
Reliable Broadcast in Critical Applications: Asset
Transfer and Smart Home

Yingjian Wu1, Yicheng Shen2, Haochen Pan3, Lewis Tseng2, Moayad Aloqaily4

1University of California San Diego, CA, USA
2Boston College, MA, USA

3The University of Chicago, IL, USA
4Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE

E-mails: yiw079@ucsd.edu, {shenvw; lewis.tseng}@bc.edu, haochenpan@uchicago.edu, maloqaily@ieee.org

Abstract—Asynchronous Byzantine reliable broadcast receives
renewed attention recently, as it is fundamental to many fault-
tolerant critical applications. This paper focuses on the Byzantine
Reliable Broadcast protocol, which was first proposed by Bracha
in 1987. Several recent protocols have improved the round
and bit complexity of these algorithms. Motivated by practical
network constraints in modern applications, this paper revisits
the problem and reduces both complexity in communication
and local computation. State-of-the-arts protocols are evaluated
using the developed framework that simulates realistic bandwidth
constraints. The evaluation demonstrates that our protocols,
which use cryptographic hash functions and erasure coding in
a novel way, have superior performance in critical applications
such as asset transfer and smart home.

Index Terms—reliable broadcast, impossibility, evaluation

I. INTRODUCTION

Reliable broadcast (RB) ensures that a message from a
source node is delivered to all the fault-free nodes in a
cluster/system that is asynchronous and potentially susceptible
to node failures. Compared to consensus protocols [1] which
satisfies strong properties, reliable broadcast is more flexible,
but still robust enough for many fault-tolerant systems. RB
is an important primitive for critical applications, such as
group mailing lists and payment systems. Many other works
have also used RB to improve energy reduction, resilience,
and speed in networked devices [2] [3]. In this paper, we
particularly focus on the application of asset transfer and smart
home applications. We envision that our algorithms can also
assist Byzantine Machine Learning (BML) in industry 5.0 [4]
due to its practicality for edge devices.

In recent years, the amount of data has increased at an un-
precedented speed. Despite the downward impact of COVID-
19 on many industries, data generation increased to 64.2ZB
in 2020 according to IDC1. Many data-centric applications
confront new challenges caused by a large amount of data.
Moreover, this trend is expected to continue into the future due
to the introduction and flourishing of Internet of Things (IoT)
and cryptocurrencies. Although network service providers and
data centers are constantly upgrading their hardware to meet
the increasing demand, bandwidth is still a constraint for criti-
cal applications. It is worth noting that data centers, especially

1https://www.idc.com/getdoc.jsp?containerId=prUS47560321

wide area network (WAN), require high bandwidth and high
link quality, since many services are delay-sensitive; IoT which
relies on wireless network is also sensitive to bandwidth since
data generated from IoT is becoming increasingly larger and
most IoT applications have real-time constraints.

Asset transfer refers to the online settlement of various
assets, not just limited to funds or money. In the case of
payment systems of both traditional currencies and cryptocur-
rencies, transfers need to guarantee correctness regardless of
failures, including crash and Byzantine faults [5]. IoT devices
are equipped with chips and sensors which provide possessing
computing and communication capabilities. Both applications
require messages to be reliably broadcast.

In 1987, Bracha introduced the notion of RB and used it to
solve Byzantine consensus [6]. Subsequently, many Byzantine-
tolerant RB (or simply Byzantine RB) protocols have been
proposed which improved several different dimensions such
as complexity in number of rounds, and number of bits
exchanged. Table I summarizes the key related work and
compared it to the proposed protocols. Most RB protocols
[6] assume unlimited bandwidth and choose flooding-based
designs. Recent RB and Byzantine consensus protocols (e.g.,
[7]–[9]) with proven optimal bit complexity usually incur
higher round complexity and/or local computation. None of
these RB protocols are designed for a practical and modern
setting where the network’s bandwidth is constrained and
nodes have only limited computation power.

In this paper, we rely on cryptographic hash functions [12]
and erasure coding [13] to devise more bandwidth-friendly
Byzantine RB protocols. To evaluate our protocols, we design
and implement a general testing platform on top of [14], [15],
which allows us to specify practical constraints on network
quality, bandwidth and node’s computation power.

Theoretically speaking, if an algorithm assumes a perfect
cryptographic hash function [16] for ensuring correctness, then
the algorithm cannot be claimed error-free. This is because
that such an algorithm cannot prevent from the adversary with
unlimited computation power. However, this paper is targeting
practical systems, and as we have observed in many real-world
systems, cryptographic hash functions are useful, e.g., Bitcoin
[17] and PBFT [18]. Our EC-based algorithms rely on [n, k]
MDS erasure codes. The bit complexity analysis assumes that

https://www.idc.com/getdoc.jsp?containerId=prUS47560321

TABLE I:
Comparison between our algorithms and prior works. The proposed algorithms are H-BRB, and EC-BRB.

Algorithm
Bit

complexity
System Size
(Resilience)

Round
Complexity

(Common Case)

Error
-free

MDS
codes Bottleneck

CRB [10] O(n2L) ≥ f + 1 1 Yes No -
Bracha RB [6] O(n2L) ≥ 3f + 1 3 Yes No Flooding

Raynal RB [11] O(n2L) ≥ 3f + 1 2 Yes No Flooding

Patra RB [8] O(nL) ≥ 3f + 1 9 Yes Yes
Polynomial time

local computation
with large constants

Nayak et al. [9] O(nL) ≥ 3f + 1 10 Yes Yes
Polynomial time

local computation
with large constants

H-BRB[3f+1] O(nL) +O(nfL) ≥ 3f + 1 3 No No Hash Function
H-BRB[5f+1] O(nL) +O(nfL) ≥ 5f + 1 2 No No Hash Function

EC-BRB[3f+1] O(nL) +O(nfL) ≥ 3f + 1 3 No Yes
Hash Function
+ MDS code

EC-BRB[4f+1] O(nL) +O(nfL) ≥ 4f + 1 3 No Yes
Hash Function
+ MDS code

L is sufficiently large. For our algorithms, L is assumed to be
at least n2, same as the state-of-arts protocols [9].

The bit complexity of our RB protocol is O(nL + nfL):
(i) when the source is fault-free, the nodes only need to
exchange O(nL) bits; and (ii) when source is faulty (which is
uncommon case in practical applications), our RB protocols
need O(fL) extra bits per node for recovering the original
message. Such a recovery design is appropriate for practical
applications. This is because f is usually assumed to be small
in real-world cases. Our erasure-coding-based RB protocols
have another advantage: a fault-free source only needs to
transmit O(nL/k) bit to another node. As we can see in the
asset transfer application, this gives it a clear performance
advantage. The round complexity assumes the common case
when the source is fault-free.

The main contributions of this paper are: We devise a family
of algorithms that rely on hash function and erasure coding to
improve three dimensions: bit complexity, round complexity,
and computation complexity. (i) H-BRB, a Byzantine-tolerant
hash-based RB; and (iii) EC-BRB, a Byzantine-tolerant RB
that uses erasure coding.

The rest of the paper is organized as follows. In Section
II, we introduce preliminaries. In section III, we discuss
Byzantine reliable broadcast. In section IV, we present the
evaluations, and conclude in Section VI.

II. PRELIMINARIES

The system is modeled as a static asynchronous fully
connected message-passing system composed of n nodes. We
assume ≤ f nodes, including the source, may be Byzantine
faulty. Nodes are fully connected by asynchronous, authenti-
cated and reliable point-to-point channels [10], [19]. “Asyn-
chronous” means that nodes do not know the wall-clock time

or global clock, and messages maybe be delayed arbitrarily.
Reliable channels assume that (i) messages are eventually
delivered with fault-free sender and receiver, and (ii) a fault-
free receiver receives a message iff a sender sent the message.
Authenticated channel prevents from Sybil attacks.

A Byzantine node may choose to behave arbitrarily, and
may equivocate, i.e., send arbitrary messages to different sets
of nodes. We also call a Byzantine node as a faulty node. If
a node does not have such behavior, then we call it fault-free.

To facilitate the discussion, we introduce the following
notations. Every message m sent by a fault-free source s
is associated with a sequence number or index h. Thus m
can be uniquely indexed through a tuple (s, h). In all of
our algorithms, we use SetMsgi[s, h] to denote the set of
messages that the node i collects, in which are candidates
that can be identified with (s, h). When the context is clear,
we omit the subscript i. We use Count[∗] to denote a local
counter of certain type of messages that is initialized to 0. We
use H(∗) to denote the cryptographic hash function.

What is Reliable Broadcast?

The reliable broadcast properties adopted in this paper are
from [6], [20]. The source s calls “Reliable-Broadcast(m,h)”
to broadcast a message m with sequence number h reliably,
which then executes the RB protocol by exchanging messages
with other nodes. For each fault-free node, under suitable con-
ditions, the RB protocol notifies the application layer so that
“Reliable-Accept(m′, h)” is invoked, and (m′, h) is delivered.
A correct RB protocol needs to satisfy these properties:

Property 1 (Termination). • If a fault-free source s per-
forms Reliable-Broadcast(m,h), with a message m hav-
ing index h then all fault-free nodes will eventually
Reliable-Accept(s,m, h).

• If a fault-free node performs Reliable-Accept(s,m, h),
then all fault-free nodes eventually perform Reliable-
Accept(s,m, h).

Property 2 (Validity). If a fault-free source s does not perform
Reliable-Broadcast(m,h) then no fault-free node will ever
perform Reliable-Accept(s,m, h).

Property 3 (Agreement). If a fault-free node performs
Reliable-Accept(s,m, h) and another fault-free node will
eventually perform Reliable-Accept(s,m′, h) then m = m′.

Property 4 (Integrity). A fault-free node reliably accepts at
most one message of index h from a source s.

III. BYZANTINE RELIABLE BROADCAST

This section considers Byzantine-tolerant Reliable Broad-
cast protocols. Our H-BRB algorithms can be viewed as a
simplified version of PBFT [18] or an extension of Bracha’s
RB protocol [6] with the usage of cartographic hash; hence,
is not presented here due to page constraints. To reduce
communication complexity, H-BRB[3f+1] relies on the usage
of cryptographic hash function to check whether a message re-
ceived by non-sources are the same. The name contains“3f+1”,
because it requires n ≥ 3f+1. We also design H-BRB[5f+1],
which works given n ≥ 5f+1. H-BRB[5f+1] has less number
of rounds and messages, compared to H-BRB[3f+1].

H-BRB is bottle-necked at the source, because similar to
PBFT [18], the source still needs to send O(nL) bits. This
section presents two ideas of using erasure coding to reduce
the number of bits that need to be sent by the source. In our
EC-based protocols, the source only needs to transmit a small
coded element.

A. MDS Erasure Code: Preliminaries

Our algorithms use a linear [n, k] MDS (Maximum Distance
Separable) erasure code [13] over a finite field Fq to encode
the message m. An [n, k] MDS erasure code has the property
that any k out of the n coded elements, computed by encoding
m, can be used to recover (decode) the original message m.

For encoding, m is divided into k elements m1,m2, . . . ,mk

with each element having size L/k (assuming size of m is
L). The encoder takes the k elements as input and produces
n coded elements c1, c2, . . . , cn as output, i.e., [c1, . . . , cn] =
ENC([m1, . . . ,mk]), where ENC denotes the encoder. For
brevity, we simply use ENC(m) to represent [c1, . . . , cn].

The vector [c1, . . . , cn] is referred to as the codeword
corresponding to the message m. Each coded element ci
also has size L

k . In our algorithms, the source disseminates a
single coded element to each node. We use ENCi to denote
the projection of ENC on to the ith output component, i.e.,
ci = ENCi(v). Without loss of generality, the coded element
ci is associated with node i, for 1 ≤ i ≤ n.

B. EC-BRB[3f+1]

The first algorithm, EC-BRB[3f+1], is based on H-
BRB[3f+1], in which each node i not only forwards H(m), but
also a coded element ci. This design reduces bit complexity.

EC-BRB[3f+1] uses [n, f+1] MDS erasure code, and does not
rely on detection or correction capability. That is, the decoder
function DEC can correctly decode the original message if
the input contains at least f +1 uncorrupted coded elements.
EC-BRB[3f+1] does not need the correction/detection, since
each node directly uses H(m) to verify the validity of the
decoded message.

The pseudo-code of EC-BRB[3f+1] is presented in Al-
gorithm 1, 2, and 3. Note that Line 13 in Algorithm 2
requires exponential computation. This is because that each

Algorithm 1 EC-BRB[3f+1]: source s on msg m, index h

1: function RELIABLE-BROADCAST(m,h)
2: {c1, c2, . . . , cn} = ENC(m)
3: SEND(MSG-TAG, s,H(m), ck, h) to node k

Algorithm 2 EC-BRB[3f+1]: i’s event handler

1: function RECEIVING(MSG-TAG, s,H, c, h)
2: if j = s and first (MSG-TAG, s, ∗, ∗, h) then
3: SetCode[s,H, h]← SetCode[s, h,H] ∪ {c}
4: Count[ECHO-TAG, s,H, h] + +
5: if never sent (ECHO-TAG, s, ∗, h) then
6: SEND(ECHO-TAG, s,H, c, h) to all nodes
7: function RECEIVING(ECHO-TAG, s,H, c, h)
8: if first (ECHO-TAG, s, ∗, ∗, h) from j then
9: Count[ECHO-TAG, s,H, h] + +

10: SetCode[s,H, h]← SetCode[s, h,H] ∪ {c}
11: if Count[ECHO-TAG, s,H, h] ≥ f + 1 then
12: if ̸ ∃m ∈ SetMsg[s, h] s.t. H(m) = H then
13: for each C ⊆ SetCode[s,H, j], |C| =

f + 1 do
14: m← DEC(C)
15: if H(m) = H then
16: SetMsg[s, h] ← SetMsg[s, h] ∪
{m}

17: CHECK(s,H, h)
18: function RECEIVING(ACC-TAG, s,H, h)
19: if first (ACC-TAG, s, ∗, h) from j then
20: Count[ACC-TAG, s,H, h] + +
21: if Count[ACC-TAG, s,H, h] ≥ f + 1 then
22: if ̸ ∃m′ ∈ SetMsg[s, h] s.t. H(m′) = H then
23: SEND (REQ-TAG, s,H, h) to nodes if have

not sent (REQ-TAG, s,H, h) to them before
24: CHECK(j,H, h)
25: function RECEIVING(REQ-TAG, s,H, h)
26: if first (REQ-TAG, s, h) from j then
27: if ∃m′ ∈ SetMsg[s, h] s.t. H(m′) = H then
28: SEND (FWD-TAG, s,m′, h) to j

29: function RECEIVING(FWD-TAG, s,m, h)
30: if have sent (REQ-TAG, s,H(m), h) to j then
31: if first (FWD-TAG, s,m, h) from j then
32: SetMsg[s, h]← SetMsg[s, h] ∪ {m}
33: CHECK(s,H(m), h)

Algorithm 3 EC-BRB[3f+1]: helper sub-routine

1: function CHECK(s,H, h)
2: if m ∈ SetMsg[s, h] s.t. H(m) = H then
3: if Count[ECHO-TAG, s,H, h] ≥ f + 1 then
4: if never sent (ECHO-TAG, s, ∗, ∗, h) then
5: {c1, . . . , cn} ← ENC(m)
6: SEND (ECHO-TAG, s,H, ci, h) to all

nodes
7: if Count[ECHO-TAG, s,H, h] ≥ n− f then
8: if never sent (ACC-TAG, s, ∗, h) then
9: SEND (ACC-TAG, s,H, h) to all nodes

10: if Count[ACC-TAG, s,H, h] ≥ f + 1 then
11: if never sent (ACC-TAG, s, ∗, h) then
12: SEND (ACC-TAG, s,H, h) to all nodes
13: if Count[ACC-TAG, s,H, h] ≥ n− f then
14: RELIABLE-ACCEPT(s,m, h)

node needs to identify correct f+1 coded elements to decode
and recover the original message. This requires O(

(
n

f+1

)
)

computation complexity. With a small f , the local computation
is negligible. We improve the scalability in the next Byzantine
RB protocol.

C. EC-BRB[4f+1]

To address the scalability issue, we rely on the correction
capability of MDS code. By doing so, the resilience has to
be reduced in the sense that our new algorithm requires n ≥
4f + 1. This trade-off turns out is necessary, as identified in
our technical report.

Error-correction in MDS Codes: We use [n, k] MDS code
where k = n− 3f . The distance between different codewords
is d = n− k + 1 = 3f + 1. The correctness of our algorithm
use the following theorems from coding theory.

Theorem 1. The decoder function DEC can correctly decode
the original message if the input contains at least n−f coded
elements. Among the elements used, up to f may be erroneous.

Theorem 2. Assume n ≥ 4f + 1. Consider codeword C =
{c1, c2, . . . , cn} and codeword C ′ = {c′1, c′2, . . . , c′n} such
that (i) C has at most f erasures, (ii) C ′ has at most f
erasures,2 and (iii) at most f of the remaining coded elements
are different between the two codewords. If DEC(C) = m,
then DEC(C ′) either returns m or detects an error.

Theorem 2 needs n ≤ 4f , because by construction, each
pair of codewords has distance 3f+1. Even with the Byzantine
source, it is possible to find a scenario that DEC(C) = m
and DEC(C ′) = m′ for m′ ̸= m when n ≤ 4f .

EC-BRB[4f+1]: Algorithm: The structure is similar to EC-
BRB[4f+1]; hence, the pseudo-code is omitted due to page
constraints. The key characteristic of EC-BRB[4f+1] is that
upon receiving the ECHO-TAG messages, each node directly
uses decoder function to recover the original message m. If the

2Erasures at C and C′ may occur at different positions.

source is fault-free, then the error-correcting feature of MDS
code trivially handles the corrupted coded element forwarded
by Byzantine nodes. Therefore, unlike EC-BRB[3f+1], nodes
do not perform the exponential computation. One key design
is to have codeword distance at least 3f . This allows all fault-
free nodes to correctly construct a message, even if a faulty
source colludes with other faulty non-source nodes.

In addition to transmitting coded elements, the source also
uses Bracha’s RB [6] to reliably broadcast H(m) in parallel.
This ensures that even with a faulty source, fault-free nodes
must decode the same value; otherwise, the H(m) would
not match. Since H(m) can be viewed as a constant for a
large enough message, this design has no impact on the bit
complexity.

IV. EVALUATION

We evaluate the performance of RB protocols through
simulations over realistic settings with the focus on two critical
applications: asset transfer and smart home. We first imple-
ment a configurable and extensible benchmarking platform,
Reliability Mininet Benchmark (RMB), for distributed reliabil-
ity protocols over asynchronous message-passing networks.

RMB is built on top of Mininet [14], [15]. It is integrated
with a workload generator that generates reliable broadcast
requests. The RMB framework is implemented using Go.
Python scripts are provided to configure and launch RMB.

Network parameters can be configured within YAML files.
Benchmark managers and protocols are invoked by a Python
script after the network is initialized. Advanced users can also
configure a topology and try various link parameters. A key
benefit of RMB is to free user from tedious work of configur-
ing environments (regarding networks and computation power)
and faulty behaviors.

We use a virtual machine (VM) on Google Cloud Platform
(GCP). The VM is a custom N2 instance with 96 vCPUs and
86.5 GB memory. The VM runs Ubuntu 18.04 LTS and is
located in us-east1-b. We evaluate the RB algorithms in two
different scenarios: a payment system for asset transfer and a
setting of a smart home. We create simulated network topology
with traffic controlled links. Constraints, such as delay, jitter,
limited bandwidth, and loss, are set for links between nodes
to simulate the real network conditions.

The numbers presented below do not include the result for
Patra’s algorithm [21] nor Nayak’s algorithm [9]. Both of these
algorithms have optimal complexity O(nL) in the theoretical
setting. However, we found them with sub-par performance in
our target scenarios. The reason is Patra’s algorithm induces
high computation complexity. It requires roughly 400 ms to
complete for a network of 32 nodes. On the other hand,
algorithm in [9] has higher round complexity, which takes
more than 500 ms to complete on average. Both algorithms
are slower than other algorithms we have tested.

Scenario 1: Asset Transfer We use a three-layer topology
to simulate the Border Gateway Protocol (BGP): the top layer
is a core switch; the middle layer consists of edge switches; the
bottom layer consists of nodes that are individually connected

with the edge switches. In our evaluation, we set 1 node per
edge switch and there are 10 nodes in total.

The message size is set to 0.1 MB. In payment systems,
each message that corresponds to a payment is small, but
batching is normally used for improved throughput. Therefore,
our message size can be considered as the size of a batch of
messages (or a block in a blockchain-based system). We send
2000 rounds of messages from the source node sequentially.
That is, no pipelining is enabled, because we want to focus
on the pure performance of the RB algorithms.

In a real setting, the agents, such as banks, might not be
geographically close to each other. Due to long distances
between agents, we need to consider the latency factor. We
set a 50 ms delay and 25 ms jitter for the links. Moreover, the
agents communicate through wired networks connected with
cables, so we set the maximum bandwidth to be 50 Mbit/s
and the loss to be 0.

Scenario 2: Smart Home We use a single switch topol-
ogy to simulate the smart home setting. In this topology, a
single switch is connected with multiple nodes, simulating the
scenario where a router is connected with many IoT devices
through Wi-Fi. We report the result of 40 nodes.

In smart home applications, other than special cases like
video surveillance, most signals, such as control messages,
temperature measurements, and images exchanged between
devices are small. Therefore, we set the message size to 1
KB. Same as the previous scenario, we send 2000 rounds
of messages from the source node. Although many current

Bracha Broadcast EC-BRB[3f+1] H-BRB[3f+1]
0

5

10

15

T
h
ro

u
g
h
p
u
t

T (0% Loss)

T (2% Loss)

Fig. 1: Payment System (Asset Transfer)

routers show high bandwidth from their specifications, we
set the maximum bandwidth to 50 MB because bandwidth
significantly suffer from longer-distance communication and
obstacles (e.g., walls) blocking Wi-Fi signal. There also exists
a small latency during communication. Thus, we set a 10 ms
delay and a 3 ms jitter. Another common issue for wireless
communication is the packet loss, say due to signal collision.
Therefore, we test both 0% and 2% message loss rates.

Figure 1 presents the throughput of RB algorithms in
the asset transfer setting. Broadcast is the non-fault-tolerant
algorithm where the source simply multi-casts the messages
to each node and waits for an acknowledgement from each
node. EC-BRB[4f+1] has the best throughput, even higher than
the non-fault-tolerant version. This is because the source only
needs to send O(L) bits in the common case, and the local
computation is efficient.

Figure 2 reports the throughput for our BRB algorithms and
Bracha’s algorithm. Table II reports also the percentage drop
in throughput due to higher message loss rate. As expected, H-
BRB[3f+1] has the best performance, due to its more efficient
computation and lower bit complexity. EC-BRB[3f+1] does
not have great performance, but its % drop in throughput is
much lower than Bracha’s algorithm.

Bracha

Broadcast

EC-B
RB[3f+1]

EC-B
RB[4f+1]

H-B
RB[3f+1]

0

1

2

3

4

5

6

7

8

T
h

ro
u

g
h

p
u

t

Fig. 2: Smart Home (IoT) Application

TABLE II: Smart Home (IoT) Application

Algorithm T (0% Loss) T (2% Loss) % drop
H-BRB[3f+1] 9.87 9.48 3.95%

EC-BRB[3f+1] 4.51 4.13 8.43%
Broadcast 14.07 13.65 2.99%

Bracha 6.33 5.34 15.64%

V. RELATED WORK

Byzantine Reliable broadcast has been well studied since
1980’s [6]. Various properties have been considered, e.g., dif-
ferent topologies [22]–[25], probabilistic properties with log-
arithmic per-node communication and computation complex-
ity [26], and Mobile ad hoc networks (MANETs) [27]. [10]
presents comprehensive surveys on existing reliable broadcast
protocols. Closest algorithms are compared in Table I.

Recently, reliable broadcast protocols have been made more
efficiently [7], [8], [21], [28]. Liang and Vaidya [28] use
erasure-coding for designing an error-free synchronous Byzan-
tine agreement algorithm with optimal bit complexity. Liang

et al. [7] and Fitzi and Hirt [29] present Byzantine agreement
and RB algorithms in synchronous settings. Choudhury [30]
proposes Byzantine RB algorithm that requires only majority
correctness, unlike n ≥ 3f + 1 in prior works. Choudhury’s
algorithm achieves optimal bit complexity (i.e., O(nL)). The
algorithm relies on the hardware to ensure that faulty nodes do
not equivocate. Our algorithms work for asynchronous systems
and do not assume hardware support.

VI. CONCLUSION

This paper presents a family of Byzantine reliable broadcast
algorithms designed for bandwidth constrained networks. We
experimentally demonstrate that our algorithms have superior
performance over the state-of-arts algorithms using our evalua-
tion platform RMB. Particularly, using RMB, we show that our
algorithms perform very well in the settings of asset transfer
and smart home applications.

ACKNOWLEDGEMENTS

Yingjian and Haochen worked on the project while affiliated
with Boston College. Authors from Boston College were
partially supported by National Science Foundation award
CNS-1816487. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and
do not necessarily reflect the views of the funding agencies
or the U.S. government. The authors would also like to
acknowledge Saptaparni Kumar’s comment on earlier version
of this work.

REFERENCES

[1] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Trans. on Programming Languages and Sys-
tems, 1982.

[2] Lewis Tseng and et. al. Reliable broadcast with trusted nodes: Energy
reduction, resilience, and speed. Computer Networks, 182, 2020.

[3] Lewis Tseng, Yingjian Wu, Haochen Pan, Moayad Aloqaily, and Azze-
dine Boukerche. Reliable broadcast in networks with trusted nodes. In
2019 IEEE global communications conference (GLOBECOM). IEEE,
2019.

[4] Anran Du, Yicheng Shen, Qinzi Zhang, Lewis Tseng, and Moayad
Aloqaily. Cracau: Byzantine machine learning meets industrial edge
computing in industry 5.0. IEEE Transactions on Industrial Informatics,
2021.

[5] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Matteo Monti,
Athanasios Xygkis, Matej Pavlovic, Petr Kuznetsov, Yvonne-Anne Pig-
nolet, Dragos-Adrian Seredinschi, and Andrei Tonkikh. Online payments
by merely broadcasting messages (extended version), 2020.

[6] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf.
Comput., 75(2):130–143, November 1987.

[7] Guanfeng Liang, Benjamin Sommer, and Nitin Vaidya. Experimental
performance comparison of byzantine fault-tolerant protocols for data
centers. In 2012 Proceedings IEEE INFOCOM. IEEE, March 2012.

[8] Arpita Patra and C. Pandu Rangan. Communication optimal multi-
valued asynchronous byzantine agreement with optimal resilience. In
Information Theoretic Security - 5th International Conference, ICITS
2011, Amsterdam, The Netherlands, May 21-24, 2011. Proceedings,
pages 206–226, 2011.

[9] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun
Xiang. Improved extension protocols for byzantine broadcast and
agreement. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference, volume 179 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[10] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems -
An Algorithmic Approach. Springer, 2018.

[11] Damien Imbs and Michel Raynal. Trading off t-resilience for efficiency
in asynchronous byzantine reliable broadcast. Parallel Processing
Letters, 26(04):1650017, 2016.

[12] Balaji Srinivasan Babu, M. Nikhil Krishnan, Myna Vajha, Vinayak
Ramkumar, Birenjith Sasidharan, and P. Vijay Kumar. Erasure coding
for distributed storage: An overview. CoRR, abs/1806.04437, 2018.

[13] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes.
Cambridge university press, 2003.

[14] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
New York, NY, USA, 2010. Association for Computing Machinery.

[15] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. Reproducible network experiments using container-
based emulation. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’12,
page 253–264, New York, NY, USA, 2012. Association for Computing
Machinery.

[16] Bart Preneel. 1 cryptographic hash functions : An overview.
[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

Cryptography Mailing list at https://metzdowd.com, 03 2009.
[18] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.

In Margo I. Seltzer and Paul J. Leach, editors, Proceedings of the Third
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages
173–186. USENIX Association, 1999.

[19] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[20] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience

asynchronous approximate agreement. In Teruo Higashino, editor,
Principles of Distributed Systems, pages 229–239, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[21] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement
with optimal communication complexity. In Principles of Distributed
Systems - 15th International Conference, OPODIS 2011, Toulouse,
France, December 13-16, 2011. Proceedings, pages 34–49, 2011.

[22] Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine agree-
ment. Inf. Comput., 118(1):158–179, 1995.

[23] Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas. Reliable
broadcast with respect to topology knowledge. Distributed Computing,
30(2):87–102, 2017.

[24] Lewis Tseng, Nitin H. Vaidya, and Vartika Bhandari. Broadcast using
certified propagation algorithm in presence of byzantine faults. Inf.
Process. Lett., 115(4):512–514, 2015.

[25] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-hop
byzantine reliable broadcast with honest dealer made practical. Journal
of the Brazilian Computer Society, 25(1):9, Sep 2019.

[26] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and
Dragos-Adrian Seredinschi. Scalable byzantine reliable broadcast. In
33rd International Symposium on Distributed Computing, DISC 2019,
October 14-18, 2019, Budapest, Hungary, pages 22:1–22:16, 2019.

[27] Wei Lou and Jie Wu. Double-covered broadcast (DCB): A simple
reliable broadcast algorithm in manets. In Proceedings IEEE INFOCOM
2004, The 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies, Hong Kong, China, March 7-11, 2004, pages
2084–2095, 2004.

[28] Guanfeng Liang and Nitin H. Vaidya. Error-free multi-valued consensus
with byzantine failures. In Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2011, San
Jose, CA, USA, June 6-8, 2011, pages 11–20, 2011.

[29] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzan-
tine agreement. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2006, Denver,
CO, USA, July 23-26, 2006, pages 163–168, 2006.

[30] Ashish Choudhury. Multi-valued asynchronous reliable broadcast with
a strict honest majority. In Proceedings of the 18th International
Conference on Distributed Computing and Networking, Hyderabad,
India, January 5-7, 2017, page 1, 2017.

	Introduction
	Preliminaries
	Byzantine Reliable Broadcast
	MDS Erasure Code: Preliminaries
	EC-BRB[3f+1]
	EC-BRB[4f+1]

	Evaluation
	Related Work
	Conclusion
	References

