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Abstract—The rapid advancement in quantum technology has
initiated a new round of post-quantum cryptography (PQC)
related exploration. The key encapsulation mechanism (KEM)
Saber is an important module lattice-based PQC, which has
been selected as one of the PQC finalists in the ongoing National
Institute of Standards and Technology (NIST) standardization
process. On the other hand, however, efficient hardware im-
plementation of KEM Saber has not been well covered in the
literature. In this paper, therefore, we propose a novel cyclic-row
oriented processing (CROP) strategy for efficient implementation
of the key arithmetic operation of KEM Saber, i.e., the polynomial
multiplication. The proposed work consists of three layers of
interdependent efforts: (i) first of all, we have formulated the
main operation of KEM Saber into desired mathematical forms to
be further developed into CROP based algorithms, i.e., the basic
version and the advanced higher-speed version; (ii) then, we have
followed the proposed CROP strategy to innovatively transfer the
derived two algorithms into desired polynomial multiplication
structures with the help of a series of algorithm-architecture
co-implementation techniques; (iii) finally, detailed complexity
analysis and implementation results have shown that the pro-
posed polynomial multiplication structures have better area-time
complexities than the state-of-the-art solutions. Specifically, the
field-programmable gate array (FPGA) implementation results
show that the proposed design, e.g., the basic version has at least
less 11.2% area-delay product (ADP) than the best competing one
(Cyclone V device). The proposed high-performance polynomial
multipliers offer not only efficient operation for output results
delivery but also possess low-complexity feature brought by
CROP strategy. The outcome of this work is expected to provide
useful references for further development and standardization
process of KEM Saber.

Index Terms—Cyclic-row oriented processing (CROP) strategy,
field-programmable gate array (FPGA), high-performance, key
encapsulation mechanism (KEM) Saber, polynomial multiplica-
tion, post-quantum cryptography (PQC)

I. INTRODUCTION

Along with the rapid advancement in quantum computing,
it has been proven that the well-established quantum computer
employing Shor’s algorithm can break the current public-key
cryptosystems such as Rivest Shamir Adleman (RSA) and
Elliptic Curve Cryptography (ECC) [1]–[4]. Therefore, post-
quantum cryptography (PQC) and related implementations
have drawn significant attention from the research community
recently [3]. As indicated by the National Institute of Science
and Technology (NIST) 3rd round PQC standardization pro-

cess [5], there are lattice-based cryptography, code-based cryp-
tography, isogeny-based cryptography (etc.) currently under
consideration for PQC candidates. Among these candidates,
lattice-based cryptography is recognized as one of the most
promising schemes [5]–[7].

The lattice-based cryptography can be built on the learning-
with-errors (LWE) problem and its variants [6-11]. One of the
important variants of the LWE is the learning-with-rounding
(LWR) problem [12]. Quite a good number of works have
been released on this problem [13-23], including the key
encapsulation mechanism (KEM) Saber [5], which is one of
the NIST 3rd round PQC finalists.
Existing Works. KEM Saber is built on the Module-LWR
(MLWR) problem, which is a module variant of LWR. Upon
its original introduction in [13], [14], many works have been
released on this interesting PQC scheme, ranging from security
level, implementation, and attack analysis [14]–[16]. Espe-
cially for the hardware implementations, including both the
system-level and component-level designs (such as polynomial
multiplication), we can categorize them into two types: (i)
hardware-software co-design; and (ii) full hardware design.
The first type includes the recent one of [17], where the Toom-
Cook method is used to implement the polynomial multipli-
cation for KEM Saber. Another recent design of [18] also
uses the Toom-Cook approach to achieve high-performance
implementation. A very recent report has proposed to use the
number theoretic transform (NTT) [19] for the implementation
of the polynomial multiplication of KEM Saber on the RISC-
V accelerator. For the second type, a new coprocessor for
KEM Saber is introduced in [21], where the polynomial
multiplication is based on a schoolbook based method. A
Karatsuba algorithm based KEM Saber is reported in [22] for
high-performance operation. Optimized polynomial multipli-
cation structures for the polynomial multiplication in KEM
Saber is recently presented in [23], which has better area-
time complexities than the previous designs of [17], [20].
Overall, these two types of designs are the major hardware
implementation works for KEM Saber.

The polynomial multiplication over ring Zl/(x
N + 1) (l is

either q or p [13], [21]) is the critical arithmetic operation
of KEM Saber. But the existing works have not well covered
its efficient implementation: (i) the existing high-performance
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Fig. 1: The existing polynomial multiplication structure [23],
where the produced outputs (in parallel) need to be transferred
into serial format to be stored in the external memory.

works, such as the structure of Fig. 1 in [23] (see Fig. 1
here) produces the multiplication outputs in a parallel format,
which actually requires extra resources such as multiplexers
(MUXes) to transfer the parallel outputs into serial style to be
stored in the external memory for further usage; (ii) not many
efficient hardware structures for the polynomial multiplication
have been proposed for KEM Saber. Noticing that polynomial
multiplications over other fields such as binary field have been
investigated widely in the literature [24]–[27], we just follow
this trend to propose an efficient implementation of polynomial
multiplication for KEM Saber on the field-programmable gate
array (FPGA) platform for high-performance applications.
Specifically, we have followed the design style presented in
[28] and have proposed a novel cyclic-row oriented processing
(CROP) strategy that all the outputs are circularly accumulated
and can be very easily transferred to the external memory
in a serial format with little extra resource usage (simple
operation).
Major Contributions. In total, we have carried out three
layers of innovative works for the efficient implementation of
polynomial multiplication (KEM Saber), as:
• We have proposed a series of thorough mathematical

derivation to lay a solid foundation for the novel CROP
strategy, which is then extended further to obtain two
algorithms, namely the basic version and the advanced
higher-speed one (different processing throughput rates).

• We have then presented a detailed design process to
innovatively transfer the CROP originated algorithms into
desired multiplication architectures with the help of sever-
al algorithm-architecture co-implementation techniques.

• We have conducted a thorough complexity analysis and
comparison (including both the theoretical analysis and
FPGA based implementation performance) to show that
the proposed polynomial multiplications have better area-
time complexities than the state-of-the-art solutions.

Overall, the proposed polynomial multiplication possesses
three main unique features: (i) simple and easy operation on
the output result delivering; (ii) flexible offering of processing

throughput; and (iii) low-complexity. Discussions about the
further extension and application of the proposed polynomial
multiplications have also been provided.

The rest of this paper is organized as follows. The prelimi-
nary knowledge is introduced in Section II. The formulation of
the proposed CROP strategy is detailed presented in Section
III along with proposed algorithms. The proposed hardware
polynomial multiplication structures are provided in Section
IV. Complexity analysis and comparison are presented in
Section V. Finally, conclusions are given in Section VI.

II. PRELIMINARIES

In this section, we briefly give the introduction of the KEM
Saber and the involved polynomial multiplication. Interested
readers can refer to the original papers of [13], [14] for details.

A. The MLWR Scheme (KEM Saber)

The LWR is a variant of LWE [12], which uses the rounding
operation to replace the previous Gaussian distributed errors to
obtain the hardness of the lattice problem. The LWR problem
is based on the equation of (a, b = bpq 〈a, s〉ep) ∈ ZN

q × Zp

(where both p and q are power-of-two moduli), and the MLWR
scheme is the module version of the LWR.

Saber is an MLWR scheme based PQC, which achieves both
classical and quantum security [13]. Saber is first constructed
as a Chosen Plaintext Attack (CPA) secure public-key encryp-
tion scheme and then developed into KEM Saber through the
Fujisaki-Okamoto transformation [29].

Similar to other PQC schemes, the Saber public-key en-
cryption scheme consists of three operational phases, i.e., the
key generation, the encryption, and the decryption phases
[13], [14]. In the key generation phase, the public matrix of
polynomials A and a secret vector of polynomials s are used
to produce the scaling and rounding output of As (also the
vector b), where the public key is composed of A and b and
the secret key is the vector s. In the encryption phase, the
original message is encrypted through v′ = sb (generated new
secret s′) and the final produced ciphertext involves the vector
b′ (from rounding As′). The decryption phase uses the secret
key to obtain v, which is approximately the same as v′ in
the encryption phase (allows the recovering of the original
message from the ciphertext). KEM Saber uses the Fujisaki-
Okamoto transformation [29] to further ensure its CCA-secure.
Parameter Setting [13]. The polynomial multiplication in-
volved within KEM Saber is set as degree of N = 256 and
the two moduli are q = 213 and p = 210, respectively. The
related secrets are sampled from the binomial distribution.

B. Polynomial Multiplication for KEM Saber

The polynomial multiplication (degree of 256) is the key
arithmetic operation in the above mentioned phases. One
polynomial involves coefficients generated from the binomial
sampler, and these coefficients lie in the value range of -
4 to +4 [23], while another polynomial operand consists of
coefficients of either 10-bit or 13-bit (the 13-bit based design
can also be used for the 10-bit based computation). The design



of [23] has used the schoolbook algorithm to derive the desired
high-performance structures. But the proposed polynomial
multiplication structures have not fully optimized the output
delivery, and hence further efforts are needed in this area.

III. CROP: MATHEMATICAL FORMULATION

Mathematical Formulation (Polynomial Multiplication)
Without loss of generality, one can generalize the polynomial
multiplication over ring Zl/(x

N + 1) (l is either q = 213 or
p = 210 [23]) as follows.
Definition 1. Define polynomials as: W =

∑N−1
i=0 wix

i, D =∑N−1
i=0 dix

i, and G =
∑N−1

i=0 gix
i, where gi, di, and wi are 4-

bit, 13-bit, and 13-bit coefficient over ring, respectively. Define
also W is the product of D and G, we can have

W = DG mod (f(x) = xN + 1). (1)

Then, (1) can be rewritten as

W =d0(Gxi mod f(x)) + · · ·
+dN−1(Gxi mod f(x)),

(2)

where xN ≡ −1 can be used and then we have

W =

N−1∑
i=0

wix
i = d0(g0 + g1x+ · · ·+ gN−1x

N−1),

+d1(−gN−1 + g0x+ · · ·+ gN−2x
N−1) + · · · ,

+dN−1(−g1 − g2x− · · ·+ g0x
N−1).

(3)

Example. To illustrate in detail the proposed design strategy,
we have also given an example of N = 4 (from (3))

w0 = g0d0 + (−g3d1) + (−g2d2) + (−g1d3),
w1 = g1d0 + g0d1 + (−g3d2) + (−g2d3),
w2 = g2d0 + g1d1 + g0d2 + (−g3d3),
w3 = g3d0 + g2d1 + g1d2 + g0d3,

(4)

which can be extended to obtain all wi (0 ≤ i ≤ N − 1)
through a circularly accumulated format, following the strate-
gy in [28]. We have used a signal flow graph (SFG) to realize
the proposed strategy for (3) in Fig. 2 (not including the signs,
which can be easily handled in hardware design in Section IV).

In Fig. 2, we have put all N number of coefficients as one
input to the multiplication, respectively, while another input of
the multiplication is fed with the coefficients of the polynomial
D in a serial format as d0,d1,· · · ,dN−1. The multiplication
results are then accumulated in a cyclic format to produce
the N outputs wi, i.e., the multiplication results produced
from these n multipliers within related n cycles are circularly
accumulated to produce the desired output. For example, in the
first cycle, the multiplication (the far right one) produces g0d0
and then stored in the following accumulator (far left); then,
in the second cycle, g0d0 will add the multiplication result
gN−1d1 produced from the first multiplier (far left); and then
adds with gN−2d2 produced from the second multiplier (from
left) in the third cycle; and keeps going on until it adds the
multiplication result (dN−1g1) of the second far right one after
N cycles to produce w0 (accumulated in the far right one),
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Fig. 2: The proposed SFG to realize (3) (signs are not
included), where Mul. is the multiplication and the related
multiplication results are accumulated in a cyclic format to
produce the N outputs. The multiplication result is added with
the value stored in each accumulator and then yielded out to
the nearby accumulator to be stored during each cycle.

TABLE I: Example for the Proposed CROP Strategy (N = 4)
C∗ ACC-0 ACC-1 ACC-2 ACC-3

accumulation process (cyclic format, see Fig. 2)
1 g1d0 g2d0 g3d0 g0d0

2 g2d0 + g1d1 g3d0 + g2d1 g0d0 − g3d1 g1d0 + g0d1

3 g3d0 + g2d1 g0d0 − g3d1 g1d0 + g0d1 g2d0 + g1d1
g1d2 −g2d2 −g3d2 g0d2

4 g0d0 − g3d1 g1d0 + g0d1 g2d0 + g1d1 g3d0 + g2d1
−g2d2 − g1d3 −g3d2 − g2d3 g0d2 − g3d3 g1d2 + g0d3

out w0 w1 w2 w3

C∗: cycle number. ACC: accumulator.
Each multiplication value is added with the value stored in the accumulator
first and then transferred to the following (neighboring) accumulator to be
stored during each processing cycle.

which matches the example procedure shown in (3). The same
process applies to all the other output coefficients. Since this
type of accumulation is carried out in a cyclic-row format and
we just defined this kind of strategy as Cyclic-Row Oriented
Processing (CROP). Table I shows the involved procedure
following the same operation of Fig. 2, based on (3).

Thus, following the CROP strategy and (4), we can have

w0 =
N−1∑
j=0

G
(0)
j dj , · · · , wN−1 =

N−1∑
j=0

G
(N−1)
j dj , (5)

where G(i) represents the corresponding operand for wi and
G

(i)
j denotes the related (j−1)th coefficient, e.g., corresponds

with (4), G(0) = g0 − g3x− g2x
2 − g1x

3 and G
(0)
1 = −g3.

We can thus obtain the proposed CROP based algorithm as

Algorithm 1 Proposed CROP based polynomial multiplication
algorithm for KEM Saber (basic version)

Inputs: polynomials G and D (G and D are polynomials with
4-bit and 13-bit integer coefficients over ring, respectively).
Outputs: W = GD mod f(x) (f(x) = xN + 1).
1. Initialization step
1.1. W = 0.
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Fig. 3: The proposed polynomial multiplication structure based on Algorithm 1, where SR and PE refer to the shift-register and
processing element, respectively. Note that the highlighted blue coefficients of G (initial positions) do not include the signs.

1.2. the coefficients of G and D are in the proper position.
2. Main step
2.1. from i = 0 to N − 1.

2.2. for j = 0 to N − 1.
2.3. W = W +G

(i)
j dj . // following CROP strategy

2.4. wi = W . // parallel obtain wi

2.5. end for.
2.6. end for.
3. Final step
3.1. serially deliver the output coefficients of W .

Note that these N number of wi are processed in a parallel
manner, while Step 2.3 is accumulated through N cycles’
operations following the CROP strategy.
Advanced Higher-Speed Version. For a higher-speed opera-
tion, we can have

wi =

t−1∑
k=0

r−1∑
h=0

G
(i)
kr+hdkr+h, (6)

where we have defined N = rt (both r and t are integers) such
that the original N cycles of accumulation can be decomposed
into t number of parallel sub-accumulations (where each sub-
accumulation needs r cycles’ operation).

We can then have the proposed higher-speed algorithm as

Algorithm 2 Proposed CROP based polynomial multiplication
algorithm for KEM Saber (higher-speed version)

Inputs: polynomials G and D (G and D are polynomials with
4-bit and 13-bit integer coefficients over ring, respectively).
Outputs: W = GD mod f(x) (f(x) = xN + 1).
1. Initialization step
1.1. W = 0.
1.2. the coefficients of G and D are in the proper position.
2. Main step
2.1. from i = 0 to N − 1.

2.2. for k = 0 to t− 1.
2.3. for h = 0 to r − 1.
2.4. W = W +G

(i)
kr+hdkr+h.//following CROP strategy

2.5. end for.
2.6. end for.

2.7. wi = W . // parallel obtain wi

2.8. end for.
3. Final step
3.1. serially deliver the output coefficients of W .

where Step 1.2 involves the preparation of decomposing the
coefficients of polynomial D into t groups and each group has
r coefficients (similar to all the G

[i]
j ).

Remark. The main benefits of the proposed CROP strategy
include: (i) the output results are obtained through cyclic
accumulation format, which facilitates the final outputs’ s-
toring into external memory (little resource is required on
this operation); (ii) the overall signal processing is rather
simple, i.e., one polynomial’s coefficients are serially fed in
while another polynomial’s coefficients are attached to the
corresponding multiplier, respectively. The following structural
design will reveal more details on these two advantages.

IV. PROPOSED CROP BASED HARDWARE STRUCTURES

This section presents the proposed CROP strategy origi-
nated hardware structures. Note that the coefficients of G are
represented in the sign magnitude format, following [21], [23].
Basic Version. The proposed polynomial multiplication
structure-I (basic version) based on Algorithm 1 is shown
in Fig. 3. The proposed structure mainly consists of three
components, namely the input component, the processing
element (PE) array/component, and the control unit.

The Input Component. As shown in Fig. 3, there are
two shift-registers (SRs) involved, for polynomials D and G,
respectively. As the coefficients of G are represented in the
sign magnitude format, we just use 3-bit registers in the SR
(the most significant bit (MSB) is the corresponding sign bit,
which is generated by another individual circular shift-register
(CSR) in the control unit). After N cycles, all the coefficients
are loaded in the corresponding registers and can be delivered
out to the following component. The SR for input G (serial-
in parallel-out style) directly delivers all the N coefficients in
parallel to the corresponding PEs, respectively. While the SR
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for input D (serial-in serial-out) delivers the coefficients of D
in a serial format such that all the PEs receive one output per
cycle, i.e., starting from d0 and finally to dN−1.

The PE Array/Component. The PE array/component con-
sists of N PEs, where all the PEs have the same internal
structure as that shown in Fig. 4. The PE contains one M cell,
one register, and one add/sub cell. The details of the major
cells in the PE are shown in Fig. 5. The M cell executes
the multiplication operation for one coefficient of G with the
corresponding coefficient from D. As the absolute magnitude
of the coefficients of G lie in range of 0 to 4, we can just follow
the design style of [23] to design a MUX-based multiplication
cell, where all the possible multiplication results (0, di, 2di,
3di, and 4di) are pre-obtained to be attached to the MUX
(the value of 3di comes from the addition of di and 2di,
while the 2di and 4di are obtained through bit-shifting). The
output of the MUX is then fed to the add/sub cell to be
added/subtracted with the input from the left. Note that the
sign bit (s-i, generated from the control unit, matching the
corresponding sign for each gi according to Algorithm 1)
determines the operation within the add/sub cell either in the
addition or subtraction status. After N cycles of operations,
the desired output wi will be available in the related registers.
Note that there is a tri-state gate attached to the input of PE-
N (w0) such that all the N output coefficients are serially
delivered out in the sequence of w0, w1, · · · , wN−1 (of course,
all the other inputs to the PEs are set as ’0’ in this process). In
this way, all the actual results are delivered out after (N − 1)
cycles, which is one less than the existing one of [23].

The Control Unit. The control unit is responsible for
generating all the control signals necessary for the operation
of the structure, mainly in three stages. The operation in
the first stage mainly refers to the loading of coefficients
in the two SRs. While the major operation in the second
stage is generating of sign bits for the corresponding gi
according to Algorithm 1: (i) the first cycle, all the sign bits
are“00· · · 00” (N number of ‘0’); (ii) the sign bits turns into
“10· · · 00” (the sign ‘1’ is for gN−1 according to (3)); (iii)
each cycle there will be one more ‘1’appearing in the sign
bits (the third cycle the sign bits are “11· · · 00”, only two ‘1’)
until the final cycle (i.e., “11· · · 10”, only one ‘0’). The last
stage’s operation mainly delivers the output coefficient wi in
a serial format (the other inputs to the PE are set as ‘0’).
We have thus used a CSR to realize this sign generation for
all the corresponding coefficients, as shown in Fig. 6. Within
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Fig. 5: The the major cells (FD: full adder) in each PE.
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Fig. 6: The CSR for sign bits generation.

this CSR, the registers are firstly cleared up as ‘0’, and then
the MUX and enable signals for all the registers coordinate
together to load the value of ‘1’ into these registers during the
actual computation process (the input for the CSR is set as ‘1’),
thus producing the desired sign bits for all the corresponding
coefficients of G during the processing stage.

Besides that, the control unit is also responsible for deliv-
ering out of desired results to the external resources (such
as memory). As shown in Fig. 3, after all the desired output
coefficients are accumulated in the registers of all the PEs, we
can directly set the control signal to the tri-state buffer as (sel-
0=‘0’), thus enabling all the output coefficients to be serially
delivered out in the next N cycles (meanwhile, all the related
input signals to the PEs are set as zero). Therefore, the whole
computation process is smooth and efficient, and no specific
extra resources are required for output delivery.
Advanced Higher-Speed Version. For a higher-speed oper-

ation, we can have the proposed structure-II of Fig. 7 (where
we have used the example of t = 2).

The structure of Fig. 7 involves almost the same details
as those in Fig. 3 except that each PE has doubled inputs
from inputs D and G, respectively. Correspondingly, the SR
(input D) now delivers two outputs at the same time, i.e., the
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Fig. 8: The details of the internal structure for the producing
of two groups of signs to be fed to the PEs.

whole N coefficients of D has been divided into two groups
as shown in Fig. 7 (nothing is needed on the changing of
structural side except that the output of the N/2th register
is also delivered to the PEs). Meanwhile, another group
of gN/2, gN/2−1, · · · , g0, gN−1, · · · , gN/2+1, formed from the
output of the SR (input G), is also fed to the corresponding
PEs according to (6) and Algorithm 2 to match the second
group of outputs from the SR of input D. Meanwhile, there
are also two groups of sign bits (corresponding to the two
groups of coefficients of G) attached to all the N PEs,
respectively. Fig. 8 shows the internal structure of the CSR
producing the necessary two groups of signs, where N/2
numbers of inverters are used to generate the second group
of {sN/2, · · · , s0, sN−1, · · · , sN/2+1} (the rest part of the
operations are the same as the original one in Fig. 6).

The internal structure of the PE is shown in Fig. 9, where
there are two M cells, one new add/sub cell, one register, and
one adder (regular full adder). The internal structures of the
two M cells are the same as those in Fig. 5, which mainly
execute two multiplications for the paired inputs from D and
G, respectively. But as the coefficients from G are represented
in the sign magnitude format, we need to use the new add/sub
cell for the following addition operation, as shown in Fig. 9,
with the coordination of the related two sign bits. The internal
structure of the new add/sub cell is then shown in Fig. 10,
where the two sign bits from the two coefficients of G are

M

adder

3

13

13clr

clk
13 13

1

M

13

3

new
add/sub1

carry_in

carry_in

Fig. 9: The details of the internal structure of the PE.
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Fig. 10: The details of the new add/sub cell within the PE.

determining the actual operation of the adders in the status
of addition or subtraction. Meanwhile, one of the sign bit
is attached to the carry-in of the new add/sub cell to meet
the requirement of transferring into two’s complement number
system (while another sign bit is also attached as the carry-in
to the adder in the PE, as shown in Fig. 9). The results for
output coefficients are accumulated in the registers in the PEs.
But as the structure of Fig. 7 now executes two multiplications
at one time, the positions of the final output coefficients are
also changed, as shown in Fig. 7, which only requires N/2
cycles’ circular accumulation and processing (the final output



TABLE II: General Complexities for Various Polynomial
Multiplication Structures for Saber

design #Mul. #Add. #register latency output style
Basic High-Performance Version

Fig. 2 [23] N N N 2N parallel∗

Fig. 3 N N N 2N − 1 serial
Higher-Speed Version

Fig. 21 [23] N N N 3N/2 parallel∗

Fig. 7 2N 2N N 3N/2− 1 serial

Mul. and Add. represent the multiplication and addition, respectively.
The number of additions include the add/sub cells.
Latency refers to the main computational and output delivering cycles.
∗: Extra resources (like MUXes) are needed to transfer the parallel output
into serial format to be stored in the external memory for further usage.
1: The extended higher-speed version based on the structure of Fig. 2 in
[23] to achieve the computation latency of N/2 cycles.

is attached to the input of the register storing w0, and the
whole output delivering time is again (N − 1) cycles).

The internal structure of the control unit remains the same as
that in Fig. 3 except that the number of cycles for accumulation
now is reduced to N/2. Meanwhile, the position of the final
output attached to the circular loop in the structure also
changes, as shown in Fig. 7.

The Extension to Other Values of t. The structure present-
ed in 7 can also be extended to other values of t for higher-
speed operation, only following the principle that the number
of grouped sign bits are paired with the inputs to each PE
(similar to the changing of the number of new add/sub cells
in each PE as well as the M cells), while the majority parts of
the structure remain the same as that in Fig. 7. Besides that,
there is a need for a slight update on the control unit as the
main accumulation time now takes N/t cycles (the position to
deliver out the final output is also correspondingly switched
following the accumulation sequence of Algorithm 2).

V. COMPLEXITY ANALYSIS AND COMPARISON

Complexity Analysis. For simplicity of discussion, we just
depict the area-time complexities of the proposed structures
in Figs. 3 and 7. The proposed polynomial multiplication
structure of Fig. 3 (basic version) involves two SRs, where
each SR contains N number of registers with specified bit-
width of 3 and 13, respectively. Meanwhile, there are in total
N PEs involved within the structure, and each PE has one M
cell, one register, and one add/sub cell. A control unit is needed
to generate all the necessary signals as well as an extra tri-
state gate to serial deliver out the final N output coefficients.
The overall latency of the computation is N cycles (output
delivering is (N −1) cycles, and the input loading for the two
SRs is also N cycles). Similar complexity estimation strategy
applies to the structure of Fig. 7.
Theoretical Analysis & Comparison. When comparing with
the recently released ones in [23] (since in the most recent de-
sign of [23], the authors have shown their designs outperform
the other available structures such as [21] in the literature, we
here just compare mainly with the ones of [23]), as shown
in Table II. The proposed ones have one unique advantage,
i.e., the delivery of output coefficients is very simple and

almost involves no extra resource usage since all the output
values are computed and accumulated in a circular format
while the existing designs of [23] require extra resources
(such as MUXes) to transfer the parallel outputs into a serial
format to be stored into the related memory section for further
processing. Besides that, this unique feature may also bring a
little bit of savings in overall area-time complexities since the
proposed structures also have one less output delivering cycle
than the existing designs of [23].
FPGA based Implementation & Comparison. To have a
further detailed fair comparison, we have coded the proposed
designs (Figs. 3 and 7) along with the newly released ones in
[23] and have also obtained their corresponding performance
after implementation. Again, we want to mention that the
authors of [23] have shown their designs outperform the other
structures such as [21] available in the literature, and we hence
just put the high-performance ones (the similar latency cycles)
of [23] as our competing designs.

Experimental Setup. The overall experimental settings are:
(i) We have used VHDL to code the proposed polynomial

multiplication structure of Fig. 3 and Fig. 7. The FPGA based
implementation results are obtained through the Intel Quartus
Prime 17.0 on the Stratix V 5SGXMABN1F45C2 and Cyclone
V 5CSXFC6D6F31I7ES devices, respectively.

(ii) We have followed the same parameter setting in [21]–
[23], i.e., one polynomial has 13-bit coefficients while another
has 3-bit coefficients (not including the sign bit) (N = 256).
We have also used the same type of adder for both the
proposed and existing designs.

(iii) We have followed the structural introduction in [23]
(Fig. 2 of [23]) to complete the coding (basic version, with
function verified through ModelSim) and have also coded
the extended higher-speed version (latency is N/2 =128). A
corresponding control unit is also coded to coordinate the input
loading, main computation, and the final output delivery. Note
that similar loading shift-registers are also used for [23].

(iv) The area-time complexities/performance of the pro-
posed and the competing designs, in terms of the number of
adaptive logic module (ALM), maximum frequency (Fmax,
with MHz as the unit), latency cycles (main computation and
output delivering cycles), delay ((1/Fmax)×(latency cycles)),
and area-delay product (ADP×103), are listed in Table III.

As shown in Table III, the proposed designs overall out-
perform the existing designs of [23] (newly available in the
literature), e.g., the proposed design (basic version) has at least
11.2% less ADP than the competing one on the Cyclone V
device while the proposed higher-speed structure of Fig. 7
(case of t = 2) involves at least 10.4% less ADP than the state-
of-the-art one of [23] on the same Cyclone V device (of course,
the proposed designs also have better performance than the
competing design on the Stratix V device). This should be due
to the fact that the proposed designs have a simple setup on the
output delivering (benefited from the proposed CROP strategy)
while the existing ones need extra resources for transferring
the output signals into a serial format for further processing,
which (i) improves the maximum frequency (also with one less



TABLE III: Comparison of the Area-Time Complexities for
the Proposed and the Competing designs on the FPGA

design ALMs Fmax latency delay ADP∗ ER?
Basic Version (Stratix V device)

Fig. 2 [23] 6,889 257.33 512 1,990 13,709 Y
Fig. 3 6,921 267.38 511 1,911 13,226 N

Basic Version (Cyclone V device)
Fig. 2 [23] 7,084 124.52 512 4,112 29,129 Y

Fig. 3 6,915 136.63 511 3,740 25,862 N
Higher-Speed Version (Stratix V device)

Fig. 21 [23] 14,689 196.43 384 1,955 28,717 Y
Fig. 7 14,341 204.54 383 1,872 26,846 N

Higher-Speed Version (Cyclone V device)

Fig. 21 [23] 15,426 98.48 384 3,899 60,146 Y
Fig. 7 14,579 103.62 383 3,696 53,884 N

The design of [23] has shown its efficiency over the other ones such as [21],
we hence just use the high-performance ones in [23] for comparison.
ER?: extra resources (for output delivering)? Y: Yes; N: No;
Unit for Fmax: MHz. Unit for delay: ns. ∗: ADP=#ALM×delay (×103).
Latency refer to the main computation and output delivering cycles.
1: The extended higher-performance version based on the structure of Fig. 2
in [23] to achieve the computation latency of 128 cycles (total 384 cycles).

latency cycle); (ii) potentially enhances the actual mapping
efficiency, of the proposed designs, on the FPGA devices.
Discussion. It is noted that we have not employed any manual
area optimization techniques to obtain optimal performance on
the FPGA platform for the sake of fair comparison.

Besides that, we want to mention that though we have
followed the design style of [28] to implement the polyno-
mial multiplication for KEM Saber, the actually implemented
structures involve many different aspects from the former one,
including the targeted PQC scheme, parameter setting, in-
put/output setup, structural design, and even the control signal
setup. This is similar to the very recent reports of [21], [23],
where the schoolbook polynomial multiplication is employed
to obtain the final hardware structure (the design style follows
the conventional algorithm, but the implemented structures
are novel to KEM Saber). Overall, as the proposed designs
offer convenient output delivery, flexible speed rate, and low-
complexity, they are more suitable for high-performance KEM
Saber applications. Future research can focus more on the
employing of the polynomial multiplication in the actual Saber
implementation with respect to different security levels.

VI. CONCLUSION

This paper proposes a novel CROP strategy for efficient
implementation of the polynomial multiplication of KEM
Saber. Firstly, the main operation (polynomial multiplication)
of KEM Saber is transferred into a form suitable for the
derivation of the proposed CROP based algorithms. Then, the
proposed algorithms are innovatively mapped into the related
hardware structures. Finally, complexity and comparison have
confirmed the efficiency of the proposed designs over the
competing structures. The outcome of this work is expected to
be useful references for NIST PQC standardization process.
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