
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Efficient Hardware Implementation of Finite Field
Arithmetic AB + C for Binary Ring-LWE

based Post-Quantum Cryptography
Jiafeng Xie, Senior Member, IEEE, Pengzhou He, Xiaofang Wang, and José L. Imaña

Abstract—Post-quantum cryptography (PQC) has gained significant attention from the community recently as it is proven that the
existing public-key cryptosystems are vulnerable to the attacks launched from the well-developed quantum computers. The finite field
arithmetic AB + C, where A and C are integer polynomials and B is a binary polynomial, is the key component for the binary
Ring-learning-with-errors (BRLWE)-based encryption scheme (a low-complexity PQC suitable for emerging lightweight applications). In
this paper, we propose a novel hardware implementation of the finite field arithmetic AB + C through three stages of interdependent
efforts: (i) a rigorous mathematical formulation process is presented first; (ii) an efficient hardware architecture is then presented with
detailed description; (iii) a thorough implementation has also been given along with the comparison. Overall, (i) the proposed basic
structure (u = 1) outperforms the existing designs, e.g., it involves 55.9% less area-delay product (ADP) than [13] for n = 512; (ii) the
proposed design also offers very efficient performance in time-complexity and can be used in many future applications.

Index Terms—Binary Ring-Learning-with-Errors, finite field arithmetic, FPGA platform, hardware design, post-quantum cryptography.

F

1 INTRODUCTION

F INITE field arithmetic is widely used in various types
of cryptosystems [1]-[5]. Recently, along with the rapid

advancement in quantum technology, the attention on the
post-quantum cryptography (PQC) has reached an all-time
high [6]. As finite field arithmetic still constitutes the main
component of the PQC, the research on efficient imple-
mentation of the related arithmetic components for specific
cryptosystem is highly demanded.

Overall, the lattice-based cryptography is widely recog-
nized as one of the most promising PQC candidates due
to its small implementation complexity and strong security
proof [7]. The lattice-based cryptography is usually built on
the learning-with-errors (LWE) or Ring-LWE (a variant of
LWE) problem [8], [9], where the Ring-LWE-based PQC uses
polynomial multiplication over ring Rq = Zq[x]/〈f(x)〉
(f(x) = xn+1) and hence is more widely used [9]. Recently,
a new variant of Ring-LWE, binary Ring-LWE (BRLWE)-
based encryption scheme, has been proposed specifically for
various emerging lightweight applications [10], [11], where
the binary errors are used for low-complexity computation.

The major arithmetic component of the BRLWE-based
encryption scheme is the finite field operation AB + C , i.e.,
one polynomial multiplication followed by one polynomial
addition, where A and C are polynomials with integer
coefficients and B is a binary polynomial. So far, there is
limited research in this area: the very recent efforts [12], [13]

• Corresponding Author: Jiafeng Xie (e-mail: jiafeng.xie@villanova.edu).
• J. Xie, P. He, and X. Wang are with the Department of Electrical and

Computer Engineering, Villanova University, Villanova, PA, 19085 USA
(e-mail: jiafeng.xie@villanova.edu).

• J.L. Imaña is with the Department of Computer Architecture and Systems
Engineering, Faculty of Physics, Complutense University, Madrid 28040,
Spain. (e-mail: jluimana@ucm.es).

Manuscript received October 21, 2020, revised April 22, 2020.

are focusing on the field-programmable gate array (FPGA)
based platform (the main efforts in the field). Noticing
the recent report of [1] has proposed a serial-in parallel-
out design format for the finite field multiplication over
GF (2m), we follow this trend and have proposed efficient
hardware implementation of the AB + C in BRLWE-based
PQC, as summarized below (main contributions):

• We have formulated the main finite field arithmetic
into the desired form suitable for deriving the pro-
posed hardware architecture.

• We have then presented the desired hardware struc-
ture with a detailed internal structural descrip-
tion through a series of algorithm-architecture co-
implementation techniques.

• We have demonstrated the efficiency of the proposed
design, i.e., it has better area-time complexities than
the existing ones and offers small time complexity.

In particular, the proposed hardware architecture has three
main unique features: (i) has smaller logic usage with simple
control signals, which is beneficial to the low critical-path
operation; (ii) offers choices on processing speed and hence
is more flexible than the existing structures; (iii) fits well for
the practical operations in both encryption and decryption
phases and thus is more complete than the existing designs.

The rest of the paper is organized as follows. The prelim-
inary is introduced in Section 2. The algorithmic process is
formulated in Section 3. The hardware structure is presented
in Section 4. Complexity and comparison are presented in
Section 5. The conclusion is given in Section 6.

2 PRELIMINARY

BRLWE-based Encryption Scheme. BRLWE is a new vari-
ant of Ring-LWE, which uses binary errors to replace the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

TABLE 1: Details of The BRLWE-based Encryption Scheme

scheme stages operations

key generation
ap: public parameter known by Alice and Bob
r1, r2: binary polynomials (r2 is the secret key)
Alice: p = r1 − ap · r2 → Bob (public key)

encryption

e1, e2, e3: three binary errors
m: message; m̃: encoded message;
Bob: ct1 = ap · e1 + e2 → Alice
Bob: ct2 = p · e1 + e3 + m̃→ Alice

decryption Alice: m = decode(ct1 · r2 + ct2)

TABLE 2: Arithmetic Operations of The BRLWE-based PQC

scheme stages arithmetic operations
key generation P⊗ and P⊕: produce p (public key)

encryption P⊗ and P⊕: produce ct1
P⊗ and P⊕ and P⊕: produce ct2

decryption P⊗ and P⊕: produce output

P⊗: polynomial multiplication; P⊕: polynomial addition.

Gaussian distributed errors [10]. The BRLWE-based encryp-
tion scheme is firstly formulated and implemented in [10]
with detailed and rigorous security analysis. An efficient
hardware BRLWE-based PQC is then presented in [12]. Very
recently, a pair of low-complexity and high-speed BRLWE-
based cryptoprocessors are given in [13].

The BRLWE-based encryption scheme is built on the
operations over the ring Rq = Zq[x]/〈xn + 1〉 (Table 1):

Key generation. Firstly, ap is a integer polynomial,
known as the public parameter, for both Alice and Bob.
Selecting two binary polynomials r1 and r2, where r2 is the
secret key, Alice then calculates the public key p = r1−ap ·r2
and sends it to Bob (r1 is discarded after this). The bit-
lengths of the public and secret keys are nlog2q and n,
respectively.

Encryption. A n-bit message m is coded to m̃ following
that each coefficient of m (binary polynomial) is multiplied
with q/2. After that, three binary errors e1, e2, and e3 are
used to generate the ciphertext ct1 and ct2 to be sent to
Alice. The length of the ciphertext is 2nlog2q.

Decryption. Alice uses the secret key and the ciphertext
ct1 and ct2 to obtain the original message through ct1r2+ct2
as well as the threshold decoder function (decode(·)), which
will return a binary value of ‘1’ if the coefficient lies in the
range of (q/4, 3q/4), else it will yield ‘0’.

The polynomial multiplication (Table 1), needs to deal
with the degree overflow as determined by f(x) = xn + 1.
The inverted range of (−b q2c, b

q
2c − 1) is then proposed

in [13] for the integer coefficients such that there is no
reduction involved with the modular addition/subtraction
under the two’s complement representation. All the major
operations of Table 1 are almost the same except minor
changes on the encode and final decode functions [13]. Note
that in this paper, we also employ this strategy.

3 MATHEMATICAL FORMULATION

Main Arithmetic Operation. Without loss of generality,
one can conclude that (from Table 1) the major operation
involved within the BRLWE-based encryption scheme is the
polynomial multiplication (one integer polynomial and the
other one with binary coefficients) followed by a polynomial
addition, as depicted in Table 2.

Definition 1. Let A, C , and D be polynomials over Rq and B
is a binary polynomial as: A =

∑n−1
i=0 aix

i, B =
∑n−1

i=0 bix
i,

C =
∑n−1

i=0 cix
i, and D = AB mod f(x) =

∑n−1
i=0 dix

i (ai,
ci, and di are integers in Zq , bi ∈ {0, 1}, and f(x) = xn+1).

Meanwhile, define W = AB + C =
∑n−1

i=0 wix
i, where

wi is an integer. Note that n refers to the security size and
the integer coefficients in the polynomials are log2q-bit.

The common operation of the three stages of the BRLWE-
based encryption scheme according to Table 2 can thus be

W = AB mod f(x) + C = D + C. (1)

Algorithmic Derivation. Equation (1) can be rewritten as

W =A× (b0 + · · ·+ bn−1x
n−1) mod f(x) + C

=(a0 + · · ·+ an−1x
n−1)b0 mod f(x) + · · ·

+(a0x
n−1 + · · ·+ an−1x

2n−2)bn−1 mod f(x) + C,

(2)

where we can use xn ≡ −1 to remove the mod operation.
Thus, (2) can be expressed in the form of

W = A0 +A1 + · · ·+An−1 + C =
n−1∑
j=0

Aj + C, (3)

where A0 = a0b0+a1b0x+ · · ·+an−1b0x
n−1, A1 = a0b1x+

· · ·−an−1b1, · · · , An−1 = a0bn−1x
n−1−· · ·−an−1bn−1x

n−2.
And the involved operations are just point-wise additions.
Besides, for n = uv (u and v are integers and u is typically
selected as a small integer such as 1 or 2), one can then have

W =
u−1∑
l=0

v−1∑
k=0

Alv+k + C, (4)

where u groups of Alv+k can be processed in parallel to
speed up the computation process.

The above whole process can thus be written as shown
in Algorithm 1.

Algorithm 1: Algorithmic process for AB + C .
Input : A and C are polynomials with integer

coefficients and B is a binary polynomial.
Output: W = AB mod f(x) + C = D + C .

Initialization step
1 T = 0 ;

Main step
2 T = C // serially load in C ;
3 for l = 0 to u− 1 do
4 for k = 0 to v − 1 do
5 T = T +Alv+k. // following (2)-(4)
6 end
7 end

Final step
8 W = T and serially deliver the output W ;

Note that we also use XORs to the wi for the decryption
stage of the BRLWE-based PQC, following [12], [13].

4 PROPOSED STRUCTURE FOR AB + C

Strategy. Let us first consider Algorithm 1 and all the
coefficients of each Aj (0 ≤ j ≤ n− 1), as shown in Table 3.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

TABLE 3: Coefficients of Aj (0 ≤ j ≤ n− 1)

polynomials
coefficients

x0 x1 x2 x3 · · · xn−2 xn−1

A0 a0b0 a1b0 a2b0 a3b0 · · · an−2b0 an−1b0
A1 −an−1b1 a0b1 a1b1 a2b1 · · · an−3b1 an−2b1
A2 −an−2b2 −an−1b2 a0b2 a1b2 · · · an−4b2 an−3b2
A3 −an−3b3 −an−2b3 −an−1b3 a0b3 · · · an−5b3 an−4b3

...
...

...
...

...
...

...
...

An/2 −an/2bn/2 −an/2+1bn/2 −an/2+2bn/2 −an/2+3bn/2 · · · an/2−2bn/2 an/2−1bn/2

...
...

...
...

...
...

...
...

An−v −avbn−v −av+1bn−v −av+2bn−v −av+3bn−v · · · av−2bn−v av−1bn−v

...
...

...
...

...
...

...
...

An−2 −a2bn−2 −a3bn−2 −a4bn−2 −a5bn−2 · · · a0bn−2 a1bn−2

An−1 −a1bn−1 −a2bn−1 −a3bn−1 −a4bn−1 · · · −an−1bn−1 a0bn−1

PB PB PB PB...

a0

bn-1

sn-1

bn-2

sn-2

bn-3

sn-3

b0

s0

w0wn-1 w1

...
bv-1

u number

...
bv-2 bv-3

... ...
-bv

...

u number u number u number

...

...

av-1

...
an-v

...

an-1

a0

...

av-1

...
an-v

...

an-1

a0

...

av-1

...
an-v

...

an-1

a0

...

av-1

...
an-v

...

an-1

(serial out)

W0 Wn-1 Wn-2 W1

decryption
output

log2q

two
MSBs

1
ctr-2

c0 HD

log2q-bit

carry-in

cn-1

...

0
1

ctr-1

Fig. 1: Proposed structure for computing AB + C . PB: processing block. HD: half adder. MSB: most significant bit.

One can observe that the actual value of the corresponding
coefficients of each Aj (0 ≤ j ≤ n− 1) can be obtained in an
orderly format, e.g., each coefficient of A0 can be obtained
through the multiplication of every individual coefficient
of A with the b0 of B while each coefficient of A1 can
be obtained through the multiplication of circularly-shifted
coefficients of A (i.e., an−1 is inverted as −an−1) with the b1
of B. The other Aj (2 ≤ j ≤ n− 1) follow the same rule.

Proposed strategy. Following the computation process
of Algorithm 1 and the observation of Table 3, we can
thus design a hardware structure for finite field arithmetic
AB + C : (i) The coefficients of C can be serially loaded
into the related storage places, respectively. (ii) All the
coefficients of B, as well as the corresponding ones for
Alv , are stably located with one coefficient being inverted
per every cycle and meanwhile multiplied with the serially
delivered coefficient of A. (iii) The corresponding multipli-
cation results are then circularly-shifted to the right position
(one position-shifting per cycle, see Table 3) to be added
to obtain the result of C +

∑u−1
l=0

∑v−1
k=0 Alv+k. There are u

groups processed in parallel to speed up the whole process,
based on Algorithm 1, which actually offers flexible speed
choices. (iv) The output is delivered out in a serial format
because of the large bit-width. Note that the corresponding

coefficient of polynomial C has already been added to the
related multiplication results in Step (iii) to yield the final
result, including both encryption and decryption results.
Hardware Structure. The corresponding hardware structure
is thus shown in Fig. 1. The proposed structure consists of
mainly n processing blocks (PBs), where each PB has the
same internal structure. According to Algorithm 1 and Table
3, each coefficient of polynomial C is firstly delivered to the
related PBs, respectively, through the MUX attached to the
far-right PB of the structure. Then, all the bits of polynomi-
al A are decomposed into u number of groups (denoted
by the red dotted circle), where each group has v coef-
ficients, i.e., {a0, a1, · · · , av−1}, {av, av+1, · · · , a2v−1}, · · · ,
and {an−v, an−v+1, · · · , an−1}, to be fed in a serial for-
mat to each PB (group-wise parallel). Accordingly, we
have also prepared the u parallel groups of coefficients of
polynomial B (some with a negative sign), based on the
constitution of the coefficients of Aj (as seen from Table
3), to be fed to each PB, i.e., Aj is decomposed into u
groups of {A0, A1, · · · , Av−1}, {Av, · · · , A2v−1}, · · · , and
{An−v, An−v+1, · · · , An−1} based on Algorithm 1. For a
clear presentation, we have used different color signals
to denote the corresponding relationships, e.g., A0 is re-
lated with {a0b0, a1b0, · · · , an−1b0} (so do the following

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

MSC

AD D
clklog2q

1

log2q-bit

1

log2q-bit

carry-
ins

b0

MSC-bv

...

2

...

STbv
... ADT...

... ...
...

s0

carry-in log2q

input output

a0

...

av-1

...
an-v

...

an-1

u
nu

m
be

r

u number

CC ...

...

...

1
sign

value bit
1

log2q
log2q

u number

sign 1

1
2

log2q

Fig. 2: The details of the PB, the far right one of Fig. 1.

2
HAD

HAD

carry-in
1

sum-out

carry-in 2

ST

sum-out

Fig. 3: The details of the ST cell, where the least significant
bit’s carry-in is set as ’1’. HAD: 1-bit half-adder.

A1, · · · , Av−1, as denoted by the green color), while An−v is
involved with {−avbn−v,−av+1bn−v, · · · , av−1bn−v} (the
same to the following An−v+1, · · · , An−1, as represented by
the blue color). There are in total n number of control signals
(si, 0 ≤ i ≤ n − 1) fed to each individual PB, respectively
(one per PB, and the corresponding function is covered
later). The output of the structure (namely the coefficients
of polynomial W) becomes available after n cycles to be
serially delivered out through the buffer attached to the
output of the far right PB, after all the initial input signals
are loaded into the PBs. The internal structure of the PB, as
well as the related functions, are described as follows.

Internal structure of the PB. The internal structure of
the PB (far-right one) is shown in Fig. 2. Based on Table 3
and Algorithm 1, u groups of coefficients from A and B, for
Alv+k, are fed to the PB, respectively, as shown in the dotted
red circle area. Details of the internal cells are as follows.

• ST cell. Note that the negative value of a certain
bit is obtained through the sign-transfer (ST) cell,
e.g., bv is fed to the ST cell to produce -bv . The
ST cell is designed to follow the two’s complement
representation, i.e., the sign bit and value bit of bv
are inverted and then go through the 1-bit half-adder
(HAD), as shown in Fig. 3, where the least significant
bit’s carry-in is set as ’1’.

• SC and M cells. There are in total u groups of
paired signal-selection (SC) cells and multiplication
(M) cells, as shown in Fig. 4. The SC cell has a 2-bit
MUX connected with the input and is controlled by
the control signal s0. When the input signal needs

0

1

SC
...

...
2 ...

...
log2q

M

1

2

value
bit

sign
bit

sign bit

log2q

Fig. 4: The internal structure of the SC and M cells.

to be inverted, the control signal switches to let the
inverted input deliver to the M cell (under two’s
complement denotation, the extra carry-in of ’1’ is
added in the following ADT cell). The value bit from
the MUX is connected with the (log2q − 1) AND
gates working in parallel, while the two sign bits
are ANDed together. Thus, the SC and M cells work
together to produce the multiplication results based
on Table 3, e.g., the result is a0b0 when s0 = 0.

• CC and ADT cells. The M cells are then added
together through the adder-tree (ADT) cell according
to (4). The ADT cell has (u−1) number of full-adders
(ADs), where all the carry-ins are generated from the
carry-conversion (CC) cell, as shown in Fig. 5. Due
to the use of two’s complement representation, we
have to let the corresponding u value bits of B be
multiplied (ANDed) with the control signal of s0,
respectively, and then deliver the u number of output
bits (one bit to the AD below and (u − 1) bits to the
ADT cell, as shown in Figs. 2 and 5). Such that when
the control signal moves from ’0’ to ’1’ and the input
bits from B are not ’0’, the carry-in of all these ADs
turns into ’1’ to produce the correct output.

• The remaining cells. The remaining cells in the PB
include one AD and one register cell (D cell, purple
box). As shown in Fig. 2, the input from the left is
added with the output of the ADT and then yielded
out through the register cell to the right. Note that
the input and right output signals of all the PBs
are circularly connected, as indicated by the red
line in Fig. 1) and the register cell in the PB is the
storage place of the intermediate value. Thus, after
the corresponding coefficient of the polynomial C
(cn−1 in this case) is firstly loaded in the D cell, it will
be added with the multiplication result in the far left
PB to be stored in the D cell there. After the required
number of cycles for calculation, the desired result
W1 is then available in the D cell (similar to other
PBs of the structure of Fig. 1), which can be circularly
delivered out through the buffer connected to the
far left PB of Fig. 1. One extra XOR gate is needed
for the two most significant bits (MSBs), as indicated
in Fig. 2 (following [12], [13]), for the output of the
decryption phase.

The shift-register for the control signals. The control
signals sn−1, sn−2, · · · , s0 are generated by a shift-register
as shown in Fig. 6, where it contains n 1-bit registers. For
the first cycle, all the registers are initiated as ’0’s. Then in
the following cycles, the input of the shift-register will be
set as ’1’, which is according to the feature that there is one

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

AD

AD

...
AD

AD

...

...

AD

......

carry-in

carry-in

carry-in

carry-in

carry-in

log2q

carry-in

u number

ADT

...

...

... u-1

CC

1

u number

1

...

Fig. 5: The internal structure of the ADT cell (AD:full-adder).

D
clk 1-bit

D
clk

D
clk

... D
clk

sn-1 sn-2 sn-3 s0

‘1’

‘0’ ‘0’ ‘0’ ‘0’

...‘1’
u-1 number

Fig. 6: The setup of the shift-register for control signals.

D
clk

1-bit

D
clk

... D
clk

bn-1 bv b0...b0...bn-1

b0...bv

bv...

bn-1

u
gr
ou

p
s

...

b0bv-1 ...
... ...

bn-1

Fig. 7: The shift-register (for B) produces u parallel groups.

coefficient’s (of B) sign change between Aj and Aj+1 (see
Table 3). The output of each register is connected with the
corresponding control signals si (0 ≤ i ≤ n−1), respectively.

The shift-register for the input B. All the coefficients
of the polynomial B are firstly serially loaded to the shift-
register (n 1-bit registers), as shown in Fig. 7. Then, in the
following cycles, the values of the corresponding registers
will be shared accordingly to produce the u number parallel
groups of n-bit outputs, respectively, following Fig. 2.

The overall operation of the structure. The operation of
the structure can be illustrated by an example below.
Example. For n = 4 and u = 2, we can have (from Table 3)

w0 =a0b0 − a3b1 − a2b2 − a1b3 + c0,

w1 =a1b0 + a0b1 − a3b2 − a2b3 + c1,

w2 =a2b0 + a1b1 + a0b2 − a3b3 + c2,

w3 =a3b0 + a2b1 + a1b2 + a0b3 + c3,

(5)

which exactly match the values shown in Table 4.
Note that the proposed structure fits for both encryption

and decryption operations of the BRLWE-based PQC, i.e.,
the carry-in of the HD (connecting the far-right PB) in Fig.
1 can be connected with the related coefficient of the binary
polynomial e3 for the operation in the encryption phase.

Besides that, in the initial shift-register’s loading time
for operand B, the corresponding coefficients are serially
loaded into the D cells within the related PBs, respectively,
with the help of the MUX (ctr-1 is set as ‘0’). Then, during
the actual computation time, the ctr-1 is switched to ‘1’ for

TABLE 4: An example of n = 4 (u = 2 and v = 2)

C∗ PB-1 PB-2 PB-3 PB-4
control signals fed to each PB

1 s3 = 0 s2 = 0 s1 = 0 s0 = 0
2 s3 = 1 s2 = 0 s1 = 0 s0 = 0

values initiated within the D cell of each PB
- c2 c1 c0 c3

operations involved within each PB (values in the D cell)

1 a0b3 + a2b1 a0b2 + a2b0 a0b1 − a2b3 a0b0 − a2b2
+c3 +c2 +c1 +c0

2
−a1b3 − a3b1 a1b2 + a3b0 a1b1 − a3b3 a1b0 − a3b2

+c0+ +c3+ +c2+ +c1+
a0b0 − a2b2 a0b3 + a2b1 a0b2 + a2b0 a0b1 − a2b3

values stored within the D cell of each PB
- w0 w3 w2 w1

C∗: cycle. The PBs are ordered from left to right (follow Fig. 1).

the sake of circular accumulation. Finally, when the desired
result is available in the related D cells within the PBs, the
control signal of the buffer (ctr-2 is set as ‘1’) functions to
deliver the output in a serial format.
Overall summary. The proposed structure offers flexible
processing speeds: (i) with u = 1, it produces the output
after n cycles of computation; (ii) with a slightly larger u, it
offers a latency of n/u computational cycles.

5 COMPLEXITY AND COMPARISON

The area-time complexities of the proposed structure along
with the design of [13] are shown in Table 5 (the design
of [13] has shown its superior performance than [12], here
we just list [13]). One can see that the proposed design has
smaller area usage than the existing one because of the use
of smaller-size MUXes, similar to the time-complexity.

For further detailed comparison, we have obtained the
FPGA implementation results (after place & route) along
with the existing designs [12], [13], [14].

Experimental setup. The experiment is set as follows: (i)
we noticed that the existing report of [13] does not cover
the overall area usage and hence for a fair comparison, we
have re-code the existing one of [13] (have verified its func-
tionality through ModelSim) with VHDL and implemented
them using Xilinx Vivado 2019.2 on the Virtex-7 (XC7V2000)
and Kintex-7 (XC7K325) devices; (ii) following [12], [13], we
have chosen n = 256, n = 512, q = 128, u = 1, and
u = 2 (according the recent analysis of [11], n = 512 and
n = 256 can provide equivalent 190/140 and 84/73 bits
of class and quantum securities, respectively); (iii) we have
used the same type of AD for all the coded designs, i.e., 8-
bit ripple carry adder; (iv) we have used the same type of
shift-register for the binary polynomial, as shown in Fig. 7;
(v) for a successful implementation on the targeted FPGA
device, the input integer polynomial in the existing design
of [13] is delivered to the shift-register first and then all the
corresponding values are fed to the hardware structure in
a parallel format; (vi) the actual area usage of the design
of [13] listed in Table 6 does not include the input integer
polynomial related shift-register, but the power is reported
based on the whole structure; (vii) a state-of-the-art design
of regular Ring-LWE based structure [14] is also listed.

Comparison. The area-time complexities of the pro-
posed and the existing designs, namely #LUT, #FF, #slice,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

TABLE 5: Main Complexities of Various Designs for AB + C for BRLWE-based Encryption Scheme (n = uv)

design AND adder (log2q-bit) register (1-bit) MUX (log2q-bit) critical-path latency
[13]∗ nlog2q n n+ nlog2q n+ 1 ≥ TA + TMUX + TAD n+ 1

Fig. 1 (u = 1)∗∗ nlog2q n n+ nlog2q 1 ' TA + TMUX2 + TAD n
Fig. 1 (u = 2)∗∗ 2nlog2q 2n n+ nlog2q 1 ' TA + TMUX2

+ 2TAD n/2

TA: delay of the AND gate. TMUX : delay of the log2q-bit MUX. TAD : delay of the log2q-bit adder. TMUX2
: delay of the 2-bit MUX.

∗: The area-time complexities are only for the decryption phase (Fig. 4 of [13]). The structure for the encryption phase is not clearly provided.
∗∗: The area-time complexities listed here are for the proposed structure that can operate in both the encryption and decryption phases. There are
also n and 2n 2-bit MUXes for the proposed structure of u = 1 and u = 2, respectively.

TABLE 6: Comparison of the Complexities (FPGA platform)

design n phase device LUT FF Slice Fmax latency1 delay ADP2 power EPC3 Thr.
[12] 256 Dec Spartan-6 6,728 6,813 1,874 101 262 2,594 4,861 - - 99

[13]∗ 256 Dec Virtex-7 5,153 2,151 1,701 261 257 985 1,675 921 3.529 260
Fig. 14 256 Enc/Dec Virtex-7 3,600 2,568 1,146 415 512/256 1,234/617 707 233 0.561 415
Fig. 15 256 Enc/Dec Virtex-7 6,237 2,568 1,881 314 256/128 815/408 767 336 0.535 627
[13]∗ 512 Dec Virtex-7 10,285 4,249 3,289 263 513 1,951 6,417 1,871 7.114 262

Fig. 14 512 Enc/Dec Virtex-7 7,184 5,128 2,208 399 1,024/512 2,566/1,283 2,833 456 1.143 399
Fig. 15 512 Enc/Dec Virtex-7 13,100 5,133 3,796 286 512/256 1,790/895 3,397 670 1.171 572

[14] 256 Enc/Dec Kintex-7 1,381 1,179 479 275 35,478/17,732 129k/64k 30,656 - - 4
Fig. 14 256 Enc/Dec Kintex-7 3,600 2,568 1,134 394 512/256 1,299/650 737 237 0.602 394
Fig. 15 256 Enc/Dec Kintex-7 6,244 2,568 1,932 318 256/128 805/403 779 348 0.547 635

We have re-implemented Fig. 4 of [13] and listed results here. Enc: encryption; Dec: decryption. Thr: Throughput (Dec, coefficient/second×106).
∗: The area usage for [13] does not include the shift-register for integer polynomial, but the power refers to the whole structure.
Unit for Fmax: MHz. Unit for delay: ns. Unit for power (dynamic): mW. Delay=critical-path×latency. 1: Shift-register’s loading is not included.
2: ADP=#Slice×delay (Dec) ×103. 3: EPC: energy per computation=power/(Fmax × #output coefficient per cycle (Dec)). 4: u = 1. 5: u = 2.

maximum frequency, latency, delay (critical-path×latency
cycles), area-delay product (ADP), power, energy per com-
putation (EPC), and throughput, are listed in Table 6.

It is clear that the proposed design significantly outper-
forms the existing ones in various metrics aspects, e.g., the
proposed design of u = 1 (the same latency style as [13])
has 57.8% and 55.9% less ADP than [13] for n = 256 and
n = 512, respectively. Meanwhile, the proposed architecture
involves flexible and efficient time-complexity, which is very
suitable for high-speed applications (such as a server) with
abundant resources, i.e., the delay time drops significantly
when u turns from 1 to 2 (at the cost of reasonable extra area
occupation). Lastly, one has to mention that the proposed
structure takes care of the input/output in a practical way,
while the existing design of [13] has to employ an extra
shift-register for integer polynomial loading.

Discussion. While the main focus of this paper is to ob-
tain an efficient implementation of AB +C for the BRLWE-
based PQC, we still believe the strategy proposed in [12],
[13], [15] against side-channel attack is also applicable to the
proposed design, which is part of our future work.

6 CONCLUSION

This paper proposes a novel implementation of finite
field arithmetic AB + C for the BRLWE-based encryption
scheme. We firstly derive the proposed algorithmic opera-
tion through mathematical formulation. Then, the proposed
hardware structure is presented with detailed descriptions.
Finally, the comparison has shown the superior performance
of the proposed design. The proposed structure is highly
efficient and can be extended for future applications.

7 ACKNOWLEDGEMENT

The work of J. Xie was supported by the NSF Award No.
2020625. The work of J.L. Imaña was supported by the

Spanish MINECO and CM under grants S2018/TCS-4423
and RTI2018-093684-B-I00.

REFERENCES

[1] A. Namin, et al., “High-speed architectures for multiplication using
reordered normal basis,” IEEE TC vol. 61, no. 2, pp. 164-172, 2012.

[2] J. Xie et al., “Novel bit-parallel and digit-serial systolic finite field
multipliers over GF (2m) based on reordered normal basis,” IEEE
Trans. VLSI Systems, vol. 27, no. 9, pp. 2119-2130, 2019.

[3] J. Xie et al., “Low register-complexity systolic digit-serial multiplier
over GF (2m) based on trinomials,” IEEE Trans. Multiscale Comput-
ing Systems, vol. 4, no. 4, pp. 773-783, 2018.

[4] P. Meher and X. Lou, “Low-latency, low-area, and scalable systolic-
like modular multipliers for GF (2m) based on irreducible all-one
polynomials,” IEEE TCAS-I vol. 64, no. 2, pp. 399-408, 2017.

[5] J. L. Imaña, “LFSR-based bit-serial GF (2m) multipliers using irre-
ducible trinomials” IEEE Trans. Computers, 2020 (early access).

[6] W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. Symp. Founda. of Computer Science, pp. 124-134, 1994.

[7] D. Micciancio. Lattice-based cryptography. Encyclopedia of Cryptog-
raphy & Security, 2011.

[8] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” Journal of the ACM, vol. 56, no. 6, 34, 2009.

[9] V. Lyubashevsky et al., “On ideal lattices and learning with errors
over rings,” Int. Conf. Theory & Appl. of Crypto. Tech., pp. 1-23, 2010.

[10] J. Buchmann et al., “High-performance and lightweight lattice-
based public-key encryption,” ACM IoTPTS, pp. 1-8, 2016.

[11] J. Buchmann et al., “On the hardness of LWE with binary error:
Revisiting the hybrid lattice-reduction and meet-in-the-middle at-
tack,” Int. Conf. on Cryptology in Africa, pp. 24-43, 2016.

[12] A. Aysu et al., “Binary Ring-LWE hardware with power side-
channel countermeasures, DATE, pp. 1253-1258, 2018.

[13] S. Ebrahimi et al., “Post-quantum cryptoprocessors optimized for
edge and resource-constrained devices in IoT,” IEEE IoT Journal,
vol. 6, no. 3, pp. 5500-5507, 2019.

[14] Y. Zhang et al., “An efficient and parallel R-LWE cryptoproces-
sors,” IEEE TCAS-II, vol. 67, no. 5, pp. 886-890, 2020.

[15] T. Schneider et al., “Part I Towards combined hardware coun-
termeasures against side-channel and fault-injection attacks,” Proc.
Annu. Cryptol. Conf., pp. 302-332, 2016.

