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ABSTRACT
We study the problem of optimizing ranking metrics with unbiased

and robust causal estimation for recommender systems. A user may

click/purchase an item regardless of whether the item is recom-

mended or not. Thus, it is important to estimate the causal effect

of recommendation and rank items higher with a larger causal

effect. However, most existing works focused on improving the

accuracy of recommendations, which usually have large bias and

variance. Therefore, in this paper, we provide a general and the-

oretically rigorous framework for causal recommender systems,

which enables unbiased evaluation and learning for the ranking

metrics with confounding bias. We first propose a robust estimator

for unbiased ranking evaluation and theoretically show that this

estimator has a smaller bias and variance. We then propose a deep

variational information bottleneck (IB) approach to exploit the suffi-

ciency of the propensity score for estimation adjustment and better

generalization. We also provide the learning bound and develop an

unbiased learning algorithm to optimize the causal metric. Results

on semi-synthetic and real-world datasets show that our evaluation

and learning algorithms significantly outperform existing methods.
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1 INTRODUCTION
Recommender systems (RS) focus on modeling the probability of

clicking on recommendations from the logged feedbacks, which

have shown widespread success. However, they are oblivious to

whether logged feedbacks were coming from recommendations
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or other factors irrelevant to recommendations. User logged feed-

backs might be attributed to recommendations or other causes. For

instance, people will actively search and buy popular or necessary

items even they are not recommended. Thus if we neglect this sce-

nario, the algorithm will be biased and overestimate those popular

items. Similarly, students actively buy textbooks even they are not

recommended. Sharma et al. (2015) analyzed the browsing logs con-

taining anonymized activities for 2.1 million users on Amazon.com

and revealed that at least 75% of activities would likely occur in the

absence of recommendations [41]. If a model is trained to maximize

logged feedbacks which are not the causal effects of recommen-

dation, we can expect it would not increase positive interactions

and cannot generate an optimal ranking. Hence, it is important to

estimate the causal effect of the recommendation.

Formally, we first illustrate the causal problem in recommenda-

tion studied in this paper. Let rui ∈ {0, 1} denote whether item i is
recommended to user u based on user and item features xui . The
recommendation assignment (treatment) rui leads to two potential

outcomes (e.g., clicks), i.e., c
(1)

ui and c
(0)

ui , where c
(1)

ui is the activity of

user u when item i is recommended to u and c
(0)

ui is the activity of

u when i is not recommended to u. The causal effect of recommen-

dation is defined as the difference τui = c
(1)

ui − c
(0)

ui caused purely

by the recommendation. Thus, instead of simply modeling users’

probabilities of clicking items via the supervised learning, we are

more interested in developing causal recommender system that can
assign higher ranks to items which have larger causal effects.

However, it is non-trivial to directly optimize the causal effect

of the recommendation from the observational logged feedback

because of the following challenges: (i) Partial feedback. For xui ,
and for each potential treatment rui = {0, 1}, c

(r )
ui is the potential

outcome for the intervention. We only known either c
(1)

ui or c
(0)

ui be-

cause i is either recommended or not to u at a given time as shown

in Table 1, which makes it difficult to calculate the individual causal

effect τui = c
(1)

ui − c
(0)

ui . (ii) Due to the presence of the confounding,

the recommendation (treatment) assignment is not at random. As

such, the treatment assignment mechanism will be causally affected

by context variables xui that also causally influence the outcome.

For example, students (context) are more likely to be recommended

(treatment) some textbooks and click (outcome) them. Neglecting

the confounding bias may overlook key limitations of recommenda-

tion algorithms, such as overestimating recommendation effect and

exacerbating unhealthful user behavior [8]. Thus, it is important to

optimize the causal effect and correct the confounding bias for RS.

In this paper, to address the challenges outlined above, we present

a theoretically principled and empirically effective approach for

optimizing the causal effect and correcting the confounding bias

from observational logged feedbacks. Recently, several methods [25,
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rui xui c
(0)

ui c
(1)

ui τui = c
(1)

ui − c
(0)

ui

1 ✓ ✓
1 ✓ ✓
0 ✓ ✓
0 ✓ ✓

Table 1: An illustration of the observed (factual) (✓) and
unobserved (counterfactual) variables, and our interested
causal effect τui of the recommendation.

29, 40] have been developed for the causal estimation. However,

they mainly focus on the evaluation instead of learning a ranking

algorithm, which is one of the most important characteristics of

the recommendation. We note that a recent work [38] employed

IPS method in causal inference fields, and developed causal ranking

methods for RS. However, unlike our work, their work still has

two limitations: 1) The IPS approach utilized by [38] suffers from

a large variance in estimating the causal effect [7, 45]. (2) Their

work assumes that the propensity score of IPS is known in advance,

whereas our method not only focuses on optimizing the ranking

algorithm, but also targets how to effectively learn the estimator

from the observational data without knowing the propensity score.

We first analyze the bias and variance of existing IPS-based

methods [38] with unknown but estimated propensity score. Based

on the analysis, we then develop a provably unbiased and robust

estimator for causal effect of recommendation. Our analysis is

built on doubly robust estimators that was first developed in sta-

tistics [5, 9, 13, 22, 31] for causal inference from incomplete data.

However, these works focus on regression evaluation with known

propensity scores; while we explore the problem of learning a rank-

ing policy with unknown propensity scores for RS. We also propose

an adaptive information bottleneck (IB) approach to effectively

learn this estimator, which can trade-off between outcome accu-

racy and the propensity-score representation, and improve the

model generalization. Based on the learned estimator, we develop a

differentiable learning algorithm for unbiased ranking algorithm

by considering the connection between the estimation and learning

steps, and provide the learning boundwhich is tighter than previous

work [38]. In addition to the theoretical derivation and justification,

we demonstrate the effectiveness of our methods through extensive

experiments with both semi-synthetic and real-world datasets.

2 RELATEDWORK
Unbiased Evaluation and Learning. For the unbiased evaluation,

Gilotte et al. [14] utilize several counterfactual estimators to con-

duct unbiased evaluation of the new policy in RS. For the unbiased

learning, previous works [28, 35, 36, 39, 53] mainly focus on the se-

lection bias problem with missing not at random (MNAR) feedback

data. Specifically, the work [28] introduces an exposure matrix to

model the selection bias and Schnabel et al. [39] adopt the inverse

propensity score (IPS) technique from causal inference to address

the selection bias. [6] focuses on utilizing the uniform data to al-

leviate the selection biases in RS. To further address the implicit

feedback problem, Yang et al. [53] and Saito et al. [36] both propose

the unbiased IPS estimator for the ideal loss inspired by the estima-

tion method of causal inference and positive-unlabeled learning.

However, previous studies [16, 23, 45, 48, 51, 52] indicate that the

variance of the IPS estimator can be significant. To further reduce

the variance of IPS, prior works [34, 47] propose a doubly robust

(DR) estimator to conduct the unbiased learning for RS.

However, the focus of the above works is not ranking with causal

effect that we address, which makes the estimators proposed by

them unsuitable in our scenario. Sato et al. [38] utilize IPS to correct

the confounding bias in RS. However, it suffers from two issues:

(i) The IPS approach in [38] has large variance for causal effect

estimation [45] and can lead to a poor generalization ability [7];

and (ii) it assumes that the propensity score in IPS is known already,

whereas our method target on how to effectively learn the estimator

from the observational data without knowing propensity score.

Our approach is also built on the DR estimator that was first

developed in statistics [5, 9, 22] for causal inference from incomplete

data. It was then brought to batch bandit in the machine learning

community [10, 43, 44, 46]. Different from them, in this paper, we

study the problem of correcting confounding bias in casual ranking.

Information Bottleneck. Our work is also related to the represen-

tation learning with the information bottleneck (IB). Alemi et al.

first propose DVIB which shows increased robustness of learned

representations. Other methods apply IB to various domains such

as reinforcement learning [15], graph neural networks [49] and nat-

ural language processing [27]. In this paper, we adopt IB to improve

the generalization performance of the causal effect estimation.

3 NOTATIONS AND PROBLEM SETTINGS
Letu ∈ U be a user and i ∈ I be an item.C = {0, 1} |U |×|I | denotes
observed interactions, e.g., clicks. cui = 1 if the interaction (u, i)
is observed; otherwise cui = 0. To formulate the causal effect of

recommendation algorithm, we introduce a recommendationmatrix

R = {0, 1} |U |×|I | , where rui = 1means that item i is recommended

to useru, otherwise rui = 0. Thus, the binary treatment assignment

rui leads to two potential outcomes, i.e., c
(1)

ui if rui = 1 and c
(0)

ui if

rui = 0. Note that we can only observe one of the outcomes. Due

to confounding factors xu and xi generally approximated by the

features of users and items, even without recommendation, an item

could be purchased by a user. For example, due to their properties,

popular or necessary items would be purchased by users with little

or no affects by recommendation. Thus, we consider the average

treatment effect to measure the recommendation effect [32]:

τui = E
[
c
(1)

ui − c
(0)

ui |xui
]
, (1)

where xui = {xu , xi } is the set of features of u and i . Let cui
be the observed outcome; then, cui = c

(r )
ui when rui = r . Given

the observed dataset D = {(xui , rui , cui )}
|U |×|I |

u=1,i=1 , our goal is to

develop a recommender system that can recommend items which

maximize the true causal effect in Eq. (1), i.e., recommend items
users like but are not likely to purchase without recommendation.
Specifically, we optimize the a causal ranking metric which extends

the traditional ranking metric R(Ẑ ) =
1

|U|

∑
u

∑
i
λ(ẑui )cui [2] to

causal settings [38]. The ideal causal ranking metric is:

R Ideal(Ẑ ) =
1

|U |

∑
u

∑
i
R Ideal(ẑui ) =

1

|U |

∑
u

∑
i
λ(ẑui )τui , (2)
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where Ẑ = {ẑui }(u ,i)∈D is the predicted ranking and λ(·) is the top-
N rankingmetric such as Discounted Cumulative Gain (DCG) [2, 38].

For DCG, the function λ(·) is defined as λ(ẑu ,i ) = 1/log(ẑu ,i + 1).

4 EXISTING ESTIMATORS
To optimize Eq. (2), we need to first estimate the causal effect τui
and then learn the ranking ẑui . Estimating causal effect τui has two
main challenges: (i) we cannot observe the causal effect τui directly;
and (ii) we need to remove confounding bias. We first summarize

existing causal effect estimators, then introduce the DR estimator.

Naive Estimator. The naive estimator [38] is the most basic es-

timator for the causal effect for RS. Naively, the average causal

effect over whole user-item pairs can be estimated as the difference

between the averages of outcomes under treatment and control:

τ̂Naiveui =
ruic

(1)

ui∑
rui/|U||I|

−
(1 − rui )c

(0)

ui∑
(1 − rui )/|U||I|

. (3)

This estimator is intuitive and assumes the treatment assignment is

random such that the covariate distributions between treated and

control are identical. However, we are interested in estimating the

causal effects in observational data and cannot apply this since this

would lead to biased estimates due to the confoundedness.

Inverse Propensity Score (IPS) Estimator. To address the con-

founding bias of the naive estimator, Sato et al. [38] adopt an unbi-

ased estimator for the causal effect in RS by utilizing IPS, i.e.,

τ̂ IPSui = E

[
ruic

(1)

ui
e(xui )

−
(1 − rui )c

(0)

ui
1 − e(xui )

|xui

]
, (4)

where e(xui ) = p(rui = 1|xui ) is the true propensity score that

represents the probability of i being recommended tou. Under stable
unit treatment value and unconfoundedness assumptions [21], i.e.,

{c
(1)

ui , c
(0)

ui } |= rui |eui for all user-item pairs (u, i), the estimator τui is
unbiased. However, we generally do not know the true propensity

score in the observational study. Here, we provide the bias (B) and

variance (V) of the IPS estimator with estimated propensity score

ê(xui ) (see Appendix A.1 and A.2 for derivations):

B
IPS =

����(Q (1)ui + êui
1 − êui

Q (0)ui

)
δ (1)ui

���� , (5)

V
IPS = E

[(
ϵ (1)ui

)
2

| xui

]
+ E

[(
ϵ (0)ui

)
2

| xui

]
+

eui
1 − eui

(
Q (0)ui

)
2
(
1 − δ (0)ui

)
2

+
2eui (1 − eui )
êui (1 − êui )

Q (1)uiQ
(0)

ui +
1 − eui
eui

(
Q (1)ui

)
2
(
1 − δ (1)ui

)
2

(6)

where Q
(1)

ui = E
[
c
(1)

ui |xui
]
, Q
(0)

ui = E
[
c
(0)

ui |xui
]
, δ
(1)

ui = 1 −
eui
êui

and

δ
(0)

ui = 1 −
1−eui
1−êui

. Note that e(xui ) and ê(xui ) are simplified by eui

and êui for notation clarity. ϵ
(1)

ui and ϵ
(0)

ui denote

(
c
(1)

ui − Q
(1)

ui
) Rui
êui

and

(
c
(0)

ui −Q
(0)

ui
)
1−Rui
1−êui

, respectively. The derived bias and variance

suggest that if eui is close to 1 or 0, the IPS suffers from a large

variance and bias with inaccurate estimated propensity scores.

Direct Model (DM) Estimator. Instead of using non-parametric

the IPS estimator, we can also directly use the parametric method

to estimate the recommendation causal effect. Parametric methods

directly model the relation between the confounding, treatment,

and causal effect via two regression models [30] as follows:

τ̂DMui = Q̂
(1)

ui − Q̂
(0)

ui , (7)

where Q̂
(r )
ui = E

[
ĉ
(r )
ui

��xui , r ] is a direct estimation of the conditional

outcome using samples from observation dataset. The bias (B) of

the parametric model can be represented as follows:

B
DM =

���(Q̂(1)ui − Q̂(0)ui ) − (
Q
(1)

ui −Q
(0)

ui

)��� . (8)

Since Q̂
(1)

ui − Q̂
(0)

ui is a constant given xui , the variance VDM = 0.

Thus the parametric DM estimator has the smaller variance com-

pared to the IPS estimator. However, as pointed out by [33], the DM

estimator is very sensitive to model misspecification and will lead

to large bias if the two groups differ considerably in covariates.

5 UNBIASED AND ROBUST ESTIMATOR
In this section, we first introduce the doubly robust estimator for ca-

sual effect in recommendation, and then propose a deep variational

information bottleneck approach to learn the estimator effectively.

5.1 The Doubly Robust Estimator
Based on our analysis above, the DM estimator has zero variance

but a large bias in practice due to the model misspecification; while

the IPS estimator often suffers from high variance. This motivates

us to use both parametric model and propensities to overcome the

limitations of the DM and IPS approaches. A conceptually straight-

forward way is to combine the IPS and DM as a joint estimator:

ατ̂ IPSui + (1− α)τ̂
DM

ui . However, such linear combination estimator is

still biased even when the propensities are accurate but the model

is not accurate. We observe that this weakness can be addressed

by designing an estimator in a doubly robust (DR) [5, 13, 31] way

such that the bias remains zero and variance is small even with

inaccurate model as long as the propensities are accurate. The key

idea of DR estimator [5, 13, 31] is to add a correction term obtained

by importance weighting of the difference between observed out-

comes and predicted outcomes. Following this idea, the DR causal

effect estimator for recommendation is given as follows:

τ̂ DRui =
(
c (1)ui − Q̂

(1)

ui

) rui
êui
−

(
c (0)ui − Q̂

(0)

ui

)
1 − rui
1 − êui

+
(
Q̂ (1)ui − Q̂

(0)

ui

)
. (9)

The bias (B) and variance (V) of this DR estimator with estimated

propensity score and model can be represented as follows (see

Appendix A.1 and A.2 for derivations):

B
DR =

����δ (1)ui (q(1)ui + êui
1 − êui

q(0)ui

)���� , (10)

V
DR = E

[(
ϵ (1)ui

)
2

|xui

]
+ E

[(
ϵ (0)ui

)
2

|xui

]
+

2eui (1 − eui )
êui (1 − êui )

q(1)uiq
(0)

ui

+
1 − eui
eui

(
q(1)ui

)
2
(
1 − δ (1)ui

)
2

+
eui

1 − eui

(
q(0)ui

)
2
(
1 − δ (0)ui

)
2

, (11)

where q
(1)

ui = Q̂
(1)

ui −Q
(1)

ui and q
(0)

ui = Q̂
(0)

ui −Q
(0)

ui . The derived bias in

Eq. (10) indicates that τ̂DRui is an unbiased estimator of causal effect

if either propensity score is correct (êui = eui → δ
(1)

ui = 0) or direct

model is correct q
(0)

ui = q
(1)

ui = 0. The variance V
DR < V

IPS
under

the condition of

���q(0)ui ��� < Q
(0)

ui or

���q(1)ui ��� < Q
(1)

ui . This is easily satisfied

since the error is usually small if universal function approximators

such as neural networks are used. Thus, the DR estimator is robust

on variance and instability issues. In other words, even if the DM

estimator does not perform well here, the resulting DR estimator is

expected to be more accurate than the IPS estimator.
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(a) TNet (b) IB-TNet
Figure 1: Overview of architectures. (a) is Triple-head Net
(TNet) (b) is our information bottleneck T-learner (IB-TNet).
The encoders map covariates to latent representations. The
decoder is used to predict propensity score and outcomes.

Note that the idea of correcting confounding bias via doubly

robust estimators has been investigated in statistics in the context

of regression with incomplete data [5, 13, 31]. The main differ-

ences between these studies and our work are two folds: (i) These

works focus on evaluation instead of learning; while we explore the

problem of learning a recommendation policy based on a dataset

consisting of confounding bias and give a theoretical analysis on

the learnability; and (ii) We focus on the ranking not the regression

problem, which is one of the most important characteristics of the

RS. In what follows, we show how to effectively learn the DR esti-

mator with information bottleneck and a ranking algorithm based

on the learned DR estimator.

5.2 Learning with Information Bottleneck
Typically, learning the DR estimator requires optimizing the propen-

sity score model êui , and two outcome models Q̂
(1)

ui and Q̂
(0)

ui given

the observed dataset D. Recently, Farrell et al. [11] give theoret-

ical justification for the use of neural networks (NNs) to model

propensity scores and conditional outcomes. Thus, in this paper,

we adopt neural networks to parameterize the propensity score and

conditional outcomes. The most straightforward implementation

consists of using separate networks for êui and Q̂ui which would be

a good choice asymptotically (see Figure 1(a)). However, complex in-

teractions within and across models need to be properly addressed

for optimal predictive power. That is, it may be more efficient to

share representations between different propensity score and con-

ditional outcomes. In addition, the learned models are also prone to

be overfitting [4] where models fit the training data very well but

generalizes poorly to the testing data. It will suffer from the over-

fitting issue more severely, when we utilize the NNs to parameterize

them with limited data and high-dimensional covariates.

Thus, in this paper, we adopt NNs to model the non-linear rela-

tionship and propose to regularize the propensity score and con-

ditional outcome models based on deep information bottleneck

(DIB) [3]. The DIB framework [3] has been recently studied to

address multi-view problems [12] and learn disentangled repre-

sentations as shown in beta-VAE [17]. In this paper, we frame our

casual estimation framework under the information bottleneck

principle based on the following considerations: (i) we consider co-
variate xui as noisy proxies for the true unobservable confounders. (ii)
The variational information bottleneck can capture the uncertainties
and improve the model generalization by adaptively updating.

Specifically, the bottleneck can be incorporated by introducing

two encoders qϕ (z0, z1 |xui ) that map the xui to a latent distribu-

tions over z0 and z1, where z0 encodes information for estimating

Q
(0)

ui and z1 extracts information for estimating Q
(1)

ui . By assuming

that there exists a common feature space underlying both propen-

sity score and outcomes, we jointly utilize z0 and z1 to model the

propensity score to take away their representation capacities. With

the shared representation, ideally, the model itself can choose a

tradeoff between outcome accuracy and the propensity-score rep-

resentation. We also enforce an upper bound Ic on the mutual

information between the encoding and the original features, which

results in a regularized loss for each observed triple (xui , rui , cui ):

L(θ , ϕ) = −Ez0 ,z1∼qϕ (z0 ,z1 |xui )
[
logpθ (rui |z0, z1) + logpθ (cui |xui , rui )

]
s.t. I (Xui , Z0) + I (Xui , Z1) ≤ Ic , (12)

where probability pθ (rui |z0, z1) = Ber(ê(z0, z1)) is essentially the

binary propensity score model.pθ (cui |xui , rui = 0) = Ber(Q̂(0)(z0))
and pθ (cui |xui , rui = 1) = Ber(Q̂(1)(z1)) are for two outcome mod-

els. The mutual information I (X ,Z0) is defined according to:

I (Xui ,Z0) =

∫
q(xui )qϕ (z0 |xui ) log

qϕ (z0 |xui )

q(z0)
dz0, (13)

where q(xui ) is the empirical data distribution which can be repre-

sented by each sample xui . Since computing the marginal distribu-

tion q(z0) =
∫
q(xui )qϕ (z0 |xui )dz0 can be challenging. Instead, we

consider using the variational lower bound [1] of the mutual infor-

mation by introducing a variational approximation p(z0) = N(0, I )
modeled with standard Gaussian distribution to this marginal:

I (Xui ,Z0) ≤

∫
q(xui )qϕ (z0 |xui ) log

q(z0 |xui )
p(z0)

= Eq(xui )
[
KL (q (z0 |xui ) | |p (z0))

]
. (14)

Similarly, we can also obtain the variational bound for z1: I (Xui ,Z1) ≤
Eq(xui )

[
KL (q (z1 |xui ) | |p (z1))

]
. The upper bound

˜L(θ ,ϕ) of the
objective L(θ,ϕ) in Eq. (12) can be optimized as follows:

˜L(θ , ϕ) = −Ez0 ,z1∼qϕ (z0 ,z1 |xui )
[
logpθ (rui |z0, z1) + logpθ (cui |xui , rui )

]
s.t. KL (q (z0 |xui ) | |p (z0)) + KL (q (z1 |xui ) | |p (z1)) ≤ Ic . (15)

To solve this problem, the constraint can be subsumed into the

objective by introducing the Lagrange multiplier β :

˜L(θ , ϕ , β ) = min

θ ,ϕ
max

β≥0
−Ez0 ,z1∼qϕ (z0 ,z1 |xui )

[
logpθ (rui |z0, z1) (16)

+ logpθ (cui |xui , rui )
]
+ β (KL[q(z1, z0 |xui ) ∥p(z1)p(z0)] − Ic ) ,

where p(z1) = p(z0) = N(0, I) are standard Gaussian distribu-

tions. qϕ (z1, z0 |xui ) = qϕ (z0 |xui )qϕ (z1 |xui ), where qϕ (z1 |xui ) and
qϕ (z0 |xui ) are modeled with two Gaussian distributions with pa-

rameterized mean and diagonal covariance matrix. Figure 1(b)

shows our model architecture. As we will demonstrate in our ex-

periments, enforcing a specific mutual information budget between

xui and (z0, z1) naturally regularizes for model generalization and

is critical for good performance. Instead of fixing β [17], we adap-

tively update β via dual gradient descent to enforce a constraint

Ic on the mutual information. This formulation can automate the

value of β , as shown below:

θ,ϕ ← argmin

θ ,ϕ
˜L(θ,ϕ, β), (17)

β ← max

(
0, β + αβ (KL[q(z1, z0 |xui )∥p(z1)p(z0)] − Ic )

)
, (18)

where αβ is the learning rate in dual gradient descent. Intuitively,

our loss is a combination of outcome-loss and propensity score
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loss, adaptively regularized by KL-divergence on the latent repre-

sentations to encourage better generalization. By optimizing the

triplet jointly, the proposed model can choose a tradeoff between

predictive accuracy and the propensity-score representation.

After optimizing the model, we can get the causal estimation τ̂DRui
from the learned model: we calculate the propensity score ê(z0, z1),
and conditional outcomes Q̂(0) and Q̂(1) based on samplings from

qϕ (z0, z1 |x). With ê(z0, z1), Q̂(0) and Q̂(1), we get τ̂DRui with Eq. (9).

6 UNBIASED AND ROBUST LEARNING
Given the learned DR estimator, in this section, we propose Doubly

Robust Unbiased Learning (DRUL) to optimize the causal ranking

metric by connecting the estimation and learning steps. Our key

insight in this section is that we can decrease the learning bound by

slightly modifying the vanilla DR estimator discussed in section 5.1.

6.1 Learning Bound with DR Estimator
Recall that our goal is to optimize the ideal causal metric RIdeal (Ẑ )
in Eq. (2). As already shown in section 5.1, the unobservable τui in
causal DCG (see Eq. (2)) can be estimated now based on the learned

DR estimator. Then we can approximate the causal metric via τ̂DRui :

R̂DR(Ẑ ) =
1

|U|

∑
u

∑
i
R̂DR(ẑui ) =

1

|U|

∑
u

∑
i
λ(ẑui )τ̂

DR

ui , (19)

where the DR estimator has double robustness: it is unbiased if

either propensity score is correct (êui = eui ) or outcome models

is correct q
(0)

ui = q
(1)

ui = 0. In general, the unbiased learning of the

causal metric is a two-stage process, In the first stage, we infer the

casual effect τ̂DRui as shown in the last section, and in the second

stage we can utilize Empirical Risk Minimization (ERM) framework

to conduct the policy learning process based on the estimator τ̂DRui .

With the proposed τ̂DRui and the IB training objective, τ̂DRui yields

unbiased and robust estimates of τ̂ui . However, what is important

for RS is the performance of the downstream learning not the

estimation, which is limited by the independent two-stage process

and the learned estimator may be suboptimal for the ranking model

on given tasks. Can we modify the design and training of casual
effect estimation in the first stage in order to improve the learning
performance in the second stage? We address this by first giving the

tail bound of the proposed DRUL with finite samples.

Proposition 1 (Tail Bound of Unbiased Learning). Given
the true propensity score eui , the estimated outcome model Q̂(1)ui and

Q̂
(0)

(ui), for the given independent and identically distributed dataset

{(xui , rui , cui )}
|U |×|I |

u=1,i=1 , with probability 1 − η, the R̂DR(ẑui ) does
not deviate from its expectation by more than (see Appendix B.1):���R̂DR(ẑui ) − R Ideal(ẑui )

��� ≤ 1

|U |

√
log

2

η

2

√∑
u ,i

λ(ẑui )2d2

ui , (20)

where d2ui = (
c (1)ui−Q̂

(1)

ui
eui +

c (0)ui−Q̂
(0)

ui
1−eui )

2.

Given the tail bound, we further present the following corollary to

compare our tail bound of unbiased learning and previous bound

based on IPS for the causal effect of the recommendation.

Corollary 1.1 (Tighter Bound). Given 0 < Q̂
(1)

ui ≤ 2c
(1)

ui and

0 < Q̂
(0)

ui ≤ 2c
(0)

ui , the bound of the DR estimator will be tighter than
that of the IPS estimator. (see Appendix B.2 for proofs).

This corollary shows that our causal DCG estimator consistently im-

proves the estimation error bound comparedwith previouswork [38].

The bias-variance analysis in the last section and the Corollary 1.1

show that our proposed unbiased learning algorithm based on the

DR estimator outperforms the previous method [38] and has better

statistical properties compared to the IPS estimator.

Proposition 1 above shows that the ranking tail bound is posi-

tively correlated with the magnitude of dui =
c (1)ui−Q̂

(1)

ui
êui

+
c (0)ui−Q̂

(0)

ui
1−êui

in which each outcome model is weighted by the propensity score.

In the last section, we propose a information bottleneck to learn

the propensity score the conditional outcomes. To further improve

the downstream ranking learning, we modify the loss in Eq. (12) in

order to decrease the magnitude of dui as follows:

L = −Ez0 ,z1∼qϕ (z0 ,z1 |xui )
[
logpθ (rui |z0, z1) +wui logpθ (cui |xui , rui )

]
s.t. I (X , Z0) + I (X , Z1) ≤ Ic . (21)

wherewui = rui ·
1

e ¯θ (z0,z1)
+ (1 − rui ) ·

1

1−e ¯θ (z0,z1)
and

¯θ indicates

that gradients for θ are not being computed through it. Compared

with Eq. (12), we raise the log-likelihood logpθ (cui |xui , rui ) by a

weightwui to reduce the dui . With this objective, our model yields

consistent estimates of causal effect and downstream performance.

We can optimize this modified loss the same as we do in section 5.2.

6.2 Optimizing the Ranking Metric
In this section, we show how to conduct the second learning stage

given the estimated τ̂DRui in the first stage. We adopt the ERM frame-

work [39] to conduct the unbiased learning stage:

ẐERM = argmin

Ẑ ∈Hẑ

(−R̂DR (Ẑ )), (22)

whereHẐ is a hypothesis space of prediction ranking Ẑ .
Upper Bound of Causal DCG. In practically, we would like to

learn a scoring function fθ (xui ) to rank candidate items I for user

u by the score. However the resulting rank position ẑui is a discrete
step function of the score. We need to make it differentiable to

optimize. Thanks to the hinge-loss upper bound [24], we have:

ẑui − 1 =
∑

j∈I, j,i

1(fψ (xuj ) > fψ (xui ))) (23)

≤
∑

j∈I, j,i

max

(
1 −

(
fψ (xui ) − fψ (xuj )

)
, 0
)
.

With this upper bound and our learned DR estimator, instead of

directly optimizing Eq. (22), we can optimize the following differ-

entiable bound for the causal DCG:

ˆψ = argmin

ψ
(−R̂DR (Ẑ )) = argmin

ψ

1

|U |

∑
u∈U

∑
i∈I

(24)

− λ
(
1 +

∑
j∈I, j,i

max

(
1 −

(
fψ (xui ) − fψ (xuj )

)
, 0
) )
τ̂DRui .

7 EXPERIMENTS
In this section, we conduct experiments to evaluate the effective-

ness of the our frameworks on the unbiased evaluation and learning

tasks. Specifically, we aim to answer the following questions:
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(RQ1) How does the proposed DR estimator perform in the unbi-

ased evaluation task for the recommendation?

(RQ2) Does the proposed DR estimator work better in the causal

effect estimation task compared to state-of-the-art estimators?

(RQ3) How does the proposed IB improve the performance?

(RQ4) Can the proposed unbiased learning method work better

than other biased and unbiased methods in real-word dataset, and

How does it affect the recommendation results?

7.1 Unbiased Evaluation Performance (RQ1)
Setups. To conduct the unbiased evaluation with confounding bias,

we experiment with the publicly available dataset:Dunnhumby [38].
This dataset includes purchase and promotion logs at a retailer.

It provides product category information. Other public datasets

are either missing recommendation logs or recording user inter-

actions only for recommended items. Since there is no ground

truth because of the unobservable nature of causal effect, follow-

ing existing work [38, 42], we construct a semi-synthetic dataset.

Note that although the proposed estimator only uses observable

variables, the ground truth is required for the evaluation. In addi-

tion, constructing a semi-synthetic dataset is a widely used pro-

cedure in causal inference literature [38, 42]. Strictly following

to [38], we employ the following procedure to create a biased

datasets. (1) We preprocess the Dunnhumby dataset to get the ob-

servation {ruit , cuit }, where t denotes the t-th week. (2) We then

model the purchase probabilities Q
(1)

ui and Q
(0)

ui with and without

recommendation for each user-item pair. (3) We model the propen-

sities by simulating a common situation where a currently run-

ning recommender tends to select items that match the preference

of the users with higher probabilities. (4) Sampling the observed

data. c
(1)

ui ∼ B
(
Q
(1)

ui

)
, c
(0)

ui ∼ B
(
Q
(0)

ui

)
, rui ∼ B (eui ), where B

denotes the Bernoulli distribution. The causal effect τui and ob-

served outcomes cui can be obtained as follows: τui = c
(1)

ui − c
(0)

ui
and cui = ruic

(1)

ui + (1 − rui )c
(0)

ui . We use the numbers of purchases

and recommendations during previous four weeks as the proxy of

covariates xui [37]. This sampling is repeated n times to generate

dataset. Training, validation, and test sets are independently sam-

pled for ntrain = 10, nval = 1, and ntest = 10 times, respectively.

After preprocessing, 2,309 users and 11,331 items are left. Note that

we only use (cui , rui , xui ) as the training observable samples, while

τui is just used for the evaluation purpose.

Compared Estimators: We compare the following estimators:

Naive, IPS, SNIPS, DM and proposed DR estimator. For our DR, we
denote TNet-based as DRT and IB-TNet-based as DRIB. We compare

the unbiased evaluation performance by the mean absolute error

(MAE) which can evaluate the sum of the bias and variance [43]:

MAE( ˆR) = |RGT (Ẑ ) − ˆR(Ẑ ) |, (25)

where Ẑ is the set of outputs by the candidate recommender, and

ˆR(Ẑ ) the candidate recommender with one of the compared esti-

mators. The MAE evaluates an estimators’ ability to accurately

evaluate the performance of candidate recommenders. For the

ground-truth ranking metrics RGT (Ẑ ), we use causal DCG (cDCG)

and casual Precision (cP)@10 in all experiments model. cP@K =
1

|U |

∑
u
∑
i I (Ẑui ≤ K)τui and cDCG =

1

|U |

∑
u
∑
i

I
log(1+Ẑui )

τui .

Candidate Recommenders: To prove effectiveness of our estima-

tor, we use several candidate recommenders for evaluation: Pop:

Items are ranked by the global popularity. MF [19] is a basic base-

line for recommendation. BPR: The MF method with pairwise ob-

jective for recommendation. CausE [6]: The joint training of two

MFs with and without recommendations. CausE-Prod [6]: The vari-

ant of CausE, where the two MFs share the common user factors.

ULMF [37]: A biased pointwise learning method for the causal

effect of recommendation. ULBPR [37]: A biased pairwise learn-

ing method for the causal effect of recommendation. DLCE [38]:

A unbiased learning method based on IPS for the casual effect of

recommendation. DRUL: Our proposed unbiased learning method

in the section 6 for the casual effect of recommendation.

Parameter Settings All the base recommendation models except

Pop are implemented by matrix factorization models [26]. We

set the latent dimensions to 200. The regularization coefficient

λ ∈ {1e − 4, 3e − 4, · · · , 1e − 1, 3e − 1}. BGD (batch gradient descent)

was employed, and the initial learning rate was set to 0.0001. For

IPS, DM and DRT, we use separate NN-based logistic regression

model to estimate the propensity score and outcome, respectively.

For DRIB, the hidden layer size is 200 for the means of z1 and z0 and
100 for the conditional outcome and propensity layers. For DRIB,
we set the mutual information constraint Ic to 0.3 and the learn-

ing rate αβ in dual gradient descent to 0.001. We use the baseline

implementations provided by the authors. Hyperparameters were

tuned in the validation phase to maximize cP@10.

Results. Table 2 shows that the proposedDR estimator outperforms

the other estimators in all cases. All reported results are averaged

over five runs, and the improvement are statistically significant.

From Table 2, we observe: (1) As suggested by our theoretical analy-

sis, the DR estimators significantly outperform the other estimators

in the model evaluation task. The results verify that it can help

the estimation of the ranking performance of recommenders in a

real-world offline setting. (2) The biased naive estimator has worse

performance, which demonstrates that using unbiased estimator

is important when evaluating recommenders under the confound-

ing bias settings. (3) Though they are both DR-based estimator,

our DRIB outperforms DRT, which shows that sharing representa-

tions and incorporating information bottleneck can make it more

powerful to achieve better evaluation performance.

7.2 Causal Estimation Performance (RQ2)
Setups. We have shown that our methods do help improve per-

formance on unbiased ranking evaluation. In this subsection, we

further study if our methods can achieve better performance on

the causal effect estimation task. We conduct the experiment on

IHDP [42, 54], a widely used semi-synthetic dataset in the causal

inference literature. We randomly split the data into train/val/test

with proportion as 10/27/63 and report the in sample (train and

validation) and out of sample (test) estimation errors. We report

mean absolute error between the estimated and the actual average

treatment effect (ATE), i.e., ∆ =| ˆψ − (1/n
∑
i Q(1, xi ) − Q(0, xi ))|,

where
ˆψ is the true ATE. We compare DRIB with state-of-the-art

neural networks listed in Table 3 for causal effect estimation. For

all models, the hidden layer size is 200 for the shared representa-

tion layers and 100 for the conditional outcome layers. We train

them using stochastic gradient descent with momentum. For Drag-

onnet [42], we set the α and β to 1. For DRIB, we set the constraint
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Table 2: The unbiased evaluation performance on the recommendation of different estimators.

MAE of cP@10 MAE of cDCG
Naive IPS DM SNIPS DRT DRIB Naive IPS DM SNIPS DRT DRIB

Pop .0506 .0311 .0274 .0298 .0252 .0241 .366 .345 .312 .323 .293 .273
MF .0312 .0289 .0256 .0271 .0229 .0211 .312 .287 .268 .271 .247 .227
BPR .0324 .0227 .0243 .0225 .0211 .0196 .343 .318 .278 .299 .268 .254
CausE .0268 .0241 .0219 .0233 .0193 .0185 .310 .299 .267 .281 .250 .242

Caus-Prod .0177 .0158 .0162 .0151 .0138 .0121 .288 .259 .233 .239 .213 .192
ULBPR .0168 .0114 .0093 .0086 .0071 .0063 .270 .249 .218 .222 .200 .196
BLCE .0212 .0175 .0162 .0151 .0130 .0123 .252 .241 .198 .206 .154 .141
DLCE .0318 .0234 .0211 .0217 .0168 .0147 .283 .257 .229 .238 .213 .202
DRUL .0233 .0214 .0196 .0191 .0179 .0166 .256 .244 .228 .230 .205 .197
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Figure 2: The estimation errors on IHDP with different β .
Table 3: The causal effect estimation performance on the
IHDP dataset. Estimators are computed with the training
and validation (∆in) , test set (∆out).

Method ∆in ∆out

BNN [25] 0.37 ± .03 0.42 ± .03

TARNET [40] 0.26 ± .01 0.28 ± .01

CFR Wass [40] 0.25 ± .01 0.27 ± .01

CEVAEs [29] 0.34 ± .01 0.46 ± .02

GANITE [54] 0.43 ± .05 0.49 ± .05

Dragonnet [42] 0.14 ± .01 0.20 ± .01

DRIB (β = 0.0) 0.23 ± .02 0.31 ± .02

DRIB (adaptive β , Ic=0.0) 0.17 ± .02 0.22 ± .02

DRIB (adaptive β , Ic=0.1) 0.14 ± .01 0.19 ± .02

DRIB (adaptive β , Ic=0.3) 0.12 ± .01 0.18 ± .01
DRIB (adaptive β , Ic=1.0) 0.13 ± .02 0.19 ± .01

DRIB (adaptive β , Ic=3.0) 0.16 ± .03 0.21 ± .03

DRIB (adaptive β , Ic=10) 0.15 ± .01 0.21 ± .02

Ic to 0.3 and the learning rate αβ in dual gradient descent to 0.001.

Results. Table 3 reports the estimation error of a number of ap-

proaches on the IHDP dataset. (1) The results from Table 3 indicate

that the proposed DRIB (adaptive β , Ic=0.3) estimators based on

deep information bottleneck achieve the state-of-the-art perfor-

mance. (2) The finding that other DRIB methods outperform DRIB

Figure 3: The validation losses of TNet and IB-TNet.
(β=0.0) shows that incorporating information bottleneck does help

improve estimation performance. (3) Table 3 also shows that tuning

the KL constraint Ic , leading to better estimation performance.

7.3 The Effects of Deep IB (RQ3)
Setups. In this section, we further study the effect of proposed infor-
mation bottleneck. We conduct experiments on both Dunnhumby
and IHDP datasets and follow the same settings in RQ1 and RQ2.

Results. Table 5 shows the performance of DRIB by varying Ic
on Dunnhumby. As we can see, DRIB achieves the best recom-

mendation performance when Ic=0.3. We also can see that the

performance is worse when Ic=10. The reason is that Ic controls
the mutual information between the encoding and the original fea-

tures, a too large Ic will lead the latent representations to neglect

the supervised signal. Table 5 shows that we can vary Ic to achieve

better model evaluation performance. To evaluate the effects of the

adaptive β updates, we compare DRIB trained with different fixed

values of β and adaptive updated β using dual gradient in Eq. (18).

Fig. 2 shows that the networks trained using dual descent to update

β achieves better performance compared with fixed β . We plot the

the learning curves of validation losses of propensity score (E) and

two outcomes Q1 and Q2 in TNet and IB-TNet as shown in Figure 3.

We can find TNet suffers from overfitting when the number of iter-

ations > 1700. In contrast, IB-TNet does not suffer from this, which

shows that representations learned by IB improve generalization

by ignoring irrelevant parts present in noisy covariates.

7.4 Unbiased Learning Performance (RQ4)
In this section, we evaluate and compare our unbiased learning

algorithm, i.e., the DRUL with baselines on the real-world dataset.

Setups. Since we need both recommendation and interaction logs

for this experiment, we still evaluate methods on Dunnhumby. In-
stead of evaluating the estimators as in RQ1, we evaluate the pro-

posed learning algorithm DRUL. We conduct chronological split-

ting of the datasets for training and evaluation. Dunnhumby has 93

discrete time periods. We train all models by periods from 1 to 77,
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Table 4: Top-5 items frequently recommended in theDunnhumby. The items recommended by PMF, the best unbiased baseline
DLCE and our DRUL are presented in the columns, respectively. Numbers in parentheses are popularity ranks from logs.

PMF DLCE DRUL
FLUID MILK WHITE ONLY(1) REFRIGERATED PASTA SAUCE(848) INFANT FORMULA TODDLER(863)

SHREDDED CHEESE(5) DRY &SPRAY STARCH(805) REFRIGERATED PASTA SAUCE(848)

MAINSTREAMWHITE BREAD(3) BEERALEMALT LIQUORS(11) TORTILLA/NACHO CHIPS(15)

SOFT DRINKS PK CAN(4) FLUID MILK WHITE ONLY(1) DECOR BULBS(687)

TOILET TISSUE(10) TEA UNSWEETENED(833) JARRED FRUIT(889)

Table 5: The unbiased evaluation performance w.r.t Ic .

MAE of cP@10 MAE of cDCG
0 0.1 0.3 1 10 0 0.1 0.3 1 10

Pop .0264 .0252 .0241 .0269 .0278 .296 .288 .273 .291 .310

MF .0247 .0234 .0211 .0238 .0255 .256 .243 .227 .254 .261

BPR .0228 .0210 .0196 .0226 .0237 .270 .261 .254 .269 .277

CausE .0204 .0196 .0185 .0201 .0215 .264 .254 .242 .261 .271

Caus-Prod .0158 .0139 .0121 .0147 .0165 .227 .211 .192 .219 .238

ULBPR .0095 .0078 .0063 .0082 .0103 .219 .208 .196 .213 .226

BLCE .0148 .0137 .0123 .0143 .0156 .177 .153 .141 .162 .183

DLCE .0168 .0156 .0147 .0173 .0182 .225 .214 .202 .217 .229

DRUL .0189 .0175 .0166 .0182 .0193 .221 .208 .197 .219 .226

DLCE NW-DRUL DRUL0.100

0.125

0.150

0.175

0.200

cP
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Figure 4: Performance comparisons between DLCE, (Non-
Weighted) NW-DRUL (see Eq. (12)) and DRUL (see Eq. (21)).

validate them by 77 to 85 and test them by 85 to 93. The causal recom-

mendation quality is measured with two metrics: cP@{10, 30, 100}

and cDCG. Precision(P) was also measured, as a reference of a tra-

ditional metric to show that there is a large gap between casual

metric (cP) and traditional metric (P). For all methods, we train

our DRIB estimator based on the training dataset as we did in RQ1.

Since the ground truth of causal effect τui is unobservable in real

world dataset, for fairness, we use the trained τ̂ I PSui to measure the

performances of every methods, in order to avoid the choice of

estimator to be a confounding factor and make the experimental

result more reliable.

Results. Table 6 shows the comparison results. From the table, we

can observe: (1) Our propose DRUL achieves the best for all cases,

which demonstrates the effectiveness of our method in learning

from biased feedback. (2) The biased accuracy-based methods (PoP,

MF and BPR) perform better in P@K ; however, they perform worse

in the causal metrics than other methods, which proves that there

is gap between the tradition metric and the causal metric. (3) The

methods (ULBPR, CausE, DLCE and our DRUL) that aim at opti-

mizing the true causal effect outperform biased accuracy-based

methods, which indicts that it’s helpful to directly optimize the un-

biased causal effect under the confounding bias. In Fig. 4, we take a

closer look at the effect of weighted loss in Eq. (21). We compare

DRUL using weighted loss in Eq. (21) and non-weighted loss in

Eq. (12), and the baseline DLCE. We can find DRUL outperforms

DLCE, and see a substantial improvement from the weighted loss.

Case Study. We take a deeper examination on our unbiased learn-

ing algorithm to understand how it affects the recommendation list

Table 6: Unbiased learning performance comparisons. Preci-
sion(P) is measured as a reference to show that there is gap
between casual metric (cP) and traditional metric (P).

cP cDCG P

@10 @30 @100 − @10 @30 @100

Pop .0231 .0198 .0181 .1021 .1301 .1205 .1104

MF .0443 .0402 .0352 .1452 .1719 .1598 .1371

BPR .0517 .0474 .0403 .1877 .1711 .1545 .1426
CausE .0803 .0753 .0634 .2881 .0954 .0862 .0753

Caus-Prod .1091 .0899 .0798 .3202 .0921 .0801 .0724

ULBPR .1314 .1177 .0922 .4874 .0534 .0416 .0376

DLCE .1613 .1502 .1301 .5279 .0502 .0404 .0341

DRUL .1725 .1631 .1472 .6152 .0452 .0301 .0297

in production. As we mentioned in the introduction, confounding

bias overestimates for popular items. One of the most important

properties of correcting the confounding bias is that we can alle-

viate the popular bias and recommend items that user likes but

will not buy if not recommended. To understand the differences

between the biased and unbiased methods, we show the top five

most frequently recommended items by the biased PMF, the best

unbiased baseline DLCE and our DRUL on Dunnhumby dataset.

From Table 4, we can find that the traditional method PMF tends

to recommend more popular items than causal methods, i.e., DLCE

and our DRUL. Compared to the baseline, DRUL is more effective

to alleviate the popular bias and emphasis less on popular items.

8 CONCLUSIONS
In this paper, we study the problem of learning true causal effect

from logged feedbacks under a confounding bias scenario, where

recommendation and outcome are both affected by the confounding.

To address this problem, we first propose a DR estimator for the

causal effect of recommendation and showed its unbiasedness and

desired statistical properties. We then propose a newmethod to esti-

mate the propensity score and outcome based on deep information

bottleneck. With the proposed DR estimator, we futher propose

DRUL, an unbiased ranking algorithm to optimize the causal DCG

via stochastic gradient descent. Experimental results show that our

DRIB and DRUL significantly outperform existing methods in the

unbiased evaluation and unbiased learning tasks, respectively. As

to future work, we intend to extend our unbiased model to the

dynamic or sequential settings, in which the confounding bias and

user preferences are both dynamic over time [20, 50].
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A DERIVATIONS OF BIAS AND VARIANCE
For the completeness, we give the detailed derivations of the bias

and variance of the DR estimator with estimated propensity score.

All notations below are defined in the body of the paper.

A.1 Derivations of the Bias
We first rewrite the DR estimator in Eq. (9) as τ̂DRui = ĉ

(1)

ui − ĉ
(0)

ui ,

where (c
(1)

ui −Q̂
(1)

ui )
Rui
êui
+Q̂
(1)

ui = ĉ
(1)

ui and (c
(0)

ui −Q̂
(0)

ui )
Rui
êui
+Q̂
(0)

ui = ĉ
(0)

ui .

Note that τ̂DRui is conditioned on confounding xui . The expectation

E[ĉ(1)ui |xui ] can be easily derived as follows:

E
[
ĉ (1)ui |xui

]
= (Q̂ (1)ui −Q

(1)

ui )(1 −
eui
êui
) +Q (1)ui = q

(1)

uiδ
(1)

ui +Q
(1)

ui . (26)

Similarly, the expectation E[ĉ(0)ui |xui ] = q
(0)

ui δ
(0)

ui + Q
(0)

ui due to the

symmetry. Thus, the bias of DR estimator can be derived as follows:

Bias(τ̂ DRui ) =
���E [

τ̂ DRui | xui
]
− E

[
c (1)ui − c

(0)

ui | xui
] ��� =����δ (1)ui (q(1)ui + êui

1 − êui
q(0)ui )

���� . (27)

Recall that the IPS estimator is τ̂ IPWui = E[
ruic

(1)

ui
e(xui )

−
(1−rui )c

(0)

ui
1−e(xui )

|xui ].

Setting Q̂
(1)

ui = 0 and Q̂
(0)

ui = 0 in Eq. (9), the DR estimator reduces

to IPS estimator. We can obtain the following bias of IPS by setting

Q̂
(1)

ui = 0 and Q̂
(0)

ui = 0: Bias(τ̂ IPWui ) = |δ
(1)

ui (Q
(1)

ui +
êui

1−êui
Q
(0)

ui )|.

A.2 Derivations of the Variance
We can first rewrite the variance as follows:

Var(τ DRui ) = −2E
[
ĉ (1)ui ĉ

(0)

ui |xui
]
+ 2E

[
ĉ (1)ui |xui

]
E
[
ĉ (0)ui |xui

]
+ (28)

E
[
(ĉ (1)ui )

2 |xui
]
− (E

[
ĉ (1)ui |xui

]
)2 + E

[
(ĉ (0)ui )

2 |xui
]
− (E

[
ĉ (0)ui |xui

]
)2 .

Here the term E[ĉ(1)ui ĉ
(0)

ui |xui ] is equal to:

(1 − δ (1)ui )Q
(1)

ui Q̂
(0)

ui − (1 − δ
(1)

ui − δ
(0)

ui )Q̂
(1)

ui Q̂
(0)

ui + (1 − δ
(0)

ui )Q̂
(1)

uiQ
(0)

ui . (29)

The term E[ĉ(1)ui |xui ]E[ĉ
(0)

ui |xui ] is equal to:

(1 − δ (1)ui )(1 − δ
(0)

ui )Q
(1)

uiQ
(0)

ui + δ
(1)

ui (1 − δ
(0)

ui )Q̂
(1)

uiQ
(0)

ui

+ (1 − δ (1)ui )δ
(0)

uiQ
(1)

ui Q̂
(0)

ui + δ
(1)

ui δ
(0)

ui Q̂
(1)

ui Q̂
(0)

ui . (30)

With some mathematical derivations, the term E[(ĉ(1)ui )
2 |xui ] is:

E
[
(ϵ (1)ui )

2 |xui
]
+ (Q (1)ui + q

(1)

uiδ
(1)

ui )
2 +

1 − eui
eui

(q(1)ui )
2(1 − δ (1)ui )

2 . (31)

Similarly, E[(ĉ(0)ui )
2 |xui ] = E[(ϵ (0)ui )

2 |xui ]+ (Q
(0)

ui +q
(0)

ui δ
(0)

ui )
2+

eui
1−eui

(q
(0)

ui )
2(1 − δ

(0)

ui )
2
. Combining Eqs. (26), (29), (30), (31) and (28), we

can obtain the final form of the variance of DR:

Var(τ DRui ) = E
[
(ϵ (1)ui )

2 |xui
]
+ E

[
(ϵ (0)ui )

2 |xui
]
+

1 − eui
eui

(q(1)ui )
2(1 − δ (1)ui )

2

+
eui

1 − eui
(q(0)ui )

2(1 − δ (0)ui )
2 +

2eui (1 − eui )
êui (1 − êui )

q(1)uiq
(0)

ui . (32)

We can obtain the variance of IPS by setting Q̂
(1)

ui and Q̂
(0)

ui as zero:

Var(τ̂ IPSui ) = E[(ϵ (1)ui )
2 |xui ] + E[(ϵ (0)ui )

2 |xui ] +
2eui (1−eui )
êui (1−êui )

Q
(1)

ui Q
(0)

ui +

eui
1−eui (Q

(0)

ui )
2(1 − δ

(0)

ui )
2 +

1−eui
eui (Q

(1)

ui )
2(1 − δ

(1)

ui )
2
.

B PROOFS OF LEMMA AND PROPOSITION
B.1 Proof of Proposition 1

Proof. Recall the DR estimator with the true propensity score

is:

τ̂ DRui =(c
(1)

ui − Q̂
(1)

ui )
rui
eui
− (c (0)ui − Q̂

(0)

ui )
1 − rui
1 − eui

+ (Q̂ (1)ui − Q̂
(0)

ui ), (33)

where the binary treatment rui (whether recommending or not)

follows a unknown Bernoulli distribution with probability eui . We

define the random variable γui = λ(ẑui )τ̂
DR
ui as follows:

p(γui = αui ) = eui . p(γui = βui ) = 1 − eui , (34)

where the probabilities αui = λ(ẑui )(
c (1)ui−Q̂

(1)

ui
eui + Q̂

(1)

ui − Q̂
(0)

ui ) and

βui = λ(ẑui )(−
c (0)ui−Q̂

(0)

ui
1−eui + Q̂

(1)

ui − Q̂
(0)

ui ). We can observe that the

square of interval size of random variables γui is:

(αui − βui )2 = λ(ẑui )2(
c (1)ui − Q̂

(1)

ui
eui

+
c (0)ui − Q̂

(0)

ui
1 − eui

)2 . (35)

Recall that we assume that the treatment assignments

{
rui |(u, i) ∈

U × I
}
are independent random variables, thus the random vari-

ables

{
γui |(u, i) ∈ U × I

}
are also independent. Based on Hoeffd-

ing’s inequality (see Theorem 2 in the [18] for proof), we have:

P ( |
∑
u

∑
i
λ(ẑui )τDRui − E

[∑
u

∑
i
λ(ẑui )τDRui

]
| ≥ ϵ )

≤ 2 exp(
−2ϵ 2∑

u ,i
(αui − βui )2

) = 2 exp(
−2ϵ 2∑

u ,i
λ(ẑui )2d2

u ,i
) ⇔

P ( |
1

|U |

∑
u

∑
i
(λ(ẑui )τDRui − λ(ẑui )τui ) | ≥

ϵ
|U |
) ≤ 2 exp(

−2ϵ 2∑
u ,i

λ(ẑui )2d2

u ,i
)

⇔P ( |R̂DR(Ẑ ) − R Ideal(Ẑ ) | ≥ ϵ ) ≤ 2 exp(
−2 |U |2ϵ 2∑

u ,i
λ(ẑui )2d2

u ,i
), (36)

where dui = (
c (1)ui−Q̂

(1)

ui
eui +

c (0)ui−Q̂
(0)

ui
1−eui ). Setting the right hand side above

to η and solving ϵ yields:

P (
���R̂DR(Ẑ ) − R Ideal(Ẑ )

��� ≤ 1

|U |

√
log

2

η

2

√∑
u ,i

λ(ẑui )2d2

ui ) ≥ 1 − η . (37)

This completes the proof. □

B.2 Proof of Corollary 1.1
Proof. Given conditions that 0 < Q̂

(1)

ui ≤ 2c
(1)

ui and 0 < Q̂
(0)

ui ≤

2c
(0)

ui , we can derive the following inequalities (Note that êui ∈
[0, 1]):

dui − ˆdui = −
Q (1)ui
êui
−

Q (0)ui
(1 − êui )

≤ 0⇒ dui ≤ ˆdui (38)

dui + ˆdui =
2c (1)ui −Q

(0)

ui

êui
+

2c (0)ui −Q
(0)

ui

(1 − êui )
≥ 0⇒ dui ≥ − ˆdui , (39)

where
ˆd2ui = (

c (1)ui
eui +

c (0)ui
1−eui )

2
. Thus, we have d2ui ≤

ˆd2ui , resulting in:

1

|U |

√
log

2

η

2

√∑
u ,i

d2

ui ≤
1

|U |

√
log

2

η

2

√∑
u ,i

ˆd2

ui . (40)

The left hand side is the tail bound of the DR and the right hand

side is the tail bound of the IPS [38]. This completes the proof. □

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1167


	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Problem Settings
	4 Existing Estimators
	5 Unbiased and Robust Estimator
	5.1 The Doubly Robust Estimator
	5.2 Learning with Information Bottleneck

	6 Unbiased and Robust Learning
	6.1 Learning Bound with DR Estimator
	6.2 Optimizing the Ranking Metric

	7 Experiments
	7.1 Unbiased Evaluation Performance (RQ1)
	7.2 Causal Estimation Performance (RQ2)
	7.3 The Effects of Deep IB (RQ3)
	7.4 Unbiased Learning Performance (RQ4)

	8 Conclusions
	Acknowledgments
	References
	A Derivations of Bias and Variance
	A.1 Derivations of the Bias
	A.2 Derivations of the Variance

	B Proofs of Lemma and Proposition
	B.1 Proof of Proposition 1
	B.2 Proof of Corollary 1.1




