost and win bigger (saving up to 31% energy) in inference.

4.2.2 DANCE on the CamVid Dataset. Under smaller images (720 X 960) in CamVid (vs. 1,048 X
2,048 in Cityscapes), we can still observe similar trends as those in Cityscapes (see Table 1).
Specifically, our DANCE can still save 32%-49% energy cost, as shown in Table 2, while achiev-
ing improved mloU (over 1.4%). For the compact model BiSeNet, with a comparable mloU, our
DANCE still stably brings 32% and 33% energy savings in training and inference, respectively.
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Table 2. The FLOPs, Energy Cost, and mloU of DANCE on Top of the Four Models
on the CamVid Test Set

Model FLOPs Energy mloU
Train. (P) Infer. (G) Train. (MJ]) Infer. (J) (%)
DeepLabv3+ 37.19 254.62 7.30 20.19 69.15
DANCE Improv. || =32.76% —47.6% -31.76% —43.65% +1.51
PSPNet 27.27 208.77 4.71 14.64 65.28
DANCE Improv. || —39.69% —46.47% —32.22% —41.22% +2.82
ICNet 6.01 16.33 1.78 4.21 53.29
DANCE Improv. || —45.32% —52.64% —49.21% —56.21% +1.40
BiSeNet 6.46 54.17 2.72 6.77 68.6
DANCE Improv. | —38.09% —41.10% -32.45% -—33.76% —0.27

Table 3. The FLOPs, Energy Cost, and mloU of DANCE on Top of the Four Models
on the BDD Test Set on Adaptation

Model FLOPs Energy mloU
Train. (P) Infer. (G) Train. (MJ) Infer. (J) (%)
DeepLabv3+ 97.01 339.46 17.74 27.67 52.66
DANCE Improv. | =79.31% -51.86% —77.15% —-43.5% +0.12
PSPNet 72.56 290.57 11.82 19.37 39.54
DANCE Improv. | —37.47% —49.65% —25.18% —40.29% +5.51
ICNet 58.27 21.68 15.73 5.17 39.53
DANCE Improv. | =58.65% —51.51% —61.47% —37.47% +0.47
BiSeNet 45.32 72.27 7.48 7.94 56.20
DANCE Improv. | —34.08% —44.47% —27.92% —38.46% +0.27

Additionally, our experiments of applying DANCE on top of DeepLabv3 [2] on the PASCAL
VOC 2012 [14] dataset, where the second last feature map of Mobilenetv2 [36] is used for
DeepLabv3’s [2] heads, validate DANCE’s benefits for even compact models, since it stably brings
34% and 37% FLOPs savings in training and inference, respectively, while achieving a comparable
mloU (]0.04%).

4.2.3 DANCE on the BDD Dataset for Adaptation. As Section 1 stated, for most on-device learn-
ing applications, training from scratch is not necessary and the ability to adapt to new data can
be more interesting for some applications, especially for autonomous vehicles and robots. Here,
we choose the BDD [47] for the adaptation experiments. We use pre-trained models on Cityscapes
to adapt to unseen images in BBD. For a fair comparison, we choose the same checkpoints as the
pre-trained model for each model in the experiments. The adaptation performance is summarized
in Table 3, which shows that while being similar to the performance on Cityscapes, DANCE saves
up to 77% energy cost while achieving a slightly better (+0.12%) mIoU over the baseline, or boosts
the mloU by 5.51% when requiring even a 25% lower energy cost than the baseline.

The extensive results in Tables 1-3 show that DANCE can achieve “all-win” on all the three
datasets when applied to both DeepLabv3+ and PSPNet: lower training cost (energy savings:
77%—-25%), more efficient inference (energy savings: 40%-45%), and improved mIOU (0.12%-5.51%),
demonstrating the consistent superiority of DANCE on complicated models. As for the per-
formance on compact models, DANCE can improve the efficiency of both trainings (energy savings:
25%—-61%) and inference (energy savings: 31%-56%) with a slightly dropped or even better mloU
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Fig. 5. Ablation studies of data-network co-optimization in DANCE on the DeepLabv3+ model (with a
ResNet50 backbone and an output stride of 16) and Cityscapes validation dataset, where FLOPs and en-
ergy are normalized to those of the baseline.

Table 4. The FLOPs and mloU of Co-optimization and
Separate Optimization on top of DeepLabv3+@CityScapes

FLOPs mloU
Method Train. (P) Infer. (G) (%)
Baseline 198.31 743.64 69.71

Optimize network After Data || +0.85%  —61.10% +0.66
Optimize Data After network || +12.99% —55.88%  +3.08
Co-Optimize (DANCE) -35.75% —56.57% +3.41

(—0.71%-13.34%) on all three datasets, indicating that DANCE can benefit energy efficiency of
even compact models.

4.3 Ablation Studies of DANCE

In this subsection, we perform ablation studies of DANCE for evaluating the effectiveness of its
data-network co-optimization, p indicator, and automated data slimming.

4.3.1 Ablation Study on the Effectiveness of DANCE’s Data-network Co-optimization.
DANCE vs. only automated network/data slimming. As shown in Figure 5, combining both
automated data and network slimming (i.e., DANCE) achieves (1) better performance (in terms of
the training cost, inference cost, and mloU) than the standalone implementation of either of these
two techniques integrated into DANCE (i.e., automated data and network slimming); and (2) a
much higher mIoU than the baseline (+3.41%) while requiring 39% and 45% less energy in training
and inference, respectively. This set of experiments indicates the advantage of jointly matching
the data and network for co-optimization.

DANCE vs. optimizing the network and data separately. To demonstrate how DANCE inte-
grates co-optimization rather than a naive combination of automated network and data slimming,
we compare co-optimization (DANCE) with separate optimization (optimizing the network/
data and then the data/network sequentially) in Table 4. In the co-optimization setting, both
the automated network and data slimming will happen in each iteration of the training process.
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Table 5. The Inference mloU of w/ DANCE and w/o DANCE on Top of DeepLabv3+
for CityScapes’s Large, Medium, and Small Scale of Objects (Manually Picked
Static Scales), where DANCE Can Further Provide Dynamic Scales

Method w/o DANCE w/ DANCE
Image Scales 368 X 368 | 496 X 496 | 592 X 592 | Dynamic
IoU of Wall (%) 50.56 48.68 46.40 52.69
IoU of Motorcycle (%) 53.96 57.51 55.09 58.23
IoU of Traffic Sign (%) 70.17 72.41 72.94 73.58

Table 6. The mloU of Using the Proposed p (in Section 3.2),
Random p, or Inverse p Indicator in DANCE on Top of
DeepLabv3+@CityScapes under Same Training Cost Budget

Method Train. FLOPs (P) mlIoU(%)
Proposed p indicator 127.41 73.12
Random p indicator +0.06% —4.08

Inverse p indicator, i.e., 1-p +0.00% —-11.03

However, in the separate optimization setting, the automated network slimming will only hap-
pen in the first/second half of the whole training process and the automated data slimming will
only happen in the second/first half of the whole training process. Table 4 illustrates that network
and data need to be jointly co-optimized to achieve the best mIoU-cost tradeoff, while optimiz-
ing (i.e., slimming) the network and data sequentially will cause a 0.33%-2.75% mloU drop on
DeepLabv3+@Cityscapes at an even higher computational cost (e.g., +48.74%) than DANCE.

4.3.2  Ablation Study of DANCE on Objects with Different Scales. Here we compare the inference
mloU when turning off and on our DANCE applied on top of DeepLabv3+, when testing representa-
tive large, medium, and small scales (i.e., wall, motorcycle, and traffic sign) of objects in Cityscapes.
As shown in Table 5, we can see that (1) small/large scales of objects favor/degrade the achieved
inference mloU of applying DeepLabv3+ to the selected objects of different scales; and (2) DANCE,
which inherently incorporates dynamic scales to its applied data, consistently outperforms its
baselines even for the manually selected objects which have static scales by design, indicating the
advantage of DANCE’s automated choices of adaptive scales of data, validating DANCE’s inherent
advantages in handling datasets/tasks in which the objects have different scales, which is common
for semantic segmentation datasets (e.g., Cityscapes [9], CamVid [1], and BBD [47]). This is also
the reason why our proposed DANCE can even improve the accuracy in addition to reducing the
training and inference cost.

4.3.3  Ablation Study of thep Indicator’ Effectiveness. The spatial complexity indicator presented
in Section 3.2 is to provide a variable p € [0, 1] for estimating a given image’s complexity, which
will be directly used to guide the slimming direction (e.g., image’s downsampling ratio). As shown
in Table 6, we apply inverse p or random p to replace the proposed p indicator in DANCE, and
find that its resulting mIoU drops 11.03% or 4.08% under the same training cost budget, respectively,
validating the advantageous effectiveness of our proposed p indicator. Additionally, Figure 6 visu-
alizes 24 image samples randomly selected from the image groups with the largest 33%, medium
33%, and smallest 33% spatial complexity in the Cityscapes [9] training dataset. Interestingly, we
can see, as expected, that the image complexity identified by the adopted indicator is consistent
with that seen by human eyes, e.g., images with spatial complexity falling within the smallest 33%
of the dataset have a simpler background and include fewer objectives.
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Fig. 6. Visualizing the images randomly selected from image groups with the largest 33%, medium 33%,
and smallest 33% spatial complexity in the Cityscapes [9] training dataset.

Table 7. The Number of Pruned Weights for Different Kinds
of Layers Under Various Pruning Ratios on a DeepLabv3+
Model (with a ResNet50 Backbone and an Output Stride

of 16) with the Cityscapes Dataset

Pruning H #pruned weights (DANCE’s - ANS’s)

Ratio || ASPP Module Layers  Other Layers
20% 61,759 —61,759
30% 96,455 —96,455
40% 102,535 —102,535
50% 96,674 —96,674
60% 76,767 —76,767
70% 51,177 -51,177
80% 24,986 —24,987

4.3.4  Ablation Study of DANCE’s Effectiveness Regardless of the Adopted Pruning Methods. We
consistently find that DANCE’s advantages in enabling data model co-optimization is effective
regardless of the adopted pruning methods. For example, Table 7 summarizes the pruning results
when turning on and off DANCE’s automated data slimming during pruning, where we adopt the
unstructured pruning in [16]. Again, similar observations can be made as those in [25] when using
channel-wise pruning.

By comparing the number of pruned weights in the ASPP module layers and other layers when
performing our proposed DANCE and ANS as shown in Table 7, we can observe that (1) DANCE
prunes more weights of the ASPP module layers than ANS, i.e., the number of DANCE pruned
weights is more than that of ANS pruned weights for the ASPP module layers, while it is opposite
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Table 8. Ablation Studies on the Component Techniques of DANCE’s Automated Data Slimming
on the DeepLabv3+ Model (with a ResNet50 Backbone and an Output Stride of 16) and the
Cityscapes Validation Dataset, where T (i.e., No.7) is our DANCE Setting

No. ANS CAD CAL CASD RD | Train. FLOPs Train.Energy Infer. FLOPs Infer. Energy mloU
1 198.3 (P) 45.21 (M]) 743.6 (G) 41.32 (J) 69.71(%)
2 v -21.16% —8.08% —34.34% —14.36% -1.52
3 v v —-57.05% -51.12% —60.96% —46.52% —-2.54
4 v v v —56.98% —51.45% —61.15% —46.96% —0.63
5 v v —-13.73% —-15.90% —25.07% -14.21% +1.96
6 v v —13.92% -14.10% —-25.21% -15.71% +3.33
77 v 4 v v —-35.75% —39.69% —53.67% —45.02% +3.41

“ANS: Automated network slimming.

b CAD: Complexity-adaptive downsampling.
¢CASD: Complexity-adaptive stochastic dropping.
4CAL: Complexity-adaptive loss.

¢RD: Randomly drop 50% [39].

in other layers and (2) under the same pruning ratio, the more weights of ASPP module layers
are pruned by DANCE than by ANS (e.g., +96, 674 under 50% pruning ratio), the fewer weights
of other layers would be pruned by DANCE than by ANS (e.g., —96, 674 under 50% pruning ratio),
leading to a symmetric distribution of the difference between the number of pruned weights in the
ASPP module layers and other layers when using DANCE and ANS. Specifically, training with both
automated data and network slimming, i.e., DANCE, always prunes more weights in layers cor-
responding to multi-scale aggregation (e.g., the ASPP module in DeepLabv3+) and fewer weights
on other layers, under all the considered seven pruning ratios between 20% and 80%, whereas
merely using DANCE’s ANS does the opposite. This set of experiment results further confirms that
(1) DANCE’s automated data slimming can (partially) emulate the effect of multi-scale aggregation
in segmentation models, and thus enable a higher pruning ratio on the corresponding multi-scale
aggregation modules, and (2) matching the data with a model can potentially improve the model
accuracy and remove redundant costs associated with both the data and model, thus achieving
“all-win”, which is consistent with the results in Figure 1.

4.3.5 Ablation Study of DANCE’s Automated Data Slimming. As described in Section 3.2,
DANCE’s automated data slimming integrates three techniques, including CAD, CASD, and
complexity-adaptive loss (CAL), which are guided by the adopted spatial complexity indicator.
In this subsection, we evaluate the efficacy of these techniques and their different combinations
on top of DANCE’s ANS (see Section 3.3), in terms of the resulting task accuracy (mloU), and
computational and energy savings of both inference and training, as summarized in Table 8. Note
that all the task accuracy and computational and energy savings are normalized to those of the
standard DeepLabv3+ [3] model and Cityscapes dataset (See row No. 1 of Table 8). We next discuss
the observations in terms of the “all-win” goal (i.e., reducing both the training and inference costs
while improving the achieved model accuracy (mloU)):

1. Complexity-adaptive downsampling (CAD): Comparing the results in Rows No. 2 and No. 3
shows that CAD+ANS (see Row No. 3, i.e., applying CAD, which has the advantage of “training
free”, on top of DANCE’s ANS), can save 42.92% and 32.16% energy cost in training and inference,
respectively, while decreasing the mIoU by 1.02% (i.e., —1.52% vs. —2.54%), as compared to merely
performing ANS (see Row No. 2), indicating that CAD offers a new tradeoff between the achieved
energy efficiency and mloU.

2. Complexity-adaptive loss (CAL): Comparing the results in Rows No. 3, and No. 4 shows that
CAL+CAD+ANS (see Row No. 4, i.e., applying CAL on top of ANS and CAD) can boost the mIoU
by 1.91% as compared to merely combining CAD and ANS (i.e., CAD+ANS in Row No. 3), while still
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Table 9. Ablation Study of DANCE’s Hyperparameters: DANCE with Different Ranges of (1) Weighted
Coefficients in CAL and (2) Dropping Probability in CASD on DeepLabv3+ with Cityscapes

Settings Train. FLOPs Train. Energy Infer. FLOPs Infer. Energy —mloU

2.0-1.0 124.66 (P) 26.43 (M]) 358.39 (G) 23.57 (J) 72.30%

Range of the Weighted Coefficients in CAL | 4.0-1.0 -1.76% —2.65% +0.78% +0.52% +0.64%
1.0-0.0 +2.21% +3.18% —3.87% —3.60% +0.82%

60%—40% || 128.05 (P) 27.55 (MJ) 345.21 (G) 2274(J)  71.13%

Range of the Dropping Probability in CASD | 75%-25% —0.88% —0.57% -1.37% -1.22% +0.27%
100%—-0% —0.50% -1.02% —0.20% —0.07% +1.99%

reducing the energy cost in training and inference by 51.45% and 46.96%, respectively, as compared
to the DeepLabv3+ baseline (Row No. 1), indicating that adding CAL on top of CAD and ANS can
further boost the model accuracy while maintaining the achieved energy efficiency.

3. Complexity-adaptive stochastic dropping (CASD): First, comparing the results in Rows No. 5
and No. 6 shows that the proposed CASD (Row No. 6) can achieve a 1.37% higher mIoU than the
random dropping technique in [39] (Row No. 5) under the same energy cost of both training and
inference, indicating the advantage of complexity-adaptive stochastic dropping over random drop-
ping in [39]. Second, comparing the results in Rows No. 4 and No. 7 shows that applying CASD on
top of CAL+CAD+ANS (Row No. 4) can boost the mIoU by 4.04% as compared to merely combin-
ing ANS, CAD, and CAL (Row No. 4), and by 3.41% as compared to the DeepLabv3+ baseline (Row
No. 1), while obtaining 39.69% and 45.02% energy savings in training and inference, respectively,
as compared to the DeepLabv3+ baseline (Row No. 1).

This set of comparisons indicates the effectiveness of the proposed DANCE’s automated data
slimming, i.e., integrating all three component techniques of DANCE’s automated data slimming
can achieve the most favorable data-network co-optimization benefits as it achieves the “all-win”
goal as shown in Figure 1.

4.3.6  Ablation Study of DANCE’s Hyperparameters. In this subsection, we perform experiments
for evaluating DANCE with different hyperparameters by changing the ranges of (1) the weighted
coeflicients in CAL and (2) dropping probability in complexity-adaptive stochastic dropping (CAL)
(as described in Section 3.2), and summarize the results in Table 9. To better study the effect of
each of the aforementioned hyperparameters, we fix others with the default ones (as described in
Section 3.2) when tuning one of them.

Note that the larger the ratio of endpoints in the dynamic range of both the weighted coefficients
and dropping probabilities are, the more (less) frequent images with a higher (lower) spatial com-
plexity would be used. And the largest ratio is 1.0/0.0 = oo and 100%/0% = oo for the weighted
coeflicients and dropping probabilities, respectively, which is also the default setting as mentioned
in Section 3.2.

The results in Table 9 show that increasing the frequency of training images with a higher
spatial complexity (defined in Equation (1)), by increasing the ratio of endpoints in the dynamic
range of the weighted coefficient or dropping probability, favors the segmentation accuracy
(i-e., a higher mIoU). This observation is consistent with that of [15, 22]. Specifically, changing
the dropping probability range from 60%-40% to 100%—0% boosts the achieved mloU by 1.99%,
while changing the weighted coefficient range from 2.0-1.0 to 1.0-0.0 leads to an improved mloU
of 0.82%, while the training and inference costs of both cases mostly stay the same.

4.3.7 Comparing DANCE with other Data Preprocessing and Network Slimming Methods. To
better illustrate the advantage of the proposed DANCE framework, we conduct a comparison
between DANCE and both (1) random dropping, a data pre-processing method for efficient
training proposed in [39], and (2) MTP [6], a dedicated network pruning method for semantic
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Table 10. Comparing the Proposed DANCE, Random Dropping [39], MTP [6] in
Terms of mloU, Inference FLOPs, and Training FLOPs, when Applying Them
on top of BiSeNet [45] at the Cityscapes [9] Dataset

Method mloU (%) | Infer. FLOPs | Train. FLOPs
Random dropping [39] Improv. 69.56 10% 150%
MTP [6] Improv. 70.22 143% T>0%
DANCE Improv. 70.98 139% 133%

Table 11. Adding DANCE on Top of DeepLabv3+ [3] at Cityscapes [9] Dataset
with Costly Recipes

Method mloU (%) | Infer. FLOPs | Train. FLOPs
DeepLabv3+ (costly recipes) 82.10 100% 100%
DANCE Improv. 10.26% 151% 133%

Table 12. Runtime Breakdown of DeepLabv3+ [3] at Cityscapes [9] Dataset w/ and w/o DANCE

50:17

Layers Runtime w/o DANCE | Runtime w/ DANCE
ResNet50 backbone 100% 64%
Header - Multi-scale aggregation layers 100% 41%
Header - Other layers 100% 52%
All layers 100% 55%

segmentation networks. As summarized in Table 10, when being applied on top of BiSeNet [45]
with the Cityscapes [9] dataset, we can see that (1) as compared to random dropping [39], DANCE
achieves a 71.42% higher mloU while requiring |39% less FLOPs during inference, and (2) as com-
pared to MTP [6], DANCE achieves a 70.76% higher mIoU under a similar inference FLOPs while
trimming down the training FLOPs by at least |33%. This set of experiments further validates
DANCE’s advantage as a data-network co-optimization framework for both training and infer-
ence, as compared to prior works that merely focus on data preprocessing or network slimming.

4.3.8 Effectiveness of DANCE with More Costly Recipes. The results in Section 4.2 are reported
when using light recipes to better align with our goals of efficient edge training/inference. Specif-
ically, we use a relatively small output stride (OS) of 1/16, as compared to 1/8 in [3], and do
not use the extra 20 K Cityscapes coarse data [9] or COCO pretraining [24]. To verify the effec-
tiveness of the proposed DANCE under more costly recipes, we further apply DANCE on top of
DeepLabv3+ [3] and the Cityscapes [9] dataset, where we adopt ResNet101 as the backbone, an
OS of 1/8, and extra 20 K Cityscapes coarse data [9]. As shown in Table 11, DANCE still achieves
“all-win” under such a more costly recipe, i.e., achieving a 70.26% higher mloU, while requiring
151% and |33% less FLOPs in inference and training, respectively.

4.3.9 Runtime Breakdown w/ and w/o DANCE. To better understand how the proposed DANCE
reduces the hardware cost (e.g., FLOPs, on-device energy, and latency) of the networks, we
break the runtime of the whole network into different parts when conducting inference of
DeepLabv3+ [3] with the Cityscapes [9] dataset w/ and w/o DANCE. As shown in Table 12, the
multi-scale aggregation layers in the header benefit the most from our DANCE technique, requir-
ing only 41% of the runtime as compared to that of w/o DANCE). This is because (1) the cost of
the multi-scale aggregation layers can be reduced by both DANCE’s automated data and network
slimming and (2) DANCE tends to prune more weights in the multi-scale aggregation layers than
in other layers, as discussed in Section 3.3.
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5 CONCLUSIONS

We proposed DANCE for boosting segmentation efficiency during both training and inference,
leveraging the hypothesis that maximum model accuracy and efficiency should be achieved when
the data and model are optimally matched. On the “data-level”, DANCE’s automated data slimming
not only halves the computational and energy costs, but also boosts the segmentation accuracy.
Interestingly, DANCE’s automated data slimming can emulate the effect of multi-scale feature
extraction yet at a much lower cost. This further motivates DANCE’s automated network slimming
on the “model-level” that advocates automatically pruning the model adapting to the resulting data
slimmed by DANCE’s automated data slimming and leads to more pruning in the cost-dominant
building blocks for multi-scale feature extraction, validating our hypothesis and further reducing
both training and inference costs. Extensive experiments and ablation studies validate DANCE’s
effectiveness and superiority, which resides in its capability to automatically match the data and
network via automated co-optimization.
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