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Abstract

We present a first-of-its-kind ultra-compact intelligent
camera system, dubbed i-FlatCam, including a lensless camera
with a computational (Comp.) chip. It highlights (1) a predict-
then-focus eye tracking pipeline for boosted efficiency without
compromising the accuracy, (2) a unified compression scheme
for single-chip processing and improved frame rate per second
(FPS), and (3) dedicated intra-channel reuse design for depth-
wise convolutional layers (DW-CONV) to increase utilization.
i-FlatCam demonstrates the first eye tracking pipeline with a
lensless camera and achieves 3.16 degrees of accuracy, 253
FPS, 91.49 plJ/Frame, and 6.7mmx8.9mmx1.2mm camera
form factor, paving the way for next-generation Augmented
Reality (AR) and Virtual Reality (VR) devices.

The Proposed i-FlatCam System

Eye tracking is an essential human-machine interface
modality in AR/VR, requiring stringent efficiency (e.g., >240
FPS and power consumption in milli-watts) and form factor to
operate and be fitted in AR/VR glasses [1]. However, existing
eye tracking systems are still an order of magnitude slower [2,
3] and require a large form factor due to their lens-based
cameras (e.g., 10-20mm in thickness [4]). Hence, this work
proposes, develops, and validates an ultra-compact lensless
intelligent camera system, i-FlatCam (Fig. 1), consisting of (1)
a lensless camera called FlatCam and (2) a Comp. chip for
compact, real-time, and low-power eye tracking for VR/AR.

The FlatCam replaces the focal lens of lens-based cameras
with a much thinner coded binary mask (<2mm, i.e., 5-10x
thinner than lens-based cameras), which encodes the incoming
light instead of directly focusing it [4], and its encoded sensing
measurements can be decoded [4] to reconstruct scene images.

The Comp. chip features a predict-then-focus pipeline that
extracts ROIs of only 24% (average) the original images from
near-eye cameras [5] for gaze estimation to reduce redundant
computations and data movements. Additionally, the temporal
correlation across frames is leveraged so that only 5% of the
frames require ROIs adjustment over time. These reduce
FLOPs of the eye tracking pipeline significantly be 69.49%. To
further boosted efficiency, we adopt a unified compression
scheme with heterogeneous dataflows for CONV/DW-CONV.

Chip Architecture. The Comp. chip (Fig. 2) consists of
compression-aware modules, 64 PE lines, and memories for
the weights and input/output feature maps (IFM/OFM). First,
to enable single-chip processing, the weights of both CONV
and point-wise (PW)-CONV are compressed via a
compression scheme that unifies decomposition, pruning, and
quantization, pruning 50% of weights for the gaze estimation
model. Second, each PE line performs 1D row-stationary
operations and the 64 PE _lines adopt heterogeneous dataflows
(Fig. 3) for CONV and DW-CONV to leverage inter- and intra-
channel data reuses, respectively, boosting the PE utilization
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for DW-CONV by 75-87.5%. Third, two levels of memories
are adopted for the weights and IFM/OFM.

Unified Compression for Reduced Storage and Structure
Sparsity. Fig. 4 shows the compression algorithm and its
hardware supporting modules, enabling 45.7% fewer global
buffer (GB) weight accesses and structurally skipped
processing. First, weights are stacked as a tall-thin matrix and
then decomposed into a small basis matrix (BM) and a large
coefficient matrix (CM), with power-of-2 quantization and
structure sparsification being enforced in CM. Hence, only a
small BM and the non-zero rows of CM (in weight GB) with
their run-length encoding indexes (in weight index SRAM)
need to be stored, reducing gaze estimation storage by 22x.
Second, the restore engine (RE) restores the weights from the
BM and CM by using locally stored BM and a shift-and-add
unit. Third, the structure sparsity in CM allows row-wise
sparsity in CONV and channel-wise sparsity in PW-CONV to
skip both corresponding computations and GB weight accesses,
leveraging the 2x higher bandwidth for the IFM GB offered by
our sequential-write-parallel-read (SWPR) IFM buffer design
(Fig. 3, top-right) inserted between the IFM GB and PE_lines.

Measurement Results

In i-FlatCam, the FlatCam’s coded binary mask is fabricated
in house while the Comp. chip is in 28nm HPC CMOS. Fig. §
illustrates the (1) Comp. chip’s die photo, (2) performance
summary, (3) fabricated mask, (4) FlatCam prototype, and (5)
i-FlatCam’s full system setup. FlatCam, i.e., i-FlatCam’s
camera, has a size of 6.7mmx8.9mmx1.2mm, where the mask
is 1.2mm away from the sensor (an advantageous form factor).

Fig. 7 lists the measured eye tracking results on the
industry-standard dataset OpenEDS [5] (see the models’
structures in Fig. 6). In accuracy (Fig. 7, top-left), i-FlatCam
achieves an average angular error of 3.16 degrees, matching
the state-of-the-art (SOTA) winners in [5]; In efficiency,
compared with the SOTA NN-based eye tracking work [2] and
geometric algorithm-based work [3], i-FlatCam achieves the
required real-time FPS (i.e., >240 FPS), one order of
magnitude higher than [2, 3], together with its one order of
smaller energy/frame. i-FlatCam’s energy consumption,
including both the FlatCam’s sensor and Comp. chip, is 1.59
nJ/pixel, achieving a 2.73x energy saving over [3]; Compared
with SOTA vision processors [7, 8], i-FlatCam delivers a
higher energy efficiency of 0.29-18.9 TOPS/W with both
promising form factor and FPS for eye tracking in AR/VR.
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