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Abstract—The atomic snapshot object (ASO) can be seen as a
generalization of the atomic read/write register. ASO divides the
object into n segments such that each node can update its own
segment, and instantaneously scan all segments of the object.
ASO is a powerful data structure that has many important
applications, such as update-query state machines, linearizable
conflict-free replicated data types, generalized lattice agreement,
and cryptocurrency as in the form of an asset transfer object.

This paper studies ASO in asynchronous message passing
systems and proposes a framework for implementing efficient
fault-tolerant snapshot objects. Denote by D the maximum
message delay and & the actual number of failures in an
execution. Our framework derives two ASO algorithms:

« A crash-tolerant ASO algorithm that achieves O(vk - D)
time complexity for both update and scan operations, and
achieves amortized constant time operations if there are
Q(Vk) operations.

o A Byzantine ASO algorithm that achieves O(k-D) time com-
plexity for both update and scan operations, and achieves
amortized constant time operations if there is no Byzantine
node in a given execution.

The framework can also be adapted to implement sequentially
consistent snapshot objects (SSO) that complete scan operations
locally without any communication, and have the same time
complexity for update operations as in our ASO algorithms.

Index Terms—Atomic Snapshot Object, Sequential Snapshot
Object, Crash Failure, Asynchrony, Byzantine Failure

I. INTRODUCTION

The atomic snapshot object (ASO) is a concurrent object
[2], [3], [6], which is partitioned into n segments, one for
each node. Node ¢ can either update the i-th segment (single-
writer model), or instantaneously scan all segments of the
object. ASO is a powerful abstraction that has a wide spectrum
of applications, such as update-query state machines [23],
linearizable conflict-free replicated data types (CRDT) [37],
and generalized lattice agreement [21], [23]]. Prior works also
use ASO for solving approximate agreement [13]], randomized
consensus [4], [5], and implementing wait-free data structures
in shared memory [3]], [27]. Furthermore, ASO can be used for
creating self-stabilizing memory, and detecting stable proper-
ties to debug distributed programs (other example applications
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can be found in [15], [36], [38]]). Recently, Guerraoui et
al. [26] use ASO to implement a form of cryptocurrency (or
an asset transfer object). In essence, ASO simplifies the design
and verification of many important distributed algorithms and
concurrent data structures.

In message-passing systems, there are many algorithms for
emulating atomic read/write registers in the presence of crash
faults, e.g., [7], [8], [15], [32]. A simple way to implement
an ASO is to first build n SWMR (single-writer/multi-reader)
atomic registers, and then apply an ASO implementation
designed for the shared memory model, e.g., [2], [L1], [14],
[30]. As pointed out by Delporte et al. [19], this simple
stacking-based approach has a few drawbacks: (i) it introduces
unnecessary design and engineering complication due to the
stacking; and (ii) the complexity metric is often obscure. The
prior shared-memory ASO algorithms (e.g., [2[], [3]I, [6], [17])
are optimized for step complexity (i.e., the number of steps
taken by each process) and number of shared memory objects
used, whereas in message-passing systems, message and time
complexities (measured in the maximum message delay D) are
usually more important. It is not clear how shared-memory
ASO algorithms behave due to the complication introduced
by stacking, especially for those algorithms that use more
powerful memory operations like Test&Set (e.g., [11]).

In 2018, Damien Imbs et al. [29]] propose a new communi-
cation abstraction called Set-Constrained Delivery Broadcast
(SCD-Broadcast), which can be used to construct an ASO.
Only the best-case (or normal-case when there is no failure)
complexity is presented in the paper, which takes 2D time for a
scan operation and 4D time for a update operation. The lower
bound result from a recent PODC paper [28]] implies that 2D
and 4D are not the worst-case complexity for scan and update,
respectively. We believe that the worst-case complexity of the
ASO based on the SCD-Broadcast is O(k - D), where k is the
number of actual failures in an execution.

In 2018, Delporte et al. [19] present the first algorithm
for directly implementing an ASO in asynchronous message-
passing systems. In their implementation, each UPDATE op-
eration takes constant time, and each SCAN operation takes
linear time. In 2020, Attiya et al. [[12]] propose a store-collect
object in dynamic networks with continuous churn. The object



can be used to build an ASO, which takes linear time for both
UPDATE and SCAN operations. Another approach is to apply
lattice agreement algorithms in message passing systems [41]],
[42] to implement ASO [11]], which results into logarithmic
time. All the prior mentioned works tolerate only crash faults.

A. Main Contributions

Following the observations in [19]], we investigate ap-
proaches to directly implement snapshot objects in crash-prone
message-passing systems. Consider an asynchronous message-
passing systems with n nodes, with up to f < % crash
faults (or f < % Byzantine faults). We propose a framework
of implementing ASO and sequentially consistent snapshot
objects (SSO) [35]:

o A crash-tolerant ASO algorithm that takes O(v/k-D) time
for both UPDATE and SCAN operations, where k < f is
the number of actual failures in an execution. If there
are Q(v/k) operations, each operation takes amortized
constant time.

o A Byzantine ASO algorithm that takes O(k - D) time
for both UPDATE and SCAN operations, where k£ < f
is the number of actual failures in an execution. If there
are Q(vk) operations and no node is Byzantine, each
operation takes amortized constant time.

e Our SSO algorithms have the same time for UPDATE,
and enjoys fast SCAN operations, i.e., nodes complete
SCAN operations locally without any communication.

e« When there is no failure in an execution, all the algo-
rithms have constant time complexity unconditionally.

Our main contribution is the crash-tolerant ASO EQ-ASO,
named after our novel technique — equivalence quorum —
which allows nodes to check a local predicate to determine
whether it is safe to complete a SCAN operation. Due to lack
of space, we only present EQ-ASO with key proofs. Proof
details, Byzantine ASO, and crash-tolerant and Byzantine SSO
algorithms are presented in our technical report [25].

Time Complexity: Following [10], [29], [31], [34], we
measure time complexity and delays in time units of a global
clock, which is only visible to an outside viewer. No node has
access to the global clock. We further assume that a message
between any pair of nodes takes at most D units of time to be
delivered (i.e., maximum message delay), and there is no lower
bound on the message delay. D is only used for analyzing the
algorithms. Nodes do not have the knowledge of D, nor can
they measure it. Hence, our algorithms work correctly in the
typical assumption of asynchronous systems [15]], [32]E]

One common measure of performance in asynchronous
message-passing algorithms is the round complexity [[15]], [32],
which counts the number of rounds to complete an operation.
Our algorithms are not round-based like the ones in [7], [[19]];
hence, we express the time complexity of our algorithms in
terms of D, which has also been applied in prior works [10],
[29], [31], [34]. Observe that round complexity implies time

IReference [[10] proves that consensus is also impossible in this model even
with the assumption of a global clock and the time bound D.

complexity, because potentially each round takes O(D) time
to complete. This is also how we obtain the time complexity of
prior algorithms in Table [I The comparison between previous
closely related works that directly implement crash-tolerant
ASO in message-passing systems [12], [19], [29] and our
algorithms are presented in Table [, We are nor aware of any
algorithms that directly implement Byzantine ASO or SSO.
We discuss other related work in Section [V}

B. Other Contributions

We identify necessary and sufficient conditions for correctly
implementing ASO and SSO. Our conditions apply to both
message-passing systems and shared memory systems, since
we abstract away from the algorithm construction when speci-
fying the requirements on the ordering of operations in a given
execution history. Furthermore, we abstract a key component
of our snapshot object framework and adapt it to solve a (one-
shot) lattice agreement problem [11]]. The resulting algorithm
achieves O(vk - D) time complexity. It is the first early-
stopping lattice agreement algorithm that we are aware of.

II. PRELIMINARIES
A. System Model

We consider an asynchronous message-passing system com-
posed of n nodes with unique identifiers from {1,2,...,n}.
Each node has exactly one server thread and one client thread.
Client threads invoke SCAN or UPDATE operations, which can
have at most one SCAN or UPDATE operation at any time, i.e.,
a sequential node. Server threads handle incoming messages
(i.e., event-driven message handlers). At most f nodes may
fail by crashing in the system. We use k, where k < f, to
denote the actual number of failures in a given execution.

Each pair of nodes can communicate with each other by
sending messages along point-to-point channels. To simplify
our algorithm presentation, we further assume two nice proper-
ties of the channels. Channels are reliable and FIFO (First-In,
First-Out). “Reliable” means that a message m sent by node
1 to node j is eventually delivered to node j if j has not
already crashed. Intuitively, once the command “send m to
77 is completed at node ¢, the network layer is responsible
for delivering m to j. The delivery will occur even if node
1 crashes or becomes Byzantine after completing the “send”
command. Such a channel can be implemented by a reliable
broadcast primitive in asynchronous systems [[18]. FIFO means
that if message mq is sent before message msy by node i to
node j, then m; is delivered before msy at node j. For our
time analysis, we assume that any message is delivered within
D units of time. However, the correctness proofs do not rely
on the assumption of D.

B. The Snapshot Object

The snapshot object is made up of n segments (one per
node), and supports two operations: UPDATE and SCAN. Node
i invokes UPDATE(v) to write value v into the i-th segment of
the snapshot object. We adopt the single-writer semantic, i.e.,
only node ¢ can write to the i-th segment. The SCAN operation



TABLE I
CLOSELY RELATED WORK AND OUR RESULTS ON CRASH-TOLERANT SNAPSHOT OBJECTS

Reference Time: UPDATE Time: SCAN
Worst Amortized Worst Amortized
119] O(D) B O(n- D) -
[12] O(n - D) - O(n- D) -
129] O(k- D) O(D) O(k - D) O(D)
[41], [42] + [11] O(logn - D) - O(logn - D) -
EQ-ASO [this paper] Ok - D) O(D) O(k - D) O(D)
SSO-Fast-Scan [this paper] Ok - D) O(D) O(1) O(1)
Node 1 | op1: Update(1) op6: Update(4) -
Node 2 op2: Update(2) op5: Scan() = [4, 2, 3] P
Node 3 === op3: Update(3) op4: Scan() =[1, 2, 3] op7: Scan() = [4, 2, 3] —
A sequentialization: op2 op1 op3 op4 op6 op5 op7 —
A linearization: op1 op2 Op3 === O0P4 = OP6 = Op5 =—— OP7 P

Fig. 1.

(Top) An example execution history H, which is represented as a partially ordered set. (Middle) A sequentialization of H. (Bottom) A linearization

of H. The left (right) edge of the box represents the invocation (response) event. The value in the parentheses of UPDATE is the value that the node intends to
write to its own segment, whereas the segments returned by a SCAN is represented in the form of a vector — each entry of the vector represents the value of
the corresponding segment. The only difference between the sequentialization and linearization in this example is the order of opl and op2. In linearization,
the real-time constraint needs to be enforced; hence, opl has to be placed before op2.

allows a node to obtain an instantaneous view of the snapshot
object. More concretely, the SCAN returns a vector Snap,
where Snapli] denotes the value of the i-th segment of the
object. Before formally introducing the consistency property,
we present useful notions from the literature [16] to facilitate
the discussion. We will use Figure [T] as a working example
when presenting the notations.

A history is an execution of the snapshot object, which can
be represented using a partially ordered set (H, <z ). Here, H
is the set of invocation (¢nv) and response (resp) events of
the UPDATE and SCAN operations, and <y is an irreflexive
transitive relation that captures the real-time ‘“occur-before”
relation of events in H. In Figure [I] the left (right) edge of
the box represents the invocation (response) event. Formally,
for any two events e and f, we say e <y f if e occurs
before f in the execution. For two operations op; and ops,
we say opy — ops if resp(op1) <g inv(ops2). For example,
opl — op2 in Figure [I}

A history is sequential if the first event is an invocation
event, and every invocation event (except possibly the last)
is immediately followed by the matching response event. Let
H|i denote the set of all events that occur at node 7 in H.
Two histories .S and H are equivalent, denoted as S ~ H, if
and only if S|i = H]Ji, for each i € [n].

Definition 1. The sequential specification of the snapshot ob-
ject consists of all sequential history S where each SCAN op-
eration sc in S returns a vector Snap such that

o Snapli] = v, if UPDATE(v) is the most recent UPDATE
operation by node 1 that appears before scan sc in S;

o Snapli] = L, if no such UPDATE exists.

A history is legal if it belongs to the sequential specification
of the snapshot object. We are now ready to formally define
sequentially consistent and atomic snapshot objects:

Definition 2 (SSO [35]). « A history (H, <pg) of the snap-
shot object is sequentially consistent if there exists a legal
sequential history S such that S ~ H. We say that S is
a sequentialization of H.

o An implementation of the snapshot object is sequentially
consistent if each history is sequentially consistent. Such
a snapshot object is a sequential snapshot object (SSO).

Definition 3 (ASO [2]). o A history (H,<py) of the snap-
shot object is linearizable if there exists a legal sequential
history L such that L ~ H and L preserves the real-time
order of operations in H, i.e., if op — op’ in H, then op
is placed before op’ in L. L is a linearization of H.

o An implementation of the snapshot object is linearizable
(or atomic) if every history is linearizable. We call such
a snapshot object as atomic snapshot object (ASO).

Figure I]illustrates an example history, along with a sequen-
tialization and a linearization.

C. Notations

Table [[I] presents the notations and symbols that we will use
in the rest of the paper.

III. ALGORITHM EQ-ASO

We begin with a warm-up on the “one-shot ASO” problem,
in which each node invokes at most one UPDATE operation.
We discuss a key challenge for an efficient implementation,
followed by an introduction of our main technique, equiva-
lence quorum. Next, we present our algorithm EQ-ASO for



TABLE II

COMMONLY USED NOTATIONS
Symbol Definition
n number of nodes
f upper bound on the number of faulty nodes
k number of actual failures in an execution, k < f
D upper bound on the message delay
op1 — op2 | op1 occurs before opo; that is, the response of opi

occurs before the invocation of opa
H history, an execution of a snapshot represented as a
partially ordered set

Ui.n set of UPDATE’s by node ¢ in history H

U= all UPDATE’s in U; g that occur before op and includes
op

B Base of a SCAN (Definition |4

EQ(V;,1) A predicate used in our technique — equivalence quorum
(Definition [6)

Vils] Node 7’s view of the set of values (and UPDATE’s) that

node j has learned so far

implementing a (multi-shot or a long-lived) ASO, followed
by the correctness proof and time complexity analysis. Our
algorithm is correct given n > 2f, and achieves amortized
constant time complexity if there are Q(\/E) operations, where
k is the number of crash faults in a given execution. If
there is no failure, EQ-ASO achieves constant-time operations
unconditionally.

A. Tight Conditions for ASO

We first present necessary and sufficient conditions for cor-
rect ASO implementations. Our conditions consider a history
(a partial order on UPDATE and SCAN operations) for a given
execution of an atomic snapshot object implementation A. If
the history satisfies our conditions, we provide a mechanism
to identify serialization points so as to satisfy the atomicity
property of A. Hence, if all the possible executions of A satisfy
our conditions, then A correctly implements ASO. We also
show that the conditions are necessary by arguing that if any
of the conditions is violated, then it is impossible to identify
a linearization in some history of A. Similarly, we identify
tight conditions for SSO (in [25]]), which also shed light on
the difference between atomicity and sequential consistency.
Later we show that our algorithm satisfies these conditions.

Useful Definition and Lemmas: To facilitate the discus-
sion, we define the notion of base of a SCAN operation.
Without loss of generality, we assume that all UPDATE op-
erations are uniqueE] Consider a given history of the snapshot
object H. Let U; i denote the set of UPDATE operations by
node ¢ in history /. For any UPDATE operation op € U; g,
we use Ufflp to denote all UPDATE operations in U; g that
occurs before op and includes op. For completeness, we also
introduce a special operation that writes L to each segment
at initialization, called a NULL operation. If op is an NULL
operation, then UEIZP = (). Since each node is assumed to

2This can be easily achieved by piggybacking a sequence number and a
writer ID. Moreover, since there is at most one pending operation for each
node, UPDATE operations originating from the same node can be ordered
sequentially. That is, for any two updates originating from the same node, one
can tell which update occurs earlier (by comparing the sequence number).

be sequential, Ufﬁp is well defined. In Figure |I| Uy p =
{UPDATE(1), UPDATE@)}, USSP — (UpDATE(1)}, and
UEEPDATE(‘D = {UPDATE(]), UPDATE(4)},

Definition 4 (Base of SCAN). Consider a SCAN operation sc
that returns the vector Snap in H. For each i € [n), let op;
denote the UPDATE operation at node i that writes the value
Snapli] or a NULL operation if Snap[i]| = L. The base of sc
n
with respect to H is then defined as the set | Uffolp ’
i=1
For a given history, denote by B, the base of a SCAN oper-
ation sc. For a slight abuse of terminology, we use Bi[i]
to denote the set of UPDATE’s by node ¢ in Bg.. In our
presentation below, B is always used to denote a base.

Definition 5 (Comparable Bases). The bases By and Bs of two
SCAN operations are comparable if B1 C By or By C Bj.

Consider the execution in Figure the base of opd
is {UPDATE(1), UPDATE(2), UPDATE(3), UPDATE(4)}. The
base of op4 is {UPDATE(1), UPDATE(2), UPDATE(3)}. These
two bases are comparable.

Necessary and Sufficient Conditions: We present the tight
conditions for ASO in Theorem |1 Our conditions are inspired
by the observations made in prior works studying ASO in
shared memory [11], [12f, [[14]f], [19].

Theorem 1. An implementation of the snapshot object is
linearizable if and only if all of the following conditions are
satisfied in each history H:

(A1) The bases of any pair of SCAN operations in H are
comparable.

(A2) The base of a SCAN operation contains all UPDATE
operations that precede it in H.

(A3) For two SCAN operations scy and scs, if sc; — Sco in
H, then the base of sco is at least the base of scy, i.e.,
Bscl Cc BSCQ'

(A4) If an UPDATE op belongs to the base of a SCAN sc, then
all UPDATESs that precedes op in H must belong to base
of sc.

In [25]], we present the full proof for the theorem above.
The following is the high-level steps that we use to construct
a linearization for any given history that satisfies the above
conditions, which proves the sufficiency part.

o Step I: construct a sequence L’ of all SCAN operations
ordered by their bases. For any two SCAN ’s with the
same base, they are ordered in L’ by their real time order.

o Step II: construct a linearization L by inserting all UP-
DATE operations in L’ as follows. An UPDATE operation
is placed before the first SCAN operation in L’ whose
base contains it. For any two UPDATE operations placed
between the same pair of SCAN operations, order them
by their real-time order.

B. One-shot ASO: Key Challenge

Among the four conditions identified for an ASO algorithm,
condition (A1) is the most non-trivial to achieve efficiently.



op4: Scan() =[u, 1, V]

Node 1 op2: Update(u) ﬂ / \
Node 2 \ﬁ V \
Node 3 { op1: Scan()=[1, 1, 1] M op3: Update(v)

>
>

op5: Update(w)

Fig. 2.

op6: Scan()

An example execution history of the one-shot ASO. Black arrows denote the values sent by the UPDATE operations, whereas blue arrows denote

the forwarded values. White box represents the moment when a node forwards a value. The base (Definition E]) and predicate EQ (Definition @) for the

SCAN operations are presented below:
- When opl is invoked, V3[1] = V3[2] = V3[3] = {}, and the base is {}.

- When op4 is invoked, V1[1] = V1[3] = {u, v}, and the base is {op2, op3}.

- When op6 is invoked, V3[1] = {u, v}, V3[2] = {w}, V3[3] = {u, v, w}, so it cannot be returned yet. It has to wait for forwarded values (blue arrows)

from either node 1 or 2 so that the predicate EQ(V3,3) becomes satisfied.

With a proper integration, the other three conditions can be
satisfied by typical techniques that ensure quorum intersection.
Prior works on ASO in message-passing systems [12], [19]
rely on a technique called double-collect to ensure (Al).
Double-collect is used in many shared-memory algorithms,
e.g., [2], 15[, [24], and based on a simple principle: if two
consecutive “collect” operations (i.e., reading values from a
majority of nodes) return the same set of values, then no update
has been applied concurrently. Essentially, this principle allows
one to treat a double-collect as occurring instantaneously,
which is important for identifying a linearization for a given
execution. A major downside of double-collect is its time
complexity, even in the case of one-shot ASO. Since nodes
may invoke UPDATE concurrently, a naive application of
double-collect incurs O(n- D) time for SCAN operations. This
occurs when a node has to keep collecting new information to
complete the double-collect, i.e., obtaining matching consec-
utive collects.

C. Our Main Technique: Equivalence Quorum

While double-collect is natural in shared memory, we make
a key observation that in message-passing systems, a node can
proactively notify others regarding new information. Double-
collect requires nodes to query others to learn new UPDATE
operations, whereas we ask each node to proactively forward
values from new UPDATE operations. Consequently, a node
only needs to check a local predicate to determine whether
comparable bases can be obtained.

We formalize the approach as the equivalence quorum,
which is inspired by the stable vector by Attiya et al. [9]
and Mendes et al. [33]. Each node ¢ maintains a vector of
value sets V; for storing incoming values forwarded by each
node (including ones from ¢). If ¢ is clear from the context, we
often omit it for brevity. For node ¢, V;[1,...,n] is a vector
of size n, where for each j € [n], V;[j] is a set of values. We
then define the predicate EQ(V,4) that needs to be checked
locally by node <.

Definition 6 (Predicate EQ(V,4)). EQ(V, i) is true iff 3Q C
{1,---,n} st |Q|>n—fAV[j]=VIi],Vj € Q. When the
predicate is true, we call QQ as the equivalence quorum and
V'[i] as the equivalence set.

Consider an example with n = 3. Suppose node 1’s vector is
as follows: V1[1] = {u,v}, V1[2] = {} and V1[3] = {u,v}. In
this case, EQ(V4, 1) holds. {1, 3} forms a equivalence quorum,
and {u,v} is the equivalence set.

The equivalence set is a set of values, whereas the base
of a SCAN is a set of UPDATE operations. Recall that we
assume that all UPDATE operations are unique. Hence, each
value corresponds to a unique UPDATE operation, and we can
obtain a set of UPDATE operations by replacing each value
with its corresponding UPDATE. Later in Section [[II-E| we
formalize a mapping between equivalence sets and bases.

One-Shot ASO based on Equivalence Quorum: To im-
plement a one-shot ASO, each UPDATE operation sends its
value to all other nodes and waits for a quorum of acknowl-
edgements. Upon receiving a new value from node j, node
i first adds the value into V;[¢] and V;[j], and then forwards
the value to all other nodes. Due to our assumption of FIFO
channels, V;[j] essentially represents i’s view of the set of
values (and UPDATE’s) that node j has learned so far. A
SCAN operation at node i needs to wait until the EQ(V;, 1)
predicate becomes true and obtains the corresponding equiva-
lence set V*. The SCAN operation then returns a vector Snap
defined as: Snap[j] = v if v € V* and v is written by node
J; otherwise Snap[j] = L.

Consider an illustration in Figure 2] Black arrows denote the
values sent by some UPDATE operation, whereas blue arrows
denote the forwarded values. In the example, we have

« opl returns immediately at node 3, as V3[1] = V3[2] =
V3[3] = {}. By definition, both the equivalence set and
the base of opl are {}.

 op4 returns immediately at node 1, as Vi[1] = V;[3] =
{u,v} and V1[2] = {}. The equivalence set is {u,v};
hence, the base of op4 is {op2, op3}.

e 0p6 cannot return, because V3[1] = {u,v}, V3[2] = {w}
and V3[3] = {u,v,w}. Node 3 has to wait for more for-
warded values from either node 1 or 2 so that EQ(V3, 3)
becomes true. Once it is able to return, op6 must return
{u,v,w}. This is because V3[3] = {u, v, w}. The base is
then {op2, op3, op5}.

If op6 returns, then bases of all three SCAN operations are
comparable with each other. This is not by coincidence, and



is indeed due to the design of equivalence quorum. Observe
that the predicate EQ(V;, ) is true if there exists a quorum of
at least n — f nodes (i.e., equivalence quorum) such that the
set of values sent by these nodes to node ¢ is identical to the
set of values known by node i (values stored in V;[é]). This
design leads to the following observation:

Observation 1. For any nodes i, j, s, V;|s] at some time t and
Vjls] at some time t' are always comparable. (Time t might
or might not equal to t'.)

The observation holds because (i) V;[s] and Vj[s] are the set
of values received from node s; (ii) each node is sequential;
and (iii) the communication channel is FIFO. Based on the
observation, we show the following key lemma that can be
used to show comparable bases.

Lemma 1. When EQ(V;,1) and EQ(V}, j) are both true, V;]i]
and Vj[j] are comparable.

Proof. When EQ(V;,¢) and EQ(V}, j) hold, there exist quo-
rums @; and Q; of size > n — f such that V;[i] = V;[k]
for each k& € Q; and V;[j] = Vj[k| for each k£ € Q. From
Observation (1| and the fact that |Q); N Q;| > 1, we have that
Vi[i] and Vj[j] are comparable. O

A key benefit of our technique is time complexity, especially
in the failure-free execution. Consider an extreme case when
every message suffers delay D and no node crashes. In this
case, every operation terminates in 2D time, even if there are
concurrent operations. On the contrary, double-collect could
still take roughly nD time, when one UPDATE is concurrent
with exactly another UPDATE. We will defer a more thorough
analysis on the time complexity to Section

D. From One-Short to Multi-Shot ASO

Now consider the general case of ASO, where nodes can
invoke any number of UPDATE operations. In this case, the
simple mechanism of forwarding and checking predicate no
longer works, because EQ(V;, i) may never be satisfied when
there are concurrent and infinite number of UPDATE’s. One
straightforward idea is to associate a tag (or a sequence num-
ber) with each value and the equivalence quorum predicate.
Concretely, let V=" denote the set of values with tag < r
in V. Node i can then wait for EQ(‘/;ST,i) to be true and
return the most recent values (with respect to the tags) in
the equivalence set. However, this solution does not ensure
comparability, i.e., when both EQ(V/",4) and EQ(VJ?"/,j) are
true, the two equivalence sets are not necessarily comparable.
Our technical report [25] presents such an example.

We present algorithm EQ-ASO, which is inspired by [11].
The pseudo-code is presented in Algorithm [I] Our key innova-
tion lies in the usage of proactive forwarding and equivalence
quorum. Before delving into details, we present two more
techniques to integrate equivalence quorum with the rest of
the algorithm.

Lattice Operation and Lattice Renewal: We use two
techniques to address the comparability issue:

(T1) After EQ(VFT, 1) becomes true, node i does not imme-
diately return the corresponding equivalence set. Instead,
it checks whether tag r is the largest tag that it has
received so far. If yes, node ¢ returns the/equivalence
set; otherwise, it continues to wait EQ( f" ,1) to hold,
where 1’ > r is the largest tag it has received so far.

(T2) If node i keeps receiving a larger tag due to a concurrent
UPDATE, its equivalence quorum predicate might never
be satisfied. We use the “borrowing” technique — node
1 borrows an equivalence set from another node after it
has already satisfied the equivalence predicate for three
different tags.

Our algorithm is designed in a way that node ¢ either obtains
an equivalence set or borrows an equivalence set from some
other node. We call the process of collecting values to satisfy
the equivalence predicate as a lattice operation Recall that
each value written by the UPDATE is assigned a tag. Hence,
by “nodes participate in lattice operation with the same tag,”
we mean that these nodes try to collect values to satisfy
equivalence quorum with the same tag.

To facilitate the discussion, we present the notion of “view,”
which represents a set of values that is observed by a node <.
At some point of time, the view satisfies the predicate EQ(V )
with a certain tag (after collecting enough values with the tag).
Node ¢ then uses techniques (T1) and (T2) to determine which
view is safe to return. View should not be confused with the
notion of base defined in Definition 4] “View” is a set of values
that is defined with respect to different operations (including
lattice operations), whereas “Base” is a set of operations that is
defined with respect to a SCAN operation. There indeed exists
a one-to-one mapping between view and base as we will show
later.

In EQ-ASO, UPDATE and SCAN operations might need
to invoke multiple lattice operations. Depending on the tag
observed locally, an operation may obtain a direct view
(technique (T1)) or an indirect view (technique (T2)). We use
the term “lattice renewal” to refer to the process of invoking
lattice operations and determining the view to be returned.

Algorithm Description and Pseudocode: For readability, we
adopt the thread-based and event-driven presentation following
the prior work, e.g., [8]], [12]. In practical implementation, a
process-based framework could potentially be used to improve
efficiency by using shared memory for communication. We
first describe key variables, followed by the procedures and
message handlers.

Variables: Each value (written by UPDATE) is associated
with a timestamp of the form (r, j), where r is the tag and j
is the ID of the writer who initiates the UPDATE. The exact
value of the tag in a timestamp is determined in the UPDATE
operation. For brevity, we often use value to denote a value-

3 [25] abstracts and adapts the lattice operation into an early-stopping
algorithm for solving the lattice agreement problem [[11].



Algorithm 1 ASO: Code for node ¢

Local Variables: /* These variables can be accessed and modified by any thread at 7. */

VI[1---n] pvector of
maxTag >integer,

DI[1---n]

Derived Variable:

views’’. V[j] is the set of values received from j
largest tag ever seen via “writelag”, “echoTag” messages.

>vector of views from good lattice operations.

VST [VIIST, V257, VST bvector of ‘‘views’’ w/ tag at most r
Initialization: 31: Snap < [1,--- ,n]
LV~ [0,0,--,---,0] 32: for j=1ton do
20 D« [0,0,---, - ,0] 33:  Snaplj] + v, where (v, (¢, 5)) € S, and

3: maxTag < 0

When UPDATE(v) is invoked:
. 17+ readTag()

ts < (r+1,1)
Send (“value”, (v, ts)) to all
Lattice(r) >Phase 0

r’ < max{r + 1, mazTag}
updateView < LatticeRenewal(r’)
Return ACK

VRN

1

When SCAN() is invoked:

11: r + readTag()

12: scanView < LatticeRenewal(r)
13: Return extract(scanView)

/* Helper procedures */
Procedure Lattice(r):
14: writeTag(r)
15: Wait until EQ(V=",4) = True
/* Execute lines [L6] to line 21] atomically */
16: V* « equivalence set of satisfied EQ(V=S", 1)
17: if maxTag < r then
18:  Send (“goodLA”,r) to all
19:  Return (true, V")
20: else
21:  Return (false, )

Procedure LatticeRenewal(r):

22: for phase < 1 to 3 do

23:  (status,view) < Lattice(r)
24:  if status = true then

25: Return view >Direct View
26:  else if phase = 3 then
27: Break

28: 1<+ maxTag

29: Wait until receiving (“goodLA”,r)
from some node j

30: Return D[j] >Indirect View

Procedure extract(S):

t’ is the largest tag of j’s values in S
34: Return Snap

Procedure readTag():
35: Send (“readT’ag”) to all
36: Wait until receiving
>n— f (“readAck”, ) msgs
37: Return largest tag contained in read Ack msgs

Procedure writeTag(tag):
38: Send (“writeTag”,tag) to all
39: Wait until receiving
>n— f (“writeAck”,tag) msgs

/* Event handlers: executing in background */
/* All event handlers executed atomically */
Upon receiving (“value”, (u,ts)) from node j:
40: Add (u,ts) into V'[j], V]

41: if (u,ts) has not been seen before then

42:  Send (“value”, (u,ts)) to all

Upon receiving (“writeTag”,tag) from node j:
43: if tag > maxTag then

44:  maxTag < tag

45:  Send (“echoTag”,tag) to all

46: Send (“writeAck”,tag) to node j

Upon receiving (“echoTag”,tag) from node j:
47: maxTag < max{mazTag,tag}

Upon receiving (“readT'ag”) from node j:
48: Send (“readAck”,maxTag) to node j

Upon receiving (“goodLA”r) from node j:
49: D[j] + V[j]=" bborrow node j’'s view

/* NOTE: All our event handlers are atomic;
hence, when receiving a (“goodLA”, x)
Line 49 will be executed before Line 29
if there is a pending Lattice Renewal() */




timestamp pair. Recall that for a set of values U, we use US"
to denote the subset of values in U with tag at most r.

At all time, each node ¢ keeps track of a vector V; of size
n, which represents the vector of “views” at node ¢. Formally,
for j € [n], V;[j] is the set of written and/or forwarded values
that ¢ has received from node j. In our design, each node @
needs to forward a value it receives for the first time. In this
case, we say a value is forwarded by . Two other variables are
related to V;: (i) Vig is the vector of views with tag at most
r,ie., VST = [V[1]S7, V[2]S7, ..., V[n]="]; and (i) D;[j] is
a particular view borrowed from node j that can be “safely”
returned. The meaning of “safe” will become clear when we
discuss the lattice operation.

Each node also keeps track of a variable maxT'ag, which
represents the largest tag it has ever received via “writeTag”
messages or “echoT’ag” messages. Note that it is possible that
there are some values with tag larger than maxTag in V;. We
now describe the procedures.

Lattice(r): Each node uses the Lattice(r) procedure to
invoke lattice operation with tag r. The goal is to check
whether the equivalence quorum is satisfied (technique (T1)
discussed before). Consider a Lattice(r) invocation at node i.
It first writes the input tag r to at least n— f nodes. Then node
i waits until the equivalence quorum predicate (Definition [6])
becomes true for the first time. After that if the maxTag
value is strictly larger than r, then the lattice operation returns
(false, D). Otherwise, it returns (true, V*), where V* is the
equivalence set. In this case, Lattice(r) is said to be a good
lattice operation.

LatticeRenewal(r): The LatticeRenewal(r) procedure
also has a parameter r. The goal of this procedure is to
determine which view to return. It invokes atr most three
lattice operations, as outlined in technique (T2). If some lattice
operation is good, the Lattice Renewal(r) returns the view
obtained by the good lattice operation, i.e., direct view. If the
first two lattice operation are not good, then by definition, it
means that node 7 has observed a larger tag, i.e., condition
at line returns false. Therefore, node 4 initiates the next
lattice operation with tag equal to mazT'ag. If the third lattice
operation is also not good, then node ¢ waits for a “good L A”
message from some other node j to obtain a view from j’s
good lattice operation. In this case, the view is called an
indirect view.

Update(v): To write value v, node ¢ first obtains a tag by
reading from at least n — f nodes. Let r denote the largest
tag in the received readAck messages. Then, ¢ constructs
the timestamp of value v as the (r + 1,4) tuple. It sends
value v with its timestamp to all nodes. Then, a lattice
operation with tag r is invoked. This step is called the
phase-0 lattice operation of the UPDATE operation. After
the phase-0 lattice operation, the UPDATE obtains a new tag
r’ and executes LatticeRenewal(r’). The view returned by
LatticeRenewal(r') is not used; and hence discarded. Node
1 returns the ACK to complete the UPDATE.

A subtle point here is that the operation executes the phase-
0 lattice operation before invoking Lattice Renewal(r). The

way we devise them ensures that for each tag, there is always
a good lattice operation. Intuitively, this operation ensures that
each node is able to obtain a comparable view.

Scan(): SCAN first obtains a tag 7, and executes the
Lattice Renewal(r), which returns a view scanView. Then
it returns the most recent value by each node in scanView
by executing the extract(scanView) procedure.

Message Handlers: All the handlers execute in the back-
ground atomically. That is, even if a node does not have a
pending UPDATE or SCAN operation, it continues processing
messages, and during the period that a handler is executing,
no other part of the code can take step. One subtle part to
note is that a node does not update its mazTag variable
when it receives a value with a larger tag from a “value”
message. The maxTag variable is only updated when a node
receives a “writeTag” message or “echol’'ag” message. This
design helps EQ-ASO achieve the desired time complexity.
Especially, we rely on this design to prove that there is a good
lattice operation for each tag.

E. Correctness of EQ-ASO

For correctness, we show that (i) each operation in EQ-
ASO terminates, and (ii) each possible execution history
of EQ-ASO satisfies conditions (A1)-(A4) presented earlier.
First, we formally define important terms and concepts.

Definition 7 (Tag of UPDATE or SCAN ). The tag of an
UPDATE or SCAN is the tag of its last lattice operation.

Definition 8 (Timestamp/Tag of a value). The timestamp of
a value v is the (r + 1,i) (tag-ID tuple) at line |5| in the
UPDATE(v) procedure. The tag of a value is defined as the
tag contained in its timestamp. For value v, we use ts, to
denote its timestamp and tag, to denote its tag.

Definition 9 (View). We define the views for a node and
operations as below:
e For a node 1, its view at some time t is defined as the set
Vili] at time t.
o For a good lattice operation with tag T (Lattice(T)) by
node 1, its view is defined as the set of values it returns.
e For an UPDATE or SCAN, its view is defined as the set
of values returned by its Lattice Renewal() call. We say
that an UPDATE or SCAN operation obtains a direct view
if its Lattice Renewal() call returns at line ' otherwise
it obtains an indirect view.

Termination: Later in Section [III-H we show that a lattice
operation takes O(v/k - D) time to complete, where k < f
is the number of actual faults in an execution. Since each
lattice operation terminates, the only blocking part left in EQ-
ASO is line 29| of the Lattice Renewal() procedure. To show
line eventually returns, we claim that there exists a good
lattice operation for each tag. This is primarily guaranteed by
the use of the phase-0 lattice operation at line [/} Intuitively,
suppose node ¢ is the first node that writes tag r in its
LatticeRenewal() call, then the phase-0 lattice operation
(with tag » — 1) of node ¢ must be a good lattice operation.



Our algorithm also ensures that the tags are non-skipping, i.e.,
if there is a tag r, there must also be a tag » — 1. Thus, there
must be a good lattice operation for each tag. Consequently,
we can show that Lattice Renewal() either obtains a direct
view or borrows an indirect view. Therefore, we can show that
each operation in EQ-ASO terminates.

Conditions (Al)-(A4): The full proof is presented in [25]
due to lack of space. We first present a one-to-one mapping
between the view of a SCAN operation and its base. For any
SCAN operation sc with view Views., we use V By, to denote
the set of UPDATE’s if we replace each value in Viewg, with
its corresponding UPDATE operation. We call V B, as the
“view-induced base” of sc. We show in our technical report
that the view-induced base is equivalent to the base as defined
in Definition 4] In the sequel, we always use B, to denote the
base of a SCAN operation sc and V By, to denote the view-
induced base of sc. To prove condition (Al), we only need to
show the following lemma which relies on our usage of lattice
operation and the equivalence quorum predicate.

Lemma 2. The views of any pair of good lattice operations
are comparable.

Proof Sketch. First observe that for any two nodes ¢ and j
and tag T, the set V;[s]<T at time ¢ and the set V;[s]<7 at
time ¢’ are comparable for any time ¢ and ¢’ and any s € [n].
Note that this observation is a generalization of Observation [I]
presented earlier. Now, consider any two lattice operations op;
and op; with tag T; and T}. If T; = T}, then the observation
and the equivalence quorum predicate together imply that their
views must be comparable. Otherwise, assume without loss of
generality, T; < T}. Our algorithm guarantees that the view of
op; must be a subset of the view of op;. Intuitively, the fact
that op; does not observe T} at line [17] implies that op; must
complete its line (14| after op; has completed. This ensures that
op; must have received all values in the view of op; when op;
starts line O

The key to prove conditions (A2) and (A3) is to show the
following lemma.

Lemma 3. Consider any two operations op; by node i and
op; by node j with views View; and View;, respectively. If
op; — opj, then View; C View;.

Proof Sketch. Consider any two operations op; with tag T;
and op; with tag T, respectively. Due to the way EQ-ASO
reads and writes tags, we have that if op; — op;, then T} <
T};. Based on this observation and the property of equivalence
quorum, we can argue that View; C View;. This is because
for op; to satisfy the equivalence quorum predicate, it must
wait for values with tag 7%. Due to quorum intersection, at
least one node must have already observed View;. O

Lemma 4. (Al)-(A4) hold for each history of EQ-ASO.

Proof Sketch. e (Al): This is based on (i) one-to-one map-
ping between view and view-induced base; (ii) the ob-

servation that view of a SCAN operation is same as the
view of some good lattice operation; and (iii) Lemma [2}

o (A2): Let op = UPDATE(v) be an UPDATE operation and
sc be a SCAN operation such that op — sc, we need to
show that op € B,.. We claim that v € View,,. Lemmal[3|
implies that View,, C View,.. So, we have v € View,,.
Thus, op € B, by the one-to-one mapping.

e (A3): Let sc; and scy be two SCAN operations such that
sc1 — sca, we show that V Bs., € V Bs,,. This can be
immediately obtained from Lemma 3]

e (A4): Let sc be a SCAN operation, UPDATE(u) and
UPDATE(v) be any two UPDATE operations such that
UPDATE(u) — UPDATE(v) and UPDATE(v) € B,.. We
need to show that UPDATE(u) € B,.. Let node 7 be
the node that executes UPDATE(v). Since UPDATE(u) —
UPDATE(v), we know that before UPDATE(v) starts, value
u has been received by a quorum of nodes and sent out to
all. Thus, when UPDATE(v) reads tag (via a “readl'ag”
message) from a quorum of nodes at line ff] node ¢ must
have received value u from at least one node due to the
assumption of FIFO channel. Hence, node ¢ must send
value u to all before sending value v. Therefore, any node
which receives value v must have already received value
u. Thus, UPDATE(u) € Bi,.

O

Lemma E] and conditions (A1)-(A4) imply that EQ-ASO
correctly implements ASO.

F. Time Complexity of EQ-ASO

To ensure that each lattice operation terminates in O(v/k-D)
time, EQ-ASO uses a simple approach: increment tags and
invoke lattice operation(s) in a way that later UPDATE does
not prevent the progress of existing lattice operations. Con-
cretely, consider a lattice operation with tag T', Lattice(T),
that starts at time t. EQ-ASO ensures that (i) all values from
UPDATE operations that start after time ¢ + D must have tag
strictly greater than 7'; and (ii) slow writers that participate in
Lattice(T) after time ¢ + D do not introduce any new value
with tag T'. These two properties along with a “failure chain”
argument can be used to prove that the lattice operation in
EQ-ASO takes O(Vk - D) time in the worst case.

Brief Analysis: We present a brief analysis below due to
page constraints. The full proof is presented in our technical
report [25]. We first show that each lattice operation takes
Ok - D) time.

Definition 10 (Exposed value in an interval). We say a value
v is an exposed value in interval [t,t + D] if some non-faulty
node receives v in interval [t,t + D), and no non-faulty node
has received v before time t.

The lemma below follows from Definition and the
observation that 2D is long enough for all non-faulty nodes to
learn up-to-date information if there is no exposed value due
to the proactive forwarding design.



Lemma 5. [Termination Without Exposed Value] Let L be a
lattice operation that starts at time t with tag T. If there is
no exposed value with tag < T in some interval [t',t' + 2D]
where t' > t, then L terminates by time t' + 2D.

We introduce the notion of failure chain for an exposed
value as below.

Definition 11 (Failure chain of an exposed value). A sequence
of nodes pi1,pa,...,pm Is said to form a failure chain of an
exposed value v if (i) p1,p2,...,Pm—1 are faulty, and p,, is
correct; (ii) p1 executes UPDATE(v); (iii) p; receives value v
from p;_1; and (iv) For 1 < i < m — 1, p; crashes while
sending (v, p;) to other nodes, i.e., p1 crashes when executing
line [l and pa, ..., pm—2 crash when executing line

Definition [T1] and a simple counting argument give us the
following two lemmas.

Lemma 6. Suppose value v is sent to all at time t at line [6]
of UPDATE(v). If value v is an exposed value in some interval
[t',t' + D] where t' > t, then value v has a failure chain of
length at least t%t + 1.

Lemma 7. For any two exposed values v and u with failure
chain P, and P, respectively. Then, the first |P,| — 2 nodes
in P, and the first |P,| — 2 nodes in P, are disjoint.

These two lemmas imply that each exposed value in some
interval can be associated with a unique set of faulty nodes.
Since the number of faulty nodes are bounded by k, the
number of consecutive intervals of length 2D with exposed
values can also be bounded. Along with Lemma [5] we have:

Lemma 8. If there is < k faulty nodes in an execution, each
lattice operation takes O(Vk - D) time.

We use Lemma [§] and the following two observations to
derive the worst-case time complexity of EQ-ASO, O(Vk -
D), and its amortized constant time complexity:

o Each UPDATE or SCAN operation invokes at most three
lattice operations;

e Once a faulty node crashes, it will never introduce an
exposed value by definition. In other words, it will never
delay any further operation.

Amortized complexity analyzes the “average” time the algo-
rithm takes to complete an operation given the worst possible
failure and delay pattern. Due to the second observation above,
the amortized time improves, as the worst-case performance
for a small number of operations becomes ‘““averaged out” over
enough operations.

Since the worst-case occurs with a particular failure and
message delay pattern (i.e., failure chain argument in Defini-
tion @ we envision that it will not be the common case in
practice. Note that the performance is degraded by failures in
terms of k. For amortized time, k£ does not show up, because
our algorithm achieves constant time complexity if there are
at least v/k operations.

IV. RELATED WORK

ASO and SSO can be viewed as an extension of atomic
registers [8] and sequentially consistent registers [22], re-
spectively. ASO is a well studied problem in the shared
memory literature. It is first studied by Afek et al. in [2],
where they propose the well known double-collect technique.
References [15], [17], [24], [32] present ASO implementations
using variations of double-collect on n single-writer multi-
reader (SWMR) registers. Among these algorithms, a recent
work [[17] achieves the best time complexity — logarithm time
complexity in both UPDATE and SCAN operations.

Attiya et al. in [[11] present an algorithm which trans-
forms any algorithm for lattice agreement to an algorithm for
atomic snapshot object. Attiya et al. in [14] later present an
implementation that takes O(nlogn) operations on SWMR
atomic registers. Inoue et al. [30] present an algorithm that
requires only a linear number of read and write operations on
multi-writer multi-reader (MWMR) registers. Our algorithms
improved time complexity, compared to all these prior works,
and we are not aware of any prior results on tight conditions
for either ASO or SSO.

Lattice agreement (LA) [11]] is an agreement problem
closely related to ASO. Many LA algorithms have been
proposed recently [20], [39]-[42], including the Byzantine
LA algorithm [21]]. LA is closely related to ASO. In fact,
our framework can be used to solve LA and generalized
LA problems with a better amortized time complexity. Our
algorithms use lattice operations based on the equivalence
quorum technique, instead of an existing LA algorithm to
improve the amortized time complexity.

V. CONCLUSION

This paper presents a framework for an ASO implemen-
tation with improved time complexity. A key component of
our framework can be adapted to an early-stopping algorithm
for the lattice agreement problem [11]]. In our technical report
[25]], we present the details of the Byzantine ASO algorithm,
which integrates reliable broadcast [18]] with our framework.
The report also presents how the framework naturally supports
an efficient SSO, which completes SCAN operations without
any communication by returning the extracted vector from the
view stored locally.

Future work includes identifying the lower bound on time
complexity and investigating practical applications. It will be
interesting to see whether the improvement in time complexity
using our framework can be translated to the performance
benefits in practical applications, such as cryptocurrency (asset
transfer objects), and linearizable CRDT.
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