
ValueExpert: Exploring Value Pa!erns in GPU-Accelerated
Applications

Keren Zhou∗

keren.zhou@rice.edu
Rice University

Houston, Texes, USA

Yueming Hao∗

yhao24@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

John Mellor-Crummey
johnmc@rice.edu
Rice University

Houston, Texes, USA

Xiaozhu Meng
xm13@rice.edu
Rice University

Houston, Texes, USA

Xu Liu
xliu88@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

ABSTRACT
General-purpose GPUs have become common in modern comput-
ing systems to accelerate applications in many domains, including
machine learning, high-performance computing, and autonomous
driving. However, ine!ciencies abound in GPU-accelerated applica-
tions, which prevent them from obtaining bare-metal performance.
Performance tools play an important role in understanding per-
formance ine!ciencies in complex code bases. Many GPU perfor-
mance tools pinpoint time-consuming code and provide high-level
performance insights but overlook one important performance
issue—value-related ine!ciencies, which exist in many GPU code
bases. In this paper, we present ValueExpert, a novel tool to pin-
point value-related ine!ciencies in GPU applications.

ValueExpert monitors application execution to capture values
produced and used by each load and store operation in GPU ker-
nels, recognizes multiple value patterns, and provides intuitive
optimization guidance. We address systemic challenges in collect-
ing, maintaining, and analyzing voluminous performance data from
many GPU threads to make ValueExpert applicable to complex
applications. We evaluate ValueExpert on a wide range of well-
tuned benchmarks and applications, including PyTorch, Darknet,
LAMMPS, Castro, andmany others.ValueExpert is able to identify
previously unknown performance issues and provide suggestions
for nontrivial performance improvements with typically less than
"ve lines of code changes. We verify our optimizations with appli-
cation developers and upstream "xes to their repositories.

CCS CONCEPTS
• Computer systems organization→ Parallel architectures;
• Computing methodologies → Parallel programming lan-
guages; Shared memory algorithms.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci"c permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507708

KEYWORDS
GPUs, GPU pro"lers, Pro"ling Tools, Value Analysis, Value Patterns

ACM Reference Format:
Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu
Liu. 2022. ValueExpert: Exploring Value Patterns in GPU-Accelerated Ap-
plications. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’22), February 28 – March 4, 2022, Lausanne, Switzerland. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3503222.3507708

1 INTRODUCTION
GPU architectures have become mainstream in modern and emerg-
ing computing systems to accelerate applications in di#erent do-
mains. For high performance computing (HPC), the GPU-accelerated
Summit supercomputer is ranked #2 among the 500 most powerful
supercomputers in the world in June 2021 [1]. Moreover, all of the
emerging exascale supercomputers developed by the Department
of Energy (DOE) will be accelerated with GPUs [12]. For cloud
computing, Amazon Web Service provides GPU-based compute
instances [6]. For embedded computing in autonomous systems,
NVIDIA Jetson [33] integrates CPUs and GPUs.

GPUs typically employ thousands of cores and high-bandwidth
memory to enjoy massive parallelism and high performance. To fa-
cilitate programming on GPUs, emerging programming languages
(e.g., CUDA [32], OpenMP [38], Kokkos [15], and RAJA [9]), compil-
ers (e.g., NVCC [37] and LLVM [27]), and frameworks (e.g., Tensor-
$ow [4], PyTorch [39], and AMReX [57]) provide various interfaces
to o%oad computations to GPUs. However, due to the complex-
ity of GPU architectures, it remains challenging to write e!cient
programs to harness the compute power of GPUs. Performance
ine!ciencies can hide deep in GPU code, preventing applications
from obtaining bare-metal performance.

1.1 A Motivating Example
Darknet [44] is a popular deep learning framework written in
CUDA and C. Darknet’s cuBLAS [29] backend implements con-
volution using the lowering method [20]. We study Darknet using
the YOLOv4 [11] neural network, identify two representative in-
e!ciencies, and propose optimizations that address them without
accuracy loss.

Ine!ciency I: redundant GPU instructions. In the forward phase
of each convolution layer, function fill_ongpu (Line 2) sets array

171

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507708
https://doi.org/10.1145/3503222.3507708

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

1forward_convolutional_layer_gpu (...) {

2 fill_ongpu(l.outputs * l.batch , 0, l.output_gpu , 1);

3 for (j = 0; j< l.groups; ++j) {

4 gemm_ongpu (..., 1, l.output_gpu);

5 ...

6 }

7}

Listing 1: A redundant invocation ofGPUkernel fill_kernel.
Changing the argument 1 to 0 of gemm_ongpu can remove read
operations on array l.output_gpu.

1convolutional_layer make_convolutional_layer (...) {

2 l.output_gpu = cuda_make_array(l.output , total_batch * out_h *

out_w * n);

3 l.x_gpu = cuda_make_array(l.output , total_batch * out_h * out_w

* n);

4}

Listing 2: Unnecessary CPU-GPU communication in Darknet.
Darknet copies CPU array l.output (initialized to zeros) to
GPU arrays l.output_gpu and l.x_gpu.

l.output_gpu to zeros as shown in Listing 1. Function gemm_ongpu
then updates l.output_gpu by reading its values and accumulating
them across all iterations. When there is only one iteration, we can
remove fill_ongpu and associated read operations in gemm_ongpu,
which reduces each convolution layer’s loads and stores executed
on the GPU by 4.1% and 10.6%, respectively.

Ine!ciency II: unnecessary CPU-GPU data transfer. In function
make_convolutional_layer, as shown in Listing 2, Darknet ini-
tializes l.output, an array on CPUs, to zeros via function xcalloc.
Darknet then copies l.output to l.output_gpu (Line 2), an array
on the GPU. This copy on zeros wastes memory bandwidth. The
same problem exists in other arrays, e.g., l.x_gpu (Line 3). It is
better to use cudaMemset to directly initialize these arrays on the
GPU side instead of copying zeros from the CPU, which saves 84.2%
CPU-GPU memory tra!c.

1.2 Existing Solutions
Pro"lers play an important role in bridging the gap between soft-
ware and hardware by identifying performance ine!ciencies. There
exist many GPU pro"lers, including vendor-provided tools such as
Nsight Compute [35], Nsight Systems [36], nvprof [34], VTune [45],
and AMD ROC-pro"ler [2], as well as open source tools such as
HPCToolkit [59], TAU [28], and Score-P [25]. These pro"lers pin-
point hot GPU code via measuring elapsed time or hardware events.

However, these pro"lers cannot easily identify the ine!ciencies
we found in Darknet or provide intuitive guidance. Hotspots often
show up as symptoms of performance ine!ciencies; analyzing their
root causes typically requires signi"cant manual e#ort. Without
knowledge of root causes, one cannot easily optimize Ine!ciency I
and II even if one knows they are ine!cient because of the following
limitations of existing pro"lers:

• Lacking a microscopic view: Existing pro"lers typically collect
a limited set of performance metrics using hardware counters.
Without a microscopic view of the behavior of individual instruc-
tions, one cannot easily identify and optimize many performance
ine!ciencies, such as Ine!ciency I.

• Lacking a holistic view: Existing pro"lers mostly target individual
GPU API invocations and provide little insight into interactions
across multiple GPU APIs. Their myopic views miss many opti-
mization opportunities, e.g., Ine!ciency II.

1.3 Our Approach
In this paper, we present ValueExpert, a novel value pro"ling and
analysis tool to identify value-related ine!ciencies, such as the inef-
"ciencies shown in Section 1.1. As a unique feature, ValueExpert
provides microscopic value pattern analysis and global value $ow
analysis to obtain deep insights for code optimization.

• Microscopic value pattern analysis:ValueExpert leverages binary
instrumentation to monitor memory load and store operations in
GPU kernels and capture the values used or produced by these
operations. Furthermore, ValueExpert associates values with
data objects (e.g., arrays or tensors) to identify various value
patterns at both coarse- and "ne-grained levels, which guides
actionable optimization.

• Global value "ow analysis: ValueExpert tracks value $ows for
data objects in a global view: across CPUs and GPUs, as well as
across GPU API invocations. The value $ows include object allo-
cations, initializations, transfers, uses, and updates.ValueExpert
constructs a value $ow graph to broaden the scope of ine!ciency
analysis beyond individual GPU API invocations.

The implementation of ValueExpert addresses challenges in
collecting, maintaining, analyzing, and presenting a large volume
of performance data. First, ValueExpert needs to handle the high
parallelism and limited memory on GPU to e!ciently store "ne-
grained performance data with minimum interference to GPU
kernels. Second, ValueExpert needs to minimize data transfer
between GPU to CPU when the pro"ling data "lls the allocated
memory on GPU. Third, ValueExpert needs to employ a novel
visualization technique to present and analyze the massive and
detailed performance data.

We address these challenges and developValueExpert for main-
stream systems accelerated with NVIDIA GPUs, including commod-
ity Linux clusters with and multiple compute nodes with multi-
ple GPUs per node. ValueExpert monitors fully optimized exe-
cutables without source code modi"cation or recompilation re-
quired. We apply ValueExpert to optimize deep learning frame-
works (e.g., PyTorch [39], Darknet [44]), and important HPC appli-
cations (e.g., LAMMPS [42], NAMD [41]), and a well-known GPU
benchmark suite—Rodinia [13]. ValueExpert successfully identi-
"es prior-unknown performance bugs in these applications with
moderate overhead on two NVIDIA GPU platforms: RTX 2080 Ti
and A100. Guided by ValueExpert, we are able to obtain 1.58×
and 1.39× geometric mean speedups for applications running on
RTX 2080 Ti and A100 accordingly, with typically less than "ve
lines of code changes. To verify the correctness and signi"cance
of ValueExpert’s "ndings, we either con"rm with the application
developers or upstream our optimization patches to application
repositories.

172

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Contribution Summary.

(1) We categorize eight value patterns in GPU-accelerated applica-
tions and discuss optimization opportunities by exploiting each
pattern.

(2) We design and implement ValueExpert—a value pro"ling and
analysis tool that recognizes value patterns and construct value
$ows to pinpoint value-related ine!ciencies.

(3) We describe novel parallel analysis algorithms on GPUs that
accelerate ValueExpert.

(4) We enable ValueExpert to provide rich information, including
full call paths for each GPU API and value $ow graphs, to help
users identify optimization opportunities.

(5) We apply ValueExpert to analyze several production ML and
HPC applications, achieving nontrivial speedups. We upstream
our optimizations to bene"t the community.

Limitations. First, ValueExpert is a dynamic analysis tool; it
requires inputs that trigger execution behaviors of interest. sec-
ond, ValueExpert currently works on NVIDIA GPUs only but
its methodology is generally applicable to GPUs from other ven-
dors if necessary binary instrumentation engines are available.
Third, ValueExpert is a pro"ler. It pinpoints and analyzes ine!-
ciences, but does not automatically "x them. Additionally, although
ValueExpert does not have any false positives in identifying value
patterns, programmers are responsible to apply pro"table optimiza-
tion.

2 RELATEDWORK
Classical GPU performance tools [2, 18, 25, 28, 34, 35, 45, 59, 60]
pro"le or trace GPU activities. Unlike ValueExpert, none of these
tools analyze value-related ine!ciencies. GPU simulators [8, 22, 43]
monitor execution details, but incur prohibitively high overhead for
real usage. To reduce the measurement overhead, one can instru-
ment GPU binaries with SASSI [46], NVBit [48], and GTPin [21],
or bytecode using LLVM [27]. However, these instrumentation en-
gines do not directly identify value-related ine!ciencies. State-of-
the-art pro"lers for identifying value-related ine!ciencies include
RedSpy [51], LoadSpy [47], and Witch [52]; however, these tools
work on CPUs only. In this section, we only discuss most related
approaches to ValueExpert.

Value Pro#ling on GPU. Xiang et al. [55] optimize instructions
producing uniform values with a hardware instruction reuse bu#er.
Kim et al. [24] propose a hardware design to handle a!ne value
structures. Wang and Lin [49] decouple a!ne value instructions
from the regular SIMT instruction pipeline. Unlike these tools,
ValueExpert analyzes more value patterns and requires no hard-
ware extension.

There exist some value pro"lers on GPUs. Diogenes [50] over-
loads GPU memory copy APIs to analyze duplicate values copied
to the GPU but it does not analyze patterns of value use by GPU
kernels. The most related approach is GVProf [58], a value pro"ler
for NVIDIA GPUs. While GVProf can identify value redundancies,
it does not systematically categorize value patterns and cannot iden-
tify as many ine!ciencies as ValueExpert can, as we describe in
Section 7. Furthermore, GVProf copies measurement data fromGPU
to CPU for analysis, causing frequent GPU-CPU communication

and prohibitively high analysis overhead for practical applications.
Lastly, GVProf limits its analysis to individual GPU kernels, without
insight of how values change across kernels.

Value Flow Analysis. ValueExpert’s value $ow analysis is a
variant of data $ow analysis used in GPU programming models and
frameworks, such as OpenMP task dependency graph (TDG) [38,
56], CUDA Graph [30], and automatic di#erentiation systems in
deep learning frameworks [4, 10, 39]. Unlike existing approaches,
ValueExpert dynamically captures the data $ow to guide value-
related optimizations.

Tensor$ow’s monitoring framework—TensorBoard [17] supports
a data $ow view and value analysis. A fundamental limitation of
TensorBoard is that it works for deep learning frameworks only and
is generally applicable to other GPU-accelerated applications. In
addition, ValueExpert di#ers from TensorBoard in several ways:
(1) TensorBoard does not guide optimizations for value-related
ine!ciencies; (2) Unlike ValueExpert, which uses binary instru-
mentation, TensorBoard instruments program source code to collect
graph topology and inspects tensor values; (3) TensorBoard only
analyzes the distribution of values in the end of kernels/iterations
but does not capture values within GPU kernels.

3 VALUE PATTERN CATEGORIZATION
In this section, we characterize eight pervasive value patterns found
in GPU-accelerated applications and further categorize them into
coarse- and "ne-grained patterns. Table 1 overviews value patterns
residing in popular Rodinia benchmarks [13] andmany applications.
We elaborate on each value pattern with examples.

3.1 Coarse-Grained Value Patterns
Coarse-grained value patterns describe value characteristics after
each GPU API invocation. We de"ne two coarse-grained patterns.

De!nition 3.1 (Redundant Values). A data object D matches the
redundant values pattern at a GPU API A if D is written by ! and
some or all of D’s elements are not changed by A.

Coarse-grained value patterns are common in GPU-accelerated
applications. One common cause of the redundant values pattern is
double initialization of data objects — a data object may be initial-
ized twice with the same values. In such a case, one of the initial-
ization operations is redundant. Section 8.2 illustrates an example
of this pattern found in PyTorch.

De!nition 3.2 (Duplicate Values). A data object D1 matches the
duplicate values pattern with another data object D2 if D1 and D2

have the same values at any GPU API.

The duplicate values pattern occurs across GPU API invocations.
For instance, in Listing 2, Darknet initializes the weight arrays
of each layer on the CPU and then copies them to the GPU via
memory copy APIs. These APIs copy duplicate values. One can
directly invoke memory set APIs to initialize all weights on the
GPU to avoid CPU-GPU memory tra!c.

173

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

Table 1: Various value patterns exist in GPU applications and benchmarks.

Applications Redundant Values Duplicate Values Frequent Values Single Value Single Zero Heavy Type Structured Values Approximate Values

Rodinia/bfs [13] ! ! ! !

Rodinia/backprop [13] ! ! !

Rodinia/sradv1 [13] ! ! ! ! !

Rodinia/hotspot [13] ! !

Rodinia/path"nder [13] ! ! !

Rodinia/cfd [13] ! !

Rodinia/hu#man [13] ! ! ! !

Rodinia/lavaMD [13] !

Rodinia/hotspot3D [13] !

Rodinia/streamcluster [13] !

Darknet [44] ! ! ! !

QMCPACK [23] !

Castro [5] !

BarraCUDA [26] ! !

PytTrch-Deepwave [7] ! ! !

PyTorch-Bert [14] !

PyTorch-Resnet50 [19] ! !

NAMD [41] ! ! !

LAMMPS [42] ! !

3.2 Fine-Grained Value Patterns
Fine-grained value patterns are identi"ed based on all accesses to a
data object at individual GPU APIs. We de"ne six value patterns in
this category.

De!nition 3.3 (Frequent Values). A data object D matches the
frequent values pattern at a GPU API A if accesses to one or more
particular values in D exceeds a prede"ned percentage threshold
T of accesses to D.

De!nition 3.4 (Single Value). A data object D matches the single
value pattern at a GPU API A if all of D’s accessed values are the
same.

De!nition 3.5 (Single Zero). A data object D matches the single
zero pattern at a GPU API A if all of D’s accessed values are zeros.

The frequent values pattern exposes redundant computation on
identical values. One can optimize it with conditional computation,
which bypasses redundant computation. One example is Rodini-
a/hu#man, where we observe that most values written to the array
histo are zeros. To avoid identity computation, we bypass the com-
putation on this array when zeros are found. The single value and
single zero patterns are special cases of the frequent values pattern.
They expose additional optimization opportunities, such as con-
tracting a vector to a scalar to reduce memory tra!c or applying a
sparse data structure or algorithm to reduce computation intensity.

De!nition 3.6 (Heavy Type). A data object D matches the heavy
type pattern at a GPU API A if D’s data type is more expressive
than the values used in D.

The heavy type pattern identi"es opportunities for contracting
the value type to reduce memory tra!c. As an example, the val-
ues in the g_cost array in Rodinia/bfs are always in the range of
int8 according to its input. Thus, demoting int32 to int8 can
signi"cantly improve the performance.

De!nition 3.7 (Structured Values). A data object D matches the
structured values pattern at a GPU API A if the values accessed
in D and the memory addresses storing these values are linearly
correlated.

The structured values pattern exposes the relationship between
values and the memory addresses storing these values in a data
object. In other words, if the structured values pattern exists, one
can infer the values stored in an array using the indices. The linear
correlation between values and indices is the most common. As an
example in Rodinia/srad_v1, four arrays d_iN, d_iS, d_jW, and d_jE
store the coordinates of their neighbors, showing the structured
value pattern. A typical optimization for this pattern is to compute
the values based on the memory addresses (or array indices) to
replace more costly memory load or store operations.

De!nition 3.8 (Approximate Values). A data objectDmatches the
approximate values pattern at a GPU API A if the values accessed
in D are "oating-point numbers and the values with a mantissa of
K bits correspond to some "ne-grained patterns.

If approximate computing is allowed, relaxing the exact value
patterns to approximate value patterns can expose more optimiza-
tion opportunities. The hotspot3D code of Rodinia falls into such
an example. By controlling the accuracy loss within 2% RMSE [54],
one can observe the array tIn_d with the single value pattern and
apply optimizations accordingly.

4 VALUEEXPERT OVERVIEW
ValueExpert is designed to identify the aforementioned eight
value patterns via monitoring fully optimized, unmodi"ed GPU-
accelerated binaries on existing systems equipped with NVIDIA
GPUs based on the Maxwell architecture or later. Figure 1 illustrates
ValueExpert’s major components, including performance data col-
lection, online and o%ine data analysis, and a GUI for pro"ling
results.

Data Collector. ValueExpert overloads GPU APIs, including
memory copy (i.e., cudaMemcpy family functions), memory set (i.e.,
cudaMemset family functions), and kernel launch, to capture value
snapshots (i.e., the bit-wise values of data objects) to check coarse-
grained value patterns. To capture necessary information to identify
"ne-grained value patterns, ValueExpert utilizes NVIDIA’s San-
itizer API [31] to instrument each GPU memory instruction to

174

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Data
Collector

Online
Analyzer

Offline
Analyzer

Measurement
Data

GUI

Signals
Instruction

Access Types

Value Pattern and
Value Flow Profiles

Annotated Profile

Figure 1: Overview of ValueExpert.

obtain the e#ective addresses of memory locations it accesses, val-
ues loaded from or stored to the addresses, and the program counter
(PC) of the instruction. The data collector serializes concurrent GPU
streams, maintains collected data in a pre-allocated GPU bu#er, and
transfers the data to the CPU when the bu#er is full.

Online Analyzer. ValueExpert’s online analyzer processes mea-
surement data to identify value patterns and build value $ow graphs.
The online analyzer distributes the analysis work across GPUs and
CPUs. For analysis that can bene"t from high parallelism (e.g., paral-
lel pre"x scan), ValueExpert dispatches it to the GPU to accelerate
analysis and minimize memory tra!c between CPUs and GPUs.
Moreover, ValueExpert captures information that is only available
at runtime for deeper insights. Such information includes dynamic
libraries loaded, call paths for GPU APIs, and data object allocations.
Furthermore, the online analyzer works together with the o%ine
analyzer (described in the next section) for recognizing value pat-
terns. The output of the online analyzer consists of a pro"le with
coarse- and "ne-grained value patterns, and a program-wide value
$ow graph.

O$ine Analyzer. ValueExpert’s o%ine analyzer mainly ana-
lyzes CPU and GPU binaries to provide intuitive optimization guid-
ance. ValueExpert obtains information about line mapping (i.e.,
source code lines, "les) from the debugging sections in executables
and dynamically loaded libraries, and associates them with the
value pattern pro"le and the value $ow graph. Moreover, the o%ine
analyzer extracts the access type (i.e., value type and length) of each
GPU memory instruction and provides it to the online analyzer
to re"ne the value analysis. The type information is particularly
useful to identify the heavy type pattern. The output of the o%ine
analyzer is an annotated pro"le that can be visualized in a GUI.

GUI. ValueExpert provides a user-friendly GUI to visualize
value patterns and $ows with rich information to guide optimiza-
tion. Figure 2 shows an example presentation of ValueExpert’s
GUI. ValueExpert GUI presents a value $ow graph. The construc-
tion and annotations on this graph are elaborated in Section 5.2. The
GUI quanti"es coarse-grained value patterns on each vertex and
edge. For each vertex, one can use its ID to look up its "ne-grained
value patterns in the value pattern pro"le. Furthermore, the GUI
enables users to explore the value changes of any data object along
speci"c paths. One can use the GUI to inspect an important portion
of the graph, which is especially useful for large pro"les collected
from real application execution.

Figure 2 shows a part of the value $ow graph produced by
ValueExpert when analyzing an execution of Darknet. There are
nodes with di#erent shapes: each rectangle represents a data alloca-
tion, which is the beginning of the value $ow of a data object (e.g.,

Figure 2: A part of the value "ow graph for Darknet gener-
ated by ValueExpert. When a user hovers the cursor over a
vertex, a text box appears to show details such as the vertex’s
calling context to help the user locate ine#cient code.

array); each circle represents a memory operation; each oval repre-
sents a GPU kernel. The node size is proportional to the number
of invocations. The number on each node is the ID used to query
its calling context and source code mapping (as shown in the black
text box for vertex 220), as well as "ne-grained value patterns (not
shown in the "gure). Edges represent value accesses: green edges
denote benign value patterns, while red edges denote the redundant
values pattern. The thickness of edges quanti"es the number of
bytes accessed. ValueExpert suggests focusing on thick red edges
"rst for coarse-grained value patterns.

ValueExpert’s Work"ow. To analyze a GPU-accelerated applica-
tion, we recommend the following work$ow using ValueExpert.
First, enable ValueExpert’s coarse-grained value pattern analysis,
which generates a value $ow graph with redundant values and du-
plicate values. From the value $ow graph, users can identify costly
data movement associated with GPU APIs using the important
graph analysis, described in De"nition 5.3. For costly data move-
ment edges in the important graph, the user can compute a vertex
slice graph, described in De"nition 5.2, for GPU kernels associated
with the data movement. Then, specify interesting GPU kernels
(by name) to ValueExpert and enable "ne-grained value pattern
analysis on these kernels.

175

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

5 CORE FUNCTIONALITY IMPLEMENTATION
This section describes the implementation of ValueExpert’s core
functionality, including value pattern recognition and value $ow
analysis.

5.1 Value Pattern Recognition
ValueExpert analyzes value patterns at the level of GPU data
objects. ValueExpert intercepts object allocation and dealloca-
tion functions to determine the life cycle of each data object cre-
ated in GPU global memory. At each GPU memory allocation,
ValueExpert records a data object’s allocation context, starting
address, and size. Since there is no explicit allocation function
for objects on GPU shared memory, ValueExpert treats the en-
tire shared memory as a single object. ValueExpert uses di#erent
mechanisms to identify coarse- and "ne-grained value patterns.

Identifying Coarse-grained Value Patterns. Upon invocation of
each GPU API A (i.e., GPU memory copy, memory set, and kernel
launch), ValueExpert investigates each involved data object D
by capturing its value snapshot. To recognize D, ValueExpert
overloadsA and determines the data objects accessed byA. A data
object’s value snapshot is updated upon the exit from A and is
maintained on the CPU to reduce the GPU memory consumption.
ValueExpert assesses the coarse-grained value patterns upon each
value snapshot update.

Redundant values pattern: ValueExpert compares the value
snapshots of a data object D before and after each GPU API A
to determine the percentage of unchanged values. If the percentage
is higher than a prede"ned threshold,1 ValueExpert reports the
redundant values pattern for D.

Duplicate values pattern: ValueExpert calculates a SHA256

hash [3] for the value snapshot of a data object D after the invo-
cation of each GPU API A. ValueExpert then groups data objects
that have the same SHA256 hash and reports the duplicate values
pattern for these data objects.

Identifying Fine-grained Value Patterns. ValueExpert identi"es
"ne-grained value patterns by intercepting every memory ac-
cess during each GPU kernel execution. ValueExpert, leveraging
NVIDIA’s Sanitizer API [31], instruments callbacks at every mem-
ory load and store instructions in GPU binaries to collect each in-
struction’s virtual program counter (PC), accessed memory address
and size, and the raw value stored in this memory address. To obtain
the complete information about the values accessed, ValueExpert
monitors every GPU thread. ValueExpert then collects the infor-
mation from all threads into a GPU bu#er and copies the bu#er to
the CPU when it is full. This process repeats until the GPU kernel
is "nished.

ValueExpert then translates raw values to real values with type
information because the raw values can be interpreted in di#erent
ways. For instance, a STG.64 instruction can store either two 32-bit
values or a single 64-bit value. Thus, ValueExpert analyzes the
access type of each memory instruction, including value type (e.g.,
$oat or integer), value size (e.g., 32- or 64-bit), and number of values.

ValueExpert’s o%ine analyzer adopts a bidirectional slicing
algorithm [58] that derives a GPU memory instruction’s access

1Based on our experiments, we use a threshold of 33%.

type based on instructions with known access types on its def-use
chains. For each executed GPU memory instruction, the online
analyzer transforms the instruction’s virtual PC to a relative o#set
in a GPU binary to obtain this instruction’s corresponding access
type. Using information about the access types, the online analyzer
interprets the raw bits of accessed values to analyze value patterns
of each data object.

Challenges. There are challenges in both coarse- and "ne-grained
value pattern analyses. First, comparing value snapshots for a large
memory range in coarse-grained analysis can incur signi"cant over-
head. Second, monitoring every GPU instruction and thread for
"ne-grained value pattern analysis can also incur signi"cant over-
head. Such a large overhead can limit ValueExpert from analyzing
applications. Section 6 describes our optimization techniques to
reduce the overhead of ValueExpert.

5.2 Value Flow Graph Construction and
Analysis

Unlike existing tools that provide a pro"le or trace view to present
performance metrics, ValueExpert constructs a value "ow graph,
which visualizes the value changes across GPU APIs to provide
performance insights for optimization.

De!nition 5.1 (Value Flow Graph). A value $ow graph " =

(# , $, %ℎ"#$) is a directed graph, where# is the set of vertices and $
is the set of edges, and %ℎ"#$ represents any host memory operation.

• Each vertex % ∈ # represents a GPU API invocation such
as GPU memory allocation, memory copy, memory set, or
kernel launch.

• An edge &%, &,' ∈ $ exists from %% to % & if
– % & writes D(! or % & reads D(! , where D(! is a data object
allocated by %' ,

– %% writes D(! ,
– no %) writes D(! following the write by %% and before % & ,
and

– &%, &,' is labelled with read/write operations for vertex % & .
• &%,ℎ"#$,' is a '()* edge that represents the device to host
memory transfer.

• &ℎ"#$,%,' is a '+,-.& edge that represents the host to device
memory transfer.

Figure 3 shows an example of mapping a GPU program to a
value $ow graph based on De"nition 5.1. For convenience, we use
the line number at which a GPU API is called as its ID in the value
$ow graph. At Lines 1 and 2, we create two vertices representing
two allocated data objects. Next, at Lines 3 and 4, we create two
vertices for cudaMemset invocations. Because Lines 3 and 4 write
zeros to A_dev and B_dev respectively, we create edges from 1 to 3,
and 2 to 4. Then, GPU kernels are invoked at Line 5 and Line 6 to
write zeros to data object A_dev and B_dev respectively, triggering
two new write edges. Finally, a read edge is created to indicate Line
7 reads data object A_dev from Line 5, and a write edge is created
to indicate Line 7 writes data object B_dev from Line 6.

ValueExpert associates value patterns with value $ow graphs.
As shown in Figure 3, ValueExpert uses edge colors to represent
redundancy and thicknesses to quantify accessed bytes. The size of
each vertex is determined by an importance factor, which could be

176

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

cudaMalloc(&A_dev, N *sizeof(int));

cudaMalloc(&B_dev, N *sizeof(int));

cudaMemset(A_dev, 0, N *sizeof(int));

cudaMemset(B_dev, 0, N *sizeof(int));

set_zeros<<<1, N>>>(A_dev, N/4);

set_zeros<<<1, N>>>(B_dev, N/4);

cudaMemcpy(B_dev,A_dev, N * sizeof(int),
cudaMemcpyDeviceToDevice);

1

2

3

4

5

6

7

(a) An example program

43

1 2

7

5 6

write

write

write

write

write

read

(b) A value "ow graph

43

1 2

7

5 6

write

write

write

write

write

read

(c) A value "ow graph with value
patterns.

4

2

7

6

write

write

write

3

1

5

write

write

read

(d) A vertex slice graph focusing
on node 6.

43

1 2

7

6

write writewrite

(e) An important graph

Figure 3: An example of construction and analysis of a value "ow graph. Rectangles are GPU memory allocations, circles are
GPU memory APIs, and ovals are GPU kernels. The wider the edge, the more bytes accessed. The red color indicates high
redundancy, and the green color indicates low redundancy. To facilitate the presentation, we use the line number as the ID for
each vertex. Fined-grained value patterns and calling contexts (not shown) are associated with each vertex.

this API’s total amount of invocations or execution time. A value
$ow graph is context sensitive. At runtime, ValueExpert records
the call path of each GPU API invocation and assigns a unique ID
to denote this call path. Postmortem, ValueExpert annotates the
program source information for every frame on the call path as
well as inline frames. Vertices with the same call path are merged
to simplify presentation.

When pro"ling production applications such as LAMMPS [42],
ValueExpert can generate a huge value $ow graph. To facilitate
the analysis, we describe two features that can help one explore
interesting subgraphs.

De!nition 5.2 (Vertex Slice Graph). A vertex slice graph"* (%)) =
(# ′, $ ′, %ℎ"#$) is a subgraph of a value $ow graph " = (# , $, %ℎ"#$)
where

• &%, &,' ∈ $ ′ if &%, &,' ∈ $ and
– %) writes D(! or %) reads D(! , and
– &%, &,' is on a valid path that consists of edges that read or
write D(! and reaches %) or %) reaches.

• % ∈ # ′ if % is on any edge & ∈ $ ′.

Figure 3d shows that applying vertex slice analysis according
to De"nition 5.2 on vertex 6 generates a vertex slice graph "* (%6)
that tracks vertex 6’s inputs and outputs. Vertices that do not a#ect
vertex 6’s value patterns and vertices whose value patterns are not
a#ected by vertex 6 are eliminated.

We use / (0) to represent user-de"ned metrics that measure the
importance of a vertex or an edge. I+ is the threshold for keeping
an edge in a graph, and I(is the threshold for keeping a vertex in
a graph. We de"ne important graph using De"nition 5.3.

De!nition 5.3 (Important Graph). An important graph ", =

(# ′, $ ′, %ℎ"#$) is a subgraph of " = (# , $, %ℎ"#$) where

• &%, &,' ∈ $ ′ if &%, &,' ∈ $ and / (&%, &,') ≥ I+

• % ∈ # ′ if % is on any edge & ∈ $ ′ or / (%) ≥ I(

We let / (&) be accessed bytes on each edge, and / (%) be the
number of invocations of the GPU API represented by each vertex.
With I+ = 1 /2 and I(= 1, we can prune the graph in Figure 3d
and yield the graph in Figure 3e with important vertices and edges

only. Applying the important graph analysis, ValueExpert trims
the original value $ow graph of LAMMPS from 660 nodes and 1258
edges to 132 nodes and 97 edges.

6 ACCELERATING VALUE ANALYSIS
Without optimization, ValueExpert’s value pattern analysis can
incur una#ordable overhead due to the heaveweight instrumenta-
tion and frequent GPU-CPU communication. For example, without
any optimization, ValueExpert slows down Rodinia/streamcluster
by 1200×, and it does not even "nish the measurement of complex
applications, such as LAMMPS and PyTorch. Thus, we adopt several
optimizations to reduce ValueExpert’s overhead for both coarse-
and "ne-grained value pattern analysis.

6.1 Accelerating Coarse-Grained Analysis
Problem statement. We compare the value snapshots V (D)A

and V ′(D)A of a data object D at a GPU API A. V (D)A is the
snapshot before executing A, and V ′(D)A is the snapshot after
executing A. As described in Section 5.1, comparing the value
snapshots involves substantial computations. To understand the
redundant values pattern and avoid unnecessary comparisons over
a large memory range, ValueExpert only compares the values
stored in memory addresses that are accessed by A. If the portion
of a data object that is never accessed by A is large, ValueExpert
suggests avoiding unnecessary GPU data allocation. Otherwise,
ValueExpert suggests investigating the use of values.

We de"ne an interval [start, end] as thememory range accessed
by each GPU instruction in A. As a GPU kernel executes, a vast
number of intervals can be generated. ValueExpert merges these
intervals if they are adjacent or overlapped and copies values after
interval merging to the CPU for e!cient processing.

Solution – Employing GPU Parallelism. One could copy all inter-
vals from the GPU to the CPU and perform a sequential interval
merge, which has a 2 (13+41) complexity, where 1 denotes the
number of intervals. This algorithm, however, only works for small
GPU kernels as 1 can be large in many benchmarks and applica-
tions (e.g., 3.4×107 for each kernel in streamcluster), triggering large

177

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

0x76 0x77 0x78 0x7c0x80 0x84 0x78 0x88

0x76 0x77 0x78 0x7c0x78 0x880x80 0x84

1 1 1 1 -1-1 -1 -1

1 1 2 2 00 1 1

1 1 0 0 00 0 0

1 2 0 0 00 0 0

0x76 0x77 0x78 0x88

0 0 0 0 11 0 0

0 0 0 0 21 0 0

original intervals

sorted intervals

start/end markers

start/end prefix sum

start flags

start index

interval start interval end

end flags

end index

merged intervals

Figure 4: An example of merging intervals in parallel.

CPU processing and GPU-CPU memory copy overhead. To merge
intervals on the GPU, we develop the parallel interval algorithm
shown in Figure 4.

1 We "rst lexicographically sort the start and end addresses
of all intervals based on 〈566-&'', ('_&)6〉 pairs such that an end
address is after a start address when they are equal. 2 Next, we
initialize amarkers array to denote interval starts with 1 and interval
ends with -1. 3 We apply a parallel pre"x scan on the markers
array. The merged intervals cover a number of original intervals
such that the pre"x sum of merged interval starts are 1 and the
interval ends are 0. 4 we create a start "ags array. Each entry in the
array is zero, unless the corresponding start/end pre"x sum value
is 1 and the entry represents an interval start. 5 We apply another
parallel pre"x scan to get output indices of the merged interval
starts. The output indices of the merged interval ends are obtained
similarly through steps 6 and 7 . Finally, we place the merged
interval starts and interval ends to the output bu#er (8 and 9).
The complexity of this parallel interval merge algorithm is2 (3+41)
using parallel radix sort. This algorithm is further optimized to
merge the intervals accessed by threads within the same warp
using e!cient warp primitives (i.e., shfl, bfe, bfind, and brev).
We refer to this simpli"ed version as interval compaction.

We implement this parallel interval merging algorithm in
ValueExpert as a concurrent data processing GPU kernel that
launched before each application kernel to merge intervals on-the-
$y. Based on the most room policy [16], we let the data processing
kernel occupy all resources of some streaming multiprocessors 2

so that it won’t be slowed down by sharing resources with the
application kernel. The application kernel keeps putting accessed
intervals in a GPU bu#er. Once this bu#er is full, the data pro-
cessing kernel applies the interval compaction algorithm to merge
the intervals within the same warp. After the compaction is done,
the data processing kernel noti"es the application kernel and lets
it resume execution. The data processing kernel then applies the
parallel interval merging algorithm described in Figure 4 while the
application kernel is executing. When the application kernel ends,

2We use one GPU block in all experiments.

GPU Memory

CPU Memory

Copied Accessed

(a) Direct

GPU Memory

CPU Memory

Copied Region Accessed Region

(b) Min-Max

GPU Memory

CPU Memory

Copied Accessed

(c) Segment

Figure 5: Three memory copy strategies in ValueExpert.

merged intervals will be copied to the CPU. Compared with exist-
ing instrumentation-based GPU tools [40, 58] that perform data
processing at instrumentation callbacks or on CPUs, our approach
employs highly-parallel data processing using many GPU threads,
little CPU-GPU transfer time, and concurrent execution of data
processing and application kernels.

Solution – Minimizing CPU-GPU Data Transfers. After obtaining
the merged intervals, ValueExpert updates each involved data
object’s value snapshot on CPU. On the one hand, if we copy the
entire interval of each data object (i.e., direct copy in Figure 5a),
we waste time copying values that are not accessed. On the other
hand, if we only copy values on the accessed addresses (i.e., seg-
ment copy in Figure 5c), we need invoke to memory copy APIs
many times. ValueExpert employs an adaptive copy mechanism
to switch between di#erent copy strategies. Besides the aforemen-
tioned two strategies, ValueExpert supports a third one—min-max
copy (i.e., Figure 5b), which copies memory based on the minimum
and maximum addresses across all intervals.

ValueExpert employs the segment copy when the distribution
of accessed intervals is sparse and the number of intervals is small,
and switches to the min-max copy when the distribution is dense
or the number of intervals is large.

6.2 Accelerating Fine-Grained Analysis
Filtering. ValueExpert supports monitoring a subset of GPU

kernels speci"ed by users. One can easily use domain knowledge
or another pro"ling pass to identify important or hot GPU kernels
for "ne-grained value pattern analysis.

Sampling. Often, GPU kernels show similar behaviors across
loop iterations and across GPU thread blocks, such that their value
patterns can be identi"ed with sampled kernels and blocks. Based
on the observation, we adopt a hierarchy sampling method [58] to
sample GPU kernels and blocks to further reduce overhead.

7 EVALUATION
We evaluateValueExpert on two platforms equippedwith NVIDIA
GPUs shown in Table 2. We use ValueExpert to analyze nine
applications and the Rodinia benchmark suite [13]. We study these
applications because Darknet and Pytorch are popular deep learning
frameworks and the rest are important HPC applications.

Speedups. We had a graduate student optimize GPU applica-
tions guided by ValueExpert. This student was familiar with
ValueExpert but had no prior knowledge about the applications.
Typically, this student spent a few hours to apply and verify an

178

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 2: The con!gurations of two GPU systems to evaluate ValueExpert: RTX 2080 Ti and A100 GPUs.

CPU GPU
GPU

Multiple-processors
GPU Memory Size System GPU Driver

CUDA
Toolkit

GCC Compiler Options

Intel(R) Xeon(R) 6226 RTX 2080 Ti 72 11GB GDDR6 Linux 5.4.0 460.27 11.1.1 9.3.0 -g -lineinfo -O3 -arch sm_75

AMD EPYC 7402 A100 108 40GB HBM2 Linux 4.18.0 460.27 11.1.1 8.3.1 -g -lineinfo -O3 -arch sm_80

Table 3: Evaluation of kernel execution time, memory time (i.e., memory allocation, copy, and set), and corresponding speedups
for Rodinia benchmarks and some real applications on RTX 2080 Ti and A100 GPUs. For deep learning applications, including
Darknet, Deepwave, Bert, and Resnet50, we report layer-level speedups because our optimizations improve multiple GPU
kernels. For streamcluster, QMCPACK, and LAMMPS, we do not report kernel speedups because our optimizations accelerate
memory operations only. We also report standard deviations of the speedups indicated by ± in the table.

Application Kerne Name
RTX 2080 Ti A100

Kernel
Time

Speedup
Memory
Time

Speedup
Kernel
Time

Speedup
Memory
Time

Speedup

Rodinia/bfs [13] Kernel 939.12us 1.34× ±0.00 13.43ms 1.10× ±0.01 500.29us 0.99× ±0.00 3.17ms 1.20× ±0.05
Rodinia/backprop [13] bpnn_adjust_weights_cuda 106.41us 8.18× ±0.00 2.80ms 1.01× ±0.01 17.72us 1.67× ±0.02 1.36ms 1.01× ±0.01
Rodinia/sradv1 [13] srad 198.60us 1.52× ±0.00 175.15us 1.03× ±0.01 89.65us 1.11× ±0.00 183.11us 1.06× ±0.00
Rodinia/hotspot [13] calculate_temp 79.78us 1.31× ±0.00 257.43us 1.00× ±0.00 19.24us 1.10× ±0.00 195.22us 1.00× ±0.00

Rodinia/path"nder [13] dynproc_kernel 134.00us 1.13× ±0.01 15.66ms 4.21× ±0.56 153.36us 1.37× ±0.00 2.68ms 3.27× ±0.13
Rodinia/cfd [13] cuda_compute_$ux 296.55us 8.28× ±0.04 1.10ms 1.01× ±0.00 212.98us 6.05× ±0.01 613.00us 1.03× ±0.01

Rodinia/hu#man [13] histo_kernel 91.35us 1.49× ±0.04 346.11us 1.00× ±0.00 240.13us 2.55× ±0.10 392.25us 1.00× ±0.00
Rodinia/lavaMD [13] kernel_gpu_cuda 62.93ms 0.99× ±0.01 1.70ms 1.49× ±0.02 4.40ms 0.98× ±0.00 822.90us 1.39× ±0.01

Rodinia/hotspot3D [13] hotspotOpt1 4.80ms 2.00× ±0.00 8.81ms 1.00× ±0.01 2.20ms 1.99× ±0.01 2.68ms 0.99× ±0.02
Rodinia/streamcluster [13] - - - 723.92ms 2.39× ±0.03 - - 422.68ms 1.81× ±0.08

Darknet [44] convolution 1.91ms 1.06× ±0.00 21.84ms 1.82× ±0.01 2.45ms 1.05× ±0.01 10.66ms 1.73× ±0.04
QMCPACK [23] - - - 4.13ms 1.00× ±0.00 - - 11.02ms 1.00× ±0.00

Castro [5] cellconslin_slopes_mmlim 21.28ms 1.27× ±0.00 141.06ms 1.00× ±0.02 25.55ms 1.24× ±0.01 131.47ms 1.02× ±0.02
BarraCUDA [26] cuda_inexact_match_caller 58.01ms 1.06× ±0.01 41.50ms 1.13× ±0.01 32.06ms 1.06× ±0.00 18.45ms 1.13× ±0.02

PyTorch-Deepwave [7] ReplicationPad 1.63ms 1.07× ±0.01 15.99us 1.01× ±0.01 1.24ms 1.04× ±0.01 45.26us 1.00× ±0.00
PyTorch-Bert [14] embedding 9.77ms 1.57× ±0.05 59.28us 1.01× ±0.01 11.77ms 1.59× ±0.04 62.98us 1.00× ±0.01

PyTorch-Resnet50 [19] convolution 164.70ms 1.02× ±0.01 16.66ms 1.00× ±0.03 241.48ms 1.03× ±0.02 23.60ms 0.98× ±0.02
NAMD [41] nonbondedForceKernel 22.50ms 1.00× ±0.00 16.43ms 1.00× ±0.01 34.50ms 1.00× ±0.01 34.84ms 1.00× ±0.01
LAMMPS [42] - - - 50.76ms 6.03× ±0.01 - - 56.72ms 5.19× ±0.32
Geometric Mean - - 1.58× - 1.34× - 1.39× - 1.28×

Median - - 1.29× - 1.01× - 1.11× - 1.02×

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

Rod
ini

a/b
fs

Rod
ini

a/b
ac

kp
ro

p

Rod
ini

a/s
ra

dv
1

Rod
ini

a/h
ots

po
t

Rod
ini

a/p
ath

fin
de

r

Rod
ini

a/c
fd

Rod
ini

a/h
uff

man

Rod
ini

a/l
av

aM
D

Rod
ini

a/h
ots

po
t3D

Rod
ini

a/s
tre

am
clu

ste
r

Dar
kn

et

QMCPACK
Cas

tro

Bar
ra

CUDA

PyT
or

ch
-D

ee
pw

av
e

PyT
or

ch
-B

er
t

PyT
or

ch
-R

es
ne

t50

NAMD

LA
MMPS

Geo
mea

n

Med
ian

S
lo

w
do

w
n

Fa
ct

or

A100 Coarse-Grained RTX 2080 Coarse-Grained A100 Fine-Grained RTX 2080 Fine-Grained

Figure 6: Evaluation of ValueExpert’s !ne- and coarse-grained overhead on benchmarks and applications. ValueExpert
does not use any sampling technique for pro!ling coarse-grained value patterns. In !ne-grained analysis, we set block and
kernel sampling periods as 20 for benchmarks, and 100 for applications; we monitor all GPU kernels for benchmarks without
kernel !ltering and monitor one of the hottest kernels with kernel !ltering for each application.

optimization. As shown in Table 3, that student obtained nontrivial
performance improvements for programs running on both RTX
2080 Ti and A100 under the guidance of ValueExpert. We report
the execution time of optimized GPU kernels and all memory oper-
ations (memory allocation, set, and copy) obtained from NVIDIA

Nsight Systems [36] and their corresponding speedups. We observe
that our optimizations typically yield a higher speedup on RTX
2080 Ti than A100 because A100’s HBM2 has a bandwidth higher
than that of RTX 2028 Ti’s GDDR6; thus, reducing memory load
and store operations can improve performance more on RTX 2080

179

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

Table 4: Benchmark speedups obtained by leveraging one or
more value patterns.

Application Pattern
RTX 2080Ti A100

Kernel
Speedup

Memory
Speedup

Kernel
Speedup

Memory
Speedup

backprop
Single Zeros 8.18× 0.99× 1.67× 1.20×

Duplicate Values 1.00× 1.00× 1.00× 1.00×

bfs
Heavy Type 1.34× 1.08× 0.97× 0.99×

Frequent Values 1.00× 1.10× 1.01× 1.01×
path"nder Heavy Type 1.13× 4.21× 1.37× 3.27×

sradv1
Heavy Type 1.40× 1.00× 1.05× 1.02×

Structured Values 1.05× 1.02× 1.08× 1.07×
hotspot Approximate Values 1.31× 1.00× 1.10× 1.00×

cfd
Frequent Values 8.25× 1.00× 6.06× 1.02×
Redundant Values 1.00× 1.02× 1.00× 1.00×

hotspot3d Approximate Values 2.00× 1.00× 1.99× 0.99×
streamcluster Redundant Values - 2.39× - 1.48×

hu#man Frequent Values 1.49× 1.00× 2.55× 1.00×
lavaMD Heavy Type 0.99× 1.49× 0.98× 1.39×
Darknet Redundant Values 1.06× 1.82× 1.05× 1.73×

QMCPACK Redundan Values - 1.00× - 1.00×
Castro Redundan Values 1.27× 1.00× 1.24× 1.02×

BarraCUDA Redundan Values 1.06× 1.13× 1.06× 1.13×
PytTrch-Deepwave Redundant Values 1.07× 1.01× 1.04× 1.33×

PyTorch-Bert Redundant Values 1.57× 1.01× 1.59× 1.00×
PyTorch-Resnet50 Single Values 1.02× 1.00× 1.03× 0.98×

NAMD Single Zero 1.00× 1.00× 1.00× 1.00×
LAMMPS Frequent Values - 6.03× - 5.19×

Ti than A100. Section 8 details some case studies. Table 4 shows
the benchmark speedups obtained by leveraging one or more value
patterns. We observe that the redundant values pattern is the most
common pattern and optimizing the single zeros and frequent val-
ues patterns yields the most speedups.

Overhead. Figure 6 shows that ValueExpert incurs moderate
overhead for both coarse- and "ne-grained value pattern analysis,
thanks to the optimization techniques described in Section 6. It has
a median overhead of 7.35× on RTX 2080 Ti and 7.81× on A100. For
coarse-grained analysis, ValueExpert has a median overhead of
3.38× and 4.28×, and a geometric mean overhead of 4.38× and 4.22×
on RTX 2080 Ti and A100 respectively. For "ne-grained analysis,
ValueExpert has a median overhead of 3.97× and 4.18×, and a
geometric mean overhead of 4.32× and 3.23× on RTX 2080 Ti and
A100 respectively. A100 has a lower overhead for applications that
involve signi"cant memory accesses, including Rodinia/stream-
cluster, Castro, BarraCUDA, and LAMMPS, because of its higher
bandwidth memory than RTX 2080 Ti. PyTorch-deepwave su#ers
from the highest overhead on both GPUs. This program accesses
millions of di#erent memory addresses for each kernel and results
in about 100 thousand non-adjacent intervals after merging.

ValueExpert vs. GVProf. Compared to GVProf, ValueExpert
enlarges the analysis scope, provides additional insights, and dra-
matically lowers the measurement overhead. First, GVProf cannot
guide users to all of the optimizations shown in Table 3 for codes
such as Castro, PyTorch, QMCPACK, and others because it limits
the analysis to individual GPU kernels. Second, GVProf does not
analyze values patterns or value $ows. Though GVProf can iden-
tify redundant values in LAMMPS, it does not directly pinpoint
GPU APIs that cause the redundancy. Third, GVProf incurs much
higher overhead thanValueExpert, especially for real applications.
GVProf cannot "nish pro"ling Castro and NAMD within one day
on RTX 2080 Ti, while ValueExpert "nishes within "ve minutes.

1void replication_pad3d_backward_out_cuda_template (...){

2 gradInput.resize_as_(input);

3 gradInput.zero_();

4 ...}

5Tensor replication_pad3d_backward_cuda (...){

6- auto gradInput = at:: zeros_like(input ,

LEGACY_CONTIGUOUS_MEMORY_FORMAT);

7+ auto gradInput = at:: empty_like(input ,

LEGACY_CONTIGUOUS_MEMORY_FORMAT);

8 replication_pad3d_backward_out_cuda_template(gradInput ,

gradOutput , input , paddingSize);

9 ...

10}

Listing 3: The redundant values and single zero patterns
in Deepwave [7]. gradientInput is initialized to zeros by
at::zeros_like and the following gradInput.zero_().

8 CASE STUDIES
In this section, we describe several case studies in detail. It is worth
noting that our application optimizations do not introduce any
accuracy loss.

8.1 Darknet
We run Darknet [44] using a pre-trained yolov4.weights to de-
tect objects in dog.jpg. ValueExpert detects both ine!ciencies
described in Section 1.1. The value $ow "gure has 70 nodes and 114
edges. Figure 2 highlights two severe redundant value $ows: 390
→ 392 and 218→ 220→ 1506, which pinpoint the data objects and
memory operations that trigger Ine!ciency I and II, respectively.
By applying optimizations described in Section 1.1, we obtain 1.06×
and 1.05× speedups for convolution layers on RTX 2080 Ti and
A100 correspondingly.

8.2 PyTorch
We study three neural networks written in PyTorch [39]: Deepwave,
Resnet50, and Bert.

Deepwave. Deepwave [7] provides e!cient wave prop-
agation modules that perform seismic imaging/inversion.
ValueExpert "rst reports 100% memory accesses in function
replication_pad3d_backward_cuda matches the redundant
values pattern. Listing 3 shows the problematic code. ValueExpert
also highlights that the input tensor at Line 6 matches the
single zero value pattern. input is allocated and initialized to
zeros at Line 6 and reinitialized again at Line 3 without being
accessed in between. The value $ow "gure has 38 nodes and
49 edges. To optimize the code, we replace the zeros_like

function with the empty_like function that allocates memory
without initialization at Line 7. ValueExpert reports two
other tensors in replication_pad2d_backward_cuda and
replication_pad1d_backward_cuda su#ering from the same
problem. By optimizing all of them, we obtain 1.07× and 1.04×
speedups in the backward phase of the ReplicationPad operator on
RTX 2080 Ti and A100, respectively. This optimization has been
upstreamed to the PyTorch repository.

Resnet50. Resnet50 [19] is a 50-layer convolutional neural net-
work.We pro"le its inference phase usingValueExpert to generate
both coarse- and "ne-grained value pattern reports for the GPU ker-
nels in Listing 4. The value $ow "gure has 75 nodes and 223 edges.

180

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

1void THNN_(SpatialConvolutionMM_updateOutput)(...) {

2+ if (bias) {

3 if (ones ->dim() != 2 || ones ->size (0)*ones ->size (1) <

outputHeight*outputWidth) {

4 THCTensor_(resize2d)(state , ones , outputHeight , outputWidth);

5 THCTensor_(fill)(state , ones , ScalarConvert <int , scalar_t >::

to(1)); }

6+ }

7}

Listing 4: The redundant values and single value patterns
in Resnet50 [19]. The array ones is resized and initialized to
zeros even it is not used later.

ValueExpert reports 14.25MB memory bytes at Line 5 involve re-
dundant values; moreover, ValueExpert reports the single value
pattern for the ones tensor. The forward phase of convolution com-
putation can be viewed as ()7,8 × 9 (38&- + :(5' . However, Resnet’s
convolution operators foregoes the +:(5' calculation because its
batchnorm operators that follow each convolution operator have
already considered bias. Since the ones tensor is only used for
accumulating bias, we can omit its allocation and initialization
if bias is ignored. Simply adding the two lines eliminates the re-
dundancy and yields 1.02× and 1.03× speedups for convolution
layers on RTX 2080 Ti and A100, respectively. This patch has been
upstreamed to the PyTorch repository.

Bert. Bert [14] is a transformer-based neural network for
natural language processing. ValueExpert reports the out ar-
ray in the embedding operator matches the redundant value
pattern and 2.8KB bytes are involved. The value $ow graph
has 101 nodes and 217 edges. With the value $ow analysis,
ValueExpert shows that paddings of out is initialized to zeros
in the reset_parameters function, while they are reinitialized
in every call to the embedding.maskek_fill_ function in each
iteration. Thus, ValueExpert suggests removing the second initial-
ization, which yields 1.57× and 1.59× speedups for the embedding
operator running on RTX 2080 Ti and A100, respectively. This issue
has been con"rmed by PyTorch developers.

8.3 Castro
Castro [5] is an astrophysical radiation hydrodynamics simula-
tion code based on the AMReX framework [57]. Castro is an
important application supported by Department of Energy’s ex-
ascale computing project. We study Castro’s Sedov example us-
ing the inputs.2d.cyl_in_cartcoords input. The value $ow
graph generated by ValueExpert has 1092 nodes and 1666 edges.
ValueExpert reports that the array slopesmatches the redundant
values pattern in the GPU kernel cellconslin_slopes_mmlim,
which is a function provided by AMReX. Listing 5 shows this GPU
kernel, which computes a multi-dimensional array slopes. We ob-
serve that the scalar a at Line 7 is often 1.0, resulting in identity
computation and unchanged values in slope. Thus, we condition-
ally bypass the computation when a is 1.0, which yields 1.27×
and 1.24× speedups for this GPU kernel running on RTX 2080 Ti
and A100, respectively. It is worth noting that this optimization
improves a library function of AMReX and could bene"t all its appli-
cations, not limited to Castro. This optimization has been con"rmed
by Castro developers.

1AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void

cellconslin_slopes_mmlim (){

2 for (int n = 0; n < ncomp; ++n) {

3 for (int j = lo.y; j <= hi.y; ++j) {

4 for (int i = lo.x; i <= hi.x; ++i) {

5+ if (a != 1.0) {

6 slopes(i,j,0,n) *= a;

7 slopes(i,j,0,n+ncomp) *= a;

8+ }

9 ...

10}

Listing 5: The redundant values pattern in Castro [5].
The variable a is mostly 1.0 in our experiment of input
inputs.2d.cyl_in_cartcoords. By adding the condition
check at Line 5, we can save memory loads and stores.

8.4 BarraCUDA
BarraCUDA [26] is a fast sequence mapping software to
map sequencing reads to a particular location on a refer-
ence genome. We study BarraCUDA using a typical input3.
The value $ow graph generated by ValueExpert has 30
nodes and 42 edges. ValueExpert reports the redundant val-
ues pattern on array global_sequences_index in function
copy_sequences_to_cuda_memory. BarraCUDA invokes memory
copy APIs to copy values from the CPU to the GPU for this array
even when it is empty. By adding a size check, we avoid copy-
ing empty arrays and other arrays that only need to be updated
when array global_sequences_index is changed. ValueExpert
also reports the frequent values pattern with 99.6% zeros in array
global_alns in GPU kernel cuda_inexact_match_caller. This
array is copied from a thread-local array on the GPU. We create a
hits array to record positions that have been updated with non-
zero values, and only copy these values. With these optimizations,
we obtain a 1.06× kernel execution time speedup and a 1.13× mem-
ory time speedup on both RTX 2080 Ti and A100.

8.5 Rodinia CFD and Backprop
CFD and Backprop are two Rodinia benchmarks. We study CFD
using fvcorr.domn.097K input. ValueExpert reports that the
kernel cuda_compute_flux has frequent values pattern on array
variables. We observe that this array is initialized with values
within a small range and is unchanged in the "rst three iterations.
Thus, we hash the accessing index of this array to limit memory
accesses to certain addresses, which greatly increases the data lo-
cality. This optimization yields 8.28× and 6.05× speedups on RTX
2080 Ti and A100, respectively.

We study Backprop with its built-in input. ValueExpert reports
that the kernel bpnn_adjust_weights_cuda has single zeros pat-
tern on arrays w and oldw. We conditionally bypass $oating point
computations and writes to these two arrays when they zeros. In
this way, we obtain 8.18× and 1.67× speedups on RTX 2080 Ti and
A100, respectively. RTX 2080 Ti achieves a much higher speedup be-
cause reducing FP64 can alleviate signi"cant computation workload
on this architecture with fewer FP64 units than A100.

3Saccharomyces_cerevisiae.SGD1.01.50.dna_rm.toplevel.fa

181

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

Table 5: ValueExpert vs. existing redundancy analysis tools.

ValueExpert GVProf [58] Witch [52] RedSpy [51] LoadSpy [47] RVN [53]

Redundancy analysis Support Support Support Support Support Support

Value pattern analysis
of data objects

Support N/A N/A N/A N/A N/A

Result granularity GPU API Instruction Instruction Instruction Instruction Instruction

Value $ows Support N/A N/A N/A N/A N/A

GPU program analysis Support Support N/A N/A N/A N/A

Geomean overhead* 7.8× 47.3× 2.1× 19.1× 26.0× 33.9×

* Because ValueExpert, Witch, and LoadSpy pro"le applications using multiple runs, we sum up the overheads
from all required runs.

8.6 Optimization Tradeo$s
It is worth noting that our optimizations do not always yield
speedups on GPU kernels. For example, we obtain a negligible
speedup on GPU kernels of Rodinia/lavaMD. For this benchmark,
ValueExpert reports the heavy type pattern on array rA, whose
elements are ten values from {0.1, 0.2, ..., 1.0}. Our optimization
demotes the type from double to unit8_t and reverts it to double
when the array is copied to the GPU. The optimization increases the
GPU kernel execution time by 2% but reduces the CPU-GPU mem-
ory transfer time by 28%. For NAMD and QMCPACK,ValueExpert
reports the redundant values pattern for both, and the heavy type
pattern for NAMD. Our optimizations do not yield signi"cant
speedups on RTX 2080 Ti and A100 GPUs because the ine!ciencies
do not occur at bottleneck functions for the given inputs. Since all
ine!ciencies of these two applications reside in a loop nest whose
trip counts depend on input, our optimizations are going to bene"t
other inputs that stress on these loops.

9 CONCLUSIONS
Our studies have shown that many GPU applications have value-
related ine!ciencies. To guide optimizations of valued-related inef-
"ciencies, we develop ValueExpert—the "rst tool infrastructure
that identi"es and categorizes ine!cient value patterns with in-
sightful value $ow graphs. To accelerate ValueExpert and make
value analysis possible for non-trivial programs, we devise a data-
parallel interval merge algorithm on GPUs to identify accessed data
regions and only transfer accessed data from the GPU to the CPU.
Table 5 compares ValueExpert with existing redundant analysis
tools; ValueExpert has the following unique features:

(1) ValueExpert analyzes the value patterns of each data object.
While other tools identify spatial and temporal value redundan-
cies for individual instructions, they do not categorize value
patterns.

(2) ValueExpert pro"les and analyzes value ine!ciencies at each
GPU API, while other tools focus on individual instructions.
Identifying value access patterns at APIs provides actionable
optimization opportunities.

(3) ValueExpert provides unique value $ow graphs to pinpoint
the causes of ine!ciencies and guide optimization.

(4) ValueExpert leverages GPU parallelism to accelerate some
important analysis, so it incurs much lower overhead than other
"ne-grained GPU pro"lers, e.g., GVProf.

Guided by ValueExpert’s performance reports with rich pro-
gram context and value $ow information, we are able to quickly
identify the causes of value-related ine!ciencies in large appli-
cations. We optimize a number of applications and well-known
benchmarks, achieving nontrivial speedups. Many optimization
patches have been con"rmed or accepted by the developers.

Currently, ValueExpert collects program context using the
line mapping section in binaries, which does not directly pro-
vide straightforward information for interpreted languages such
as Python. We plan to add more semantic information into
ValueExpert’s performance reports to facilitate optimizations. For
instance, we can integrate the layer/operator annotations in deep
learning applications using source code instrumentation. Inspired
by ValueExpert’s fast interval merge implementation on GPUs,
we intend to o%oad other important program analyses, such as
reuse distance and race detection, to GPUs to lower the overhead
for complex applications.

ACKNOWLEDGEMENT
We thank anonymous reviewers for their valuable comments, and
Aurelien Chartier at NVIDIA for providing suggestions on using
Sanitizer API. This research was supported in part by NSF CNS-
2125813, the Oak Ridge National Laboratory Joint Faculty Appoint-
ment Grant, and the Exascale Computing Project (17-SC-20-SC) —
a collaborative e#ort of the U.S. Department of Energy O!ce of
Science and the National Nuclear Security Administration.

A ARTIFACT APPENDIX

A.1 Abstract
Our artifact includes ValueExpert and benchmark code in this paper,
along with instructions to use benchmarks to generate results for
Figure 2, Figure 6, and Table 3 on NVIDIA A100 and RTX 2080 Ti
GPUs. The speedup and overhead of each benchmark are averaged
among 10 runs.

We provide a docker image with pre-installed prerequisites to
simplify the experiment work$ow. Users can also use a script to
install all software from scratch.

A.2 Artifact Check-list (Meta-information)
• Algorithm: Value "ow graph construction and analysis. Par-
allel interval merge on GPUs.

• Program: Rodinia benchmark v3.1, QMCPACK@47406206,
Castro@5e0a1b9c, AlexeyAB/darknet@312fd2e9,

182

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

NAMD@4a41c608, BarraCUDA@0.7.107h, PyTorch-
Deepwave@1154692258, PyTorch-Bert@f5788898, PyTorch-
Resnet@f5788898

• Compilation: GCC ≥ 7.3.1, NVCC ≥ 11.1.1
• Run-time environment: Provided binaries are for Linux x86-
64 systems.

• Hardware: NVIDIA Volta GPUs and later generations.
• Metrics: Optimization speedups and pro!ling overhead
• Output: An example value "ow graph. A !le that contains
speedups for all benchmarks. A !le that contains pro!ling
overhead for all benchmarks.

• How much disk space required (approximately)?: 200GB
• How much time is needed to prepare work"ow (approxi-
mately)?: 2 hours

• How much time is needed to complete experiments (approxi-
mately)?: 4 hours

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Archived (provide DOI)?: https://zenodo.org/record/5796083

A.3 Description
A.3.1 How to Access. Our benchmarks, source code, scripts are
available at https://github.com/GVProf/GVProf.

A.3.2 Hardware Dependencies. ValueExpert currently only works
on NVIDIA Volta GPU and generations above. We have tested
ValueExpert’s correctness and performance on machines equipped
with NVIDIA A100 and RTX 2080 Ti GPUs. To reproduce the results
in the paper, we suggest the reviewers use the same GPUs and a
machine with at least 200GB available disk space.

A.3.3 So!ware Dependencies.

• NVIDIA CUDA driver: ≥ 460.27 and ≤ 470.57
• CUDA Toolkit: 11.1.1 and above
• GCC: 8.3.1 and above
• Linux Kernel: 4.18.0 and above
• All the other dependent software can be installed by our
automate scripts.

A.4 Installation
Decompress the packages and launch a docker instance.

7za x ./asplos_ae_home.7z

7za x ./value_expert_ae_image.tar.7z

docker load -i ./value_expert_ae_image.tar

docker run --runtime=nvidia --rm --name=asplos_ae -t \

-v `pwd`/asplos_ae_home:/root -i \

value_expert_ae /bin/bash

Install ValueExpert and benchmarks.

cd root/GVProf/

source env.sh

[gpu_arch]=80 if you are using A100

[gpu_arch]=75 if you are using RTX 2080 Ti

./install.sh [gpu_arch]

A.5 Experiment Work"ow
Reproduce overhead in Figure 6 (2 hours).

[gpu_arch]=80 if you are using A100

[gpu_arch]=75 if you are using RTX 2080 Ti

./scripts/overhead.sh [gpu_arch]

cat ./overhead.txt

Reproduce speedups in Table 3 (1 hour).

[gpu_arch]=80 if you are using A100

[gpu_arch]=75 if you are using RTX 2080 Ti

./scripts/speedup.sh [gpu_arch]

cat ./kernel_speedup.txt # kernel execution time speedups

cat ./mem_speedup.txt # memory operation time speedups

Reproduce data $ow in Figure 2 (5 minutes). It will generate a
demo.svg "le under /root/GVProf/jquery.graphviz.svg/.

./scripts/figure2.sh

View the data $ow graph in a browser. Users can access http:
//docker_ip:8000 in the host browser to check the data_$ow graph

cd /root/GVProf/jquery.graphviz.svg

python3 -m http.server

A.6 Evaluation and Expected Results
We expect the reproduced results for Figure 2, Table 3, and Figure 6
match the results in the paper. Figure 2 shows a value $ow graph for
Darknet generated by ValueExpert. Table 3 shows the evaluation of
kernel execution time, memory time, and corresponding speedups
for Rodinia benchmarks and some real applications on RTX 2080 Ti
and A100 GPUs. Figure 6 shows that ValueExpert incurs moderate
overhead for both coarse- and "ne-grained value pattern analysis.

Our PRs for PyTorch 48540 and 48890 have been merged by
PyTorch developers.

REFERENCES
[1] 2020. TOP500. https://www.top500.org/lists/top500/2021/06/. [Accessed August

4, 2021].
[2] 2021. ROC-pro"ler. https://github.com/ROCm-Developer-Tools/rocpro"ler.

[Accessed Aug 9, 2021].
[3] 2021. SHA-2. https://en.wikipedia.org/wiki/SHA-2 [Accessed Apr 9, 2021].
[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je#rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo#rey Irving, Michael Isard, et al.
2016. Tensor$ow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[5] Ann Almgren, Maria Barrios Sazo, John Bell, Alice Harpole, Max Katz, Jean
Sexton, Donald Willcox, Weiqun Zhang, and Michael Zingale. 2020. CASTRO: A
Massively Parallel Compressible Astrophysics Simulation Code. Journal of Open
Source Software 5, 54 (2020), 2513. https://doi.org/10.21105/joss.02513

[6] Amazon Corp. 2019. Amazon EC2 G4 Instances with NVIDIA T4 Tensor Core
GPUs, now available in 6 additional regions. https://aws.amazon.com/about-
aws/whats-new/2019/10/amazon-ec2-g4-instances-with-nvidia-t4-tensor-
core-gpus-now-available-in-6-additional-regions. [Accessed Aug 9, 2021].

[7] Ausar Geophysical. 2021. Wave propagation modules for PyTorch. https://gith
ub.com/ar4/deepwave. [Accessed Aug 9, 2021].

183

https://zenodo.org/record/5796083
https://github.com/GVProf/GVProf
http://docker_ip:8000
http://docker_ip:8000
https://github.com/pytorch/pytorch/pull/48540
https://github.com/pytorch/pytorch/pull/48890
https://www.top500.org/lists/top500/2021/06/
https://github.com/ROCm-Developer-Tools/rocprofiler
https://en.wikipedia.org/wiki/SHA-2
https://doi.org/10.21105/joss.02513
https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-ec2-g4-instances-with-nvidia-t4-tensor-core-gpus-now-available-in-6-additional-regions
https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-ec2-g4-instances-with-nvidia-t4-tensor-core-gpus-now-available-in-6-additional-regions
https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-ec2-g4-instances-with-nvidia-t4-tensor-core-gpus-now-available-in-6-additional-regions
https://github.com/ar4/deepwave
https://github.com/ar4/deepwave

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu

[8] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE,
163–174. https://doi.org/10.1109/ispass.2009.4919648

[9] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen, O.
Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland. 2019. RAJA: Portable Per-
formance for Large-Scale Scienti"c Applications. In 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). 71–81.
https://doi.org/10.1109/P3HPC49587.2019.00012

[10] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for scienti#c computing conference (SciPy), Vol. 4. Austin, TX, 1–7.
https://doi.org/10.25080/majora-92bf1922-003

[11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
(2020).

[12] Je#rey Burt. 2020. The Softer Side of Exascale. https://www.nextplatform.com/2
020/02/14/the-softer-side-of-exascale. [Accessed Aug 9, 2021].

[13] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Shea#er, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[15] H Carter Edwards and Christian R Trott. 2013. Kokkos: Enabling performance
portability across manycore architectures. In 2013 Extreme Scaling Workshop (xsw
2013). IEEE, 18–24. https://doi.org/10.1109/xsw.2013.7

[16] Guin Gilman, Samuel S Ogden, Tian Guo, and Robert J Walls. 2021. Demystifying
the Placement Policies of the NVIDIA GPU Thread Block Scheduler for Con-
current Kernels. ACM SIGMETRICS Performance Evaluation Review 48, 3 (2021),
81–88. https://doi.org/10.1145/3453953.3453972

[17] Google Corp. 2021. TensorBoard: TensorFlow’s visualization toolkit. https:
//www.tensor$ow.org/tensorboard. [Accessed Aug 9, 2021].

[18] Anton V Gorshkov, Michael Berezalsky, Julia Fedorova, Konstantin Levit-
Gurevich, and Noam Itzhaki. 2019. GPU Instruction Hotspots Detection Based on
Binary Instrumentation Approach. IEEE Trans. Comput. 68, 8 (2019), 1213–1224.
https://doi.org/10.1109/tc.2019.2896628

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778. https://doi.org/10.1109/cvpr.2016.90

[20] Yangqing Jia. 2014. Learning Semantic Image Representations at a Large Scale.
Ph.D. Dissertation. University of California, Berkeley, USA. http://www.eschol
arship.org/uc/item/64c2v6sn

[21] Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk,
Sohaib Sajid, and Martha A Kim. 2015. Fast computational gpu design with gt-pin.
In 2015 IEEE International Symposium on Workload Characterization. IEEE, 76–86.
https://doi.org/10.1109/iiswc.2015.14

[22] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-Sim: An extensible simulation framework for validated GPU modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 473–486. https://doi.org/10.1109/isca45697.2020.00047

[23] Jeongnim Kim et al. 2018. QMCPACK: an open sourceab initioquantum Monte
Carlo package for the electronic structure of atoms, molecules and solids. Journal
of Physics: Condensed Matter 30, 19 (apr 2018), 195901. https://doi.org/10.1088/
1361-648x/aab9c3

[24] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christopher
Batten. 2013. Microarchitectural mechanisms to exploit value structure in SIMT
architectures. In Proceedings of the 40th Annual International Symposium on
Computer Architecture. 130–141. https://doi.org/10.1145/2508148.2485934

[25] Andreas Knüpfer, Christian Rössel, Dieter Mey, Scott Biersdor#, Kai Diethelm, Do-
minic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Malony,
Wolfgang Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl,
Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf.
2012. Score-P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope, Scalasca, TAU, and Vampir. In Competence in High Performance Com-
puting 2011. Springer Berlin Heidelberg, 79–91.

[26] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.
2015. Improving CUDA DNA Analysis Software with Genetic Programming. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (Madrid, Spain) (GECCO ’15). Association for Computing Machinery, New
York, NY, USA, 1063–1070. https://doi.org/10.1145/2739480.2754652

[27] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86. https://doi.org/10.1
109/cgo.2004.1281665

[28] Alan Morris, Allen D. Malony, Sameer Shende, and Kevin Huck. 2010. Design
and Implementation of a Hybrid Parallel Performance Measurement System. In
Proceedings of the 2010 39th International Conference on Parallel Processing (ICPP
’10). IEEE Computer Society, Washington, DC, USA, 492–501.

[29] NVIDIA Corp. 2021. cuBLAS. https://developer.nvidia.com/cublas. [Accessed
March 9, 2021].

[30] NVIDIA Corp. 2021. CUDA Graph: CUDA Toolkit Documentation. https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs.
[Accessed Aug 9, 2021].

[31] NVIDIA Corp. 2021. NVIDIA Compute Sanitizer API. https://docs.nvidia.com/cu
da/sanitizer-docs/SanitizerApi/index.html. [Accessed Aug 9, 2021].

[32] NVIDIA Corp. 2021. NVIDIA CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit. [Accessed Aug 9, 2021].

[33] NVIDIA Corp. 2021. NVIDIA Jetson: The AI platform for autonomous everything.
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems.
[Accessed Aug 9, 2021].

[34] NVIDIA Corp. 2021. nvprof: CUDA Toolkit Documentation. http://docs.nvidia.
com/cuda/pro"ler-users-guide/index.html. [Accessed Aug 9, 2021].

[35] NVIDIA Corporation. 2021. NVIDIA Nsight Compute. https://developer.nvidia.c
om/nsight-compute [Accessed Aug 9, 2021].

[36] NVIDIA Corporation. 2021. NVIDIA Nsight Systems. https://developer.nvidia.c
om/nsight-systems [Accessed Aug 9, 2021].

[37] NVIDIA Corporation. 2021. NVIDIA NVCC. https://docs.nvidia.com/cuda/cuda-
compiler-driver-nvcc/index.html [Accessed Aug 9, 2021].

[38] OpenMP Architecture Review Board. 2021. OpenMP Application Programming
Interface. https://www.openmp.org/spec-html/5.1/openmp.html [Accessed Aug
9, 2021].

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[40] Yuanfeng Peng, Vinod Grover, and Joseph Devietti. 2018. Curd: A dynamic cuda
race detector. ACM SIGPLAN Notices 53, 4 (2018), 390–403. https://doi.org/10.1
145/3296979.3192368

[41] James C Phillips, David J Hardy, Julio DC Maia, John E Stone, João V Ribeiro,
Rafael C Bernardi, Ronak Buch, Giacomo Fiorin, Jérôme Hénin, Wei Jiang, et al.
2020. Scalable molecular dynamics on CPU and GPU architectures with NAMD.
The Journal of chemical physics 153, 4 (2020), 044130.

[42] Steve Plimpton. 1993. Fast parallel algorithms for short-range molecular dynamics.
Technical Report. Sandia National Labs., Albuquerque, NM (United States).

[43] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. 2014.
gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture
Letters 14, 1 (2014), 34–36. https://doi.org/10.1109/lca.2014.2299539

[44] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/. [Accessed Aug 9, 2021].

[45] James Reinders. 2005. VTune Performance Analyzer Essentials. Intel Press (2005).
[46] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi, Daniel R.

Johnson, David Nellans, Mike O’Connor, and Stephen W. Keckler. 2015. Flex-
ible software pro"ling of GPU architectures. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA). 185–197. https:
//doi.org/10.1145/2749469.2750375

[47] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu. 2019. Re-
dundant loads: A software ine!ciency indicator. In 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE). IEEE, 982–993. https:
//doi.org/10.1109/icse.2019.00103

[48] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.
Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
372–383. https://doi.org/10.1145/3352460.3358307

[49] Kai Wang and Calvin Lin. 2017. Decoupled A!ne Computation for SIMT GPUs.
ACM SIGARCH Computer Architecture News 45, 2 (2017), 295–306. https://doi.or
g/10.1145/3140659.3080205

[50] Benjamin Welton and Barton P. Miller. 2019. Diogenes: Looking for an Honest
CPU/GPU Performance Measurement Tool. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 21, 20 pages. https://doi.org/10.1145/3295500.3356213

[51] Shasha Wen, Milind Chabbi, and Xu Liu. 2017. Redspy: Exploring value locality
in software. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems. 47–61.
https://doi.org/10.1145/3093336.3037729

[52] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. 2018. Watching for soft-
ware ine!ciencies with witch. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 332–347. https://doi.org/10.1145/3173162.3177159

[53] Shasha Wen, Xu Liu, and Milind Chabbi. 2015. Runtime value numbering: A
pro"ling technique to pinpoint redundant computations. In 2015 International
Conference on Parallel Architecture and Compilation (PACT). IEEE, 254–265. https:

184

https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.25080/majora-92bf1922-003
https://www.nextplatform.com/2020/02/14/the-softer-side-of-exascale
https://www.nextplatform.com/2020/02/14/the-softer-side-of-exascale
https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/xsw.2013.7
https://doi.org/10.1145/3453953.3453972
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://doi.org/10.1109/tc.2019.2896628
https://doi.org/10.1109/cvpr.2016.90
http://www.escholarship.org/uc/item/64c2v6sn
http://www.escholarship.org/uc/item/64c2v6sn
https://doi.org/10.1109/iiswc.2015.14
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1088/1361-648x/aab9c3
https://doi.org/10.1088/1361-648x/aab9c3
https://doi.org/10.1145/2508148.2485934
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/sanitizer-docs/SanitizerApi/index.html
https://docs.nvidia.com/cuda/sanitizer-docs/SanitizerApi/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://www.openmp.org/spec-html/5.1/openmp.html
https://doi.org/10.1145/3296979.3192368
https://doi.org/10.1145/3296979.3192368
https://doi.org/10.1109/lca.2014.2299539
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1145/2749469.2750375
https://doi.org/10.1145/2749469.2750375
https://doi.org/10.1109/icse.2019.00103
https://doi.org/10.1109/icse.2019.00103
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1145/3140659.3080205
https://doi.org/10.1145/3140659.3080205
https://doi.org/10.1145/3295500.3356213
https://doi.org/10.1145/3093336.3037729
https://doi.org/10.1145/3173162.3177159
https://doi.org/10.1109/pact.2015.29
https://doi.org/10.1109/pact.2015.29
https://doi.org/10.1109/pact.2015.29

ValueExpert: Exploring Value Pa!erns in GPU-Accelerated Applications ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

//doi.org/10.1109/pact.2015.29
[54] Cort J Willmott and Kenji Matsuura. 2005. Advantages of the mean absolute

error (MAE) over the root mean square error (RMSE) in assessing average model
performance. Climate research 30, 1 (2005), 79–82. https://doi.org/10.3354/cr03
0079

[55] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R Hsu, and Huiyang Zhou.
2013. Exploiting uniform vector instructions for GPGPU performance, energy
e!ciency, and opportunistic reliability enhancement. In Proceedings of the 27th
international ACM conference on International conference on supercomputing. 433–
442. https://doi.org/10.1145/2464996.2465022

[56] Chenle Yu, Sara Royuela, and Eduardo Quiñones. 2020. OpenMP to CUDA
graphs: a compiler-based transformation to enhance the programmability of
NVIDIA devices. In Proceedings of the 23th International Workshop on Software and
Compilers for Embedded Systems. 42–47. https://doi.org/10.1145/3378678.3391881

[57] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy
Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, et al. 2019. AMReX:
a framework for block-structured adaptive mesh re"nement. Journal of Open
Source Software 4, 37 (2019), 1370–1370. https://doi.org/10.21105/joss.01370

[58] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2020. GVProf: A value pro"ler for GPU-based clusters. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–16. https://doi.org/10.1109/SC41405.2020.00093

[59] Keren Zhou, Mark W Krentel, and John Mellor-Crummey. 2020. Tools for top-
down performance analysis of GPU-accelerated applications. In Proceedings
of the 34th ACM International Conference on Supercomputing. 1–12. https:
//doi.org/10.1145/3392717.3392752

[60] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. 2021. GPA:
A GPU Performance Advisor Based on Instruction Sampling. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 115–125.
https://doi.org/10.1109/CGO51591.2021.9370339

185

https://doi.org/10.1109/pact.2015.29
https://doi.org/10.1109/pact.2015.29
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://doi.org/10.1145/2464996.2465022
https://doi.org/10.1145/3378678.3391881
https://doi.org/10.21105/joss.01370
https://doi.org/10.1109/SC41405.2020.00093
https://doi.org/10.1145/3392717.3392752
https://doi.org/10.1145/3392717.3392752
https://doi.org/10.1109/CGO51591.2021.9370339

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Existing Solutions
	1.3 Our Approach

	2 Related Work
	3 Value Pattern Categorization
	3.1 Coarse-Grained Value Patterns
	3.2 Fine-Grained Value Patterns

	4 ValueExpert Overview
	5 Core Functionality Implementation
	5.1 Value Pattern Recognition
	5.2 Value Flow Graph Construction and Analysis

	6 Accelerating Value Analysis
	6.1 Accelerating Coarse-Grained Analysis
	6.2 Accelerating Fine-Grained Analysis

	7 Evaluation
	8 Case Studies
	8.1 Darknet
	8.2 PyTorch
	8.3 Castro
	8.4 BarraCUDA
	8.5 Rodinia CFD and Backprop
	8.6 Optimization Tradeoffs

	9 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

