
WebRobot: Web Robotic Process Automation using
Interactive Programming-by-Demonstration

Rui Dong
University of Michigan, USA

Zhicheng Huang
University of Michigan, USA

Ian Iong Lam
University of Michigan, USA

Yan Chen
University of Toronto, Canada

Xinyu Wang
University of Michigan, USA

Abstract
It is imperative to democratize robotic process automation
(RPA), as RPA has become a main driver of the digital trans-
formation but is still technically very demanding to construct,
especially for non-experts. In this paper, we study how to
automate an important class of RPA tasks, dubbed web RPA,
which are concerned with constructing software bots that au-
tomate interactions across data and a web browser. Our main
contributions are twofold. First, we develop a formal foun-
dation which allows semantically reasoning about web RPA
programs and formulate its synthesis problem in a principled
manner. Second, we propose a web RPA program synthesis
algorithm based on a new idea called speculative rewriting.
This leads to a novel speculate-and-validate methodology in
the context of rewrite-based program synthesis, which has
also shown to be both theoretically simple and practically
e�cient for synthesizing programs from demonstrations. We
have built these ideas in a new interactive synthesizer called
W��R���� and evaluate it on 76 web RPA benchmarks. Our
results show that W��R���� automated a majority of them
e�ectively. Furthermore, we show thatW��R���� compares
favorably with a conventional rewrite-based synthesis base-
line implemented using egg. Finally, we conduct a small user
study demonstratingW��R���� is also usable.

CCS Concepts: • Software and its engineering! Auto-
matic programming.

Keywords: Program Synthesis, Programming by Demonstra-
tion, Rewrite-based Synthesis, Robotic Process Automation,
Web Automation, Human-in-the-loop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00
h�ps://doi.org/10.1145/3519939.3523711

ACM Reference Format:
Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu
Wang. 2022. WebRobot: Web Robotic Process Automation using
Interactive Programming-by-Demonstration. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (PLDI ’22), June 13–17, 2022, San
Diego, CA, USA. ACM, New York, NY, USA, 16 pages. h�ps://doi.
org/10.1145/3519939.3523711

1 Introduction
Robotic process automation (RPA) is a software technology
that aims to streamline the process of creating software robots
that emulate user interactions with digital applications such
as web browsers and spreadsheets [3, 5, 9, 25, 34, 35, 62, 65].
These robots are essentially programs: like humans, they can
perform tasks such as entering data, completing keystrokes,
navigating across pages, extracting data, etc. However, they,
once programmed, can perform tasks much faster with fewer
mistakes. Therefore, RPA has the potential to signi�cantly
simplify business work�ows and improve the productivity
for both organizations and individuals [7]. Gartner predicted
that RPA will remain the fastest-growing software market
in the next several years [50].

While RPA has become a main driver of the digital trans-
formation, it is still technically very demanding to construct
automation programs, and consequently, not everyone can
build software robots that suit their needs. For instance, it is
estimated that 3-7% of tasks deemed important by an organi-
zation have been automated, whereas a long tail of more than
40% of individual-driven tasks yet are still to be automated [7].
These tasks represent a high percentage of automation op-
portunities to scale RPA to individual non-expert end-users.

Web RPA. How to democratize RPA in order to foster its
adoption among non-experts is a broad, new but increasingly
important problem. In this paper, we consider an important
subset of RPA tasks, dubbed web RPA, and investigate how
to automate this class of tasks. As illustrated in Figure 1, web
RPA involves interactions between data and a web browser.
For example, it involves programmatically entering data (in
a semi-structured format), extracting data from webpages, as
well as navigating across multiple webpages. Conceptually,
web RPA is close to web/browser automation, where the key
distinction is that RPA emphasizes interactions across/within
applications, while browser automation has to do with web

152

https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3519939.3523711

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

Webpage Navigation
…

Data Entry

Data Extraction

Data
(e.g., spreadsheet)

Web Browser

Data (e.g., spreadsheet)

…

…

Figure 1. Illustration of web RPA.

Click

Data Extraction

Spreadsheet

Web Browser

Data Entry

Spreadsheet

Figure 2. A real-world web RPA problem from UiPath.

browsers. In other words, one can view web RPA as the “in-
tersection” of RPA and web automation; hence the name.1

Let us consider a real-world scenario (shown in Figure 2)
from a recent webinar [6] by UiPath, a leading RPA company.
In this example, a manager working for a unicorn adoption
agency wanted to test a hypothesis that sending follow-up
emails with their unicorn names to customers would increase
the adoption rate. Unfortunately, the customer relationship
management system is disconnected from the web-based uni-
corn name generator. In other words, there is no easy way
to automatically generate a unicorn name for each customer.
The manager tried to seek help from the IT but was told that
creating an automation program for this job is expensive un-
less there is a provably su�cient return on it. In the end, they
had to manually perform this experiment: export customer
information into a spreadsheet, copy-paste every name from
the sheet, enter it in the unicorn generator, scrape the generated
name for each customer, and �nally send emails with unicorn
names. This is very tedious. A key problem in this process is
how to create a program that interacts with the web-based
generator and the spreadsheet in order to create names for
all customers. This is exactly a web RPA problem.2

Web RPA sits at the intersection of multiple areas, such as
programming languages and human-computer interaction.
While it has been studied in di�erent forms by di�erent com-
munities, to the best of our knowledge, there is no principled
approach that automatically generates web RPA programs
in a comprehensive manner. For instance, while being able
to scrape data across webpages, Helena [17] has relatively
less support for programmatic data entry. Furthermore, it
may generate wrong programs which, in our experience, are
not always easy to “correct” using Helena’s build-in features.
On the other hand, the HCI and databases communities have
proposed various interfaces [36, 38] and wrapper induction

1Web automation is a broad term. We note that web RPA is highly related
to web automation but in this work, we do not precisely distinguish them.
2This example involves one single webpage but we have many benchmarks
that involve navigating across multiple pages (see Section 7).

Action … Action Predicted Action

Synthesis Engine Program Interpreter (our trace semantics)

… Front-end

Back-end

1 Demonstrate

2 Synthesize 3 Execute

4 Authorize

5 Repeat 6 Automate…

Figure 3. Schematic work�ow of our approach.

techniques [10, 26, 51], which are even more restricted and
can automate only single-webpage tasks. Finally, while some
“low-code” solutions based on record-and-replay exist on the
industrial market (such as iMacros [2]), they require signi�-
cant manual e�orts (e.g., adding loops), which makes them
potentially less accessible to non-expert end-users.

Interactive programming-by-demonstration (PBD) for
web RPA. Our �rst contribution is a new approach that
automates web RPA tasks from demonstrations interactively.
Compared to existing work, our approach is more automated,
resilient to ambiguity, and applicable for web RPA. Figure 3
shows the schematic work�ow of our approach. To automate
a task, the user just needs to perform it as usual but using
our interface (step 1). All the user-demonstrated actions are
recorded and sent to our back-end synthesis engine. Then,
we synthesize a program % that “satis�es” the demonstration
(step 2). That is, % is guaranteed to reproduce the recorded
actions, but % may also produce more actions afterwards. We
then “execute” % to produce an action that the usermay want
to perform next and visualize this predicted action via our
interface (step 3). Finally, the user inspects the prediction
and chooses to accept or reject it (step 4). This interactive
process repeats until there is su�cient con�dence that the
synthesized program is intended (step 5); after that, it will
take over and automate the rest of the task (step 6). Note
that, if at any point the user spots anything abnormal, they
can still interrupt and enter the demonstration phase again.

We highlight several salient features of our approach. First,
it is automated: users only need to provide demonstrations,
without needing to write programs. Second, it is interactive:
whenever a synthesized program is not desired, the user can
simply interrupt and continue demonstrating more actions,
without having to edit programs. Finally, it could synthesize
programs e�ectively from an expressive language, thanks to
a systematic problem formulation and a new search algorithm.

Systematic formulation of PBD for web RPA. Our sec-
ond contribution is a systematic formulation for the problem
of synthesis from action-based demonstrations. In particular,
the question we aim to address here is: what does it mean
for a program to satisfy a trace of user-demonstrated actions?
This problem is extremely understudied in a formal context.
To the best of our knowledge, the latest work to date is the
seminal work [30–32] by Tessa Lau and their co-authors in
the 1990s. However, Lau’s work considers state-based demon-
strations; that is, in their work, a demonstration is de�ned as
a sequence of program states. In contrast, our work concerns
action-based demonstrations—a demonstration is a trace of

153

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

actions. In this context, we are not aware of any prior work
that has formalized the semantic notion of satisfaction. As a
result, existing techniques [17, 18, 40, 41] resort to heuristics
and task-speci�c rules to detect patterns in the action trace
in order to generalize it to programs with loops. In this work,
we formulate the action-based PBD problem by formalizing
the trace semantics for an expressive web RPA language. In
a nutshell, our semantics “executes” a program (with loops)
and produces its “execution trace” of actions by unrolling
loops and replacing variables with values. Therefore, with
our semantics, we can now check a program against a trace
of actions. Furthermore, this semantics also plays a pivotal
role in our search algorithm, which we will explain next.
Action-based PBD using speculative rewriting. Once

we can check a program against a trace of actions, the next
question we ask is: how to search for programs that satisfy
the given trace? This brings us to the third contribution of
our work, which is a novel rewrite-based synthesis algorithm
based on a new idea called speculative rewriting. The basic
idea is simple: we rewrite a slice of the trace into a (one-level)
loopwhich produces that slice, using a set of prede�ned rules;
if we do this iteratively, we can generate nested loops from
the inside out. The issue is, it is very hard to de�ne a complete
set of correct-by-construction rules in our domain, because
our trace may result from executing loops (from an arbitrary
program) for arbitrarily many times. In other words, pattern-
matching the entire trace in a purely rule-based manner does
not scale. In order to scale to complex programs, our idea is to
combine rule-based pattern-matching and semantic validation
in the rewrite process via an intermediate speculation step.
More speci�cally, instead of pattern-matching all iterations
to directly generate true rewrites, our idea is to pattern-match
a couple of iterations and generate speculative rewrites, or s-
rewrites. While an s-rewrite might not be a true rewrite in
general, they over-approximate the set of true rewrites and
are much easier to generate. We then use our trace semantics
to validate s-rewrites and retain only those true rewrites.
Our method is closely related to two lines of work. First,

it builds upon the “guess-and-check” idea introduced by the
counterexample-guided inductive synthesis (CEGIS) frame-
work [55], but we show how to extend this idea for rewrite-
based synthesis beyond the traditional application scenarios
with example-based and logical speci�cations. Second, our
method incorporates the idea of semantic rewrite rules from
recent work [43, 63], but we augment this standard correct-
by-construction, rule-based rewrite approach with a novel
guess-and-check step.3 We found this new idea to be both
theoretically simple and practically e�cient in our domain.
We also believe this methodology is potentially useful in the
more general context of rewrite-based synthesis and in other
problem domains with similar trace generalization problems.

3We will elaborate on this in the remainder of this paper.

Human-in-the-loop interaction model. As a proof-of-
concept, we have also developed a user interface to facilitate
user interactions with our synthesizer. Our interface com-
bines programming-by-demonstration, action visualization,
and interactive authorization within a human-in-the-loop
model, which has shown to be useful in practice for reducing
the gulfs of execution and evaluation [45].

Implementation and evaluation.We have implemented
our proposed ideas in a tool called W��R���� and evaluate
it across four experiments. First, we evaluateW��R����’s
synthesis engine on 76 real-world web RPA benchmarks and
show that it can synthesize programs e�ectively. Second, we
perform an ablation study and show that all of our proposed
ideas are important. Furthermore, we conduct a user study
with eight participants which shows that W��R���� can be
used by non-experts. Finally, we compareW��R���� with a
rewrite-based synthesis approach and our results show that
W��R���� signi�cantly advances the state-of-the-art.

In summary, this paper makes the following contributions:
• We identify the web RPA program synthesis problem.
• We formalize a trace semantics of our web RPA language,
laying the formal foundation for its synthesis problem.

• We present a novel programming-by-demonstration algo-
rithm based on a new idea called speculative rewriting.

• We develop a new human-in-the-loop interaction model.
• We implement our ideas in a new tool called W��R����.
• We evaluateW��R���� on 76 tasks and via a user study.

2 Overview of W��R����
In this section, we highlight some key features of W��R����
using a motivating example4 from the iMacros forum.

Motivating example. Given a list of zip codes, Ellie wants
to extract store information from the Subway website5. Since
Ellie is not familiar with programming, she has to manually
perform this task (shown in Figure 4): (a) enter the �rst zip in
the search box, (b) click the search button which then shows
�ve pages of search results, (c) scrape store information on
the �rst page, (d) click the “next page” button and repeat this
process for all pages and for all zip codes.

W��R����. Ellie could use our tool to automate this task.
Once W��R���� is �red up, Ellie would �rst import the list
of zip codes and then perform the task using W��R����.
This process is illustrated in Figure 5(a). In particular, Ellie
�rst drags the �rst zip and drops it in the search bar (action 1).
Then, she clicks the GO button and starts scraping informa-
tion of the �rst two stores on the �rst page: see actions 2-6 in
Figure 5(b), although we do not show them in Figure 5(a). All
these actions are recorded by W��R���� in an action trace,
which is shown in Figure 5(b). After six actions, W��R����
is able to synthesize a program %1, as shown in Figure 5(c),
which extracts the address and phone number for each store

4h�ps://forum.imacros.net/viewtopic.php?f=7&t=21028
5h�p://www.subway.com/storelocator/

154

https://forum.imacros.net/viewtopic.php?f=7&t=21028
http://www.subway.com/storelocator/

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

(a) Enter each zip code in search box

(b) Click “GO”

(c) Scrape address and
phone number

(d) Click “next page”

Figure 4. A motivating example: scrape address and phone
number for all stores across all pages and for all zip codes.

on the �rst page. Next,W��R���� performs an interactive
“authorization” step: it executes %1 to produce the next action
which is then visualized to Ellie (see Figure 5(a), action 7).
This is correct, so Ellie accepts it. After a couple of rounds,
W��R���� takes over and automates the scraping work on
the �rst page (Figure 5(a), actions 9-22).
W��R���� would terminate after action 22. Thus, Ellie

needs to click the “next page” button and extract information
for a couple of stores on the second page. These actions are
also recorded; see Figure 5(b), actions 23-27. At this point,
W��R���� infers a di�erent program %2 which has two loops
one after another, where the second loop extracts informa-
tion of all stores on the second page. Using %2,W��R����
is able to automatically scrape the second page; however, it
terminates, again, right before the “next page” button.

This time, once Ellie clicks “next page” (i.e., action 44), we
can synthesize %3–see Figure 5(c)–which contains an outer
while loop that �rst uses an inner loop for scraping and then
clicks “next page” at the end. %3 now is able to automatically
scrape all store information for the remaining pages.

Since Ellie needs to repeat this scraping process for all zip
codes, she will enter the second zip code and click “GO” again
(actions 107-108), after which W��R���� can synthesize %4
that has a three-level loop. %4 �rst iterates over all zip codes
in the given list and then uses a doubly-nested loop to scrape
across all pages. At this point, Ellie is done.

We highlight some salient features of W��R���� below.
Interactive PBD to resolve ambiguity. W��R���� does

not need users to provide multiple small demonstrations as
in traditional PDB approaches [31]; instead, it synthesizes
programs while the user is performing the task. In case the
synthesized program is not intended,W��R���� does not
ask the user for an edit on the program as in program-centric
tools (such as Helena). Rather, it allows the user to take over
and correct the behavior. For instance, in the “authorization”
phase,W��R���� visualizes potentially multiple options for
the next action and let the user select the one that is desired.
This design aims to facilitate interactive disambiguation.

Satisfaction check using trace semantics. Consider %1
from Figure 5(c) which is synthesized from the �rst 6 actions
01, ··,06 in Figure 5(b). In other words, %1 satis�es the action
trace [01, ··,06]. To perform this satisfaction check, we simu-
late the execution of %1 using our trace semantics. Note that
this is a simulated execution, rather than actually execut-
ing %1 in the browser, because during the synthesis process,
programs might have side-e�ects that are not intended. Our
trace semantics would �rst execute the EnterData and Click
statements before the loop, which essentially reproduces
01,02. Then, we unroll the loop twice, reproducing 03, ··,06.
A subtle aspect here is that the actions produced by our sim-
ulated execution might not be syntactically the same as those
in the recorded trace, since %1 might use selectors that are
di�erent from those in the recorded action trace. Thus, we
check if an action produced by our semantics and an action
in the demonstrated trace refer to the same Document Object
Model (DOM) node; this is done by also recording a trace of
DOMs in tandem. We will explain this in detail in Section 3.
Rewrite-based PBD. How to synthesize programs from

an action trace? We take a rewrite-based approach. Consider
the trace [01, ··,06] and %1 in our previous example: the loop
in %1 is rewritten from actions 03, ··,06. W��R���� can also
synthesize nested loops. For instance, the inner loop in %3
corresponds to multiple slices of actions, such as 3-22, 24-43.
Once identi�ed, these slices are rewritten to (multiple occur-
rences of) the same loop. Then, W��R���� will generate a
nested loop from the inside out by essentially treating the
(inner) loop as one action and rewriting again. In this case,
it rewrites actions 3-106 to the while loop in %3.

Selector search. In addition to identifying iteration bound-
aries, W��R���� also considers other selectors, beyond full
XPath expressions that are recorded in the trace, since the de-
sired programmay not use those recorded. For example, 04 in
Figure 5(b) is a full XPath, whereas the corresponding state-
ment in %1 (namely, the second statement in the loop) uses a
more general selector (with div[@class=’locatorPhone’]). Con-
sidering alternative selectors allows to induce more general
programs, but it also makes the problem more challenging.

Speculative rewriting. A standard rewrite-based synthe-
sis approach requires a set of correct-by-construction rewrite
rules [43, 63], meaning they always generate sound rewrites.
In our domain, if we follow this idea, we need to design rules
that pattern-match actions which result from an unknown
number of loop iterations and from arbitrarily complex loop
structures; this is hard to scale to complexweb RPA tasks.Our
idea is to pattern-match actions from a couple of iterations. For
instance, given [01, ··,022] in Figure 5(b) that corresponds to
%1, instead of pattern-matching 03, ··,022, using rules, to syn-
thesize a true rewrite (i.e., a loop), we pattern-match 03, ··,06
and speculate a potential rewrite %; , assuming 03, ··,06 “come
from” the �rst two iterations of %l. This is conceptually sim-
pler and faster, but the downside is that %l might not be a true
rewrite, since it is inferred from only the �rst two iterations.

155

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

EnterData /../input x[zips][1]
Click /../bu9on

ScrapeText /../div[1]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[1]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div
ScrapeText /../div[2]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[2]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div
ScrapeText /../div[3]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[3]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div
/* Scrape informaFon of 4th, .., 9th stores on the page */
ScrapeText /../div[10]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[10]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div

Click /../span

ScrapeText /../div[1]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[1]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div
ScrapeText /../div[2]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[2]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div
/* Scrape informaFon of 3rd, .., 9th stores on the page */
ScrapeText /../div[10]/div[2]/div[1]/div[1]/div/h3
ScrapeText /../div[10]/div[2]/div[1]/div[2]/div[1]/div[4]/a/div

Click /../span

/* Scrape informaFon for all stores on 3rd, 4th, 5th pages */

EnterData /../input x[zips][2]
Click /../bu9on
/* Scrape for all remaining zip codes, all stores, on all pages */

Enter 1st zip
Click “GO”

1st address
1st phone #
2nd address
2nd phone #
3rd address
3rd phone #

..
Last address
Last phone #

“Next page”

1st address
1st phone #
2nd address
2nd phone #

..
Last address
Last phone #

“Next page”

..

Enter 2nd zip
Click “GO”

..

1
2

3
4
5
6
7
8

9-20
21
22

23

24
25
26
27

28-41
42
43

44

45-106

107
108

109-

EnterData /../input x[zips][1]
Click /../button
foreach in Dscts(, div[@class='rightContainer']) do
 ScrapeText //h3
 ScrapeText //div[@class=‘locatorPhone’]

� �
�
�

 (synthesized aYer acFon 6)P1

 (synthesized aYer acFon 27)P2
EnterData /../input x[zips][1]
Click /../button
foreach in Dscts(, div[@class='rightContainer']) do
 ScrapeText //h3
 ScrapeText //div[@class=‘locatorPhone']
Click /../span
foreach in Dscts(, div[@class='rightContainer']) do
 ScrapeText //h3
 ScrapeText //div[@class=‘locatorPhone']

� �
�
�

� �
�
�

EnterData /../input x[zips][1]
Click /../button
while true do
 foreach in Dscts(, div[@class='rightContainer']) do
 ScrapeText //h3
 ScrapeText //div[@class=‘locatorPhone']
 Click //button[@class=‘sprite-next-page-arrow’]/span[@class='far..']

� �
�
�

 (synthesized aYer acFon 44)P3

foreach in ValuePaths(x[zips]) do
 EnterData /..//input[@name=‘search’] v1
 Click /..//button[@class=‘squareButton buttonLarge btnDoSearch']
 while true do
 foreach in Dscts(, div[@class='rightContainer']) do
 ScrapeText //h3
 ScrapeText //div[@class='locatorPhone']
 Click //button[@class=‘sprite-next-page-arrow’]/span[@class='far..']

�

� �
�
�

 (synthesized aYer acFon 108)P4

Demo

Auth

Auto

Demo

Auto

Demo

Auto

Demo

(AcFon 1) Drag-and-drop 1st zip code

(AcFon 7) Accept predicFon if correct

…

(AcFons 9-22) AutomaFcally scrape on 1st page

(AcFon 23) Click “next page” bu9on

(a) User interactions

(b) Action trace (c) Synthesized programs

Auto

Figure 5. (a) User interactions with the web browser and W��R����. (b) Action trace recorded by W��R����, where a short
explanation is attached to the left of each action. (c) Programs synthesized by W��R���� at di�erent points.

Semantic validation. Our next idea is to check if a specu-
lative rewrite (or, s-rewrite) %; is a true rewrite by executing
%; under our trace semantics. The goals are twofold. First,
we check if %; can rewrite a longer slice of actions beyond
the �rst iteration; if not, we �lter out %; . Second, if %; indeed
rewrites beyond the �rst iteration, semantic validation also
gives us the (longer) slice that %; could rewrite. As we can
see, building a formal semantic foundation allows us to not
only systematically formulate the synthesis problem for web
RPA, but also develop an e�ective algorithm to solving it.

3 Web RPA Language and Trace Semantics
This section lays the formal foundation for web RPA.

3.1 Syntax
Our syntax is shown in Figure 6. Intuitively, a program % in
this language is a sequence of statements that emulates user
interactions with a web browser and a data source. Its input
variable G is a data source � represented in JSON-like format:
� ::= {key : value, ··, key : value}
key ::= string value ::= string | integer | � | [value, ··, value]

This allows using any semi-structured data as our data source.

A statement (, in the simplest case, performs an action on
the current webpage. For example, Click clicks a DOM node
located by a selector =. ScrapeText scrapes the text inside a
node speci�ed by =. Some statements are parameterless (e.g.,
GoBack that goes back to the previous page and ExtractURL
that gives the URL of current webpage). Some statements
might takemultiple parameters. For example, SendKeys types
a constant string B into an editable �eld given by a selector =.
EnterData enters a value E from input data � to a �eld located
by =. Note that E is represented using a value path, which is
essentially a sequence of keys and array indices in order to
access the value from � . On the other hand, a selector = in our
language is essentially an XPath expression [8] but it may
contain a variable r at the beginning. In particular, =/q [8]
gives the 8-th child of a DOM node = that satis�es a predicate
q . =//q [8] gives the 8-th descendant which satis�es q among
all nodes in the subtree rooted at =. Our language has multi-
ple types of predicates. The simplest one is an HTML tag C .
For instance, =/span[1] returns the �rst child of = with tag
span. The next predicate C [@g = B] means the desired DOM
node should have tag C and its attribute g should take value

156

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

Program % ::= (; · ·;(
Statement (::= Click(=) | ScrapeText(=) | ScrapeLink(=)

| Download(=) | GoBack | ExtractURL
| SendKeys(=, B) | EnterData(=, E)
| foreach r in # do % (selectors loop)
| foreach o in+ do % (value path loop)
| while true do {% ;Click(=) } (while loop)

Selector = ::= n | r | =/q [8] | =//q [8]
Value Path E ::= G | o | E [key] | E [8]
Selectors # ::= Children(=,q) | Dscts(=,q)
Value Paths + ::= ValuePaths(E)
Predicate q ::= C | C [@g = B]
B ::= string 8 ::= integer C ::= HTML tag g ::= HTML attribute

Figure 6. Syntax of our web RPA language.

B . For instance, =//div[@class = “0”] [2] returns the second
descendant of = that has tag div and whose class attribute
value is string “a”.

Statements could also be loopy. The �rst type of loop is
selector loops which iterate over a list # of DOM nodes on a
webpage. This construct is to emulate loopy user interactions
onwebpages, such as scraping a list of elements. In particular,
returns a list of selectors. During the 8-th iteration, the loop
variable r binds to the 8-th selector in # under which the
loop body % gets executed. Note that a statement in % could
use r and it may also be a loop. The next loop type is value
path loops, which are used to emulate loopy interactions with
input data. In this case, + evaluates to a list of value paths,
o binds to each value path, and % is executed in this context.
Our last type of loops is while loops, where the termination
condition is that the DOM node = in the last Click statement
no longer exists on the webpage. This construct is primarily
used to handle pagination where the user needs to repeatedly
click the “next page” button until there is no next page.

3.2 Trace Semantics
So far, we have seen the DSL syntax, which is new but fairly
standard. Now, in this section, wewill formalize its semantics,
which is a key distinction of our paper from prior work.

Design rationale. Let us �rst brie�y present our thought
process in designing this semantics. Recall that a program %
in our language takes as input a data source � and is executed
on an initial DOM; % has side-e�ects that change the DOM,
eventually terminating at some browser state. Thus, one may
start with the following semantics de�nition.

c, ⌃ ` % : c 0

Here, c is the initial DOM, ⌃ is an environment that tracks
variable values, and c 0 is the �nal DOM when % terminates.

However, there is a gap between this semantics and our
speci�cation: one is based on DOMs and the other is based on
actions. This brings us to our �rst key insight: the semantics
(for our synthesis technique) should incorporate actions that
the program executes. This is primarily because in synthesis,
we typically use semantics to validate candidate programs

against the speci�cation. This leads to the following design.

c, ⌃ ` % : �0, c 0

The key idea in this design is to track the trace �0 of actions
taken by % during its execution. Here, �0 is a list [01, ··,0<]
of actions where an action is de�ned as follows.

0 ::= Click(d) | ScrapeText(d) | ScrapeLink(d) | Download(d)
| GoBack | ExtractURL | SendKeys(d, B) | EnterData(d, \)

d ::= n | d/q [8] | d//q [8] \ ::= G | \ [key] | \ [8]
Note that, di�erent from statement (in Figure 6, an action 0
is loop-free and uses concrete selectors d and value paths \ .

We further illustrate how action tracking works using the
following two simple rules (which include an environment
in the output). Other rules are fairly similar.

c, ⌃ ` (1 �0,c 0, ⌃0 c 0, ⌃0 ` (2, · ·,(< �00,c 00, ⌃00

c, ⌃ ` (1; · ·;(< �0++�00,c 00, ⌃00
(S��)

⌃ ` = d c 0 = Perform_Click(d,c)
c, ⌃ ` Click(=) [Click(d)],c 0, ⌃

(C����)

The S�� rule is standard in that it executes (8 ’s in sequence;
however, note that it concatenates the action traces �0 and
�00 in the output. The actual action tracking takes place in the
base rules, such as C����, but there is an issue: C���� actually
performs the operation in the browser. This is problematic
because during synthesis, candidate programs might have
undesired side-e�ects (e.g., clicking a button that deletes the
database), which prevents us from actually running them.

This motivates our second key idea: we simulate the actual
semantics without actually running % , in particular, by sim-
ulating % ’s DOM transition using a trace ⇧ of DOMs.6 We
illustrate how this simulation works still on S�� and C����.

⇧, ⌃ ` (1 �0,⇧0, ⌃0 ⇧0, ⌃0 ` (2, · ·,(< �00,⇧00, ⌃00

⇧, ⌃ ` (1; · ·;(< �0++�00,⇧00, ⌃00
(S��)

⇧ = [c1, · ·,c<] ⌃ ` = d ⇧0 = [c2, · ·,c<]
⇧, ⌃ ` Click(=) [Click(d)],⇧0, ⌃

(C����)

Here, instead of tracking the resulting DOM c 0, C���� tracks
the resulting DOM trace ⇧0; the intuition is that ⇧0 contains
DOMs that future actions will be executed upon (instead of
only the next immediate action). The transition from ⇧ to ⇧0

is “angelic” in that C���� always transitions to the next DOM
(by removing c1 from ⇧), without actually doing the click on
c1. But, what if performing the click on c1 does not yield c2?
This is indeed possible, especially given that our synthesis
algorithm often explores many wrong programs. However, if
the resulting action trace�0 matches the user-provided trace
� (i.e., the speci�cation), we know that every DOM transition
must be genuine, because that is what we had recorded from
the user demonstration (assuming deterministic replay). In
other words, evaluating “the right” program that corresponds
to ⇧ guarantees to yield �0 that matches the speci�cation �.

6We can obtain this DOM trace by recording intermediate DOMs in tandem
while recording the user-demonstrated actions.

157

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(E���) ⇧, {G 7! � } ` % �0,⇧0, ⌃0

⇧, � ` % : �0

(T���) ⇧ = []

⇧, ⌃ ` % [], [], ⌃

(S��) ⇧, ⌃ ` (1 �0,⇧0, ⌃0 ⇧0, ⌃0 ` (2; · ·;(< �00,⇧00, ⌃00

⇧, ⌃ ` (1; · ·;(< �0++�00,⇧00, ⌃00

(C����) ⇧ = [c1, · ·,c<] ⌃ ` = d

⇧, ⌃ ` Click(=) [Click(d)], [c2, · ·,c<], ⌃

(E����D���)
⇧ = [c1, · ·,c<] ⌃ ` = d ⌃ ` E \

⇧, ⌃ ` EnterData(=, E) [EnterData(d,\)], [c2, · ·,c<], ⌃

(S�I���) ⇧, ⌃ ` foreach r in #�1 do % �0,⇧0, ⌃0

⇧, ⌃ ` foreach r in # do % �0,⇧0, ⌃0

(S�C���) ⇧ = [c1, · ·,c<] ⌃ ` #�8 d ::# 0
�8+1 valid(d,c1)

⇧, ⌃[r 7! d] ` % ; foreach r in # 0
�8+1 do % �0,⇧0, ⌃0

⇧, ⌃ ` foreach r in #�8 do % �0,⇧0, ⌃0

(S�T���) ⇧ = [c1, · ·,c<] ⌃ ` #�8 d ::# 0
�8+1 ¬valid(d,c1)

⇧, ⌃ ` foreach r in #�8 do % [],⇧, ⌃

(VP�L���) ⌃ ` + [\1, · ·,\<] ⇧0 = ⇧ ⌃0 = ⌃
⇧8�1, ⌃8�1 [o 7! \8] ` % �8 ,⇧8 , ⌃8 1  8 <

⇧, ⌃ ` foreach o in+ do % �1++ · · ++�<,⇧<, ⌃<

(W�����I���)
⇧, ⌃ ` % ; if valid(=) do

�
Click(=) ; while true do {% ;Click(=) }

 �0,⇧0, ⌃0

⇧, ⌃ ` while true do {% ;Click(=) } �0,⇧0, ⌃0

(W�����C���)
⇧ = [c1, · ·,c<] ⌃ ` = d valid(d,c1) ⇧, ⌃ ` % �0,⇧0, ⌃0

⇧, ⌃ ` if valid(=) do % �0,⇧0, ⌃0

(W�����T���)
⇧ = [c1, · ·,c<] ⌃ ` = d ¬valid(d,c1)

⇧, ⌃ ` if valid(=) do % [],⇧, ⌃

Figure 7. Trace semantics of our web RPA language.

Our trace semantics. Let us now explain our simulation
semantics in detail. Our top-level judgment takes the form:

⇧, � ` % : �0

where �0 is the action trace produced by % , and ⇧ is used to
guide the simulated execution (as we also brie�y discussed
earlier). Our key rule is of the form:

⇧, ⌃ ` % �0,⇧0, ⌃0

which intuitively states:
Given DOM trace ⇧ and environment ⌃, % would execute
actions in�0, yielding environment ⌃0 and DOM trace ⇧0

(containing DOMs future actions will be executed upon).
Evaluating programs. The T��� rule states that, if the

input DOM trace is empty (i.e., there is no DOM to execute
% upon), then we terminate the entire execution. Otherwise,
we evaluate the statements sequentially using the S�� rule.

Evaluating loop-free statements. Figure 7 gives two
example rules; the other rules are very similar. The C����
rule �rst evaluates = to obtain a concrete selector d and
then produces a Click action. The E����D��� rule is similar,

(1)
⌃ ` n n

(2)
⌃ ` r ⌃ [r]

(3)
⌃ ` = d

⌃ ` =/q [8] d/q [8]

(4)
⌃ ` = d

⌃ ` =//q [8] d//q [8]

(5)
⌃ ` G G

(6)
⌃ ` o ⌃[o]

(7)
⌃ ` E \

⌃ ` E [key] \ [key]

(8)
⌃ ` E \

⌃ ` E [8] \ [8]

(9)
⌃ ` = d ⌃ ` = d

⌃ ` Children(=,q)�8 d/q [8] ::Children(d,q)�8+1

(10)
⌃ ` = d

⌃ ` Dscts(=,q)�8 d//q [8] ::Dscts(d,q)�8+1

(11)
⌃ ` E \ arr = GetArray(⌃ [G],\)

⌃ ` ValuePaths(E)
⇥
\ [1], · ·,\ [|arr |]

⇤

Figure 8. Auxiliary rules for our trace semantics.

except that it also evaluates the value path expression E . As
we can see, these rules form the base cases of our semantics.

Evaluating loopy statements. The rest of the rules from
Figure 7 deal with loops. Amongst the �rst three rules that
handle selector loops, the most interesting one perhaps is
S�C���: it unrolls the loop once if the �rst selector d refers
to a DOM node that exists in c1 (checked by valid). This is
another example for how we use DOMs to guide the simu-
lated execution: we use DOMs to handle branches in loops. If
d exists in c1 (e.g., the next element to be scraped exists), we
bind r to d and execute the loop body % . Note that S�C���
unrolls loops lazily. This is because many websites load more
DOM nodes while scrolling down a page: we cannot eagerly
fetch all DOM nodes at the beginning; instead, we have to
keep executing until all nodes are loaded. The next rule, VP�
L���, handles value path loops. It is eager and it iterates over
all value paths in + . The last three rules handle while loops.
A key distinction here is the termination condition: while
loops are click-terminated. That is, if the selector in the last
Click is not valid, it terminates. As mentioned earlier, this is
mainly used to handle pagination using “next page”. Note
that, though not explicitly being de�ned, we use a standard
if construct in our rules to help formalize the semantics.

Auxiliary rules. Figure 8 presents the auxiliary rules for
evaluating symbolic selectors and value paths. They are fairly
straightforward. For instance, rules (1)-(4) handle selector ex-
pressions that may contain variables, by basically replacing
variables with concrete values. Rules (5)-(8) are conceptually
the same except that they are for symbolic value paths. Rules
(9)-(11) evaluate selectors expressions.

Example 3.1. Consider the following program % , which is
an extremely simpli�ed version of %1 from Figure 5(c).

foreach r in Dscts(n, a) do {Click(r)}
Here, % performs a Click (using variable r) in a selectors loop.
For simplicity, let us consider a DOM trace ⇧ = [c1, c2]. Let
us also assume ⇧ indeed corresponds to % ; that is, the 8-th
click in % executed on DOM c8 transitions the page to c8+1.

158

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

{G 7! ?, r 7! //a[2] } ` r //a[2]
[c2], {G 7! ?, r 7! //a[2] } ` Click(r) [Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (C����) [], · · ` · · [], [], {G 7! ?, r 7! //a[2] } (T���)

[c2], {G 7! ?, r 7! //a[2] } ` Click(r) ; foreach r in Dscts(n, a)�3 do {Click(r) } [Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (S��)

{r 7! //a[1] } ` Dscts(n, a)�2 //a[2] ::Dscts(n, a)�3 valid(//a[2],c2) See above.

[c2], {G 7! ?, r 7! //a[1] } ` foreach r in Dscts(n, a)�2 do {Click(r) } [Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (S�C���)

{G 7! ?, r 7! //a[1] } ` r //a[1]
[c1,c2], {G 7! ?, r 7! //a[1] } ` Click(r) [Click(//a[1])], [c2], {G 7! ?, r 7! //a[1] } (C����) See above.

[c1,c2], {G 7! ?, r 7! //a[1] } ` Click(r) ; foreach r in Dscts(n, a)�2 do {Click(r) } [Click(//a[1]),Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (S��)

{G 7! ?} ` Dscts(n, a)�1 //a[1] ::Dscts(n, a)�2 valid(//a[1],c1) See above.

[c1,c2], {G 7! ?} ` foreach r in Dscts(n, a)�1 do {Click(r) } [Click(//a[1]), Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (S�C���)

[c1,c2], {G 7! ?} ` foreach r in Dscts(n, a) do {Click(r) } [Click(//a[1]),Click(//a[2])], [], {G 7! ?, r 7! //a[2] } (S�I���)

[c1,c2],? ` foreach r in Dscts(n, a) do {Click(r) } : [Click(//a[1]), Click(//a[2])] (E���)

Figure 9. A derivation for the program in Example 3.1 using our trace semantics.

We illustrate our semantics on % ; Figure 9 shows its deriva-
tion. First of all, E��� returns two actions that are executed
in the �rst two iterations of % , since ⇧ has two DOMs. The
valid checks in S�C��� are used to guide our simulated exe-
cution. For % , these checks all pass, as % indeed produced ⇧.
However, consider the following % 0:

foreach r in Dscts(n, a) do {Click(r/b)}

For % 0, the checks may not pass as “//a[1]/b” might not refer
to a valid node in DOM c1. In that case, we will invoke the
S�T��� rule, eventually producing a shorter action trace.

4 Web RPA Program Synthesis Problem
In this section, we formulate our program synthesis problem.

De�nition 4.1. (Satisfaction). Given input data � , an action
trace� and a DOM trace ⇧, a web RPA program % satis�es �,
if we have (1) ⇧, � ` % : �0 and (2)� is consistent with a pre�x
of �0 with respect to ⇧. In other words, % can reproduce �.

De�nition 4.1 requires checking consistency between two
traces of actions. To do this, we �rst de�ne two actions 01
and 02 to be consistent, given a DOM c , if 01 and 02 are of the
same type and their arguments match. Note that two XPath
arguments match each other, if they refer to the same DOM
node on c . Then, two action traces �1 and �2 are consistent,
given a DOM trace ⇧, if the 8-th action in �1 is consistent
with the 8-th action in �2 given the 8-th DOM in ⇧.

The reason that condition (2) uses “pre�x”, instead of re-
quiring � to be consistent with �0 exactly, is because � is in
general an incomplete trace. That is, � may be a pre�x of the
entire action trace of % . In other words, our trace semantics
might produce a longer action trace than the demonstration.

De�nition 4.2. (Generalization). Given input data � , an ac-
tion trace � and a DOM trace ⇧, a web RPA program %
generalizes �, if we have (1) ⇧, � ` % : �0 and (2) � is consis-
tent with a strict pre�x of �0 given ⇧. In other words, % not
only reproduces � but also executes more actions after �.

De�nition 4.2 requires “strict pre�x”, as our goal is to pre-
dict unseen actions beyond only reproducing those observed.

De�nition 4.3. (Web RPAProgram Synthesis Problem). Given
input data � , an action trace� = [01, ··,0<] and a DOM trace
⇧ = [c1, ··, c<+1], �nd a web RPA program % that generalizes
�, given � and ⇧.

Intuitively, De�nition 4.3 takes as input � and ⇧ where
08 is an action performed on c8 , and it looks for a program
% that can be used to predict an action 0<+1 that might be
performed on c<+1. In general, we require ⇧ be longer than
�; otherwise, we are not able �nd a program that generalizes.
In practice, we require ⇧ have one more element than �,
because we can obtain the latest DOM without knowing the
user’s next action on it. Also note that, we may have multiple
programs that generalize �; therefore, we aim to synthesize
a smallest program in size.

5 Web RPA Program Synthesis Algorithm
5.1 Top-Level Rewrite-Based Synthesis Algorithm
Algorithm 1 shows the top-level synthesis algorithm. Our
key idea is to iteratively rewrite the action trace � into a pro-
gram that generalizes� given DOM trace ⇧ and input data � .
The algorithm is not destructive and maintains intermediate
rewrites; it heuristically picks a “best” program at the end.

Algorithm 1maintains aworklist of tuples (%, Æ�, Æ⇧), where
% = (1; ··; (; is a program rewritten from the input trace �.
Æ� = [�1, ··,�;] is a list of action traces, and Æ⇧ = [⇧1, ··,⇧;]
is a list of DOM traces. We maintain the following invariant:

I1 : �1++ · · ++�; = � and ⇧1++ · · ++⇧; = [c1, ··, c<]
Essentially, I1 says Æ� is a partition of � and Æ⇧ is a partition
of the �rst< DOMs in ⇧. It is fairly easy to show I1 holds
for %0, Æ�0, Æ⇧0. The second invariant is:

I2 : 88 2 [1, ;], (8 satis�es �8 given � and ⇧8

which says that each (8 in % satis�es the corresponding slice
�8 . This is also trivially true for %0, Æ�0, Æ⇧0, as every (8 in %0 is
a single loop-free statement. These invariants guarantee our

159

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

procedure S��������� (�,⇧, �)
input: � = [01, · ·,0<], ⇧ = [c1, · ·,c<+1], and input data � .
output: a program % that generalizes � given ⇧ and � .
1: %0 := 01; · ·;0< ; Æ�0 :=

⇥
[01], · ·, [0<]

⇤
; Æ⇧0 :=

⇥
[c1], · ·, [c<]

⇤
;

2: , := {(%0, Æ�0, Æ⇧0) }; e% := ;;
3: while, < ;
4: (%, Æ�, Æ⇧) :=, .remove() ;
5: if % generalizes � given � and ⇧ then e% .add(%) ;
6: ⌦ := S��������(%) ;
7: , 0 := V�������(⌦,%, Æ�, Æ⇧) ; , :=, [, 0;
8: return R���(e%) ;

Algorithm 1. Top-level synthesis algorithm.

rewrites always satisfy the speci�cation �. Intuitively, this
is because every statement (8 in % satis�es each slice �8 in
�, thus the “concatenation” of all (8 ’s, that is % , would also
satisfy the concatenation of all �8 ’s, which is �.

The worklist algorithm maintains I1 and I2, too. It tracks
a worklist, of programs that satisfy � but only stores those
generalizable programs into e% . In particular, the algorithm
�rst removes a tuple (%, Æ�, Æ⇧) from, (line 4). It then checks
if % generalizes�; if so, it adds % into e% (line 5). The algorithm
grows the worklist using our speculate-and-validate method
to rewrite % into more programs all of which maintain I1
and I2 (lines 6-7). Intuitively, given % = (1; ··; (; , this rewrite
process replaces a slice of statements (8 , ··, (9 in % with a loop
statement (0 such that (1; ··; (8�1; (0; (9+1; ··; (; also meets I1
and I2. Note that, because a statement in % might itself be
loopy, we can generate nested loops (from the inside out).

Challenges. While conceptually simple, this idea is tech-
nically quite challenging to realize. A key challenge is that, it
is in general quite hard to encode all patterns as rules, if we
follow standard rewrite-based synthesis approaches [43, 63]:
our DSL has multiple types of loops, a loop body may have
multiple statements that may use loop variables in di�erent
ways, loops could be nested, etc. There are too many cases.
Even if we can de�ne these rules, it is not clear how e�cient
this rule-based approach is, given the trace may correspond
to an arbitrarily complex program. Let us further illustrate
this challenge using the following example.

Example 5.1. Consider the following program % , which is a
simpli�ed version of %2 in Figure 5(c). It scrapes information
from a list of items spanned across multiple pages.

while true do
foreach r in Dscts(n, a) do

ScrapeText(r)
ScrapeText(r/b)

Click(c)
Suppose we are given the following action trace � for % :
[ScrapeText(//a[1]), ScrapeText(//a[1]/b), ··,
ScrapeText(//a[20]), ScrapeText(//a[20]/b), (01, ··,040)
Click(c), (041)
ScrapeText(//a[1]), ScrapeText(//a[1]/b), ··,
ScrapeText(//a[9]), ScrapeText(//a[9]/b)] (042, ··,059)

procedure S�������� (%)
input: % = (1; · ·;(; .
output: a set ⌦ of speculative rewrites of the form ((0,(8 ,(9) .
1: ⌦ := ;;
2: for 8  ?  9 < @ s.t. [(8 , · ·,(? , · ·,(9 , · ·,(@] v [(1, · ·,(;] & 9 �8 +1 = @�?
3: for ((0? , r ,#) 2 A����U����((? ,(@)
4: d := FirstSelector(#) ;
5: e% 0 :=

�
(08 ; · ·;(0? ; · ·;(09

�� (0: 2 P����������((: , r , d),: 2 [8, 9] \{? }

;

6: e(0 := �
foreach r in # do % 0 | % 0 2 e% 0 ;

7: ⌦ := ⌦ [{((0,(8 ,(9) | (0 2 e(0 };
8: for 8  ?  9 < @ s.t. [(8 , · ·,(? , · ·,(9 , · ·,(@] v [(1, · ·,(;] & 9 �8 +1 = @�?
9: for ((0? ,o,+) 2 A����U����((? ,(@)
10: \ := FirstValuePath(+) ;
11: e% 0 :=

�
(08 ; · ·;(0? ; · ·;(09

�� (0: 2 P����������((; ,o,\),: 2 [8, 9] {? }

;

12: e(0 := �
foreach o in+ do % 0 �� % 0 2 e% 0 ;

13: ⌦ := ⌦ [{((0,(8 ,(9) | (0 2 e(0 };
14: for 8 < ? < @ s.t. [(8 , · ·,(? , . . . ,(@] v [(1, · ·,(;] & ? � 8 + 1 = @ � ?
15: if (? = (@ = Click(d) then
16: (0 := while true do {(8 , · ·,(? }; ⌦ := ⌦ [{((0,(8 ,(9) };
17: return ⌦;

Algorithm 2. S�������� procedure.

Here, 01, ··,041 correspond to all actions from the �rst itera-
tion of the while loop, including 40 actions from foreach.
The remaining actions 042, ··,059 correspond to a partial ex-
ecution of the second iteration of while. We also record a
DOM trace [c1, ··, c60] as well, where 08 is performed on c8
and c60 is the latest DOM.

In order to generate % from �, the standard rewrite-based
synthesis approaches [43, 63] apply a set of prede�ned sound
rewrite rules to rewrite � to % . Conceptually, it would use
these rules to essentially identify iteration boundaries and
repetitive patterns, in order to eventually “reroll” the trace
back to the desired program with loops. That is an enormous
space which might contain only a few correct rewrites.

In this work, we take a di�erent route which incorporates
the “guess-and-check” idea into the overall rewrite process.
Our approach does not generate true rewrites directly using
sound rewrite rules; instead, it �rst speculates likely rewrites
which are then validated using our trace semantics.

5.2 Speculation
We �rst describe our speculation procedure; see Algorithm 2.
It takes as input a program % = (1; ··; (; and returns a set ⌦
of speculative rewrites, or s-rewrites, of the form ((0, (8 , (9).
Here, (0 is a loop statement whose �rst iteration corresponds
to (8 ; ··; (9 from % . That is, they yield the same trace (this
is guaranteed by construction). However, an s-rewrite may
not be a true rewrite: a true rewrite must have more than
one iterations exhibited in % , but an s-rewrite is only guaran-
teed to have its �rst iteration exhibited in % . Nevertheless,
s-rewrites have a very nice property: they are much easier to
generate, and they over-approximate the set of true rewrites.
Our technique makes use of this property.
To generate s-rewrites that tightly over-approximate the

set of true rewrites, we follow existing rule-based approaches
in prior work [43, 63]. However, our rules are designed to

160

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

(1)
r fresh r ` d1 ~ d2 ⇣ (=,#)

` Click(d1) ~ Click(d2) ⇣ (Click(=), r ,#)

(2)

r 0 fresh r 0 ` #1 ~ #2 ⇣ (# ,# 0) %1,%2 alpha equivalent
* = (foreach r1 in # do %1, r 0,# 0)

` foreach r1 in #1 do %1 ~ foreach r2 in #2 do %2 ⇣ *

(3)

o fresh \1 = \ [1] [>1]·· [>A] \2 = \ [2] [>1]·· [>A]
* = (EnterData(d,o [>1]·· [>A]),o, ValuePaths(\))

` EnterData(d,\1) ~ EnterData(d,\2) ⇣ *

(4)

9d01 2AlternativeSelectors(d1) : d01 = =
⇥
r 7! d/q [1]

⇤
9d02 2AlternativeSelectors(d2) : d02 = =

⇥
r 7! d/q [2]

⇤
r ` d1 ~ d2 ⇣

�
=, Children(d,q)

�

(5)
r ` d1 ~ d2 ⇣ (=,#)

r ` Children(d1,q) ~ Children(d2,q) ⇣ (Children(=,q),#)

Figure 10. A����U���� rules.

detect patterns partially, instead of completely. A key step
in our approach is to inspect two statements (? , (@ in % and
generate a loop (0 such that, (? , (@ correspond to the same
statement from (0 but (? “comes” from its �rst iteration and
(@ from its second. For example, lines 2-7 in Algorithm 2
generate selector loops. It �rst enumerates all slices (8 , ··, (9
in % assuming (8 and (9 correspond to the start and end of
the �rst iteration (line 2). Then, it tries to “merge” (? , (@ into
a parametrized statement (0? by calling A����U���� (line 3).
Similarly, lines 8-13 handle value path loops.
Anti-uni�cation. In the context of logic programming,

anti-uni�cation [13, 14] refers to the process of generating
two terms C1 and C2 into a least general template g for which
there exists substitutions U1 and U2, such that g (U1) = C1 and
g (U2) = C2. It has been used in prior work [56] to generate
code �xes; in this work, we use anti-uni�cation to synthesize
loops. Figure 10 gives some representative rules. In a nutshell,
our procedure returns a set of tuples ((0? , r ,#), where (0? is
a more general statement using loop variable r in the target
loop (0, and # is the selectors that (0 loops over.

Let us take rule (1) as an example. Here, it anti-uni�es two
Click statements whose selectors di�er at only one index in
their XPath expressions. Speci�cally, it calls rule (4) that anti-
uni�es selectors d1 and d2 given a fresh variable r . Intuitively,
it looks for a general selector = that uses variable r such that
= instantiates to d 0

1 and d 0
2, respectively. Note that rule (4)

considers alternative selectors; this is necessary for inducing
more general programs. Rule (4) also returns Children(d,q)
which is the collection that the target loop statement (0 loops
over. We have a very similar rule that anti-uni�es d1, d2 and
generates Dscts(d,q), though it is not shown here.
Rule (2) anti-uni�es two selector loops by anti-unifying

their respective collections #1 and #2, which is conditional
on their loop bodies %1, %2 being alpha-equivalent. Rule (3)
performs anti-uni�cation for EnterData statements.

Example 5.2. Consider the action trace� from Example 5.1.
Line 2 of our S�������� procedure will consider all possible
tuples (8, ?, 9,@), where 8, 9 are the start and end of the �rst
iteration of a loop to be generated. Consider (1, 1, 2, 3), which

(1) (= Click(d)
r , d0 ` Click(d) ⇣ (

(2) 9d00 2 AlternativeSelectors(d) : d00 = d0/d000
r , d0 ` Click(d) ⇣ Click(r/d000)

(3) (= foreach r in # do %

r 0, d ` foreach r in # do % ⇣ (

(4)
r 0, d ` # ⇣ # 0

r 0, d ` foreach r in # do % ⇣ foreach r in # 0 do %

(5) # = Children(d,q)
r , d0 ` Children(d,q) ⇣ #

(6)
d = d0/d00 # = Children(r/d00,q)

r , d0 ` Children(d,q) ⇣ #

Figure 11. P���������� rules.

corresponds to the �rst iteration of the foreach loop in % .
A����U���� at line 3 generates (ScrapeText(r), r ,Dscts(n, a))
from (? , (@ , which are 01,03 in this case. Here, ScrapeText(r)
is the desired statement in the foreach loop’s body. Further-
more, it also gives the selectors expression, Dscts(n, a), that
the target foreach loop iterates over. Yet, our A����U����
procedure does not generate the rest of the body.

Parametrization A����U���� essentially creates a skele-
ton of the entire loop (0: it gives one statement in the loop
body but we still need to construct the rest. This is exactly
what Algorithm 2 does at lines 4-7. In particular, it �rst ob-
tains the binding r 7! d in the �rst iteration. Then, given this
binding, it uses the P���������� procedure to construct the
entire loop. Figure 11 presents some representative rules. For
instance, rules (1) and (2) parametrize a Click statement. Rule
(1) keeps the Click as is, since it is possible that a statement
inside a loop does not use the variable. Rule (2) parametrizes
the Click if the selector d 0 that variable r binds to is a pre�x
of some alternative selector for the argument d in Click. Rules
(3) and (4) parametrize a selectors loop in a very similar way,
though it uses additional rules (5) and (6) to handle selectors.

Example 5.3. Consider the output of A����U����, namely,
(ScrapeText(r), r ,Dscts(n, a)), in Example 5.2. Given this output,
line 4 of Algorithm 2 obtains the �rst selector d ofDscts(n, a);
that is, d = //a[1]. Then, we parametrize each of the remain-
ing statements within [8, 9]—in our case, only 02. One state-
ment given by P���������� is ScrapeText(r/b), which is the
desired statement in % . Therefore, e(0 at line 6 of Algorithm 2
includes the desired foreach loop. Finally, line 7 adds the
following s-rewrite to ⌦.

⇣ foreach r in Dscts(n, a) do
ScrapeText(r)
ScrapeText(r/b)

, 01, 02
⌘

While this loop corresponds to 01, ··,040, our S�������� pro-
cedure only guarantees its �rst iteration corresponds to01,02.

5.3 Validation
As we can see, s-rewrites are fairly easy to generate but may
be spurious. That is, they might not rewrite beyond the �rst
iteration. Canwe �lter them out, and if so, how?Our idea is to
validate them using our trace semantics; see Algorithm 3. In
a nutshell, given an s-rewrite (0 corresponding to (8 , ··, (9 , the

161

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

procedure V������� (⌦,%, Æ�, Æ⇧)
input: a set ⌦ of s-rewrites of the form ((0,(8 ,(9) .
input: a program % = (1; · ·;(; that each s-rewrite in ⌦ may apply to.
input: Æ� = [�1, · ·,�;], Æ⇧ = [⇧1, · ·,⇧;].
output: a set, of true rewrites of the form (% 0, Æ�0, Æ⇧0) s.t. I1, I2 hold.
1: , := ;;
2: for ((0,(8 ,(9) 2 ⌦
3: �0 := E������((0,⇧8++ ··++⇧; , �) ;
4: if 9A 2 [9 + 1, ;] : �0 = �8++ ··++�A given ⇧8++ ··++⇧A then
5: % 0 := (1; · ·;(8�1;(0;(A+1; · ·;(; ;
6: Æ�0 := [�1, · ·,�8�1,�0,�A+1, · ·,�;];
7: Æ⇧0 := [⇧1, · ·,⇧8�1,⇧0,⇧A+1, · ·,⇧;];
8: , :=, [{(% 0, Æ�0, Æ⇧0) };
9: return, ;

Algorithm 3. V������� procedure.

algorithm checks whether it is a true rewrite or not; if so, it
returns a slice of statements (8 , ··, (A in % that can be rewritten
to (0. We require A> 9 , because we want (0 to rewrite a slice
of statements beyond (9 (i.e., the �rst iteration). Towards this
goal, V������� �rst executes (0 against the concatenation of
DOM traces from 8 to ; , yielding an action trace �0 (line 3).
Then, line 4 checks if (0 is a true rewrite; if so, it obtains the
rewrite % 0 (line 5) and the matching traces (lines 6-7), which
are then added to, (line 8). Note that invariants I1,I2 hold
for this rewrite (% 0, Æ�0, Æ⇧0), as �0 is obtained by executing (0
using our trace semantics and is also checked at line 4.

Example 5.4. Consider the s-rewrite ((0,01,02) returned by
S�������� in Example 5.3. By construction, the �rst iteration
of (0 produces [01,02]. To validate this s-rewrite, we evaluate
(0 against [c1, ··, c60] using our trace semantics, which gives
an action trace�0 = [01, ··,040]. This is indeed a true rewrite;
thus, V������� returns (0 together with its matching action
trace [01, ··,040], indicating (0 rewrites actions 01, ··,040.

5.4 Incremental Synthesis
Recall from Figure 3 that our synthesizer is used in an itera-
tive fashion: it predicts the next action given the current trace
with < actions, where < increases as the task progresses.
Therefore, we invoke our synthesis algorithm incrementally.
This is done by simply sharing the worklist in Algorithm 1
across synthesis runs. Suppose we want to synthesize from a
trace with< actions, given the worklist, from the previous
run. Instead of starting from scratch (line 2, Algorithm 1),
we resume from, [, 0, where, 0 contains those programs
removed from, (line 4) in the previous run. This essentially
makes the entire rewrite process across runs not destructive.

5.5 Soundness and Completeness
Theorem 5.5.Given action trace �, DOM trace ⇧ and input
data � , if there exists a web RPA program that generalizes �
and in which every loop has at least two iterations exhibited
in �, then our synthesis algorithm would return a program
that generalizes � given ⇧ and � .

6 Human-in-the-Loop Interaction Model
In this section, we describe our system interaction design ra-
tionale and user interface. Our overall design goal is to reduce
the gulfs of execution and evaluation for novice users [45].
That is, through our interface, we aim to help users better un-
derstand what is going on in the system (i.e., evaluation) as
well as help them execute intended actions (i.e., execution).
To achieve this goal, we designed a user interaction model
that combines PBD and user interaction in a human-in-the-
loop process. We highlight some key features below.
Demo-auth-auto workflow. As illustrated in Section 2,

there are three phases when using our tool: (a) a demonstra-
tion phase where the user manually performs a few actions,
(b) an authorization phase where the user accepts or rejects
predictions, and (c) an automation phase where our tool auto-
matically executes the program. Our system could transition
from one phase to another (automatically or manually).

Data entry via drag-and-drop. Instead of manually typ-
ing strings from the input data source, our interface supports
drag-and-drop. This design not only simpli�es the data entry
process but also makes synthesis easier.

Action highlighting. Each action performed on the page
is highlighted. In addition, during the demonstration phase,
our system also highlights DOM nodes that are hovered over.
These designs help users better interact with our system.

Prediction authorization.During the authorization phase,
each predicted action requires user approval before it is exe-
cuted. Our user interface visualizes predictions in an easy-to-
examine manner, which helps reduce the gulf of evaluation.
Navigating across multiple predictions. In case there

are multiple predictions, our interface will show a navigation
arrow which allows users to inspect each of them and accept
the desired one, which helps resolve ambiguity.

7 Evaluation
In this section, we describe a series of experiments that are
designed to answer the following research questions:
• Q1: Can W��R����’s synthesis engine e�ectively synthe-
size web RPA programs from demonstrations?

• Q2: How important are the ideas proposed in Section 5?
• Q3:Howwell doesW��R����work end-to-end (including
both front-end and back-end) in practice?

• Q4: How doesW��R����’s performance compare against
existing rewrite-based synthesis approaches?
Implementation.W��R���� has been implemented with

the proposed ideas as well as several additional optimizations.
More details can be found in the extended version [22].

Benchmarks. We also constructed a suite of benchmarks
for web RPA. In particular, we �rst scraped all posts under
the “Data Extraction and Web Screen Scraping” topic from
the iMacros forum. Then, we retained every post that cor-
responds to a web RPA task with a working URL (e.g., we
�lter out posts regarding “how to use iMacros”).

162

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

0.0

0.2

0.4

0.6

0.8

1.0

S
yn

th
es

is
ti
m

e
(s

)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Figure 12.Main results for Q1: (a) accuracy (bar chart), (b) synthesis time (box plot), and (c) whether the �nal synthesized
programs are intended (•/⇥ marks near the top). In particular, benchmarks are sorted in ascending order based on accuracy.
For each benchmark, we report quartile statistics of the synthesis times across all tests for which we can produce a prediction
within the timeout (1 sec). If the �nal synthesized program is intended, we mark • at the top for that benchmark; otherwise, ⇥.

Ground-truth programs. For each benchmark, we have
also manually written a program that can automate the cor-
responding task using the Selenium WebDriver framework.
These programs are treated as the “ground-truth” programs.

Statistics of benchmarks. In total, we collected 76 bench-
marks with their corresponding ground-truth programs. In
particular, all of these benchmarks involve data extraction,
29 of them involve data entry, 60 require navigation across
webpages, and 33 involve pagination. Some benchmarks may
involve multiple types of actions: for instance, 28 of them
involve data entry, data extraction, and webpage navigation.
The ground-truth programs consist of 36.3 lines of code on
average (max being 142). In general, it took us 30 minutes to
a few hours to implement a working Selenium program.

7.1 Q1: Evaluating W��R����’s Synthesis Engine
Recall that our synthesizer takes as input (1) a demonstrated
action trace� = [01, ··,0<], (2) a DOM trace⇧ = [c1, ··, c<+1],
and (3) an optional data source � . It returns a program % that
generalizes � given ⇧ and � . That is, % not only reproduces
� but also predicts a next action 0<+1. Thus, our synthesis
goal is to generate 0<+1 e�ciently and accurately.

Setup. To evaluate our synthesis e�ciency and accuracy,
we designed the following experiment. First, for each bench-
mark, we instrumented its ground-truth program %gt such
that %gt would record every action it executes as well as
all intermediate DOMs. Hence, we can obtain the entire ac-
tion trace �gt = [01, ··,0=] and DOM trace ⇧gt = [c1, ··, c=]7.
Here, 01 is the �rst action performed on c1 and 0= is the last
action on c= . We also ensure that the recorded actions are in
the same trace language de�ned in Section 3. We convert the
recorded selectors used in %gt to absolute XPath expressions.
The reason is becauseW��R����’s front-end records actions
using absolute XPath during user interactions and we aim
to simulate that in this experiment. Note that this actually
makes synthesis more challenging since we necessarily need
to consider alternative selectors in order to synthesize %gt.
For those benchmarks involving programmatic data entry,
we manually constructed a data source � with 100 entries.8

7We terminate %gt after 500 actions in case it unnecessarily takes long to
�nish. That is, we may use a pre�x of %gt’s entire trace in this experiment.
8Fun fact: we leveraged W��R���� when collecting these data sources.

Given�gt and ⇧gt, we generate =�1 tests for the synthesis
engine. That is, for the :th test, we are given�: = [01, ··,0:]
with the �rst : actions in �gt and ⇧k+1 = [c1, ··, c:+1] with
the �rst : + 1 DOMs in ⇧gt, and our goal is to synthesize a
program that predicts0:+1. In this setting, we de�ne accuracy
as the percentage of tests for which we can generate a correct
prediction that is equivalent to the ground-truth action. For
e�ciency, we calculate the quartile statistics of the synthesis
times across all tests that we can generate predictions for. In
this experiment, we use 1 second as the timeout per test.

Main results. Overall, as shown in Figure 12, our synthe-
sis engine solved most benchmarks with both high accuracy
and e�ciency. In particular, for 68% of the benchmarks, it
achieves at least 95% accuracy within 0.5 seconds per pre-
diction. Furthermore, it generates desired programs for 91%
of the benchmarks. We note that it does not need the entire
trace (with 500 actions) to generate those desired programs;
rather, it typically generalizes with a few dozens of actions
(and at most a couple hundreds). Also note that only a very
small number of these actions (typically around 10) areman-
ually demonstrated. Therefore, we believe our synthesis en-
gine can be used in practice to interactively automate web
RPA tasks. On average, the �nal synthesized programs have
6 statements and the largest program has 18.W��R���� can
also synthesize programs with complex nesting structures:
32 of them involve doubly-nested loops and 6 involve at least
three levels of nesting. Thus, we believe our synthesis engine
has the potential to scale to complex web RPA tasks.

In what follows, we discuss some interesting �ndings.
Ambiguity. The synthesis engine generated multiple pro-

grams for 59 of our benchmarks. For 21 of them, it generated
multiple predictions. The maximum numbers of synthesized
programs and predictions are 101 and 6 respectively. This
shows that web RPA is a domain with a fair amount of ambi-
guity, where there could exist multiple semantically di�erent
programs satisfying the same speci�cation.

Pagination beyond “next page”. Some websites use other
mechanisms for pagination. For instance, b9 involves a job
search site9 which performs pagination using page numbers
and a “next 10 pages” button. We do not support such pagina-
tion mechanisms yet. The reason b9 has an 88% accuracy is
9h�ps://www.timesjobs.com/

163

https://www.timesjobs.com/

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

because it synthesized a program with a sequence of selector
loops, which solved the tests but is not intended.

Complex selectors. Some benchmarks need selectors with
multiple attributes in order to be automated. For example, b6
involves scraping players information for matches that have
either “match” or “match highlight” class. Our DSL currently
does not support such “disjunctive logics” for selectors. Some
other benchmarks (such as b1-3) also have similar issues.

Others. The reason that b7 has a relatively low accuracy
(80%), albeit an intended programwas synthesized, is because
its trace is relatively short (with 51 actions in total) and the
intended program was synthesized after the �rst 10 actions.
This is also the case for some benchmarks, such as b8, b10-12.

7.2 Q2: Ablation Studies of the Synthesis Engine
Setup.We performed ablation studies to quantify the impact
of our ideas. In particular, we consider the following variants.
• No selector : We modi�ed the AlternativeSelectors function
from Figures 10 and 11 to always return the input selector.
E�ectively, this variant can only use full XPath expressions
from the trace without considering alternative selectors.

• No incremental: This variant does not reuse rewrites from
prior synthesis runs. It always starts from scratch if the
program %: generated for the :th test fails to predict 0:+1.
We conducted the same experiment described in Section 7.1

using these variants. Note that we do not include an ablation
for the idea of speculative rewriting. The reason is because
it is not easy to “disable” speculation without fundamentally
changing our algorithm. Instead, please see Section 7.4 for a
comparison against a baseline implemented using egg.

Main results. As shown in Table 1, our main take-away is
that it is important to perform selector search and incremen-
tal synthesis in order to synthesize programs both accurately
and e�ciently. For instance, without considering alternative
selectors, it only solves 38 benchmarks and the average accu-
racy drops to 57%. In terms of synthesis time, all techniques
are fairly e�cient (for tests that terminate within 1 second).

7.3 Q3: Evaluating W��R���� End-to-End
User study setup. To evaluateW��R���� end-to-end and
access whether it helps users complete web RPA tasks, we
conducted a user study involving 8 participants (avg. age 21)
from the lead author’s institution. All participants are under-
graduate students with an average of 4 years of programming
experience. Each participant was asked to complete 5 tasks
sampled from our benchmarks, divided in three phases.
• Phase 1 has one single-page scraping task.
• Phase 2 includes two scraping tasks that involve webpage
navigation and pagination.

• Phase 3 has two tasks that involve data entry. In particular,
given a list of keywords, the user needs to perform search
on the website using each keyword and then scrape certain
information from the search result of each keyword.

Table 1. Main results for ablation studies in Q2.
Benchmarks Accuracy Accuracy Time per test

Variants solved (median) (average) (average)
Full-�edged 69 98% 90% 23ms
No selector 38 88% 57% 54ms
No incremental 45 96% 72% 32ms

For each phase, participants started by watching a tutorial
and replicating a demo task. Then, they worked on the main
tasks. Each participant had one hour in total for all 5 tasks.

User study results. All participants were able to success-
fully automate all tasks using W��R����. In particular, par-
ticipants demonstrated 6-10 actions beforeW��R���� could
automate the rest of the task. For each phase, the average
time it took them to provide demonstrations is (in seconds):
16.88 (SD=3.80, phase 1), 19.44 (SD=11.48, phase 2), and 64.44
(SD=22.58, phase 3). Furthermore, all participants were able
to useW��R���� to resolve ambiguity interactively. Finally,
according to a follow-up survey, all eight participants gave
positive feedback on the usability of our tool: for instance,
they thoughtW��R���� was “quite decent” (P4), experience
was “smooth” (P8), and it “can apply to many scenarios” (P2).

More comprehensive end-to-end testing results. To gain
a more comprehensive understanding on howW��R����
works end-to-end, we tested it on all of our 76 benchmarks.
While this experiment is inevitably biased because the testers
are developers of the tool, we believe it complements the user
study and hence is still valuable. A benchmark is counted as
“solved” if we can useW��R���� to synthesize the intended
program which can automate the benchmark.10 Overall, we
solved 76% of the benchmarks by interactively demonstrating
around 10 actions.We also found it necessary to resolve ambi-
guity when solving these benchmarks. Among the remaining
18 benchmarks, 7 failed due to the issues from W��R����’s
back-end (see Section 7.1), and 11 were due to limitations of
our front-end. For instance, our current front-end does not
fully support replaying certain actions in a few situations,
which accounts for 7 cases.

Discussion. Comparing the end-to-end testing conducted
by ourselves (i.e.,W��R���� developers) and the user study
with novice users, a notable di�erence in use patterns is that
novice users makemistakes (e.g., mis-clicks onwebpages and
mis-use of the UI). In this case, we assisted the participants
to restartW��R���� and perform the task again.

7.4 Q4: Comparison with Existing Rewrite-Based
Synthesis Techniques

The goal of this �nal experiment is to understand how our
speculative rewriting idea compares with existing rule-based
rewrite approaches that perform synthesis in a correct-by-
construction manner (without speculation). Speci�cally, we
implemented a baseline synthesizer using the egg library [63],
a state-of-the-art framework that was used to build many
high-performance rewrite-based synthesizers [43, 48, 58, 64].
10For long-running programs (>10 minutes), we ran them for 3 iterations.

164

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

Table 2. Main results for egg-based implementation in Q4. X/Y
gives synthesis time X (milliseconds) for (shortest) trace length Y.

b12 b15 b20 b48 b56 b73 b74 b75 b76
Baseline using egg 2⇥105/34 12/6 15/12 6/8 –/– 2/2 2/2 3/2 2/2
W��R���� 186/34 11/6 22/12 12/8 950/204 7/2 6/2 7/2 6/2

Our egg-based implementation. Our baseline consists
of two key rules: one that splits a trace into slices and another
that “rerolls” a slice into a loop.We illustrate these rules using
Example 5.1, by showing one speci�c sequence of rules that
rewrites � to % . Conceptually, we �rst apply a Split rule that
splits � to three slices:

[01, ··,059] ! Unsplit([[01, ··,040], [041], [042, ··,059]])
Then, we use a Reroll rule that yields two rewrites:

[01, ··,040] ! InnerLoop [042, ··,059] ! InnerLoop

In otherwords, these two slices are rewritten to two instances
of the inner loops of % . Note that now the e-graph contains
Unsplit([[InnerLoop], [041], [InnerLoop]]). The third rule we
apply is Unsplit which does the following rewrite:

Unsplit([[InnerLoop], [041], [InnerLoop]]) !
[InnerLoop,041, InnerLoop]

As one can imagine, we can apply the aforementioned rules
again to �nally generate % . While our current baseline only
supports selector loops without alternative selectors, it lever-
ages e-class analysis and is fairly optimized. Thus, we believe
it is still a good baseline to test the performance of a purely
rule-based, correct-by-construct synthesis approach.
Results and discussion.We evaluated this baseline on

all 9 benchmarks whose ground-truth programs involve only
selector loops and no alternative selectors. In particular, we
ran it on action traces of increasing length (from length 1).
Table 2 presents the synthesis time for the shortest trace, for
which it gives an intended program, across all benchmarks.
Our main take-away is that the baseline does not scale well.
In particular, it solved 7 tasks whose ground-truth programs
all have one single loop. b12, which requires synthesizing a
doubly-nested loop, took 200s. The most complex problem
is b56, which involves a three-level loop, and it did not ter-
minate in 5 minutes. On the other hand,W��R���� solved
all 9 benchmarks with at most 1 second.

8 Related Work
In this section, we brie�y discuss some closely related work.

RPA. As a relatively new topic, there is little work on RPA
until very recently [9, 34, 35, 62, 65]. Existing work mainly fo-
cuses on formalizing key concepts and the routine discovery
problem. In contrast, our work targets a di�erent problem of
how to help non-experts create automation programs, which
is also critical for fostering RPA adoption.

Web automation. Similar to web automation,W��R����
emulates user interactions with a web browser and hence
can be viewed as a form of web automation. Our work di�ers

from prior web automation work [1, 2, 4, 11, 16–18, 25, 36, 38,
39] in several ways. One notable di�erence is thatW��R����
is based on interactive PBD whereas prior techniques are
either program-centric or programmer-centric.

Interactive program synthesis. Di�erent from prior ap-
proaches [12, 23, 27, 29, 33, 60], which are mostly interactive
programming-by-example,W��R���� is based on interactive
programming-by-demonstration which is a natural approach
for web RPA. While action traces can be viewed as a form of
“examples”, it introduces a new challenge in how to de�ne
the correctness of a program against a trace. We use a form
of trace semantics for our language, which lays the formal
foundation for web RPA program synthesis.

Programming-by-demonstration (PBD). Existing PBD
techniques can be roughly categorized into two groups: those
that reason about user actions (e.g., Helena [18] and TELS [41])
and those that examine application states (e.g., Tinker [37]
and SMARTedit [30]).While almost all of them rely on heuris-
tic rules to generalize programs from demonstrations [31],
a notable exception is SMARTedit, which proposes a prin-
cipled approach based on version space algebras that could
generate programs from a short trace of states. Similarly, our
work contributes a principled approach but for action-based
trace generalization. In particular, we propose a rewrite-based
algorithm for synthesizing programs from a trace of actions.

Term rewriting.Term rewriting [21] has been usedwidely
in many important domains [15, 20, 28, 43, 48, 49, 54, 57,
59, 63]. Our work explores a new application for synthesiz-
ing web RPA programs from traces. Di�erent from existing
rewrite-based synthesis techniques [43, 63] which are mostly
purely rule-based and correct-by-construction, we leverage
the idea of guess-and-check in the overall rewrite process.
This new speculate-and-validate methodology enables and
accelerates web RPA program synthesis.

Program synthesis with loop structures. W��R���� is
related to a line of work that aims to synthesize programs
with explicit loop structures [18, 23, 47, 53]. The key distinc-
tion is that we use demonstrations as speci�cations, whereas
prior approaches are mostly programming-by-example.

Human-in-the-loop. W��R���� adopts a human-in-the-
loop interaction model which has shown to be an e�ective
way to incorporate human inputs when training AI systems
in the HCI community [19, 46]. This model has been used in
the context of program synthesis, mostly interactive PBE [24,
42, 44, 52, 61, 66]. In contrast, our work incorporates human
inputs in PBD and proposes a new human-in-the-loop model.

Acknowledgments
We thank our shepherd, Calvin Smith, the PLDI anonymous
reviewers, Kostas Ferles, Cyrus Omar, Shankara Pailoor, Chen-
glong Wang, and Yuepeng Wang for their feedback. We also
thank Yiliang Liang and Minhao Li for their help with our
egg baseline implementation. This work was supported by
the National Science Foundation under Grant No. 2123654.

165

WebRobot: Web Robotic Process Automation using Interactive Programming-by-Demonstration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Cypress Studio. h�ps://docs.cypress.io/guides/core-concepts/cypress-

studio.
[2] iMacros. h�ps://www.progress.com/imacros.
[3] Robotic Process Automation (RPA). h�ps://searchcio.techtarget.com/

definition/RPA.
[4] Selenium IDE. h�ps://www.selenium.dev/selenium-ide/.
[5] The Remarkable History of Robotic Process Automation (RPA). h�ps:

//nandan.info/history-of-robotic-process-automation-rpa/.
[6] UiPath Webinar. h�ps://www.uipath.com/

webinar-recording/your-own-idea-robot-studiox?
mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-
QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_
2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-
85mrFVUXZf2LawwpNcRPLTEDaZ9NM1.

[7] UiPath Webinar Slides. h�ps://start.uipath.com/rs/995-XLT-886/
images/StudioX_Webinar.pdf.

[8] XPath. h�ps://en.wikipedia.org/wiki/XPath.
[9] Simone Agostinelli, Andrea Marrella, and Massimo Mecella. 2020.

Towards Intelligent Robotic Process Automation for BPMers. arXiv
preprint arXiv:2001.00804 (2020).

[10] Tobias Anton. 2005. XPath-Wrapper Induction by Generalizing Tree
Traversal Patterns. In Lernen, Wissensentdeckung und Adaptivitt (LWA)
2005, GI Workshops, Saarbrcken. 126–133.

[11] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani.
2016. Ringer: Web Automation by Demonstration. In Proceedings
of the 2016 ACM SIGPLAN international conference on object-oriented
programming, systems, languages, and applications. 748–764.

[12] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn.
2015. FlashRelate: Extracting Relational Data from Semi-structured
Spreadsheets Using Examples. ACM SIGPLAN Notices 50, 6 (2015),
218–228.

[13] Alexander Baumgartner and Temur Kutsia. 2014. Unranked second-
order anti-uni�cation. In International Workshop on Logic, Language,
Information, and Computation. Springer, 66–80.

[14] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret.
2017. Higher-order pattern anti-uni�cation in linear time. Journal of
Automated Reasoning 58, 2 (2017), 293–310.

[15] James M Boyle, Terence J Harmer, and Victor L Winter. 1997. The
TAMPR program transformation system: Simplifying the development
of numerical software. InModern software tools for scienti�c computing.
Springer, 353–372.

[16] Sarah Chasins, Shaon Barman, Rastislav Bodik, and Sumit Gulwani.
2015. Browser Record and Replay as a Building Block for End-UserWeb
Automation Tools. In Proceedings of the 24th International Conference
on World Wide Web. 179–182.

[17] Sarah Elizabeth Chasins. 2019. Democratizing Web Automation: Pro-
gramming for Social Scientists and Other Domain Experts. Ph.D. Disser-
tation. UC Berkeley.

[18] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:
Scraping Distributed Hierarchical Web Data. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology.
963–975.

[19] Yan Chen, Jaylin Herskovitz, Walter S Lasecki, and Steve Oney. 2020.
Bashon: A Hybrid Crowd-Machine Work�ow for Shell Command
Synthesis. In 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 1–8.

[20] Miles Claver, Jordan Schmerge, Jackson Garner, Jake Vossen, and Je-
didiah McClurg. 2021. ReGiS: Regular Expression Simpli�cation via
Rewrite-Guided Synthesis. arXiv preprint arXiv:2104.12039 (2021).

[21] Nachum Dershowitz and Jean-Pierre Jouannaud. 1990. Rewrite sys-
tems. In Formal models and semantics. Elsevier, 243–320.

[22] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu
Wang. 2022. WebRobot: Web Robotic Process Automation us-
ing Interactive Programming-by-Demonstration (Extended Version).

http://arxiv.org/abs/2203.09993 (2022).
[23] Kasra Ferdowsifard, Shraddha Barke, Hila Peleg, Sorin Lerner, and

Nadia Polikarpova. 2021. LooPy: interactive program synthesis with
control structures. Proceedings of the ACM on Programming Languages
5, OOPSLA (2021), 1–29.

[24] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner,
and Nadia Polikarpova. 2020. Small-Step Live Programming by Ex-
ample. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. 614–626.

[25] Michael H Fischer, Giovanni Campagna, Euirim Choi, and Monica S
Lam. 2021. DIY Assistant: A Multi-Modal End-User Programmable Vir-
tual Assistant. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 312–
327.

[26] Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ra-
mamirtham, Rajeev Rastogi, Sandeep Satpal, Srinivasan H Sengamedu,
Ashwin Tengli, and Charu Tiwari. 2011. Web-scale information extrac-
tion with vertex. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 1209–1220.

[27] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-Output Examples. ACM Sigplan Notices 46, 1 (2011), 317–
330.

[28] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A goal-
directed superoptimizer. ACM SIGPLAN Notices 37, 5 (2002), 304–314.

[29] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Je�rey Heer.
2011. Wrangler: Interactive Visual Speci�cation of Data Transforma-
tion Scripts. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 3363–3372.

[30] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld.
2003. Programming by Demonstration Using Version Space Algebra.
Machine Learning 53, 1 (2003), 111–156.

[31] Tessa Ann Lau. 2001. Programming by demonstration: a machine learn-
ing approach. University of Washington.

[32] Tessa A Lau and Daniel S Weld. 1998. Programming by Demonstra-
tion: An Inductive Learning Formulation. In Proceedings of the 4th
international conference on Intelligent user interfaces. 145–152.

[33] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data
Extraction by Examples. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 542–
553.

[34] Volodymyr Leno, Adriano Augusto, Marlon Dumas, Marcello La Rosa,
Fabrizio Maria Maggi, and Artem Polyvyanyy. 2021. Discovering
Executable Routine Speci�cations from User Interaction Logs. arXiv
preprint arXiv:2106.13446 (2021).

[35] Volodymyr Leno, Stanislav Deviatykh, Artem Polyvyanyy, Marcello
La Rosa, Marlon Dumas, and Fabrizio Maria Maggi. 2020. Robidium:
Automated Synthesis of Robotic Process Automation Scripts from UI
Logs. CEUR Workshop Proceedings.

[36] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008.
CoScripter: Automating & Sharing How-To Knowledge in the Enter-
prise . In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1719–1728.

[37] Henry Lieberman. 1993. Tinker: A programming by demonstration
system for beginning programmers. In Watch what I do: programming
by demonstration. 49–64.

[38] James Lin, Je�rey Wong, Je�rey Nichols, Allen Cypher, and Tessa A
Lau. 2009. End-User Programming of Mashups with Vegemite. In Pro-
ceedings of the 14th international conference on Intelligent user interfaces.
97–106.

[39] Greg Little, Tessa A Lau, Allen Cypher, James Lin, Eben M Haber, and
Eser Kandogan. 2007. Koala: Capture, Share, Automate, Personalize
Business Processes on the Web. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 943–946.

166

https://docs.cypress.io/guides/core-concepts/cypress-studio%20
https://docs.cypress.io/guides/core-concepts/cypress-studio%20
https://www.progress.com/imacros
https://searchcio.techtarget.com/definition/RPA
https://searchcio.techtarget.com/definition/RPA
https://www.selenium.dev/selenium-ide/
https://nandan.info/history-of-robotic-process-automation-rpa/
https://nandan.info/history-of-robotic-process-automation-rpa/
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://www.uipath.com/webinar-recording/your-own-idea-robot-studiox?mkt_tok=OTk1LVhMVC04ODYAAAF8uBLrLqPW-QJHu_Hj1dkXeqK4JMZymY9EGBLkwL_2fSN8Kj2iwc09MVhHrBjf7PUkFUKBfYX-x-85mrFVUXZf2LawwpNcRPLTEDaZ9NM1
https://start.uipath.com/rs/995-XLT-886/images/StudioX_Webinar.pdf
https://start.uipath.com/rs/995-XLT-886/images/StudioX_Webinar.pdf
https://en.wikipedia.org/wiki/XPath

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang

[40] Toshiyuki Masui and Ken Nakayama. 1994. Repeat and Predict - Two
Keys to E�cient Text Editing. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 118–130.

[41] Dan Hua Mo. 1990. Learning Text Editing Procedures from Examples.
(1990).

[42] Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang,
Mayur Naik, and Mukund Raghothaman. 2021. Sporq: An Interactive
Environment for Exploring Code using Query-by-Example. In The 34th
Annual ACM Symposium on User Interface Software and Technology.
84–99.

[43] Chandrakana Nandi, Max Willsey, Adam Anderson, James R Wilcox,
Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthe-
sizing structured CAD models with equality saturation and inverse
transformations. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 31–44.

[44] Julie L Newcomb and Rastislav Bodik. 2019. Using human-in-the-
loop synthesis to author functional reactive programs. arXiv preprint
arXiv:1909.11206 (2019).

[45] Don Norman. 2013. The design of everyday things: Revised and expanded
edition. Basic books.

[46] Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. 2017.
On human intellect and machine failures: Troubleshooting integrative
machine learning systems. In Thirty-First AAAI Conference on Arti�cial
Intelligence.

[47] Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2021.
Synthesizing data structure re�nements from integrity constraints.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 574–587.

[48] Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary
Tatlock. 2015. Automatically improving accuracy for �oating point
expressions. ACM SIGPLAN Notices 50, 6 (2015), 1–11.

[49] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020.
Semantic code search via equational reasoning. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 1066–1082.

[50] Saikat Ray, Arthur Villa, Naved Rashid, Paul Vincent, Keith Guttridge,
and Melanie Alexander. 2021. Magic Quadrant for Robotic Process
Automation. h�ps://www.gartner.com/doc/reprints?id=1-26Q65VFT&
ct=210706&st=sb.

[51] Mohammad Raza and Sumit Gulwani. 2020. Web Data Extraction using
Hybrid Program Synthesis: A Combination of Top-down and Bottom-
up Inference. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1967–1978.

[52] Mark Santolucito, William T Hallahan, and Ruzica Piskac. 2019. Live
programming by example. In Extended Abstracts of the 2019 CHI Con-
ference on Human Factors in Computing Systems. 1–4.

[53] Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. Frangel:
component-based synthesis with control structures. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 1–29.

[54] Calvin Smith and Aws Albarghouthi. 2019. Program synthesis with
equivalence reduction. In International Conference on Veri�cation,
Model Checking, and Abstract Interpretation. Springer, 24–47.

[55] Armando Solar-Lezama. 2008. Program synthesis by sketching. Univer-
sity of California, Berkeley.

[56] Reudismam Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris
D’Antoni. 2021. Learning Quick Fixes from Code Repositories. In
Brazilian Symposium on Software Engineering. 74–83.

[57] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.
Equality saturation: a new approach to optimization. In Proceedings
of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 264–276.

[58] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and
Adrian Sampson. [n.d.]. Vectorization for Digital Signal Processors
via Equality Saturation Extended Abstract. ([n. d.]).

[59] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998.
Building program optimizers with rewriting strategies. ACM Sigplan
Notices 34, 1 (1998), 13–26.

[60] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil
Dillig. 2019. Visualization by example. Proceedings of the ACM on
Programming Languages 4, POPL (2019), 1–28.

[61] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung,
and Amy J Ko. 2021. Falx: Synthesis-Powered Visualization Author-
ing. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–15.

[62] Judith Wewerka and Manfred Reichert. 2020. Robotic Process
Automation–A Systematic Literature Review and Assessment Frame-
work. arXiv preprint arXiv:2012.11951 (2020).

[63] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and Exten-
sible Equality Saturation. Proceedings of the ACM on Programming
Languages 5, POPL (2021), 1–29.

[64] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality saturation for tensor
graph superoptimization. Proceedings of Machine Learning and Systems
3 (2021), 255–268.

[65] Dell Zhang, Alexander Kuhnle, Julian Richardson, and Murat Sensoy.
2020. Process Discovery for Structured Program Synthesis. arXiv
preprint arXiv:2008.05804 (2020).

[66] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glass-
man. 2020. Interactive Program Synthesis by Augmented Examples.
In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology. 627–648.

167

https://www.gartner.com/doc/reprints?id=1-26Q65VFT&ct=210706&st=sb
https://www.gartner.com/doc/reprints?id=1-26Q65VFT&ct=210706&st=sb

	Abstract
	1 Introduction
	2 Overview of WebRobot
	3 Web RPA Language and Trace Semantics
	3.1 Syntax
	3.2 Trace Semantics

	4 Web RPA Program Synthesis Problem
	5 Web RPA Program Synthesis Algorithm
	5.1 Top-Level Rewrite-Based Synthesis Algorithm
	5.2 Speculation
	5.3 Validation
	5.4 Incremental Synthesis
	5.5 Soundness and Completeness

	6 Human-in-the-Loop Interaction Model
	7 Evaluation
	7.1 Q1: Evaluating WebRobot's Synthesis Engine
	7.2 Q2: Ablation Studies of the Synthesis Engine
	7.3 Q3: Evaluating WebRobot End-to-End
	7.4 Q4: Comparison with Existing Rewrite-Based Synthesis Techniques

	8 Related Work
	Acknowledgments
	References

