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ABSTRACT

Despite the rapid development and great success of machine learn-
ing models, extensive studies have exposed their disadvantage of
inheriting latent discrimination and societal bias from the train-
ing data. This phenomenon hinders their adoption on high-stake
applications. Thus, many efforts have been taken for developing
fair machine learning models. Most of them require that sensitive
attributes are available during training to learn fair models. How-
ever, in many real-world applications, it is usually infeasible to
obtain the sensitive attributes due to privacy or legal issues, which
challenges existing fair-ensuring strategies. Though the sensitive
attribute of each data sample is unknown, we observe that there
are usually some non-sensitive features in the training data that
are highly correlated with sensitive attributes, which can be used
to alleviate the bias. Therefore, in this paper, we study a novel prob-
lem of exploring features that are highly correlated with sensitive
attributes for learning fair and accurate classifiers. We theoretically
show that by minimizing the correlation between these related
features and model prediction, we can learn a fair classifier. Based
on this motivation, we propose a novel framework which simul-
taneously uses these related features for accurate prediction and
enforces fairness. In addition, the model can dynamically adjust the
regularization weight of each related feature to balance its contribu-
tion on model classification and fairness. Experimental results on
real-world datasets demonstrate the effectiveness of the proposed
model for learning fair models with high classification accuracy.
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1 INTRODUCTION

With the great improvement in performance, modern machine
learning models are becoming increasingly popular and are widely
used in decision-making systems such as medical diagnosis [2]
and credit scoring [8]. Despite their great successes, extensive stud-
ies [13, 26, 34] have revealed that training data may include patterns
of previous discrimination and societal bias. Machine learning mod-
els trained on such data can inherit the bias on sensitive attributes
such as ages, genders, skin color, and regions [3, 9, 15]. For example,
a study found strong unfairness exists in a Criminal Prediction sys-
tem used to assess a criminal defendant’s likelihood of becoming
a recidivist [17]. The system shows a strong bias towards people
with color, tending to predict them as recidivist even when they are
not. Thus, hidden biases in a machine learning model could cause
severe fairness problems, which raises concerns on their real-world
applications, especially in high-stake scenarios.

Various efforts [11, 18, 28, 35] have been taken to address the
fairness issue of current machine learning models. For example, [11,
19] pre-process the data to remove discrimination in training. [9, 35]
design special regularization terms to ensure that the prediction
output is insensitive w.r.t sensitive attributes. And [15, 27] post-
process prediction results on instances of unfair classes. Despite
their superior performance, all the aforementioned approaches
require that sensitive attributes are available for removing bias.
However, for many real-world applications, it is difficult to obtain
sensitive attributes of each data sample due to various reasons such
as privacy and legal issues, or difficulties in data collection [5, 21].

Tackling fairness issue without sensitive attributes available
is challenging as we lack supervision to preprocess the training
data, regularize the model or post-process the predictions. There
are only very few initial efforts on learning fair classifiers with-
out sensitive attributes [5, 21, 33]. Yan et al. [33] use a clustering
algorithm to form pseudo groups to approximate real protected
groups. Lahoti et al. [21] propose to use an auxiliary module to find
computationally-identifiable regions where model under-performs,
and optimize this worst-case performance. However, these works
are often found to be ineffective in achieving fairness with demo-
graphics [21]. In addition, the groups or regions found by these
approaches may not be related to the sensitive attribute we want to
be fair with. For example, we might want the model to be fair on gen-
der; while the clustering algorithm gives groups of race. Thus, more
efforts need to be taken to address the important and challenging
problem of learning fair models without sensitive attributes.
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Though the sensitive attribute of each data sample is unknown,
we observe that there are usually some non-sensitive features in
the training data that are highly correlated with sensitive attributes,
which can be used to alleviate the bias. Previous works [5, 17] ob-
served that unfairness persists even when sensitive attributes are
not used as input, which indicate that biases are embedded in some
non-sensitive features used for training models. These non-sensitive
features are highly correlated with sensitive attributes, which makes
the model biased. We call such features as Related Features. These
correlations arise from various reasons, such as biases in data col-
lection, or interplay of an underlying physiological difference with
socially determined role perception [4]. For example, Vogel and
Porter [30] find that there exist striking differences in age distribu-
tions across racial/ethnic groups in US prisons. The Hispanic and
black populations have a larger portion of individuals at younger
ages, hence age is correlated with race in this field. In practice, com-
mon sense and prior domain knowledge can help to identify the
related features given that we want to have a fair model on certain
sensitive attributes. In addition, for different sensitive attribute such
as race or gender, we can specify different sets of related features.
With these related features identified, we would be able to alleviate
the fairness issue. One straightforward way is to discard related
features for training a fair model. However, it will also discard
important information for classification. Thus, though promising,
it remains an open question of how to effectively utilize related
features to learn fair models with high classification accuracy.

Therefore, in this paper, we study a novel problem of exploring
related features for learning fair and accurate classifiers without
sensitive attributes. In essence, we are faced with three challenges:
(i) how to utilize these related features to achieve fairness; (ii) how
to achieve an optimal trade-off between accuracy and fairness; (iii)
when given related feature sets contains misidentified features or
are incomplete, how to adjust the usage of them. In an attempt
to solve these challenges, we propose a novel framework Fairness
with Related Features (FairRF). Instead of simply discarding related
features, the basic idea of FairRF is to use the related features as
both features for training the classifier and as pseudo sensitive
attributes to regularize the behavior of it, which help to learn fair
and accurate classifiers. We theoretically show that regularizing
the model using related features can achieve fairness on sensitive
attribute. Furthermore, to balance the classification accuracy and
model fairness, and cope with the case when identified related
attributes are inaccurate and noisy, FairRF can automatically learn
the importance weight of each related feature for regularization in
the model. The main contributions of the paper are as follows:

We study a novel problem of exploring related features to
learn fair classifiers without sensitive attributes;

We theoretically show that by adopting related features to
regularize the model, we can learn fairer classifier;

We propose a novel framework FairRF which can simultane-
ously utilize the related features to learn fair classifiers and
adjust the importance weights of each related feature; and
We conduct extensive experiments on real-world datasets to
demonstrate the effectiveness of the proposed method for
fair classifiers with high classification accuracy.
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2 RELATED WORK

To address the concerns of fairness in machine learning models, a
number of fairness approaches are proposed. They can be gener-
ally split into three categories: (i) individual fairness [9, 20, 22, 36],
which requires the model to give similar prediction to similar indi-
viduals; (ii) group fairness [9, 15, 39], which aims to treat the groups
with different protected sensitive attributes equally; (iii) Max-Min
fairness [16, 21, 38], which tries to maximize the minimum expected
utility across groups. We focus on group fairness in this work.

Extensive works have been conducted to for group fairness-
aware machine learning [3, 9, 15, 21, 23, 36, 39]. Based on the stage
of applying fairness in training, these algorithms can be generally
split into three categories: pre-processing approaches [19, 32, 39], in-
processing approaches [35, 37], and post-processing approaches [15,
27]. Pre-processing approaches modify the training data to reduce
the historical discrimination in the dataset. For instance, the bias
could be eliminated by correcting labels [18, 39], revising attributes
[11, 19], generating non-discriminatory data [28, 32], and obtaining
fair representations [3, 6, 10, 23, 24, 36]. In-processing approaches
revise the training of the state-of-the-art models to achieve fairness.
More specifically, they apply fairness constraints or design a ob-
jective function considering the fairness of predictions [9, 35, 37].
Finally, the post-processing approaches directly change the predic-
tive labels of trained models to obtain fair predictions [15, 27].

Despite their ability in alleviating the bias issues, aforementioned
methods generally require the sensitive attributes of each data sam-
ple available to achieve fairness; while for many real-world appli-
cations, it is difficult to collect sensitive attributes of subjects due
to various reasons such as privacy issues, legal problems and regu-
latory restrictions. The lacking of sensitive attributes of training
data challenges the aforementioned methods [3]. Investigating fair
models without sensitive attributes is important and challenging,
and it is still in its early stage. There are only a few works on this di-
rection [16, 21, 33]. One branch of approaches [16, 21] investigates
fairness without demographics via solving a Max-Min problem. For
instance, Lahoti et al. [21] proposes adversarial reweighted learning
that leverages the notion of computationally-identifiable errors to
achieve Rawlsian Max-Min fairness without sensitive attributes.
However, these methods are only effective for achieving Max-Min
fairness. The other branch [7, 33] addresses this missing sensitive at-
tribute scenario via providing pseudo group splits. For instance, Yan
et al. [33] pre-processes the data via clustering and uses obtained
groups as the proxy. However, the conformity between obtained
groups from these approaches and real protected groups are highly
dependent on data distribution.

The proposed FairRF is inherently different from the aforemen-
tioned approaches: (i) We study a novel problem of exploring
features that are highly related to the unseen sensitive ones for
learning fair and accurate classifiers. Obtaining these features re-
quires just a little prior domain knowledge, and it prevents the diffi-
culty and instability of previous approaches in detecting protected
groups [21, 33]; and (ii) We theoretically show that by regularizing
the model prediction with the related features that are highly cor-
rected with sensitive attributes, we can learn a fair model w.r.t the
sensitive attribute. In addition, our experimental results show that
the given related feature set can be incomplete or noisy.
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3 PROBLEM DEFINITION

Throughout this paper, matrices are written as boldface capital
letters and vectors are denoted as boldface lowercase letters. For
an arbitrary matrix M € R™™, M;; denotes the (i, j)-th entry
of M while m; and m/ mean the i-th row and Jj-th column of M,
respectively. Capital letters in calligraphic math font such as ¥ are
used to denote sets or cost function.

Let X € R™™ be the data matrix with each row x; € RI*™ as an
m-dimensional data instance. We use ¥ = {fi, ..., fm} to denote
the m features and x1, . . ., x™ are the corresponding feature vectors,
where x/ is the Jj-th column of X. Let y € R" be the label vector,
where the i-th element of y, i.e., y;, is the label of x;. Following
existing work on fair machine learning models [21], we focus on
binary classification problem, i.e., y; € {0,1}. Given X and y, we
aim to train a fair classifier with good classification performance.

Extensive studies [17, 21] have revealed that historical data may
include previous discrimination and societal bias on sensitive at-
tribute S such as ages, genders, skin color, and regions. Though
sensitive attributes S are not used as features, i.e., S ¢ ¥, a subset of
none-sensitive features ¥ € F are highly correlated with sensitive
attributes, making machine learning models trained on such data
inherit the bias. For example, in dataset containing US criminal
records [17], racial information is taken as sensitive. Although it is
unseen, trained model could still be unfair as distribution of racial
groups population may be leaked from the distribution of ages [30].

In many real-world applications, sensitive attributes of data sam-
ples are unavailable due to various reasons such as difficulty in
data collection, security or privacy issues. It challenges existing fair
machine leaning approaches that require sensitive attributes of data
samples for fair models. Though sensitive attribute of each data
sample is unknown, since the bias is caused by the subset of features
Fs that are highly correlated with S, s can provide alternative
supervision to learn fair models. Therefore, we aim to explore the
utilization of g to help learn more fair model meanwhile maintain
high classification performance. The problem is defined as:

Problem Definition Given the data matrix X € R, with cor-
responding labels y € R", and a predefined feature subset Fs € F,
where each f; € ¥ called related feature which highly correlates
with the unobserved protected attribute S, e.g., race or gender, learn
a classifier that maintains high accuracy and is fair on S.

Note that we assume Fg € F is given from domain knowledge
or experts. In practice, s can be incomplete and noisy. We design
FairRF that is able to re-weight each f; € g, so that it has the
potential of remaining effective, as shown in experiments.

4 PRELIMINARY THEORETICAL ANALYSIS

In this paper, we adopt Pearson correlation coefficient to measure
the correlation between two variables, defined as below:

Definition 1 (Pearson Correlation Coefficient). Pearson correla-
tion coefficient measures the linear correlation between two random
variables X and Y as:

_B[(X = px) - (Y = py)]
B ox - oy ’

1

XY

where yix is the mean and ox is the standard deviation of X.
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Next, we will show a theorem on the propagation property of
Pearson correlation coefficient, which justifies our motivation of
using Fg to regularize model predictions in the case of absent S.
Below, we first present a rule depicting the relation of three included
angles in space, which is the basis of our proof.

LEMMA 1. Given a unit sphere centered at origin O, A, B and C
are three points on the surface of the sphere. Assume that the angle
AOB = 601 and the angle BOC = 03, then the cosine value of angle
AOC is within: [cos(6; + 02), cos(61 — 02)].

Proor. From Spherical law of cosines [12], we can know that:
@)

where B’ corresponds to the angle opposites B in spherical triangle
ABC. As all angles are in the scale [0, 7], we can directly induce:

cosO3 = cosBicoshs + sinfisinbzcosB’,

cosB3 > cosOicosly — sinbyisinfy = cos(61 + O2)
cos03 < cosO1cos0s + sinfysinfy = cos(61 — 6),

which completes the proof. O

Next, we will show the relationship between Pearson correlation
coefficient and cosine similarity of two variables.

LEMMA 2. Given two random variables X, Y, Pearson correlation
coefficient between them can be calculated as the cosine distance
between x’ andy’, where x’ is an infinite-length vector constructed

by sampling z-score value of X, i.e., x| = Xla;)fx and X; is the i-th

Yi—Hy

sample. Similarly, y; = <=

Proor. This can be easily proven by re-writing the form of
Pearson correlation coefficient as:

CE[(X - px) - (Y = py)] & (X = px) - (Y= py)

pPXY = = lim
ox * 0y n—oo = ox * 0y
n O]
= lim Zx: - y; =cos(x,y’),
n—oo
i=1
which completes the proof. O

With these preparations, we can now turn to our main theorem:

THEOREM 1. Given three random variables {X,Y, Z}, with corre-
lation coefficient px y = cosa and py z = cosf, a, p € [0, 7], then
px.z is within [cos(a + f), cos(a — f)].

ProoF. The proof can be developed via the following steps:

(1) Cosine similarity between x” and y’ shows the cosine value of
included angle between them. Hence, based on Lemma 2, we
can learn that the cosine of angle between x” and y’ is cos(«@)
and that of angle between y’ and z’ is cos(ff) from the given
correlation coefficients.

(2) x’,y’, 2’ can be taken as line OA, OB, OC in Lemma 1 respec-
tively. Hence, utilizing Lemma 1, we could induce that the cosine
value of angle y between x and z should fall within the scale
[cos(a + ), cos(a — PB)].

(3) Finally, based on Lemma2, we can map the cosine value of angle
y back into correlation coefficient between X and Z.

After these steps, we can obtain that px 7z = cos(x’,z") € [cos(a +
B), cos(a — )] and finish the proof. O
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Figure 1: An illustration of the proposed framework FairRF.
In Fairness Constraint block, A; controls the importance of
regularization on i-th feature of 5. A is dynamically up-
dated, reducing prior domain knowledge required.

Basing on theorem 1, we can show how the constraint of cor-
relation scale is propagated from Fg to S in Theorem 2, which
theoretically proves our idea.

THEOREM 2. Let f and S represent an input feature and sensitive
attribute, respectively. Let §j denotes the variable of model’s prediction.
Assume that f is highly correlated with S, i.e., py s is larger than a
positive constant cosa. If the model is trained to make pf,y nearO, ie,
within [cos(%n' +0), COS(%IZ’ — 8)], where § is close to 0, then ps 3
would be within [COS(%H +d+a), cos(%n’ -d-a)l.

Theorem 2 can be easily proved based on Theorem 1. From
it, we can see that when cosa ~ 1and § ~ 0, ps 3 would also
approximate 0. In this way, the prediction would be insensitive
towards S, achieving fairness w.r.t sensitive attribute S.

We can extend Theorem 2 to the case of utilizing multiple re-
lated features simultaneously. For a set of related features 5 =
{fi, f2» .., fc'}, assume their correlation coefficient with S in the
form of {cosa, cosay, ..., cosag }, and with Y in the range of [COS(%H’+
), cos(%n —8)]. Then Psy would fall upon the intersections of
their resulting value space, which can be written as:

1 1
Psy € [cos(§n+5+amin),cos(57r—5—amin)]. (5)

where ap,ipn is the smallest value in {@1, @2, ..., ag }. Note that this
range is usually not tight, and high divergence within s would
often restrict the range of p¢ y more.

5 METHODOLOGY

In this section, we present the details of the proposed framework
FairRF. The basic idea is using the regularization on correlated fea-
tures ¥ as the surrogate fairness objective. With the motivation
theoretically justified in Sec 4, an illustration of FairRF is shown
in Figure 1. It is composed of three parts: (i) a base classifier gg(-)
which predicts its label §; given data sample x;; (ii) a covariance reg-
ularizer which constrains correlation between g and ¢ to achieve
fairness; and (iii) an importance learning module which adjusts
importance score A; of each related feature f; € Fs. Next, we
introduce each component in detail.

5.1 Base Classifier

The proposed FairRF is flexible to use various classifiers as backbone
such as neural networks, logistic regression and SVM. Without loss
of generality, we use gg(-) to denote the base classifier, where 6
is the set of parameters of the base classifier. Following existing
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work on fairness [21], we consider binary classification. We leave
the extension to multi-class classification as future work. For a data
sample x;, the predicted probability of x; having label 1 is

i = go(xi) (6)

Then the binary cross entropy loss for training the classifier gg(+)
can be written as

n
min Loig = ) ~yiloggi = (1-y)log=4i)  (7)
i=1

where y; € {0, 1} is the label of x;.

Generally, the well trained model is good at classification. How-
ever, as shown in previous studies [3, 39], the obtained model could
make unfair predictions because spurious correlation may exist
in the training data between sensitive attributes and labels due to
societal bias. Though various efforts have been taken to mitigate
the bias [9, 15, 35], most of them require knowing the sensitive at-
tributes. With the sensitive attributes unknown, to learn fair models,
we propose to regularize the predictions using the related features
Fs that are highly correlated with S, which will be introduced next.

5.2 Exploring Related Features for Fairness

If the sensitive attribute s; of each data sample x; is known, we can
adopt s; to achieve fairness of the classification model by making
the prediction independent of the sensitive attributes [9, 35]. Let
s € R™1 be the sensitive attribute vector with the i-th element
of s, i.e., si, as the sensitive attribute of x;. Similarly, let y € R™1
be the predictions with the i-th element being the prediction for
x;. Following the design in [7, 35], the pursuit of non-dependence
between prediction § and sensitive attribute s can be achieved
through minimizing the correlation score between them, which can
be mathematically written as:

minR(s, ) = |;(5i = ) (Gi = pg) ®)

where pis and 15 are the mean of s and ¥, respectively. Note that we
set constraints directly on the correlation score instead of correla-
tion coefficient, but it can be seen from Eq.1 that it only differs from
correlation coefficient by a constant multiplier o5 - o5. Constraining
the scale of this regularization term, s and § would be encouraged
to have no statistical correlation with each other.

However, as sensitive attribute s is unavailable in our problem,
directly adopting the above regularization is impossible. Fortunately,
from Theorem 2, we can see that if we have a set of non-sensitive
features Fs, with each feature f; € 75, i, X/, having high cor-
relation with s, then reducing the correlation between x/ with y
can indirectly reduce the correlation between s and y, which helps
to achieve fairness, even though s is unknown. Hence, in FairRF,
we apply correlation regularization on each feature f; € s, in
the purpose of making trained model fair towards S. Without loss

of generality, let the set of features in Fg be {f1,..., fx}, where
1 < K < m. The regularization term is written as
min Ryelared = O Aj - RO, ), 9
g |relate j=1"7
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where A; is the weight for regularizing correlation coefficient be-
tween x/ and §. R(x/, §) is given as
n
RO, 9) = | D (X = ) G~ 1g) (10)
i=1
where i, is the mean of x/.

Generally, if the correlation between x/ and s is large, we would
prefer large A; to enforce R(x/,¥) to be close to 0, which can better
reduce the correlation between s and ¥, resulting in a more fair
classifier. If the correlation between x/ and s is not that large, a small
Aj is preferred because under such case, making ‘R(xj ,¥) close to 0
doesn’t help much in making s and y independent, but may instead
introduce large noise in label prediction. Domain knowledge would
be helpful in setting ;.

5.3 Learning Importance of Related Features

One limitation of this approach is the requirement of pre-defined
A. This information provides prior knowledge and is important
for the success of the proposed proxy regularization. However, in
real-world applications, it is difficult to get accurate values, and s
could be inaccurate. In addition, A; is also important in balancing
the contribution of f; in model prediction and fairness. Larger A; will
result in the independence between x/ and y, making f; contributes
little in model prediction. Hence, in this section, we propose to learn
A, allowing the model to automatically adjust its value.
Specifically, before learning, each related weight 4; is initialized
to a pre-defined value A%, which serves as an inaccurate estimation
of its importance. Then, during training, the value of A will be
optimized along with model parameters iteratively. As no other
information is available, we update A by minimizing the total regu-
larization loss, based on the intuition that an ideal surrogate correla-
tion regularization should be achieved without causing significant
performance drop. We limit the range of A as [0, 1], and the full
optimization objective function can be written as follows:

. K - K
min Lc,sm.zj:laj.vz(xf,y) st A =0,Yf € Fs; ZFlAj =1

(11)
where 7 sets the weights of regularization term, and 6 is the set of
parameters of the classifier.

Eq.(11) can lead to a trivial solution, i.e., to minimize the cost
function, it tends to set A; corresponding to the smallest R(x/,¥)
to 1 and others to 0. To alleviate this issue, we add ||A||§ to penalize
Aj being close to 1. Thus, The final objective function of FairRF is

. K R
min Log+n- Y AR $) + BlIAIS
0.1 Jj=1 (12)
K
s.t. /1]' > O,ij € Fs; Zj:lllj =1

where f is used to control the contribution of ||A||§.

6 OPTIMIZATION ALGORITHM

The objective function in Eq.(12) is constrained optimization, which
is difficult to be optimized directly. We take the alternating direction
optimization [14] strategy to update 6 and A iteratively. The basic
idea is to update one variable with the other one fixed at each step,
which can ease the optimization process. Next, we give the details.
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Update 6. To optimize 6, we fix A and remove terms that are
irrelevant to 8, which arrives at

. K I o~
min Lo +n), 4 RGY)

This is a non-constrained cost function, and we can directly apply
gradient descent to learn 6.

UPDATE A. Then, given 0 at the current step, A can be obtained
through solving the following optimization problem:

K .
_ . . Jj 2
A —arg/{nm E j:1A] R(x!,9) + BlIAlS,

(13)

. (19
st. —Aj <0,Vfj € Fs; ijl/lj ~1=0
It is a convex primal problem, and strong duality holds as it follows
Slater’s condition. For simplicity of notation, we use R to represent
R(x/,¥). Then, we can solve this problem using Karush-Kuhn-
Tucker(KKT) [25] conditions as:
Rj+2B-Aj—uj+0v=0, Vj; (stationary)
uj - Aj =0, Vj; (complementary slackness)
Aj =20 Vj; 25{:1 Aj = 1; (primal feasibility)
uj 20 Vj.

(15)

In the above equation, u and v are Lagrange multipliers. From the
stationary condition, we can get:

e R ok (16)
j= 2 F j=1...,
Eliminating u using complementary slackness, we have:
).j=0, ifuj=v+7€j20;
—0—-R; .
Aj:Tﬂj’ lfuj:(); (17)
;. Ky, _
Aj=0 Vj; Zj/lj—l
From this condition, we know that 1; = max{0, _Z;Rj }. Since

25(: 1 Aj =1, 0 can be computed via solving the following equation:

Zjil max{0, —v — R;} = 2f. (18)

Solving the above equation can be done as follows: we first rank R ;
in descending order as ‘R;., ie., 7(1’»71 > R]’., Assume that v is within

[-R,_,, —R]]. then the above equation is reduced to
K ’

Zj:l—v—Rj—z-ﬁ (19)

Then, we have
AR
R P — 20
K-1+1 (20)
2.+ K R’

Ifo = —% € [—Rl’_l, —‘Rl’], it is a valid solution; otherwise,

it is invalid. We do this for every interval and find v. With v learned,

we can calculate A as:

-0 - R;
2-p

Training Algorithm. With the updating rules above, the full

pipeline of the training algorithm for FairRF can be summarized in
Algorithm 1 in the supplementary material.

Aj = max{0,

} (1)
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7 EXPERIMENT

In this section, we conduct experiments to evaluate the effectiveness
of the proposed FairRF in terms of both fairness and classification
performance when sensitive attributes are unavailable. In particular,
we aim to answer the following research questions:

e RQ1 Can the proposed FairRF achieve fairness without sensitive
attributes while maintain high accuracy?

o RQ2 How would FairRF perform when the provided s contains
misidentified related features or is incomplete?

e RQ3 How would different choices of hyper-parameters influence
the performance of FairRF?

7.1 Datasets

We conduct experiments on three publicly available benchmark
datasets, including Adult [1], COMPAS [17] and LSAC [31].

o ADULT!: It contains 45, 221 records of personal yearly income,
with binary label indicating if the yearly salary is over or under
$50K. Gender is considered as sensitive attribute. and we select
age, relation and marital status as Fs.

o COMPAS?: This dataset assesses the possibility of recidivism
within a certain future, containing 11, 750 criminal records col-
lected in US.The race of each defendant is the sensitive attribute.
In constructing ¥, score, decile text and sex are selected.

e LSAC3: It contains 65, 307 admissions data from 25 law schools
in US over the 2005, 2006, and 2007 admission cycles. Labels
indicate whether each candidate successfully pass the bar exam
or not, and their gender information is considered as sensitive.
For this dataset, we use race, year and residence as Fs.

We make the train:eval:test splits as 5 : 2 : 3. Note that for all
three datasets, features in Fs are selected following existing analysis or
prior domain knowledge. For example, in COMPAS, biases towards
race have been found to exist in score and decile text [17]. The
correlation between race and gender is also from reports by U.S.
Bureau of Justice Statistics(B]S). Since race is the sensitive attribute
of the dataset, we include score, decile text and gender in Fs.

7.2 Experimental Settings

7.2.1 Baselines. To evaluate the effectiveness of FairRF, we first
compare it with the vanilla model and sensitive-attribute-aware
model, which can be treated as the lower and upper bound of our
model’s performance:

e Vanilla model: It directly uses the base classifier without any
regularization terms. It is used to show the performance without
fairness-assuring algorithm taken.

e ConstrainS: In this baseline, we assume that the sensitive at-
tribute of each data sample is known. We add the correlation
regularization between sensitive attribute vector s and model
output y, ie., R(s,y). It sets a reference point for the performance
of the proposed framework. Note that for all the other baselines
and our model, s is unknown.

We also include following representative approaches in fair learning
without sensitive attributes as baselines:

!https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
Zhttps://github.com/propublica/compas-analysis
3http://www.seaphe.org/databases.php
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Table 1: Comparison of different approaches on ADULT.

Methods ACC Aro App

Vanilla 0.856 +£ 0.001  0.046 + 0.006  0.089 + 0.005
ConstrainS | 0.845 +0.002  0.040 +£0.004  0.058 + 0.003
ARL 0.861 +£0.003  0.034 +£0.012 0.141 + 0.008
KSMOTE 0.560 + 0.002  0.141 +£0.031  0.120 = 0.022
RemoveR 0.801 +£0.010  0.124 +£0.004 0.071 + 0.002
FairRF 0.832 +£0.001 0.025 +£0.009 0.066 + 0.004

Table 2: Comparison of different approaches on COMPAS

Methods ACC AEo App

Vanilla 0.681+£0.004 0.242+0.021  0.171 £ 0.015
ConstrainS | 0.674 £ 0.002  0.154 +£0.032  0.122 + 0.031
ARL 0.672£0.023  0.197 £0.042  0.286 + 0.033
KSMOTE 0.601 +£0.021  0.203 +£0.042  0.151 +0.023
RemoveR 0.595+0.024 0.205+0.049 0.185+0.024
FairRF 0.661 +£0.009 0.166 + 0.022 0.143 + 0.021

Table 3: Comparison of different approaches on LSAC.

Methods ACC Ago App

Vanilla 0.805 + 0.001 0.042 £ 0.007 0.016 + 0.004
ConstrainS | 0.801 + 0.001 0.014 £ 0.007  0.004 + 0.002
ARL 0.811 £ 0.005 0.029 £ 0.029 0.022 +0.013
KSMOTE 0.722 £ 0.012  0.028 £ 0.062  0.012 + 0.041
RemoveR 0.763 £ 0.002 0.037 £0.024 0.015 + 0.006
FairRF 0.796 £ 0.002  0.023 +£0.008 0.007 + 0.004

e KSMOTE [33]: It performs clustering to obtain pseudo groups,
and use them as substitute. The model is regularized to be fair
with respect to those pseudo groups.

e RemoveR: This method directly removes all candidate related
features, i.e., F5. We design this baseline in order to validate the
benefits of our proposed method in regularizing related features.

e ARL [21] It follows Rawlsian principle of Max-Min welfare for
distributive justice. It optimizes model’s performance through
re-weighting regions detected by an adversarial model.

Note that the fairness formulation of ARL is different from the
group fairness we focus on. ARL [21] is inefficient in obtaining de-
mographic fairness by design, which is also verified by our experi-
ments. Although not working on the same fairness definition, we
still include it as one baseline for completeness of the experiment.

7.2.2  Configurations. For KSMOTE, we directly use the code pro-
vided by [33]. For all other approaches, we implement a multi-layer
perceptron (MLP) network with three layers as the backbone clas-
sifier. The two hidden dimensions are 64 and 32. Adam optimizer is
adopted to train the model, with initial learning rate as 0.001.

7.2.3  Evaluation Metrics. To measure the fairness, following ex-
isting work on fair models [29, 33], we adopt two widely used
evaluation metrics, i.e., equal opportunity and demographic parity,
which are defined as follows:

Equal Opportunity [26] Equal opportunity requires that the prob-
ability of positive instances with arbitrary protected attributes i, j
being assigned to a positive outcome are equal:

E(G|S=Ly=1)=E@|S=jy=1), (22)
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where g is the output of model gy, representing the probability of
being predicted as positive. In the experiments, we report difference
in equal opportunity(Agp):

Apo=IE(f[S=iy=1)-E@[S=jy=1)]

Demographic Parity [26] Demographic parity requires the be-
havior of prediction model to be fair on different sensitive groups.
Concretely, it requires that the positive rate across sensitive at-
tributes are equal:

E@|S=0)=E@I|S=j)Vij

(23)

(24)

Similarly, in the experiment, we report the difference in demo-
graphic parity(App):

App=I[E(g|S=1)-E@|S=j)l

Equal opportunity and demographic parity measure the fairness
from different perspectives. Equal opportunity requires similar
performance across protected groups, while demographic parity is
more focused on fair demographics. The smaller Agp and App are,
the more fair a model is. Furthermore, to measure the classification
performance, accuracy (ACC) is also reported.

(25)

7.3 Classification Performance Comparison

To answer RQ1, we fix the base classifier as MLP and conduct
classification on all three datasets. For all the baselines, the hyper-
parameters are tuned via grid search on the validation dataset. In
particular, for FairRF, f is set to 0.5 on ADULT, 0.8 on COMPAS,
and 1.0 on LSAC. n is set as 0.15 for COMPAS and 0.3 for other
two datasets. More details on the hyperparameters sensitivity will
be discussed in Sec 7.5. Each experiment is conducted 5 times and
the average performance in terms of accuracy, Agp and App with
standard deviation are reported in Table 1, Table 2 and Table 3.
From the tables, we make the following observations:

e Constraining related features can help the model to perform
fairer on sensitive groups. For example, compared with vanilla
approach in which no fair-learning techniques are applied, FairRF
shows a clear improvement w.r.t Equal Opportunity and Demo-
graphic Parity across all three datasets;

e FairRF improves the fairness without causing significant per-
formance drop, and works stably. No pre-computed clusters are
required, and it does not involve training an adversarial model,
hence FairRF can get results with less deviation compared to ARL
and KSMOTE;

o Compared with baselines without sensitive attribute, FairRF is ef-
fective for both two fairness metrics; while other approaches such
as ARL is able to improve on “equal opportunity”, but the perfor-
mance would drop w.r.t “demographic parity”. This is because
FairRF is able to learn A; to balance the fairness and accuracy.

7.4 Impact of the Quality of 75 on FairRF

In this section, we conduct experiment to investigate the impact of
the quality of s on the performance of FairRF to answer RQ2. In
particular, we consider the following variants of FairRF:

e Random: We randomly select five sets of Fs with the same

number of attributes as FairRF. Average results are reported. We
use it to show the influence of prior knowledge.
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Table 4: Comparison of different strategies in selecting re-
lated features on ADULT.

l Methods ACC AEo App ‘
Vanilla 0.856+0.001 0.046+0.006 0.089+0.005
Random 0.830+0.001 0.041+0.012 0.057+£0.007
Top-1 0.830+0.002 0.029+0.008 0.067 +0.002
ConstrainAll 0.835+0.001 0.035+0.005 0.068+0.003
Noisy 0.834+0.002 0.030+0.011 0.068+0.006
Fix-A 0.822+0.002 0.065+0.007 0.057+£0.004
FairRF 0.832+0.001 0.025+0.009 0.066+0.004

Table 5: Comparison of different strategies in selecting re-
lated features on COMPAS.

| Methods | ACC Aro App |
Vanilla 0.681+0.004 0.242+0.021 0.171+0.015
Random 0.637+0.006 0.226+0.028 0.161+0.016
Top-1 0.648+0.007 0.183+0.016 0.164+0.013
ConstrainAll 0.651+0.004 0.235+0.012 0.168+0.008
Noisy 0.653+0.006 0.219+0.023 0.154+0.019
Fix-A 0.631+0.011 0.256+0.025 0.159+0.018
FairRF 0.661+0.009 0.166+0.022 0.143+0.021

o Fix-A: The same J; is adopted for all related features, and its value
is not automatically updated during training. Selected related
features are exactly the same as those chosen in FairRF.

e Top-1: It uses only the most-effective related features. We test all
candidates and select the one that achieves highest performance
when used as related feature, and report its performance.

e ConstrainAll: It includes all features in Fg, i.e., all features are
treated as related features. This is used to show if noisy features
are included or no prior knowledge about related feature is given,
FairRF can still work. We also learn A for this variant.

e Noisy: Its contains features randomly sampled from both ¥g and
non-related attributes. In implementation, we randomly replace
one attribute in 5 with non-related ones.

For all these baselines, hyper-parameters are found via grid search,
and experiments are conducted for 5 times randomly. From Table 4
and 5, we can make following observations:

e FairRF can still bring improvements when g is inaccurate. The
variant Noisy is shown to be effective across ADULT and COM-
PAS datasets.

e In the extreme case that no prior knowledge is available, FairRF
still has potentials on fairness metrics compared with vanilla
model, as shown by Random and ConstrainAll It again shows
that FairRF can cope with little domain knowledge scenario.

o FairRF benefits from automatically learning the importance of
each given related attribute. Compared with Fix-A, FairRF shows
a much stronger fairness in terms of equal opportunity, and
achieves better accuracy at the same time.

o FairRF shows a moderate improvement compared with Top-1.
However, Top-1 requires careful selection of the most effective
related feature, while FairRF can achieve better performance with
less prior domain knowledge;

Due to space limitation, we only report the results on ADULT and
COMPAS, but similar observations can be made on LSAC.
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Table 6: Examples of learned A on a set of selected related
attributes. p. y represents its correlation with class label, and
p.s is the correlation with sensitive attributes S.

ADULT COMPAS
Attr py ps A Attr py ps A
Age 0.09 0.05 0.51 Sex 0.11 0.07 0.27
Workclass 0.11 0.14 0.49 Score 0.31 0.27 0.00
Relation 0.41 0.58 0.00 | Decile 0.25 0.24 0.21
Education 0.18 0.06 0.00 | Duration 0.02 0.30 0.52

7.5 Parameter Sensitivity Analysis

In this subsection, we analyze the sensitivity of FairRF on hyper-
parameters 1 and .  controls the importance of coefficient reg-
ularization term, and f can adjust the distribution of learned A.
We vary n as {0.2,0.25,0.3,0.35,0.4} and f§ as {0.4,0.5,0.6,0.7,0.8}.
Other settings are the same as FairRF. This experiment is performed
on ADULT, with results shown in Figure 2. From the figure, we
can observe that: (i) Larger n will achieve fairer predictions, but
may also cause severe drop in accuracy when it is larger than some
thresholds; (ii) Generally, smaller f requires larger 7 to achieve
fairness. Small f allows learned A to be sparse. As a result, a large
portion of coefficient regularization term could be enforced on less-
discriminative attributes that are less-related at the same time; and
(iii) B encourages learned A to be uniform, resulting a faster drop
in accuracy when 5 goes large. These observations could help to
find suitable hyper-parameter choices in other applications.

7.6 Case Study on A

In this subsection, we conduct case studies to analyze the behav-
ior of FairRF in learning A, i.e., the weights of related attributes.
Specifically, we calculate the ground-truth correlation between the
sensitive attribute S and others are computed, and a set of attributes
with varying range of correlation coefficient magnitudes are se-
lected as Fs. n and f are set using grid search to make sure that
fairness is obtained without significant drop in accuracy.We report
the distribution of learned A. Results on ADULT and COMPAS are
shown in Table 6. From the result, we can observe

o FairRF tends to assign higher weight to features that have high
correlation with S but small correlation with Y. For example, the
correlation of “Duration” with label is 0.02 and with S is 0.30,
FairRF assigns 0.52 to the feature. This is because such features
have little effect on model accuracy but introduce a lot of bias.
Assigning a large weight can help achieve fairness with marginal
affects on performance;

0.7

. b)Apo .
Figure 2: Parameter Sensitivity on ADULT
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e On the contrary, when a feature f; has high correlation with Y,
FairRF tends to assign smaller number to A; even if the correlation
of the feature with S is large. For example, FairRF assigns 0 to
“Relation”. This is because when a feature has high correlation
with label, it is important for model prediction. A large weight
on fairness regularizer will significantly reduce the accuracy.

These observations further demonstrate that by learning A, FairRF
can balance the accuracy and fairness.

7.7 Flexibility of FairRF to Various Backbones

In the above experiment, we fix the base classifier as MLP. In this
section, we investigate if FairRF can also benefit various classifiers
to achieve fairness while maintaining high accuracy when the
sensitive attributes are unknown. Specifically, we also adopt two
other widely-used classifiers as the base classifiers of FairRF, i.e.,
Linear Regression (LR) and Support Vector Machine (SVM). The
details of experimental setting and results are given in Supplementary
Material. For both models, we find that FairRF only scarifies a
little bit of accuracy while significantly improves the fairness. For
example, by adding FairRF to LR, Agp drops by 58.5% while the
accuracy only drops by 2%.

8 CONCLUSION

In this paper, we study a novel and challenging problem of explor-
ing related features for learning fair and accurate classifiers without
knowing the sensitive attribute of each data sample. We propose a
new framework FairRF which utilizes the related features as pseudo
sensitive attribute to regularize the model prediction. Our theoreti-
cal analysis shows that if the related features are highly correlated
with the sensitive attribute, by minimizing the correlation between
the related features and model’s prediction, we can learn a fair clas-
sifier with respect to the sensitive attribute. Since we lack the prior
knowledge of the importance of each related feature, we design a
mechanism for the model to automatically learn the importance
weight of each feature to trade-off their contribution on classifi-
cation accuracy and fairness. Experiments on real-world datasets
show that the proposed approach is able to achieve more fair per-
formance compared to existing approaches while maintain high
classification accuracy when no sensitive attributes are known.
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Table 7: Effectiveness of FairRF with various base classifiers

on ADULT dataset.
l Method ‘ ACC Ago App
LR 0.832+0.004 0.053+0.003 0.125+0.005
FairRF(LR) 0.815+0.008 0.022+0.009 0.072+0.014
SVM 0.775+0.013 0.083+0.008 0.117+0.013
FairRF(SVM) | 0.775+0.015 0.031+0.017 0.056+0.024
MLP 0.856+0.001 0.046+0.006 0.089=+0.005
FairRF(MLP) 0.832+0.001 0.025+0.009 0.066=+0.004

Table 8: Evaluate effectiveness

classifiers on COMPAS.

of FairRF on different base

l Method ‘ ACC Aro App ‘
LR 0.678+0.002 0.215+0.033 0.198+0.026
FairRF(LR) 0.671+0.001 0.201+0.011 0.146+0.008
SVM 0.664+0.013 0.241+0.006 0.151+0.008
FairRF(SVM) | 0.661+0.008 0.162+0.008 0.134+0.013
MLP 0.681+0.004 0.242+0.021 0.171+0.015
FairRF(MLP) 0.661+0.009 0.166+0.022 0.143+0.021

Algorithm 1 Training Algorithm of FairRF

Input: X € R™™ y ¢ R™1 7¢
Output: classifier parameters 6

end for

end for

R A T A

_
= o

end if
: end while

_ e e
W

: while Not Converged do
for step in MODEL_TRAIN_STEP do
Update 0 based on Equation 11;

: return Trained classifier 6.

if Require learning weight then _
Obtain R; for each related feature x/;
Calculate v and A based on Eq.(18) to Eq.(21);

: Randomly initialize 0; Initialize all entries in A as Il(;
: for batch in (X, Y) do
Update 0 based on classification loss of current batch;

A

TRAINING ALGORITHM

With the updating rules introduced in Section 6, the full pipeline
of the training algorithm for FairRF can be summarized in Algo-
rithm 1. Before adding the regularization, we first pre-train the
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model to converge at a good start point in line 3 in order to prevent
correlation constraint from providing noisy signals. Then, from line
5 to line 13, we fine-tune the model to be fair w.r.t related features.
If not refining related weights, A will stay fixed. Otherwise, it will
be updated iteratively with parameter 6, as shown from line 9 to
12.

B IMPLEMENTATION ON DIFFERENT BASE
MODEL

In the experiments of main paper, we fix the base classifier as MLP.
In this section, we present the incorporation of FairRF into various
machine learning models to achieve fairness while maintain high
accuracy when the sensitive attributes are unknown. Specifically,
in addition to MLP, we also adopt two other widely-used classifiers
as the base classifiers of FairRF, i.e., Linear Regression (LR) and
Support Vector Machine (SVM). We implement both of them in
a gradient-based manner. so that parameters can be optimized
alternatively with the regularization term on related features, as in
Algorithm 1.

Concretely, we tune the hyperparameters on the validation set. 5
is fixed to 0.4, and f is set to 0.4 and 0.6 for LR and SVM, respectively.
Adam optimizer is adopted to train them, with the initial learning
rate as 0.001. Each experiment is conducted for 5 times, and average
results on ADULT and COMPAS are reported in Table 7 and 8,
respectively.

From the table, we observe that

o Compared with the base classifiers, integrating FairRF makes the
accuracy drops a little bit, which is in consistent with observa-
tions in other work on fair models [33] as the fairness regularizer
usually drops the accuracy. However, the accuracy decrease is
marginal. For example, for LR, the accuracy only drops by 2%,

which shows that we are still able to maintain high accuracy;
e Though the accuracy drops alittle bit, the fairness in terms of Agp

and App on three models improves significantly, even though the

sensitive attributes are not observed. For instance, for LR, with

the FairRF framework, Agp drops by 58.5% while the accuracy

only drops by 2%. In other words, we scarify a little bit of accuracy

while significantly improves the fairness.

These observations show that FairRF can benefit various ma-
chine learning models to achieve fairness while maintaining high
accuracy when the sensitive attributes are unknown
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