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ABSTRACT

General-purpose GPUs have become common in modern comput-
ing systems to accelerate applications in many domains, including
machine learning, high-performance computing, and autonomous
driving. However, inefficiencies abound in GPU-accelerated applica-
tions, which prevent them from obtaining bare-metal performance.
Performance tools play an important role in understanding per-
formance inefficiencies in complex code bases. Many GPU perfor-
mance tools pinpoint time-consuming code and provide high-level
performance insights but overlook one important performance
issue—value-related inefficiencies, which exist in many GPU code
bases. In this paper, we present VALUEEXPERT, a novel tool to pin-
point value-related inefficiencies in GPU applications.

VALUEEXPERT monitors application execution to capture values
produced and used by each load and store operation in GPU ker-
nels, recognizes multiple value patterns, and provides intuitive
optimization guidance. We address systemic challenges in collect-
ing, maintaining, and analyzing voluminous performance data from
many GPU threads to make VALUEEXPERT applicable to complex
applications. We evaluate VALUEEXPERT on a wide range of well-
tuned benchmarks and applications, including PyTorch, Darknet,
LAMMPS, Castro, and many others. VALUEEXPERT is able to identify
previously unknown performance issues and provide suggestions
for nontrivial performance improvements with typically less than
five lines of code changes. We verify our optimizations with appli-
cation developers and upstream fixes to their repositories.
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1 INTRODUCTION

GPU architectures have become mainstream in modern and emerg-
ing computing systems to accelerate applications in different do-
mains. For high performance computing (HPC), the GPU-accelerated
Summit supercomputer is ranked #2 among the 500 most powerful
supercomputers in the world in June 2021 [1]. Moreover, all of the
emerging exascale supercomputers developed by the Department
of Energy (DOE) will be accelerated with GPUs [12]. For cloud
computing, Amazon Web Service provides GPU-based compute
instances [6]. For embedded computing in autonomous systems,
NVIDIA Jetson [33] integrates CPUs and GPUs.

GPUs typically employ thousands of cores and high-bandwidth
memory to enjoy massive parallelism and high performance. To fa-
cilitate programming on GPUs, emerging programming languages
(e.g., CUDA [32], OpenMP [38], Kokkos [15], and RAJA [9]), compil-
ers (e.g., NVCC [37] and LLVM [27]), and frameworks (e.g., Tensor-
flow [4], PyTorch [39], and AMReX [57]) provide various interfaces
to offload computations to GPUs. However, due to the complex-
ity of GPU architectures, it remains challenging to write efficient
programs to harness the compute power of GPUs. Performance
inefficiencies can hide deep in GPU code, preventing applications
from obtaining bare-metal performance.

1.1 A Motivating Example

Darknet [44] is a popular deep learning framework written in
CUDA and C. Darknet’s cuBLAS [29] backend implements con-
volution using the lowering method [20]. We study Darknet using
the YOLOv4 [11] neural network, identify two representative in-
efficiencies, and propose optimizations that address them without
accuracy loss.

Inefficiency I: redundant GPU instructions. In the forward phase
of each convolution layer, function fill_ongpu (Line 2) sets array
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1forward_convolutional_layer_gpu(...) {
fill_ongpu(l.outputs * 1l.batch, @, 1l.output_gpu,
for (3 = @; j< l.groups; ++j) {

gemm_ongpu(..., 1, l.output_gpu);

15

,
}

Listing 1: A redundant invocation of GPU kernel fill_kernel.
Changing the argument 1 to @ of gemm_ongpu can remove read
operations on array l.output_gpu.

ESIE- NS RN

lconvolutional_layer make_convolutional_layer(...) {

2 1l.output_gpu = cuda_make_array(l.output, total_batch x out_h =
out_w *x n);

3 1l.x_gpu = cuda_make_array(l.output,
* n);

total_batch * out_h * out_w

4}

Listing 2: Unnecessary CPU-GPU communication in Darknet.
Darknet copies CPU array 1.output (initialized to zeros) to
GPU arrays 1.output_gpu and 1.x_gpu.

1.output_gpu to zeros as shown in Listing 1. Function gemm_ongpu
then updates 1. output_gpu by reading its values and accumulating
them across all iterations. When there is only one iteration, we can
remove fill_ongpu and associated read operations in gemm_ongpu,
which reduces each convolution layer’s loads and stores executed
on the GPU by 4.1% and 10.6%, respectively.

Inefficiency II: unnecessary CPU-GPU data transfer. In function
make_convolutional_layer, as shown in Listing 2, Darknet ini-
tializes 1.output, an array on CPUs, to zeros via function xcalloc.
Darknet then copies 1.output to 1.output_gpu (Line 2), an array
on the GPU. This copy on zeros wastes memory bandwidth. The
same problem exists in other arrays, e.g., 1.x_gpu (Line 3). It is
better to use cudaMemset to directly initialize these arrays on the
GPU side instead of copying zeros from the CPU, which saves 84.2%
CPU-GPU memory traffic.

1.2 Existing Solutions

Profilers play an important role in bridging the gap between soft-
ware and hardware by identifying performance inefficiencies. There
exist many GPU profilers, including vendor-provided tools such as
Nsight Compute [35], Nsight Systems [36], nvprof [34], VTune [45],
and AMD ROC-profiler [2], as well as open source tools such as
HPCToolkit [59], TAU [28], and Score-P [25]. These profilers pin-
point hot GPU code via measuring elapsed time or hardware events.

However, these profilers cannot easily identify the inefficiencies
we found in Darknet or provide intuitive guidance. Hotspots often
show up as symptoms of performance inefficiencies; analyzing their
root causes typically requires significant manual effort. Without
knowledge of root causes, one cannot easily optimize Inefficiency I
and II even if one knows they are inefficient because of the following
limitations of existing profilers:

e Lacking a microscopic view: Existing profilers typically collect
a limited set of performance metrics using hardware counters.
Without a microscopic view of the behavior of individual instruc-
tions, one cannot easily identify and optimize many performance
inefficiencies, such as Inefficiency 1.
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e Lacking a holistic view: Existing profilers mostly target individual
GPU API invocations and provide little insight into interactions
across multiple GPU APIs. Their myopic views miss many opti-
mization opportunities, e.g., Inefficiency I

1.3 Our Approach

In this paper, we present VALUEEXPERT, a novel value profiling and
analysis tool to identify value-related inefficiencies, such as the inef-
ficiencies shown in Section 1.1. As a unique feature, VALUEEXPERT
provides microscopic value pattern analysis and global value flow
analysis to obtain deep insights for code optimization.

o Microscopic value pattern analysis: VALUEEXPERT leverages binary
instrumentation to monitor memory load and store operations in
GPU kernels and capture the values used or produced by these
operations. Furthermore, VALUEEXPERT associates values with
data objects (e.g., arrays or tensors) to identify various value
patterns at both coarse- and fine-grained levels, which guides
actionable optimization.

o Global value flow analysis: VALUEEXPERT tracks value flows for
data objects in a global view: across CPUs and GPUs, as well as
across GPU API invocations. The value flows include object allo-
cations, initializations, transfers, uses, and updates. VALUEEXPERT
constructs a value flow graph to broaden the scope of inefficiency
analysis beyond individual GPU API invocations.

The implementation of VALUEEXPERT addresses challenges in
collecting, maintaining, analyzing, and presenting a large volume
of performance data. First, VALUEEXPERT needs to handle the high
parallelism and limited memory on GPU to efficiently store fine-
grained performance data with minimum interference to GPU
kernels. Second, VALUEEXPERT needs to minimize data transfer
between GPU to CPU when the profiling data fills the allocated
memory on GPU. Third, VALUEEXPERT needs to employ a novel
visualization technique to present and analyze the massive and
detailed performance data.

We address these challenges and develop VALUEEXPERT for main-
stream systems accelerated with NVIDIA GPUs, including commod-
ity Linux clusters with and multiple compute nodes with multi-
ple GPUs per node. VALUEEXPERT monitors fully optimized exe-
cutables without source code modification or recompilation re-
quired. We apply VALUEEXPERT to optimize deep learning frame-
works (e.g., PyTorch [39], Darknet [44]), and important HPC appli-
cations (e.g., LAMMPS [42], NAMD [41]), and a well-known GPU
benchmark suite—Rodinia [13]. VALUEEXPERT successfully identi-
fies prior-unknown performance bugs in these applications with
moderate overhead on two NVIDIA GPU platforms: RTX 2080 Ti
and A100. Guided by VALUEEXPERT, we are able to obtain 1.58%
and 1.39X geometric mean speedups for applications running on
RTX 2080 Ti and A100 accordingly, with typically less than five
lines of code changes. To verify the correctness and significance
of VALUEEXPERT’s findings, we either confirm with the application
developers or upstream our optimization patches to application
repositories.
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Contribution Summary.

(1) We categorize eight value patterns in GPU-accelerated applica-
tions and discuss optimization opportunities by exploiting each
pattern.

(2) We design and implement VALUEEXPERT—a value profiling and
analysis tool that recognizes value patterns and construct value
flows to pinpoint value-related inefficiencies.

(3) We describe novel parallel analysis algorithms on GPUs that
accelerate VALUEEXPERT.

(4) We enable VALUEEXPERT to provide rich information, including
full call paths for each GPU API and value flow graphs, to help
users identify optimization opportunities.

(5) We apply VALUEEXPERT to analyze several production ML and
HPC applications, achieving nontrivial speedups. We upstream
our optimizations to benefit the community.

Limitations. First, VALUEEXPERT is a dynamic analysis tool; it
requires inputs that trigger execution behaviors of interest. sec-
ond, VALUEEXPERT currently works on NVIDIA GPUs only but
its methodology is generally applicable to GPUs from other ven-
dors if necessary binary instrumentation engines are available.
Third, VALUEEXPERT is a profiler. It pinpoints and analyzes ineffi-
ciences, but does not automatically fix them. Additionally, although
VALUEEXPERT does not have any false positives in identifying value
patterns, programmers are responsible to apply profitable optimiza-
tion.

2 RELATED WORK

Classical GPU performance tools [2, 18, 25, 28, 34, 35, 45, 59, 60]
profile or trace GPU activities. Unlike VALUEEXPERT, none of these
tools analyze value-related inefficiencies. GPU simulators [8, 22, 43]
monitor execution details, but incur prohibitively high overhead for
real usage. To reduce the measurement overhead, one can instru-
ment GPU binaries with SASSI [46], NVBit [48], and GTPin [21],
or bytecode using LLVM [27]. However, these instrumentation en-
gines do not directly identify value-related inefficiencies. State-of-
the-art profilers for identifying value-related inefficiencies include
RedSpy [51], LoadSpy [47], and Witch [52]; however, these tools
work on CPUs only. In this section, we only discuss most related
approaches to VALUEEXPERT.

Value Profiling on GPU. Xiang et al. [55] optimize instructions
producing uniform values with a hardware instruction reuse buffer.
Kim et al. [24] propose a hardware design to handle affine value
structures. Wang and Lin [49] decouple affine value instructions
from the regular SIMT instruction pipeline. Unlike these tools,
VALUEEXPERT analyzes more value patterns and requires no hard-
ware extension.

There exist some value profilers on GPUs. Diogenes [50] over-
loads GPU memory copy APIs to analyze duplicate values copied
to the GPU but it does not analyze patterns of value use by GPU
kernels. The most related approach is GVProf [58], a value profiler
for NVIDIA GPUs. While GVProf can identify value redundancies,
it does not systematically categorize value patterns and cannot iden-
tify as many inefficiencies as VALUEEXPERT can, as we describe in
Section 7. Furthermore, GVProf copies measurement data from GPU
to CPU for analysis, causing frequent GPU-CPU communication
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and prohibitively high analysis overhead for practical applications.
Lastly, GVProf limits its analysis to individual GPU kernels, without
insight of how values change across kernels.

Value Flow Analysis. VALUEEXPERT’s value flow analysis is a
variant of data flow analysis used in GPU programming models and
frameworks, such as OpenMP task dependency graph (TDG) [38,
56], CUDA Graph [30], and automatic differentiation systems in
deep learning frameworks [4, 10, 39]. Unlike existing approaches,
VALUEEXPERT dynamically captures the data flow to guide value-
related optimizations.

Tensorflow’s monitoring framework—TensorBoard [17] supports
a data flow view and value analysis. A fundamental limitation of
TensorBoard is that it works for deep learning frameworks only and
is generally applicable to other GPU-accelerated applications. In
addition, VALUEExXPERT differs from TensorBoard in several ways:
(1) TensorBoard does not guide optimizations for value-related
inefficiencies; (2) Unlike VALUEEXPERT, which uses binary instru-
mentation, TensorBoard instruments program source code to collect
graph topology and inspects tensor values; (3) TensorBoard only
analyzes the distribution of values in the end of kernels/iterations
but does not capture values within GPU kernels.

3 VALUE PATTERN CATEGORIZATION

In this section, we characterize eight pervasive value patterns found
in GPU-accelerated applications and further categorize them into
coarse- and fine-grained patterns. Table 1 overviews value patterns
residing in popular Rodinia benchmarks [13] and many applications.
We elaborate on each value pattern with examples.

3.1 Coarse-Grained Value Patterns

Coarse-grained value patterns describe value characteristics after
each GPU API invocation. We define two coarse-grained patterns.

Definition 3.1 (Redundant Values). A data object D matches the
redundant values pattern at a GPU API A if D is written by A and
some or all of D’s elements are not changed by A.

Coarse-grained value patterns are common in GPU-accelerated
applications. One common cause of the redundant values pattern is
double initialization of data objects — a data object may be initial-
ized twice with the same values. In such a case, one of the initial-
ization operations is redundant. Section 8.2 illustrates an example
of this pattern found in PyTorch.

Definition 3.2 (Duplicate Values). A data object D; matches the
duplicate values pattern with another data object D3 if Dy and D»
have the same values at any GPU APL

The duplicate values pattern occurs across GPU API invocations.
For instance, in Listing 2, Darknet initializes the weight arrays
of each layer on the CPU and then copies them to the GPU via
memory copy APIs. These APIs copy duplicate values. One can
directly invoke memory set APIs to initialize all weights on the
GPU to avoid CPU-GPU memory traffic.
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Table 1: Various value patterns exist in GPU applications and benchmarks.

Applications Redundant Values | Duplicate Values

Frequent Values

Single Value

Single Zero | Heavy Type | Structured Values | Approximate Values

Rodinia/bfs [13] v v

v v

Rodinia/backprop [13] v v

v

Rodinia/sradv1 [13] v

v

Rodinia/hotspot [13]

Rodinia/pathfinder [13]

ANESENEN

Rodinia/cfd [13]

Rodinia/huffman [13]

v
v
v

Rodinia/lavaMD [13]

Rodinia/hotspot3D [13]

Rodinia/streamcluster [13]

Darknet [44]

OMCPACK [23]

Castro [5]

BarraCUDA [26]

PytTrch-Deepwave [7]

PyTorch-Bert [14]

PyTorch-Resnet50 [19]

NAMD [41]

NN

ANENENENENENENENENEN R ENENENEN

LAMMPS [42]

3.2 Fine-Grained Value Patterns

Fine-grained value patterns are identified based on all accesses to a
data object at individual GPU APIs. We define six value patterns in
this category.

Definition 3.3 (Frequent Values). A data object D matches the
frequent values pattern at a GPU API A if accesses to one or more
particular values in D exceeds a predefined percentage threshold
T of accesses to D.

Definition 3.4 (Single Value). A data object D matches the single
value pattern at a GPU API A if all of D’s accessed values are the
same.

Definition 3.5 (Single Zero). A data object D matches the single
zero pattern at a GPU API A if all of D’s accessed values are zeros.

The frequent values pattern exposes redundant computation on
identical values. One can optimize it with conditional computation,
which bypasses redundant computation. One example is Rodini-
a/huffman, where we observe that most values written to the array
histo are zeros. To avoid identity computation, we bypass the com-
putation on this array when zeros are found. The single value and
single zero patterns are special cases of the frequent values pattern.
They expose additional optimization opportunities, such as con-
tracting a vector to a scalar to reduce memory traffic or applying a
sparse data structure or algorithm to reduce computation intensity.

Definition 3.6 (Heavy Type). A data object D matches the heavy
type pattern at a GPU API A if D’s data type is more expressive
than the values used in D.

The heavy type pattern identifies opportunities for contracting
the value type to reduce memory traffic. As an example, the val-
ues in the g_cost array in Rodinia/bfs are always in the range of
int8 according to its input. Thus, demoting int32 to int8 can
significantly improve the performance.

Definition 3.7 (Structured Values). A data object D matches the
structured values pattern at a GPU API A if the values accessed
in D and the memory addresses storing these values are linearly
correlated.
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The structured values pattern exposes the relationship between
values and the memory addresses storing these values in a data
object. In other words, if the structured values pattern exists, one
can infer the values stored in an array using the indices. The linear
correlation between values and indices is the most common. As an
example in Rodinia/srad_v1, four arrays d_iN, d_iS, d_jW, and d_jE
store the coordinates of their neighbors, showing the structured
value pattern. A typical optimization for this pattern is to compute
the values based on the memory addresses (or array indices) to
replace more costly memory load or store operations.

Definition 3.8 (Approximate Values). A data object D matches the
approximate values pattern at a GPU API A if the values accessed
in D are floating-point numbers and the values with a mantissa of
IC bits correspond to some fine-grained patterns.

If approximate computing is allowed, relaxing the exact value
patterns to approximate value patterns can expose more optimiza-
tion opportunities. The hotspot3D code of Rodinia falls into such
an example. By controlling the accuracy loss within 2% RMSE [54],
one can observe the array tIn_d with the single value pattern and
apply optimizations accordingly.

4 VALUEEXPERT OVERVIEW

VALUEEXPERT is designed to identify the aforementioned eight
value patterns via monitoring fully optimized, unmodified GPU-
accelerated binaries on existing systems equipped with NVIDIA
GPUs based on the Maxwell architecture or later. Figure 1 illustrates
VALUEEXPERT s major components, including performance data col-
lection, online and offline data analysis, and a GUI for profiling
results.

Data Collector. VALUEEXPERT overloads GPU APIs, including
memory copy (i.e., cudaMemcpy family functions), memory set (i.e.,
cudaMemset family functions), and kernel launch, to capture value
snapshots (i.e., the bit-wise values of data objects) to check coarse-
grained value patterns. To capture necessary information to identify
fine-grained value patterns, VALUEEXPERT utilizes NVIDIA’s San-
itizer API [31] to instrument each GPU memory instruction to
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Figure 1: Overview of VALUEEXPERT.

obtain the effective addresses of memory locations it accesses, val-
ues loaded from or stored to the addresses, and the program counter
(PC) of the instruction. The data collector serializes concurrent GPU
streams, maintains collected data in a pre-allocated GPU buffer, and
transfers the data to the CPU when the buffer is full.

Online Analyzer. VALUEEXPERT s online analyzer processes mea-
surement data to identify value patterns and build value flow graphs.
The online analyzer distributes the analysis work across GPUs and
CPUs. For analysis that can benefit from high parallelism (e.g., paral-
lel prefix scan), VALUEEXPERT dispatches it to the GPU to accelerate
analysis and minimize memory traffic between CPUs and GPUs.
Moreover, VALUEEXPERT captures information that is only available
at runtime for deeper insights. Such information includes dynamic
libraries loaded, call paths for GPU APIs, and data object allocations.
Furthermore, the online analyzer works together with the offline
analyzer (described in the next section) for recognizing value pat-
terns. The output of the online analyzer consists of a profile with
coarse- and fine-grained value patterns, and a program-wide value

flow graph.

Offline Analyzer. VALUEEXPERT’s offline analyzer mainly ana-
lyzes CPU and GPU binaries to provide intuitive optimization guid-
ance. VALUEEXPERT obtains information about line mapping (i.e.,
source code lines, files) from the debugging sections in executables
and dynamically loaded libraries, and associates them with the
value pattern profile and the value flow graph. Moreover, the offline
analyzer extracts the access type (i.e., value type and length) of each
GPU memory instruction and provides it to the online analyzer
to refine the value analysis. The type information is particularly
useful to identify the heavy type pattern. The output of the offline
analyzer is an annotated profile that can be visualized in a GUL

GUI. VALUEEXPERT provides a user-friendly GUI to visualize
value patterns and flows with rich information to guide optimiza-
tion. Figure 2 shows an example presentation of VALUEEXPERT s
GUI VALUEEXPERT GUI presents a value flow graph. The construc-
tion and annotations on this graph are elaborated in Section 5.2. The
GUI quantifies coarse-grained value patterns on each vertex and
edge. For each vertex, one can use its ID to look up its fine-grained
value patterns in the value pattern profile. Furthermore, the GUI
enables users to explore the value changes of any data object along
specific paths. One can use the GUI to inspect an important portion
of the graph, which is especially useful for large profiles collected
from real application execution.

Figure 2 shows a part of the value flow graph produced by
VALUEEXPERT when analyzing an execution of Darknet. There are
nodes with different shapes: each rectangle represents a data alloca-
tion, which is the beginning of the value flow of a data object (e.g.,
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=
S

detector.c:1603 parse_network_cfg_custom [darknet]
parser.c:1383 parse_convolutional [darknet]

parser.c:222 make_convolutional_layer.localalias [darknet]
convolutional_layer.c:716 cuda_make_array [darknet]
dark_cuda.c:376 <op>

4
1506

Figure 2: A part of the value flow graph for Darknet gener-
ated by VALUEEXPERT. When a user hovers the cursor over a
vertex, a text box appears to show details such as the vertex’s
calling context to help the user locate inefficient code.

array); each circle represents a memory operation; each oval repre-
sents a GPU kernel. The node size is proportional to the number
of invocations. The number on each node is the ID used to query
its calling context and source code mapping (as shown in the black
text box for vertex 220), as well as fine-grained value patterns (not
shown in the figure). Edges represent value accesses: green edges
denote benign value patterns, while red edges denote the redundant
values pattern. The thickness of edges quantifies the number of
bytes accessed. VALUEEXPERT suggests focusing on thick red edges
first for coarse-grained value patterns.

VALUEEXPERT’s Workflow. To analyze a GPU-accelerated applica-
tion, we recommend the following workflow using VALUEEXPERT.
First, enable VALUEEXPERT’s coarse-grained value pattern analysis,
which generates a value flow graph with redundant values and du-
plicate values. From the value flow graph, users can identify costly
data movement associated with GPU APIs using the important
graph analysis, described in Definition 5.3. For costly data move-
ment edges in the important graph, the user can compute a vertex
slice graph, described in Definition 5.2, for GPU kernels associated
with the data movement. Then, specify interesting GPU kernels
(by name) to VALUEEXPERT and enable fine-grained value pattern
analysis on these kernels.
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5 CORE FUNCTIONALITY IMPLEMENTATION

This section describes the implementation of VALUEEXPERT’s core
functionality, including value pattern recognition and value flow
analysis.

5.1 Value Pattern Recognition

VALUEEXPERT analyzes value patterns at the level of GPU data
objects. VALUEEXPERT intercepts object allocation and dealloca-
tion functions to determine the life cycle of each data object cre-
ated in GPU global memory. At each GPU memory allocation,
VALUEEXPERT records a data object’s allocation context, starting
address, and size. Since there is no explicit allocation function
for objects on GPU shared memory, VALUEEXPERT treats the en-
tire shared memory as a single object. VALUEEXPERT uses different
mechanisms to identify coarse- and fine-grained value patterns.

Identifying Coarse-grained Value Patterns. Upon invocation of
each GPU API A (i.e., GPU memory copy, memory set, and kernel
launch), VALUEEXPERT investigates each involved data object D
by capturing its value snapshot. To recognize D, VALUEEXPERT
overloads A and determines the data objects accessed by A. A data
object’s value snapshot is updated upon the exit from A and is
maintained on the CPU to reduce the GPU memory consumption.
VALUEEXPERT assesses the coarse-grained value patterns upon each
value snapshot update.

Redundant values pattern: VALUEEXPERT compares the value
snapshots of a data object D before and after each GPU API A
to determine the percentage of unchanged values. If the percentage
is higher than a predefined threshold,' VALUEEXPERT reports the
redundant values pattern for D.

Duplicate values pattern: VALUEEXPERT calculates a SHA256
hash [3] for the value snapshot of a data object D after the invo-
cation of each GPU API A. VALUEEXPERT then groups data objects
that have the same SHA256 hash and reports the duplicate values
pattern for these data objects.

Identifying Fine-grained Value Patterns. VALUEEXPERT identifies
fine-grained value patterns by intercepting every memory ac-
cess during each GPU kernel execution. VALUEEXPERT, leveraging
NVIDIA’s Sanitizer API [31], instruments callbacks at every mem-
ory load and store instructions in GPU binaries to collect each in-
struction’s virtual program counter (PC), accessed memory address
and size, and the raw value stored in this memory address. To obtain
the complete information about the values accessed, VALUEEXPERT
monitors every GPU thread. VALUEEXPERT then collects the infor-
mation from all threads into a GPU buffer and copies the buffer to
the CPU when it is full. This process repeats until the GPU kernel
is finished.

VALUEEXPERT then translates raw values to real values with type
information because the raw values can be interpreted in different
ways. For instance, a STG. 64 instruction can store either two 32-bit
values or a single 64-bit value. Thus, VALUEEXPERT analyzes the
access type of each memory instruction, including value type (e.g.,
float or integer), value size (e.g., 32- or 64-bit), and number of values.

VALUEEXPERT’s offline analyzer adopts a bidirectional slicing
algorithm [58] that derives a GPU memory instruction’s access

1Based on our experiments, we use a threshold of 33%.
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type based on instructions with known access types on its def-use
chains. For each executed GPU memory instruction, the online
analyzer transforms the instruction’s virtual PC to a relative offset
in a GPU binary to obtain this instruction’s corresponding access
type. Using information about the access types, the online analyzer
interprets the raw bits of accessed values to analyze value patterns
of each data object.

Challenges. There are challenges in both coarse- and fine-grained
value pattern analyses. First, comparing value snapshots for a large
memory range in coarse-grained analysis can incur significant over-
head. Second, monitoring every GPU instruction and thread for
fine-grained value pattern analysis can also incur significant over-
head. Such a large overhead can limit VALUEEXPERT from analyzing
applications. Section 6 describes our optimization techniques to
reduce the overhead of VALUEEXPERT.

5.2 Value Flow Graph Construction and
Analysis

Unlike existing tools that provide a profile or trace view to present

performance metrics, VALUEEXPERT constructs a value flow graph,

which visualizes the value changes across GPU APIs to provide

performance insights for optimization.

Definition 5.1 (Value Flow Graph). A value flow graph G =
(V,E,vp04;) is a directed graph, where V is the set of vertices and E
is the set of edges, and vj,,¢; represents any host memory operation.

e Each vertex v € V represents a GPU API invocation such
as GPU memory allocation, memory copy, memory set, or
kernel launch.

e Anedgee; ; € E exists from o; to v if
- vj writes Dy, or vj reads Dy, , where Dy, is a data object

allocated by vy,

o; writes Dy,

- no vy writes Dy, following the write by v; and before v,

and

e;,jk is labelled with read/write operations for vertex v;.

® ¢ hostk is a sink edge that represents the device to host
memory transfer.

® epostik is a source edge that represents the host to device
memory transfer.

Figure 3 shows an example of mapping a GPU program to a
value flow graph based on Definition 5.1. For convenience, we use
the line number at which a GPU API is called as its ID in the value
flow graph. At Lines 1 and 2, we create two vertices representing
two allocated data objects. Next, at Lines 3 and 4, we create two
vertices for cudaMemset invocations. Because Lines 3 and 4 write
zeros to A_dev and B_dev respectively, we create edges from 1 to 3,
and 2 to 4. Then, GPU kernels are invoked at Line 5 and Line 6 to
write zeros to data object A_dev and B_dev respectively, triggering
two new write edges. Finally, a read edge is created to indicate Line
7 reads data object A_dev from Line 5, and a write edge is created
to indicate Line 7 writes data object B_dev from Line 6.

VALUEEXPERT associates value patterns with value flow graphs.
As shown in Figure 3, VALUEEXPERT uses edge colors to represent
redundancy and thicknesses to quantify accessed bytes. The size of
each vertex is determined by an importance factor, which could be
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write
1 cudaMalloc(&A_dev, N *sizeof( int)); X
2 cudaMalloo(&B_dev, N *sizeof( int)); write
3 cudaMemset(A_dev, 0, N *sizeof( int));
4 cudaMemset(B_dev, 0, N *sizeof( int));
5 set_zeros<<<1, N>>>(A_dev, N/4);
6 set_zeros<<<1, N>>>(B_dev, N/4); read
7

cudaMemcpy(B_dev,A_dev, N * sizeof(int),
cudaMemcpyDeviceToDevice);

(a) An example program

(b) A value flow graph

patterns.

write write: write] write!
® @

(c) A value flow graph with value(d) A vertex slice graph focusing (e) An important graph

on node 6.

Figure 3: An example of construction and analysis of a value flow graph. Rectangles are GPU memory allocations, circles are
GPU memory APIs, and ovals are GPU kernels. The wider the edge, the more bytes accessed. The red color indicates high
redundancy, and the green color indicates low redundancy. To facilitate the presentation, we use the line number as the ID for
each vertex. Fined-grained value patterns and calling contexts (not shown) are associated with each vertex.

this API’s total amount of invocations or execution time. A value
flow graph is context sensitive. At runtime, VALUEEXPERT records
the call path of each GPU API invocation and assigns a unique ID
to denote this call path. Postmortem, VALUEEXPERT annotates the
program source information for every frame on the call path as
well as inline frames. Vertices with the same call path are merged
to simplify presentation.

When profiling production applications such as LAMMPS [42],
VALUEEXPERT can generate a huge value flow graph. To facilitate
the analysis, we describe two features that can help one explore
interesting subgraphs.

Definition 5.2 (Vertex Slice Graph). A vertex slice graph Gg(vy,) =
(V',E’, vp05;) is a subgraph of a value flow graph G = (V, E, vp05;)
where
e¢ ;r€E ife i €Eand
- vy writes Dy, or vy reads Dy, , and
- ¢€; jk is on a valid path that consists of edges that read or
write Dy, and reaches vy, or v, reaches.
e ve V' ifvisonanyedgee € E’.

Figure 3d shows that applying vertex slice analysis according
to Definition 5.2 on vertex 6 generates a vertex slice graph Gg(ve)
that tracks vertex 6’s inputs and outputs. Vertices that do not affect
vertex 6’s value patterns and vertices whose value patterns are not
affected by vertex 6 are eliminated.

We use I(x) to represent user-defined metrics that measure the
importance of a vertex or an edge. Z is the threshold for keeping
an edge in a graph, and Z, is the threshold for keeping a vertex in
a graph. We define important graph using Definition 5.3.

Definition 5.3 (Important Graph). An important graph Gy
(V' E’,vp0s;) is @ subgraph of G = (V, E, vp,,;) Where
(] ei’j,k e E’if ei’j’k € E and I(ei’j’k) > Ie
eveV'ifvisonanyedgee € E' orI(v) > T,

We let I(e) be accessed bytes on each edge, and I(v) be the
number of invocations of the GPU API represented by each vertex.
With Z, = N/2 and Z, = 1, we can prune the graph in Figure 3d
and yield the graph in Figure 3e with important vertices and edges
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only. Applying the important graph analysis, VALUEEXPERT trims
the original value flow graph of LAMMPS from 660 nodes and 1258
edges to 132 nodes and 97 edges.

6 ACCELERATING VALUE ANALYSIS

Without optimization, VALUEEXPERT’s value pattern analysis can
incur unaffordable overhead due to the heaveweight instrumenta-
tion and frequent GPU-CPU communication. For example, without
any optimization, VALUEEXPERT slows down Rodinia/streamcluster
by 1200x, and it does not even finish the measurement of complex
applications, such as LAMMPS and PyTorch. Thus, we adopt several
optimizations to reduce VALUEEXPERT’s overhead for both coarse-
and fine-grained value pattern analysis.

6.1 Accelerating Coarse-Grained Analysis

Problem statement. We compare the value snapshots V(D) 4
and V’(D) 4 of a data object D at a GPU API A. V(D) 4 is the
snapshot before executing A, and V’(D) 4 is the snapshot after
executing A. As described in Section 5.1, comparing the value
snapshots involves substantial computations. To understand the
redundant values pattern and avoid unnecessary comparisons over
a large memory range, VALUEEXPERT only compares the values
stored in memory addresses that are accessed by .A. If the portion
of a data object that is never accessed by A is large, VALUEEXPERT
suggests avoiding unnecessary GPU data allocation. Otherwise,
VALUEEXPERT suggests investigating the use of values.

We define an interval [start, end] as the memory range accessed
by each GPU instruction in A. As a GPU kernel executes, a vast
number of intervals can be generated. VALUEEXPERT merges these
intervals if they are adjacent or overlapped and copies values after
interval merging to the CPU for efficient processing.

Solution — Employing GPU Parallelism. One could copy all inter-
vals from the GPU to the CPU and perform a sequential interval
merge, which has a O(NlogN) complexity, where N denotes the
number of intervals. This algorithm, however, only works for small
GPU kernels as N can be large in many benchmarks and applica-
tions (e.g., 3.4x 107 for each kernel in streamcluster), triggering large
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original intervals [ 0x76 | [0x77 | [ 0x80 | [[0x84 | [ 0x78 | [[ox7c ] [ ox78 | [[0x88
/o

[ox76 | [ox77 ] [ ox78 ][ ox7s | [[ox7e | [ 0x80 | [[0x84 | [ox88 |

sorted intervals

l
start/end markers 1 -1 1 1 ? 1 -1 -1
l
start/end prefix sum 1 0 1 2 19 2 1 0
start flags 1 0 1 0 l ?
)@
start index 1 0 2 0 0
end flags 0 1 0 0
/o
end index 0 1 0 0 0
)

merged intervals [ 0x76 H 0x77 H 0x78 H 0x88 |

:] interval start l:l interval end

Figure 4: An example of merging intervals in parallel.

CPU processing and GPU-CPU memory copy overhead. To merge
intervals on the GPU, we develop the parallel interval algorithm
shown in Figure 4.

@ We first lexicographically sort the start and end addresses
of all intervals based on (address, is_end) pairs such that an end
address is after a start address when they are equal. @) Next, we
initialize a markers array to denote interval starts with 1 and interval
ends with -1. €) We apply a parallel prefix scan on the markers
array. The merged intervals cover a number of original intervals
such that the prefix sum of merged interval starts are 1 and the
interval ends are 0. 9 we create a start flags array. Each entry in the
array is zero, unless the corresponding start/end prefix sum value
is 1 and the entry represents an interval start. @) We apply another
parallel prefix scan to get output indices of the merged interval
starts. The output indices of the merged interval ends are obtained
similarly through steps @ and @. Finally, we place the merged
interval starts and interval ends to the output buffer (@) and @).
The complexity of this parallel interval merge algorithm is O(logN)
using parallel radix sort. This algorithm is further optimized to
merge the intervals accessed by threads within the same warp
using efficient warp primitives (i.e., shfl, bfe, bfind, and brev).
We refer to this simplified version as interval compaction.

We implement this parallel interval merging algorithm in
VALUEEXPERT as a concurrent data processing GPU kernel that
launched before each application kernel to merge intervals on-the-
fly. Based on the most room policy [16], we let the data processing
kernel occupy all resources of some streaming multiprocessors 2
so that it won’t be slowed down by sharing resources with the
application kernel. The application kernel keeps putting accessed
intervals in a GPU buffer. Once this buffer is full, the data pro-
cessing kernel applies the interval compaction algorithm to merge
the intervals within the same warp. After the compaction is done,
the data processing kernel notifies the application kernel and lets
it resume execution. The data processing kernel then applies the
parallel interval merging algorithm described in Figure 4 while the
application kernel is executing. When the application kernel ends,

2We use one GPU block in all experiments.
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GPU Memory GPU Memory GPU Memory
(T 7] [T | [T |
CPU Memory CPU Memory CPU Memory
| | LI i | [ TI |
[T] copied Region [l Accessed Region

(a) Direct (b) Min-Max (c) Segment

Figure 5: Three memory copy strategies in VALUEEXPERT.

merged intervals will be copied to the CPU. Compared with exist-
ing instrumenta