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ABSTRACT

We study the problem of optimizing ranking metrics with unbiased
and robust causal estimation for recommender systems. A user may
click/purchase an item regardless of whether the item is recom-
mended or not. Thus, it is important to estimate the causal effect
of recommendation and rank items higher with a larger causal
effect. However, most existing works focused on improving the
accuracy of recommendations, which usually have large bias and
variance. Therefore, in this paper, we provide a general and the-
oretically rigorous framework for causal recommender systems,
which enables unbiased evaluation and learning for the ranking
metrics with confounding bias. We first propose a robust estimator
for unbiased ranking evaluation and theoretically show that this
estimator has a smaller bias and variance. We then propose a deep
variational information bottleneck (IB) approach to exploit the suffi-
ciency of the propensity score for estimation adjustment and better
generalization. We also provide the learning bound and develop an
unbiased learning algorithm to optimize the causal metric. Results
on semi-synthetic and real-world datasets show that our evaluation
and learning algorithms significantly outperform existing methods.
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1 INTRODUCTION

Recommender systems (RS) focus on modeling the probability of
clicking on recommendations from the logged feedbacks, which
have shown widespread success. However, they are oblivious to
whether logged feedbacks were coming from recommendations
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or other factors irrelevant to recommendations. User logged feed-
backs might be attributed to recommendations or other causes. For
instance, people will actively search and buy popular or necessary
items even they are not recommended. Thus if we neglect this sce-
nario, the algorithm will be biased and overestimate those popular
items. Similarly, students actively buy textbooks even they are not
recommended. Sharma et al. (2015) analyzed the browsing logs con-
taining anonymized activities for 2.1 million users on Amazon.com
and revealed that at least 75% of activities would likely occur in the
absence of recommendations [41]. If a model is trained to maximize
logged feedbacks which are not the causal effects of recommen-
dation, we can expect it would not increase positive interactions
and cannot generate an optimal ranking. Hence, it is important to
estimate the causal effect of the recommendation.

Formally, we first illustrate the causal problem in recommenda-
tion studied in this paper. Let ry,; € {0, 1} denote whether item i is
recommended to user u based on user and item features x,;. The
recommendation assignment (treatment) r,,; leads to two potential
(1) (0) (1)

ui ui’VVhere Cui

(0)

i 18 the activity of
u when i is not recommended to u. The causal effect of recommen-
dation is defined as the difference 7,,; = culi - cuol. caused purely
by the recommendation. Thus, instead of simply modeling users’
probabilities of clicking items via the supervised learning, we are
more interested in developing causal recommender system that can
assign higher ranks to items which have larger causal effects.
However, it is non-trivial to directly optimize the causal effect
of the recommendation from the observational logged feedback
because of the following challenges: (i) Partial feedback. For xy,;,

outcomes (e.g., clicks), ie., ¢,/ and ¢ is the activity of

user u when item i is recommended to u and ¢

and for each potential treatment ry,; = {0, 1}, cl(;l.) is the potential

outcome for the intervention. We only known either cz(lli) or cioi) be-

cause i is either recommended or not to u at a given time as shown
in Table 1, which makes it difficult to calculate the individual causal
effect 7,; = cf}i) - cfloi). (ii) Due to the presence of the confounding,
the recommendation (treatment) assignment is not at random. As
such, the treatment assignment mechanism will be causally affected
by context variables x,,; that also causally influence the outcome.
For example, students (context) are more likely to be recommended
(treatment) some textbooks and click (outcome) them. Neglecting
the confounding bias may overlook key limitations of recommenda-
tion algorithms, such as overestimating recommendation effect and
exacerbating unhealthful user behavior [8]. Thus, it is important to
optimize the causal effect and correct the confounding bias for RS.

In this paper, to address the challenges outlined above, we present
a theoretically principled and empirically effective approach for
optimizing the causal effect and correcting the confounding bias
from observational logged feedbacks. Recently, several methods [25,
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Tui  Xui cg)i) 61(411') Tui = C1(.41i) - Cz(zoi)
1 v v

1 v v

0 v v

0 v v

Table 1: An illustration of the observed (factual) (V) and
unobserved (counterfactual) variables, and our interested
causal effect 7,,; of the recommendation.

29, 40] have been developed for the causal estimation. However,
they mainly focus on the evaluation instead of learning a ranking
algorithm, which is one of the most important characteristics of
the recommendation. We note that a recent work [38] employed
IPS method in causal inference fields, and developed causal ranking
methods for RS. However, unlike our work, their work still has
two limitations: 1) The IPS approach utilized by [38] suffers from
a large variance in estimating the causal effect [7, 45]. (2) Their
work assumes that the propensity score of IPS is known in advance,
whereas our method not only focuses on optimizing the ranking
algorithm, but also targets how to effectively learn the estimator
from the observational data without knowing the propensity score.
We first analyze the bias and variance of existing IPS-based
methods [38] with unknown but estimated propensity score. Based
on the analysis, we then develop a provably unbiased and robust
estimator for causal effect of recommendation. Our analysis is
built on doubly robust estimators that was first developed in sta-
tistics [5, 9, 13, 22, 31] for causal inference from incomplete data.
However, these works focus on regression evaluation with known
propensity scores; while we explore the problem of learning a rank-
ing policy with unknown propensity scores for RS. We also propose
an adaptive information bottleneck (IB) approach to effectively
learn this estimator, which can trade-off between outcome accu-
racy and the propensity-score representation, and improve the
model generalization. Based on the learned estimator, we develop a
differentiable learning algorithm for unbiased ranking algorithm
by considering the connection between the estimation and learning
steps, and provide the learning bound which is tighter than previous
work [38]. In addition to the theoretical derivation and justification,
we demonstrate the effectiveness of our methods through extensive
experiments with both semi-synthetic and real-world datasets.

2 RELATED WORK

Unbiased Evaluation and Learning. For the unbiased evaluation,
Gilotte et al. [14] utilize several counterfactual estimators to con-
duct unbiased evaluation of the new policy in RS. For the unbiased
learning, previous works [28, 35, 36, 39, 53] mainly focus on the se-
lection bias problem with missing not at random (MNAR) feedback
data. Specifically, the work [28] introduces an exposure matrix to
model the selection bias and Schnabel et al. [39] adopt the inverse
propensity score (IPS) technique from causal inference to address
the selection bias. [6] focuses on utilizing the uniform data to al-
leviate the selection biases in RS. To further address the implicit
feedback problem, Yang et al. [53] and Saito et al. [36] both propose
the unbiased IPS estimator for the ideal loss inspired by the estima-
tion method of causal inference and positive-unlabeled learning.
However, previous studies [16, 23, 45, 48, 51, 52] indicate that the
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variance of the IPS estimator can be significant. To further reduce
the variance of IPS, prior works [34, 47] propose a doubly robust
(DR) estimator to conduct the unbiased learning for RS.

However, the focus of the above works is not ranking with causal
effect that we address, which makes the estimators proposed by
them unsuitable in our scenario. Sato et al. [38] utilize IPS to correct
the confounding bias in RS. However, it suffers from two issues:
(i) The IPS approach in [38] has large variance for causal effect
estimation [45] and can lead to a poor generalization ability [7];
and (ii) it assumes that the propensity score in IPS is known already,
whereas our method target on how to effectively learn the estimator
from the observational data without knowing propensity score.

Our approach is also built on the DR estimator that was first
developed in statistics [5, 9, 22] for causal inference from incomplete
data. It was then brought to batch bandit in the machine learning
community [10, 43, 44, 46]. Different from them, in this paper, we
study the problem of correcting confounding bias in casual ranking.

Information Bottleneck. Our work is also related to the represen-
tation learning with the information bottleneck (IB). Alemi et al.
first propose DVIB which shows increased robustness of learned
representations. Other methods apply IB to various domains such
as reinforcement learning [15], graph neural networks [49] and nat-
ural language processing [27]. In this paper, we adopt IB to improve
the generalization performance of the causal effect estimation.

3 NOTATIONS AND PROBLEM SETTINGS

Letu € Ubeauserandi € I be anitem. C = {0, 1}|'ZJ|><|I| denotes
observed interactions, e.g., clicks. ¢;;; = 1 if the interaction (u, i)
is observed; otherwise ¢y,; = 0. To formulate the causal effect of
recommendation algorithm, we introduce a recommendation matrix
R = {0, 1}|(L(|X‘I|, where ry; = 1 means that item i is recommended
to user u, otherwise ry,; = 0. Thus, the binary treatment assignment
rui leads to two potential outcomes, i.e., 01(411') if ry,i =1 and ‘:1(401') if
rui = 0. Note that we can only observe one of the outcomes. Due
to confounding factors x;, and x; generally approximated by the
features of users and items, even without recommendation, an item
could be purchased by a user. For example, due to their properties,
popular or necessary items would be purchased by users with little
or no affects by recommendation. Thus, we consider the average
treatment effect to measure the recommendation effect [32]:

(1)

1) _ (0)
i =B |,/ —c,i|[Xuil»

where x,; = {xy,X;} is the set of features of u and i. Let cy;
be the observed outcome; then, ¢;,; = c;ri) when ry; = r. Given

the observed dataset D = {(Xyi, rui, cui)}zl:illlilzjl‘,
develop a recommender system that can recommend items which
maximize the true causal effect in Eq. (1), i.e., recommend items
users like but are not likely to purchase without recommendation.

Specifically, we optimize the a causal ranking metric which extends

A 1
the traditional ranking metric R(Z) = m Z Z AMZyi)eyi [2] to
u i

our goal is to

causal settings [38]. The ideal causal ranking metric is:

eal ( 5 1 eal s 1 z
RMel(Z) = W;ZRM (2ui) = W;ZM‘Z“")“‘“ )
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where Z = {2ui}(u,i)ep is the predicted ranking and A(:) is the top-
N ranking metric such as Discounted Cumulative Gain (DCG) [2, 38].
For DCG, the function A(-) is defined as A(Zy,;) = 1/log(Zy,i + 1).

4 EXISTING ESTIMATORS

To optimize Eq. (2), we need to first estimate the causal effect 7,;
and then learn the ranking Z,,;. Estimating causal effect 7,; has two
main challenges: (i) we cannot observe the causal effect 7,,; directly;
and (ii) we need to remove confounding bias. We first summarize
existing causal effect estimators, then introduce the DR estimator.
Naive Estimator. The naive estimator [38] is the most basic es-
timator for the causal effect for RS. Naively, the average causal
effect over whole user-item pairs can be estimated as the difference
between the averages of outcomes under treatment and control:

0

~Naive _ ¢ ) _ 1- rul)c( ) 3)

“ ) rm/lﬂllfl 2= ru)/IUIL|
This estimator is intuitive and assumes the treatment assignment is
random such that the covariate distributions between treated and
control are identical. However, we are interested in estimating the
causal effects in observational data and cannot apply this since this
would lead to biased estimates due to the confoundedness.
Inverse Propensity Score (IPS) Estimator. To address the con-
founding bias of the naive estimator, Sato et al. [38] adopt an unbi-
ased estimator for the causal effect in RS by utilizing IPS, i.e.,

u ) (1- rul)C(O)

ruic,,
1 - e(xyi)

e(Xui)

where e(xy;) = p(rui = 1|xy4;) is the true propensity score that
represents the probability of i being recommended to u. Under stable
unit treatment value and unconfoundedness assumptions [21], i.e.,
{c 5411)’ (Ol.)}Lru,—|eui for all user-item pairs (u, i), the estimator 7,; is
unbiased. However, we generally do not know the true propensity
score in the observational study. Here, we provide the bias (B) and
variance (V) of the IPS estimator with estimated propensity score
é(xyi) (see Appendix A.1 and A.2 for derivations):

é
5 = (ot + 2l

VvIPS _ [ |:(el(lll)) | Xu

rmc

AIPS _
Tui =

©

|uis

sO
e (©)

() 1xus (o) (1-e2)

i|+E

+7
1-eyi

2eyi (1—eyi) (1) © 1-eui (1 %
Tayouel+ o (ell) (1 o) ©
where Q(l) _ [E[ (l)lxui] Q(o) _ [ (0)|Xui] 5(1} =1- % and

5(0) =1- 1 e’“ . Note that e(xy,;) and é(xy;) are simplified by ey,;

Ryi

ui
and (c,,; © QLOI) ) I_R“’ respectively. The derived bias and variance
suggest that if ey,; is ‘close to 1 or 0, the IPS suffers from a large
variance and bias with inaccurate estimated propensity scores.
Direct Model (DM) Estimator. Instead of using non-parametric
the IPS estimator, we can also directly use the parametric method
to estimate the recommendation causal effect. Parametric methods
directly model the relation between the confounding, treatment,
and causal effect via two regression models [30] as follows:

ADM _ Ql(lll) Q(O)

ui’

and éy; for notation clarity. e( ) and e( ) denote (c si) - QSI))

™

1160

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

where QASL) = [éiri) ‘xu i, 7] is a direct estimation of the conditional
outcome using samples from observation dataset. The bias (B) of
the parametric model can be represented as follows:

B = (0 - 4l7) - () - )]

Since Qflli) - QLOi) is a constant given xy;, the variance vbPM = ¢,
Thus the parametric DM estimator has the smaller variance com-
pared to the IPS estimator. However, as pointed out by [33], the DM
estimator is very sensitive to model misspecification and will lead
to large bias if the two groups differ considerably in covariates.

®)

5 UNBIASED AND ROBUST ESTIMATOR

In this section, we first introduce the doubly robust estimator for ca-
sual effect in recommendation, and then propose a deep variational
information bottleneck approach to learn the estimator effectively.

5.1 The Doubly Robust Estimator

Based on our analysis above, the DM estimator has zero variance
but a large bias in practice due to the model misspecification; while
the IPS estimator often suffers from high variance. This motivates
us to use both parametric model and propensities to overcome the
limitations of the DM and IPS approaches. A conceptually straight-
forward way is to combine the IPS and DM as a joint estimator:
afg;s +(1- a)fEiM. However, such linear combination estimator is
still biased even when the propensities are accurate but the model
is not accurate. We observe that this weakness can be addressed
by designing an estimator in a doubly robust (DR) [5, 13, 31] way
such that the bias remains zero and variance is small even with
inaccurate model as long as the propensities are accurate. The key
idea of DR estimator [5, 13, 31] is to add a correction term obtained
by importance weighting of the difference between observed out-
comes and predicted outcomes. Following this idea, the DR causal
effect estimator for recommendation is given as follows:

- (e 0) 2 (- 00) 15 + (60~ 0) o

The bias (B) and variance (V) of this DR estimator with estimated
propensity score and model can be represented as follows (see
Appendix A.1 and A.2 for derivations):

@, _Cui (0
(qui + 1-— éui qui) 4

~DR 1—-ryi
Tui
1—éy;

_|s®

ui

(10)

2ey; (1-ewui) (1) (0)

VDR:E[(eg;)Z |+ (6] o+ G2 L) )
G R N [ B
Whereq Q<1) Q(l) and q(o) Q(O) Qg)i).The derived bias in

Eq. (10) 1nd1cates that TD.R is an unbiased estimator of causal effect
if either propensity score is correct (é,,; = ey; — 5(1) = 0) or direct

Sfl) = qSl) = 0. The variance VDR < VIPS ynder

the condition of ‘q(o)’ < Q(O) or ‘q&)‘ < Qflll.). This is easily satisfied
since the error is usually small if universal function approximators
such as neural networks are used. Thus, the DR estimator is robust
on variance and instability issues. In other words, even if the DM
estimator does not perform well here, the resulting DR estimator is
expected to be more accurate than the IPS estimator.

model is correct q
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(a) TNet (b) IB-TNet
Figure 1: Overview of architectures. (a) is Triple-head Net
(TNet) (b) is our information bottleneck T-learner (IB-TNet).
The encoders map covariates to latent representations. The
decoder is used to predict propensity score and outcomes.

Note that the idea of correcting confounding bias via doubly
robust estimators has been investigated in statistics in the context
of regression with incomplete data [5, 13, 31]. The main differ-
ences between these studies and our work are two folds: (i) These
works focus on evaluation instead of learning; while we explore the
problem of learning a recommendation policy based on a dataset
consisting of confounding bias and give a theoretical analysis on
the learnability; and (if) We focus on the ranking not the regression
problem, which is one of the most important characteristics of the
RS. In what follows, we show how to effectively learn the DR esti-
mator with information bottleneck and a ranking algorithm based
on the learned DR estimator.

5.2 Learning with Information Bottleneck
Typically, learning the DR estimator requires optimizing the propen-

sity score model é,;, and two outcome models QS}:’) and QAS)[.) given
the observed dataset D. Recently, Farrell et al. [11] give theoret-
ical justification for the use of neural networks (NNs) to model
propensity scores and conditional outcomes. Thus, in this paper,
we adopt neural networks to parameterize the propensity score and
conditional outcomes. The most straightforward implementation
consists of using separate networks for é,; and Qu i which would be
a good choice asymptotically (see Figure 1(a)). However, complex in-
teractions within and across models need to be properly addressed
for optimal predictive power. That is, it may be more efficient to
share representations between different propensity score and con-
ditional outcomes. In addition, the learned models are also prone to
be overfitting [4] where models fit the training data very well but
generalizes poorly to the testing data. It will suffer from the over-
fitting issue more severely, when we utilize the NNs to parameterize
them with limited data and high-dimensional covariates.

Thus, in this paper, we adopt NNs to model the non-linear rela-
tionship and propose to regularize the propensity score and con-
ditional outcome models based on deep information bottleneck
(DIB) [3]. The DIB framework [3] has been recently studied to
address multi-view problems [12] and learn disentangled repre-
sentations as shown in beta-VAE [17]. In this paper, we frame our
casual estimation framework under the information bottleneck
principle based on the following considerations: (i) we consider co-
variate Xy,; as noisy proxies for the true unobservable confounders. (ii)
The variational information bottleneck can capture the uncertainties
and improve the model generalization by adaptively updating.

Specifically, the bottleneck can be incorporated by introducing
two encoders g4 (20, 21|xy;) that map the xy; to a latent distribu-
tions over zo and z;, where zy encodes information for estimating
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fol.) and z; extracts information for estimating QSI.), By assuming
that there exists a common feature space underlying both propen-
sity score and outcomes, we jointly utilize zgp and z; to model the
propensity score to take away their representation capacities. With
the shared representation, ideally, the model itself can choose a
tradeoff between outcome accuracy and the propensity-score rep-
resentation. We also enforce an upper bound I on the mutual
information between the encoding and the original features, which
results in a regularized loss for each observed triple (Xy, ui, Cui):

L(0,¢)=-E

20,21~q (20,21 [Xu1) [ log po(ruilzo, z1) + log po(cuilXui, rui)]
st I(Xui»> Zo) + I(Xyi, Z1) < I, (12)

where probability pg(ryilzo, z1) = Ber(é(zo, z1)) is essentially the
binary propensity score model. pg(cyi|Xyi, rui = 0) = Ber(Q(O)(zo))
and pg(cyilxyi,rui = 1) = Ber(Q(l)(zl)) are for two outcome mod-
els. The mutual information I(X, Zy) is defined according to:

94 (zolXui)
q(zo)

where g(xy;) is the empirical data distribution which can be repre-
sented by each sample xy,;. Since computing the marginal distribu-
tion q(zo) = fq(xu,-)q¢(z0|xu,-)dzo can be challenging. Instead, we
consider using the variational lower bound [1] of the mutual infor-
mation by introducing a variational approximation p(zo) = N(0,I)
modeled with standard Gaussian distribution to this marginal:

I(Xui,Zo)=/q(Xui)q¢(Zo|Xui)10g dzg,  (13)

( | ui)
10 20) < [ aug(a ) log L2040
= Eqxan) [ KL (g (z0lxui) [1p (20)) |-

Similarly, we can also obtain the variational bound for z1: I(Xyi, Z1) <
Eg(xui) [KL (q (z1|%ui) llp (z1)) ] The upper bound L(0, ¢) of the
objective £(0, ¢) in Eq. (12) can be optimized as follows:

£, $) =

(14)

zg 21~q (20, zllxul)[logpe(rul o, 21) + log pg(cui [Xui, rul)]
s.t. KL (q (zo|xui) |1p (z0)) + KL (g (21 [xui) |Ip (21)) < .. (15)

To solve this problem, the constraint can be subsumed into the
objective by introducing the Lagrange multiplier f5:

£(67 ¢’ )8) = g‘}grg%_Ezg,z]~q¢(zo,zl |Xu[)[10gp9(rui |ZO’ Zl) (16)

+log po(cuilXuis rui)| + B (KL{q(z1, 20 [xui) || p(21)p(20)] — Ic) ,
where p(z1) = p(z9) = N(0,]) are standard Gaussian distribu-
tions. gy (21, 20 [Xui) = 94(20|Xui)qg(2z11Xui), where qg(z1|xy;) and
q¢(zo |xyi) are modeled with two Gaussian distributions with pa-
rameterized mean and diagonal covariance matrix. Figure 1(b)
shows our model architecture. As we will demonstrate in our ex-
periments, enforcing a specific mutual information budget between
xyi and (2o, z1) naturally regularizes for model generalization and
is critical for good performance. Instead of fixing f [17], we adap-
tively update f via dual gradient descent to enforce a constraint
I. on the mutual information. This formulation can automate the
value of §, as shown below:

0,¢ — arg raig £(6,9.p). (17)

-1). ()

where ag is the learning rate in dual gradient descent. Intuitively,
our loss is a combination of outcome-loss and propensity score

B < max (0, B+ ag (KL[q(z1, zo|xui)|lp(z1)p(20)]
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loss, adaptively regularized by KL-divergence on the latent repre-
sentations to encourage better generalization. By optimizing the
triplet jointly, the proposed model can choose a tradeoff between
predictive accuracy and the propensity-score representation.
After optimizing the model, we can get the causal estimation %EiR
from the learned model: we calculate the propensity score é(zo, z1),
and conditional outcomes 0¥ and Q) based on samplings from
q¢(z0, z1|x). With é(zo, z1), 0© and OW, we get fl]?iR with Eq. (9).

6 UNBIASED AND ROBUST LEARNING

Given the learned DR estimator, in this section, we propose Doubly
Robust Unbiased Learning (DRUL) to optimize the causal ranking
metric by connecting the estimation and learning steps. Our key
insight in this section is that we can decrease the learning bound by
slightly modifying the vanilla DR estimator discussed in section 5.1.

6.1 Learning Bound with DR Estimator

Recall that our goal is to optimize the ideal causal metric R9¢a (2)
in Eq. (2). As already shown in section 5.1, the unobservable 7,,; in
causal DCG (see Eq. (2)) can be estimated now based on the learned
DR estimator. Then we can approximate the causal metric via TDR

RPR(2) = W Z Z RPR(z,) = W Z Z Mzui)EPR, (19)

where the DR estimator has double robustness: it is unbiased if
either propensity score is correct (é,; = ey;) or outcome models
is correct q( ) = qSl) = 0. In general, the unbiased learning of the
causal metrlc is a two-stage process, In the first stage, we infer the
casual effect flll)iR as shown in the last section, and in the second
stage we can utilize Empirical Risk Minimization (ERM) framework
to conduct the policy learning process based on the estimator TDR

With the proposed TEI.R and the IB training objective, ADR ylelds
unbiased and robust estimates of 7;,;. However, what is 1mportant
for RS is the performance of the downstream learning not the
estimation, which is limited by the independent two-stage process
and the learned estimator may be suboptimal for the ranking model
on given tasks. Can we modify the design and training of casual
effect estimation in the first stage in order to improve the learning
performance in the second stage? We address this by first giving the
tail bound of the proposed DRUL with finite samples.

ProPOSITION 1 (TAIL BOUND OF UNBIASED LEARNING). Given

the true propensity score ey;, the estimated outcome model QA(I.) and

(0) , for the given independent and identically distributed dataset

(ul)
{(xXui, rui,cui)}lll(l:hlzfl‘, with probability 1 — n, the RPR(2,:) does

not deviate from its expectation by more than (see Appendix B.1):

log
R T e R ) P TE )

(1) (1)
whered2 = (ML =ul Cui Q’“ +

ui

(U) Q(U))Z
1 Cui

Given the tail bound, we further present the following corollary to
compare our tail bound of unbiased learning and previous bound
based on IPS for the causal effect of the recommendation.
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CoOROLLARY 1.1 (TIGHTER BOUND). Given 0 < QASI.) < 205111.) and

0< QAflOi) < 205101.), the bound of the DR estimator will be tighter than
that of the IPS estimator. (see Appendix B.2 for proofs).

This corollary shows that our causal DCG estimator consistently im-
proves the estimation error bound compared with previous work [38].
The bias-variance analysis in the last section and the Corollary 1.1
show that our proposed unbiased learning algorithm based on the
DR estimator outperforms the previous method [38] and has better
statistical properties compared to the IPS estimator.

Proposition 1 above shows that the ranking tail bound is posi-
(1) Q(l) (0) Q(O)
tively correlated with the magnitude of d,; = 45—4¢ —ui=ut 7
in which each outcome model is weighted by the propen51ty score.
In the last section, we propose a information bottleneck to learn
the propensity score the conditional outcomes. To further improve
the downstream ranking learning, we modify the loss in Eq. (12) in
order to decrease the magnitude of dy,; as follows:

L= _[Ezo,zl~q¢(20,z1\xu,-) [ log po(ruilzo, z1) + wyilog po(cui |Xui, rui)]

st. I(X, Zo) + I(X, Z1) < Ie. (1)

eé(Zlole) (1= rui)- 1*39(120,21)
that gradients for 6 are not being computed through it. Compared
with Eq. (12), we raise the log-likelihood log pg(cyi|Xui, rui) by a
weight wy; to reduce the dy;. With this objective, our model yields
consistent estimates of causal effect and downstream performance.
We can optimize this modified loss the same as we do in section 5.2.

where wy; = ry; - and 0 indicates

6.2 Optimizing the Ranking Metric
In this section, we show how to conduct the second learning stage
given the estimated 7 IRR in the first stage. We adopt the ERM frame-
work [39] to conduct the unbiased learning stage:
ZERM argmin(—RDR(Z)),
Z 6‘7’(2

(22)

where H, is a hypothesis space of prediction ranking Z.

Upper Bound of Causal DCG. In practically, we would like to
learn a scoring function fg(xy;) to rank candidate items I for user
u by the score. However the resulting rank position Z,; is a discrete
step function of the score. We need to make it differentiable to
optimize. Thanks to the hinge-loss upper bound [24], we have:

Zuim1= ) 1(fy(uy) > fy i) (23)
JET,j#i
< Z max(l—(fl/,(xui)—fl//(xuj))’o)-
eI, j#i

With this upper bound and our learned DR estimator, instead of
directly optimizing Eq. (22), we can optimize the following differ-
entiable bound for the causal DCG:

lﬁ = argy/r/mn( RPR(Zy)) = argmln |71| Z Z

ueld iel

(24)

~DR
Tui -

—A(1+ Z max(l—(fw(xm) flp(xuj)) ))

JjeI,j#i

7 EXPERIMENTS

In this section, we conduct experiments to evaluate the effective-
ness of the our frameworks on the unbiased evaluation and learning
tasks. Specifically, we aim to answer the following questions:
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(RQ1) How does the proposed DR estimator perform in the unbi-
ased evaluation task for the recommendation?

(RQ2) Does the proposed DR estimator work better in the causal
effect estimation task compared to state-of-the-art estimators?
(RQ3) How does the proposed IB improve the performance?
(RQ4) Can the proposed unbiased learning method work better
than other biased and unbiased methods in real-word dataset, and
How does it affect the recommendation results?

7.1 Unbiased Evaluation Performance (RQ1)

Setups. To conduct the unbiased evaluation with confounding bias,
we experiment with the publicly available dataset: Dunnhumby [38].
This dataset includes purchase and promotion logs at a retailer.
It provides product category information. Other public datasets
are either missing recommendation logs or recording user inter-
actions only for recommended items. Since there is no ground
truth because of the unobservable nature of causal effect, follow-
ing existing work [38, 42], we construct a semi-synthetic dataset.
Note that although the proposed estimator only uses observable
variables, the ground truth is required for the evaluation. In addi-
tion, constructing a semi-synthetic dataset is a widely used pro-
cedure in causal inference literature [38, 42]. Strictly following
to [38], we employ the following procedure to create a biased
datasets. (1) We preprocess the Dunnhumby dataset to get the ob-
servation {ry;¢, cyis }» where t denotes the t-th week. (2) We then

model the purchase probabilities Q1(41i) and Qg)i) with and without
recommendation for each user-item pair. (3) We model the propen-
sities by simulating a common situation where a currently run-
ning recommender tends to select items that match the preference
of the users with higher probabilities. (4) Sampling the observed
Lli) ~ B (QSI.)) , cioi) ~ B (Q(uoi)) ,rui ~ Bleyi), where B
denotes the Bernoulli distribution. The causal effect 7, i( z}nd (zb)—
1 0

ui ui

data. ¢

served outcomes c¢,; can be obtained as follows: 7,;; = ¢ c

andcy; =ry iCSi) +(1- ru,-)cioi) . We use the numbers of purchases
and recommendations during previous four weeks as the proxy of
covariates x;,; [37]. This sampling is repeated n times to generate
dataset. Training, validation, and test sets are independently sam-
pled for nsrqin = 10, nyq; = 1, and nges; = 10 times, respectively.
After preprocessing, 2,309 users and 11,331 items are left. Note that
we only use (cyi, rui, Xyi) as the training observable samples, while
Tyi is just used for the evaluation purpose.
Compared Estimators: We compare the following estimators:
Naive, IPS, SNIPS, DM and proposed DR estimator. For our DR, we
denote TNet-based as DRT and IB-TNet-based as DRIB. We compare
the unbiased evaluation performance by the mean absolute error
(MAE) which can evaluate the sum of the bias and variance [43]:
MAE(R) = |R1(Z) = R(Z). (25)
where Z is the set of outputs by the candidate recommender, and
R(Z) the candidate recommender with one of the compared esti-
mators. The MAE evaluates an estimators’ ability to accurately
evaluate the performance of candidate recommenders. For the
ground-truth ranking metrics Rg7(Z), we use causal DCG (¢cDCG)
and casual Precision (cP)@10 in all experiments model. cP@K =

1 5 ] 1 I )
T 2u 2i [(Zyi < K)ryj and ¢DCG = T 2uli Tog(1+ Zup) Tt

Candidate Recommenders: To prove effectiveness of our estima-
tor, we use several candidate recommenders for evaluation: Pop:
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Items are ranked by the global popularity. MF [19] is a basic base-
line for recommendation. BPR: The MF method with pairwise ob-
jective for recommendation. CausE [6]: The joint training of two
MFs with and without recommendations. CausE-Prod [6]: The vari-
ant of CausE, where the two MFs share the common user factors.
ULMF [37]: A biased pointwise learning method for the causal
effect of recommendation. ULBPR [37]: A biased pairwise learn-
ing method for the causal effect of recommendation. DLCE [38]:
A unbiased learning method based on IPS for the casual effect of
recommendation. DRUL: Our proposed unbiased learning method
in the section 6 for the casual effect of recommendation.
Parameter Settings All the base recommendation models except
Pop are implemented by matrix factorization models [26]. We
set the latent dimensions to 200. The regularization coefficient
Ae{le—4,3e—4,---,1le—1,3e—1}. BGD (batch gradient descent)
was employed, and the initial learning rate was set to 0.0001. For
IPS, DM and DRT, we use separate NN-based logistic regression
model to estimate the propensity score and outcome, respectively.
For DRIB, the hidden layer size is 200 for the means of z; and zp and
100 for the conditional outcome and propensity layers. For DRIB,
we set the mutual information constraint I. to 0.3 and the learn-
ing rate ag in dual gradient descent to 0.001. We use the baseline
implementations provided by the authors. Hyperparameters were
tuned in the validation phase to maximize cP@10.

Results. Table 2 shows that the proposed DR estimator outperforms
the other estimators in all cases. All reported results are averaged
over five runs, and the improvement are statistically significant.
From Table 2, we observe: (1) As suggested by our theoretical analy-
sis, the DR estimators significantly outperform the other estimators
in the model evaluation task. The results verify that it can help
the estimation of the ranking performance of recommenders in a
real-world offline setting. (2) The biased naive estimator has worse
performance, which demonstrates that using unbiased estimator
is important when evaluating recommenders under the confound-
ing bias settings. (3) Though they are both DR-based estimator,
our DRIB outperforms DRT, which shows that sharing representa-
tions and incorporating information bottleneck can make it more
powerful to achieve better evaluation performance.

7.2 Causal Estimation Performance (RQ2)

Setups. We have shown that our methods do help improve per-
formance on unbiased ranking evaluation. In this subsection, we
further study if our methods can achieve better performance on
the causal effect estimation task. We conduct the experiment on
IHDP [42, 54], a widely used semi-synthetic dataset in the causal
inference literature. We randomly split the data into train/val/test
with proportion as 10/27/63 and report the in sample (train and
validation) and out of sample (test) estimation errors. We report
mean absolute error between the estimated and the actual average
treatment effect (ATE), i.e., A =| 1/; —(1/nY; O(1,x;) — Q(0, x7))|,
where l/; is the true ATE. We compare DRIB with state-of-the-art
neural networks listed in Table 3 for causal effect estimation. For
all models, the hidden layer size is 200 for the shared representa-
tion layers and 100 for the conditional outcome layers. We train
them using stochastic gradient descent with momentum. For Drag-
onnet [42], we set the @ and f to 1. For DRIB, we set the constraint



Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 2: The unbiased evaluation performance on the recommendation of different estimators.

MAE of ¢cP@10 MAE of ¢cDCG
Naive IPS DM SNIPS DRT DRIB Naive IPS DM SNIPS DRT DRIB
Pop .0506  .0311 .0274 .0298 .0252 .0241 366 345 312 323 293 273
MF 0312  .0289 .0256 .0271 .0229 .0211 312 287 .268 271 .247 227
BPR .0324  .0227 .0243 .0225 .0211 .0196 343 318 .278 299 .268 254
CausE 0268 0241 .0219 .0233 .0193 .0185 310 299 267 .281 250 .242
Caus-Prod .0177 .0158 .0162  .0151 .0138 .0121 .288 259 233 .239 213 .192
ULBPR .0168 .0114 .0093 .0086  .0071 .0063 270 249 218 222 .200 .196
BLCE .0212 0175 .0162 .0151 .0130 .0123 252 241 198 .206 154 .141
DLCE .0318 .0234 .0211 .0217  .0168 .0147 .283 257 .229 .238 213 .202
DRUL 0233 .0214 .0196 .0191 .0179 .0166 .256 244 228 .230 .205 197
TNet IB-TNet (/. =0.3)
0.300- “e w6
Eozo % go.zzs%% Ez EZ
k¥ € 0.200 = =
?3015 % 50.175 So go T Sp——— ‘
< 010 < 0 150- 0 500 Iterlaogioons 1500 2000 0 500 Iterlaogioons 1500 2000
B=0.0 B=0.1 B=1 adaptivep 01251 B=0.0 B=0.1 pB=1 adaptlveﬂ

@ Ajp with I, = 0.1 (b) Aoyt With I, = 0.1

0.275- 0.28- —+
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i 0-225° & 0.24
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g 01751 Bo.20

£0.150- =

2o.12s- Loais %
0.100- 0.16
0.075- 0.14
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(d) Ayt With T
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Figure 2: The estimation errors on IHDP with different f.
Table 3: The causal effect estimation performance on the
IHDP dataset. Estimators are computed with the training
and validation (A, ), test set (Agut)-

Method Ain Aout
BNN [25] 0.37+.03 0.42+.03
TARNET [40] 0.26 £.01 0.28 +.01
CFR Wass [40] 0.25+.01 0.27 +.01
CEVAEs [29] 0.34 £ .01 0.46 +.02
GANITE [54] 0.43+.05 0.49 +.05
Dragonnet [42] 0.14 +.01 0.20 + .01
DRIB (B = 0.0) 0.23+.02 0.31+.02
DRIB (adaptive f, I;=0.0) 0.17 +.02 0.22 £ .02
DRIB (adaptive f, I;=0.1) 0.14+.01 0.19 .02
DRIB (adaptive §, I.=0.3) 0.12 +.01 0.18 +.01
DRIB (adaptive f, .=1.0) 0.13+.02 0.19 .01
DRIB (adaptive f, I;=3.0) 0.16 +.03 0.21+.03
DRIB (adaptive f, I.=10) 0.15+.01 0.21 +.02

I to 0.3 and the learning rate ag in dual gradient descent to 0.001.

Results. Table 3 reports the estimation error of a number of ap-
proaches on the IHDP dataset. (1) The results from Table 3 indicate
that the proposed DRIB (adaptive f, I.=0.3) estimators based on
deep information bottleneck achieve the state-of-the-art perfor-
mance. (2) The finding that other DRIB methods outperform DRIB
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Figure 3: The validation losses of TNet and IB-TNet.

(8=0.0) shows that incorporating information bottleneck does help
improve estimation performance. (3) Table 3 also shows that tuning
the KL constraint I, leading to better estimation performance.

7.3 The Effects of Deep IB (RQ3)

Setups. In this section, we further study the effect of proposed infor-
mation bottleneck. We conduct experiments on both Dunnhumby
and IHDP datasets and follow the same settings in RQ1 and RQ2.
Results. Table 5 shows the performance of DRIB by varying I,
on Dunnhumby. As we can see, DRIB achieves the best recom-
mendation performance when 1.=0.3. We also can see that the
performance is worse when I.=10. The reason is that I, controls
the mutual information between the encoding and the original fea-
tures, a too large I will lead the latent representations to neglect
the supervised signal. Table 5 shows that we can vary I, to achieve
better model evaluation performance. To evaluate the effects of the
adaptive f updates, we compare DRIB trained with different fixed
values of f§ and adaptive updated f using dual gradient in Eq. (18).
Fig. 2 shows that the networks trained using dual descent to update
B achieves better performance compared with fixed . We plot the
the learning curves of validation losses of propensity score (E) and
two outcomes Q1 and Q2 in TNet and IB-TNet as shown in Figure 3.
We can find TNet suffers from overfitting when the number of iter-
ations > 1700. In contrast, IB-TNet does not suffer from this, which
shows that representations learned by IB improve generalization
by ignoring irrelevant parts present in noisy covariates.

7.4 Unbiased Learning Performance (RQ4)

In this section, we evaluate and compare our unbiased learning
algorithm, i.e., the DRUL with baselines on the real-world dataset.
Setups. Since we need both recommendation and interaction logs
for this experiment, we still evaluate methods on Dunnhumby. In-
stead of evaluating the estimators as in RQ1, we evaluate the pro-
posed learning algorithm DRUL. We conduct chronological split-
ting of the datasets for training and evaluation. Dunnhumby has 93
discrete time periods. We train all models by periods from 1 to 77,



Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Table 4: Top-5 items frequently recommended in the Dunnhumby. The items recommended by PMF, the best unbiased baseline
DLCE and our DRUL are presented in the columns, respectively. Numbers in parentheses are popularity ranks from logs.

PMF DLCE DRUL
FLUID MILK WHITE ONLY(1) REFRIGERATED PASTA SAUCE(348) INFANT FORMULA TODDLER(363)
SHREDDED CHEESE(5) DRY &SPRAY STARCH(805) REFRIGERATED PASTA SAUCE(848)
MAINSTREAM WHITE BREAD(3) BEERALEMALT LIQUORS(11) TORTILLA/NACHO CHIPS(15)
SOFT DRINKS PK CAN(4) FLUID MILK WHITE ONLY(1) DECOR BULBS(687)
TOILET TISSUE(10) TEA UNSWEETENED(833) JARRED FRUIT(889)

Table 5: The unbiased evaluation performance w.r.t ..

MAE of cP@10 MAE of ¢cDCG
0 01 03 1 10 0 ol 03 1 10
Pop 0264 0252 .0241 0269 .0278 296 .288 .273 291 310
MF 0247 0234 .0211 .0238 .0255  .256 .243 .227 .254 .26l
BPR 0228 0210 .0196 .0226 0237 270 261 254 269 277
CausE 0204 0196 .0185 .0201 .0215 264 254 .242 261 .271
Caus-Prod 0158 0139 .0121 .0147 0165 227 211 .192 219 .238
ULBPR  .0095 0078 .0063 .0082 .0103  .219 208 .196 .213 .226
BLCE 0148 .0137 .0123 .0143 0156  .177 .153 .141 .162 .183
DLCE  .0168 0156 .0147 .0173 0182  .225 214 .202 217 .229
DRUL 0189 0175 .0166 .0182 .0193  .221 208 .197 .219 .226
0.200 0.7
0.175 | 0.6
1
o
2 9 ——
©0.150 Qo5
a o
v
0125 0.4
0-10075CE NW-DRUL  DRUL O377DlCE NW-DRUL  DRUL
Figure 4: Performance comparisons between DLCE, (Non-

Weighted) NW-DRUL (see Eq. (12)) and DRUL (see Eq. (21)).

validate them by 77 to 85 and test them by 85 to 93. The causal recom-
mendation quality is measured with two metrics: cP@{10, 30, 100}
and cDCG. Precision(P) was also measured, as a reference of a tra-
ditional metric to show that there is a large gap between casual
metric (cP) and traditional metric (P). For all methods, we train
our DRIB estimator based on the training dataset as we did in RQ1.
Since the ground truth of causal effect 7,; is unobservable in real
world dataset, for fairness, we use the trained f’ﬁ’ S to measure the
performances of every methods, in order to avoid the choice of
estimator to be a confounding factor and make the experimental
result more reliable.

Results. Table 6 shows the comparison results. From the table, we
can observe: (1) Our propose DRUL achieves the best for all cases,
which demonstrates the effectiveness of our method in learning
from biased feedback. (2) The biased accuracy-based methods (PoP,
MF and BPR) perform better in P@K; however, they perform worse
in the causal metrics than other methods, which proves that there
is gap between the tradition metric and the causal metric. (3) The
methods (ULBPR, CausE, DLCE and our DRUL) that aim at opti-
mizing the true causal effect outperform biased accuracy-based
methods, which indicts that it’s helpful to directly optimize the un-
biased causal effect under the confounding bias. In Fig. 4, we take a
closer look at the effect of weighted loss in Eq. (21). We compare
DRUL using weighted loss in Eq. (21) and non-weighted loss in
Eq. (12), and the baseline DLCE. We can find DRUL outperforms
DLCE, and see a substantial improvement from the weighted loss.
Case Study. We take a deeper examination on our unbiased learn-
ing algorithm to understand how it affects the recommendation list
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Table 6: Unbiased learning performance comparisons. Preci-
sion(P) is measured as a reference to show that there is gap
between casual metric (cP) and traditional metric (P).

cP cDCG P
@10 @30 @100 - @10 @30 @100
Pop .0231 .0198 .0181 1021 1301 .1205 .1104
MF .0443  .0402 .0352 .1452 1719 .1598 1371
BPR .0517 .0474 .0403 1877 1711 1545 1426
CausE .0803 .0753 .0634 .2881 .0954 .0862 .0753
Caus-Prod .1091 .0899 .0798 3202 .0921 .0801 .0724
ULBPR 1314 1177 .0922 4874 .0534 .0416 .0376
DLCE 1613 1502 .1301 .5279 .0502 .0404 .0341
DRUL 1725 .1631 .1472 .6152 .0452  .0301 .0297

in production. As we mentioned in the introduction, confounding
bias overestimates for popular items. One of the most important
properties of correcting the confounding bias is that we can alle-
viate the popular bias and recommend items that user likes but
will not buy if not recommended. To understand the differences
between the biased and unbiased methods, we show the top five
most frequently recommended items by the biased PMF, the best
unbiased baseline DLCE and our DRUL on Dunnhumby dataset.
From Table 4, we can find that the traditional method PMF tends
to recommend more popular items than causal methods, i.e., DLCE
and our DRUL. Compared to the baseline, DRUL is more effective
to alleviate the popular bias and emphasis less on popular items.

8 CONCLUSIONS

In this paper, we study the problem of learning true causal effect
from logged feedbacks under a confounding bias scenario, where
recommendation and outcome are both affected by the confounding.
To address this problem, we first propose a DR estimator for the
causal effect of recommendation and showed its unbiasedness and
desired statistical properties. We then propose a new method to esti-
mate the propensity score and outcome based on deep information
bottleneck. With the proposed DR estimator, we futher propose
DRUL, an unbiased ranking algorithm to optimize the causal DCG
via stochastic gradient descent. Experimental results show that our
DRIB and DRUL significantly outperform existing methods in the
unbiased evaluation and unbiased learning tasks, respectively. As
to future work, we intend to extend our unbiased model to the
dynamic or sequential settings, in which the confounding bias and
user preferences are both dynamic over time [20, 50].
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A DERIVATIONS OF BIAS AND VARIANCE

For the completeness, we give the detailed derivations of the bias

and variance of the DR estimator with estimated propensity score.

All notations below are defined in the body of the paper.

A.1 Derivations of the Bias

We first rewrite the DR estimator in Eq. (9) as f'EiR = élei) - ég)i),
wher €400+ = 8 snd -G ) =

Note that f'l]?iR is conditioned on confounding x,,;. The expectation

[E[éz(;i) |xyi] can be easily derived as follows:

~ A €ui
E[exur] = (00 - 001 - )+ 00) - g8+ 00). (a9

Similarly, the expectation [E[éfloi)lxui] = qioi)5£0i) + Qi(loi)due to the
symmetry. Thus, the bias of DR estimator can be derived as follows:

Bias(7DX) = [E [#DF | xui] = E [} = el I xui| =

€.,
Suur (o) + 54| (27)
(1) (0)
. PPN ui i 1- ui i
Recall that the IPS estimator is T}EW = [E[ﬁ - % [Xyil-

Setting Qili) =0and QALOI.) = 0 in Eq. (9), the DR estimator reduces
to IPS estimator. We can obtain the following bias of IPS by setting
A(1 A(0 o a 1), (1 éui (0

QL) = 0and Qi) = 0: Bias(#}f™) = 18,)(QL) + t4- O

A.2 Derivations of the Variance
We can first rewrite the variance as follows:

(28)

Var(eDR) = 2 [¢0)e) 1xui | + 2 | &) x| € [0 i | +
E [)2 i | = (E [0 |7 + B @002 s | = (E [
Here the term [E[éflli)éioi) |xy4i] is equal to:
(1= 50QI00 - 1 - 8] - SIGIOY + 1 - 500 @9
The term E[é'! xi JE[6” [x,:] is equal to:

()] 0y~ ~(0) (1) 0yAD 50)
(1 - (51“.)(1 - 5ui)QuiQui + aui(l - 6ui)QuiQui

+ (1= 8,008,110, 00 +8,)8,]0,1 0} (30)
With some mathematical derivations, the term [E[(éflll.))2 |xyi] is:

1-eyi
E [(el)?xui | + QL) + alol)? + — (@)1 -s0)% 6
ui

u ui-ui

Cui

1-ey;
(@)2(1 - 6L))2. Combining Egs. (26), (29), (30), (31) and (28), we
can obtain the final form of the variance of DR:

similarly, F[(6')2]xui] = E[(e)2[xui]+(Q% +¢5D)2 +

ui - ui

1-eyi
Var(rh) = E[(el])Pxui | + E[(€0)?bxui | + — (gD - 50
ui
eui 2eui(1-eyi) (1) (0)

éui(l - é‘ui) uifui

+ (g (1= 8,)° +

32
1-eyi (32)

We can obtain the variance of IPS by setting Qf}i) and QAI(lOi) as zero:

Var(21%) = E(el))? xuil + El(el))? xui] + Gl oo +

1 (21 = 600y + w21 - 50))2.
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B PROOFS OF LEMMA AND PROPOSITION

B.1 Proof of Proposition 1

Proor. Recall the DR estimator with the true propensity score
is:
N A Tui A 1-rui A A
tart =t = D = (e = Dy + QU = QD (3)
€yi 1-ey;
where the binary treatment ry,; (whether recommending or not)
follows a unknown Bernoulli distribution with probability e,,;. We

define the random variable y,; = A(2, i)flg.R as follows:

P()’ui :aui):eui'P(Yui :ﬁui)zl_eui’ (34)

M_A0 .
where the probabilities ay; = A(Zy i)(cl"'e—_Q“i + Qflli) - QLOI.)) and

utr
©_p0 A
Bui = A(éui)(——c"li_e%“ + 1(411‘) - Qiol)) We can observe that the
square of interval size of random variables y,; is:
o _ AW ©0) _ A0
Qui i Cui ~ Qui

e\ —
1-eyi

L Y2 5 N\2(_uil
(aui = Pui)® = AMZui)*( -

2. (35)

ui
Recall that we assume that the treatment assignments { ruil(u,i) €
UXT } are independent random variables, thus the random vari-
ables {yml(u, i)e UXx I} are also independent. Based on Hoeffd-
ing’s inequality (see Theorem 2 in the [18] for proof), we have:

PO D Azt = E[ D) Y M)l 2 )

—2¢€2

€
_ﬁui)z)

<2 exp(
xyi
Z,:i( uit

rep(— 2 e
=2exp(————
P 2

u,i
2¢?

<2 . Tee
)< reRlg TG
u,i ’

P('ri” Z YA = M) = o

—2|U|*e?

oP(IRPR(Z) - R4(2)| > ¢€) < 2 exp(——————
(IR7%(Z) (2)] = €) < 2exp( S AGu P
u,i ’

), (36)

1)_ A1)
C, .— .
where dy; = (“45—45 Q“‘ +
ui

to n and solving e yields:

050
“1‘7—1“_“‘). Setting the right hand side above

e

1 log% N
i\ /ZA(zui)ngi)m—q. (37)
u,i
[m]

This completes the proof.

P(RPR(Z) - RIdeal(Z)‘ <

B.2 Proof of Corollary 1.1

Proor. Given conditions that 0 < Qf}i) < ZCSi) and 0 < QA,(IOi) <

205102 , we can derive the following inequalities (Note that é,; €
[0, 1]):
(1) (0)
dui - ‘;ui == QAui - Qqu <0= dui < ‘iui (38)
€ui (1-éus)
(1) (0) (0) (0)
o2 =0l 2l - oY) .
dui + gy = = Qut P = Cut o g s G )
€ui (1-éus)
(1) O

72 _ (Cui ui \2 2 72 S i
where dui = (eui + _l—eui) . Thus, we have dui < dui, resulting in:

log 2 log 2
1 3 1 3 N
—\/ d?. < —\’ d? ..
‘(L” 2 ; ui = |(u| 2 ; ui

The left hand side is the tail bound of the DR and the right hand
side is the tail bound of the IPS [38]. This completes the proof. O

(40)
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