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ABSTRACT
Despite the rapid development and great success of machine learn-

ing models, extensive studies have exposed their disadvantage of

inheriting latent discrimination and societal bias from the train-

ing data. This phenomenon hinders their adoption on high-stake

applications. Thus, many efforts have been taken for developing

fair machine learning models. Most of them require that sensitive

attributes are available during training to learn fair models. How-

ever, in many real-world applications, it is usually infeasible to

obtain the sensitive attributes due to privacy or legal issues, which

challenges existing fair-ensuring strategies. Though the sensitive

attribute of each data sample is unknown, we observe that there

are usually some non-sensitive features in the training data that

are highly correlated with sensitive attributes, which can be used

to alleviate the bias. Therefore, in this paper, we study a novel prob-

lem of exploring features that are highly correlated with sensitive

attributes for learning fair and accurate classifiers. We theoretically

show that by minimizing the correlation between these related

features and model prediction, we can learn a fair classifier. Based

on this motivation, we propose a novel framework which simul-

taneously uses these related features for accurate prediction and

enforces fairness. In addition, the model can dynamically adjust the

regularization weight of each related feature to balance its contribu-

tion on model classification and fairness. Experimental results on

real-world datasets demonstrate the effectiveness of the proposed

model for learning fair models with high classification accuracy.
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1 INTRODUCTION
With the great improvement in performance, modern machine

learning models are becoming increasingly popular and are widely

used in decision-making systems such as medical diagnosis [2]

and credit scoring [8]. Despite their great successes, extensive stud-

ies [13, 26, 34] have revealed that training data may include patterns

of previous discrimination and societal bias. Machine learning mod-

els trained on such data can inherit the bias on sensitive attributes

such as ages, genders, skin color, and regions [3, 9, 15]. For example,

a study found strong unfairness exists in a Criminal Prediction sys-

tem used to assess a criminal defendant’s likelihood of becoming

a recidivist [17]. The system shows a strong bias towards people

with color, tending to predict them as recidivist even when they are

not. Thus, hidden biases in a machine learning model could cause

severe fairness problems, which raises concerns on their real-world

applications, especially in high-stake scenarios.

Various efforts [11, 18, 28, 35] have been taken to address the

fairness issue of current machine learning models. For example, [11,

19] pre-process the data to remove discrimination in training. [9, 35]

design special regularization terms to ensure that the prediction

output is insensitive w.r.t sensitive attributes. And [15, 27] post-

process prediction results on instances of unfair classes. Despite

their superior performance, all the aforementioned approaches

require that sensitive attributes are available for removing bias.

However, for many real-world applications, it is difficult to obtain

sensitive attributes of each data sample due to various reasons such

as privacy and legal issues, or difficulties in data collection [5, 21].

Tackling fairness issue without sensitive attributes available

is challenging as we lack supervision to preprocess the training

data, regularize the model or post-process the predictions. There

are only very few initial efforts on learning fair classifiers with-

out sensitive attributes [5, 21, 33]. Yan et al. [33] use a clustering

algorithm to form pseudo groups to approximate real protected

groups. Lahoti et al. [21] propose to use an auxiliary module to find

computationally-identifiable regions where model under-performs,

and optimize this worst-case performance. However, these works

are often found to be ineffective in achieving fairness with demo-

graphics [21]. In addition, the groups or regions found by these

approaches may not be related to the sensitive attribute we want to

be fair with. For example, wemight want themodel to be fair on gen-
der ; while the clustering algorithm gives groups of race. Thus, more

efforts need to be taken to address the important and challenging

problem of learning fair models without sensitive attributes.
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Though the sensitive attribute of each data sample is unknown,

we observe that there are usually some non-sensitive features in
the training data that are highly correlated with sensitive attributes,
which can be used to alleviate the bias. Previous works [5, 17] ob-
served that unfairness persists even when sensitive attributes are

not used as input, which indicate that biases are embedded in some

non-sensitive features used for trainingmodels. These non-sensitive

features are highly correlatedwith sensitive attributes, whichmakes

the model biased. We call such features as Related Features. These
correlations arise from various reasons, such as biases in data col-

lection, or interplay of an underlying physiological difference with

socially determined role perception [4]. For example, Vogel and

Porter [30] find that there exist striking differences in age distribu-

tions across racial/ethnic groups in US prisons. The Hispanic and

black populations have a larger portion of individuals at younger

ages, hence age is correlated with race in this field. In practice, com-

mon sense and prior domain knowledge can help to identify the

related features given that we want to have a fair model on certain

sensitive attributes. In addition, for different sensitive attribute such

as race or gender, we can specify different sets of related features.

With these related features identified, we would be able to alleviate

the fairness issue. One straightforward way is to discard related

features for training a fair model. However, it will also discard

important information for classification. Thus, though promising,

it remains an open question of how to effectively utilize related

features to learn fair models with high classification accuracy.

Therefore, in this paper, we study a novel problem of exploring

related features for learning fair and accurate classifiers without

sensitive attributes. In essence, we are faced with three challenges:

(i) how to utilize these related features to achieve fairness; (ii) how

to achieve an optimal trade-off between accuracy and fairness; (iii)

when given related feature sets contains misidentified features or

are incomplete, how to adjust the usage of them. In an attempt

to solve these challenges, we propose a novel framework Fairness

with Related Features (FairRF). Instead of simply discarding related

features, the basic idea of FairRF is to use the related features as

both features for training the classifier and as pseudo sensitive

attributes to regularize the behavior of it, which help to learn fair

and accurate classifiers. We theoretically show that regularizing

the model using related features can achieve fairness on sensitive

attribute. Furthermore, to balance the classification accuracy and

model fairness, and cope with the case when identified related

attributes are inaccurate and noisy, FairRF can automatically learn

the importance weight of each related feature for regularization in

the model. The main contributions of the paper are as follows:

• We study a novel problem of exploring related features to

learn fair classifiers without sensitive attributes;

• We theoretically show that by adopting related features to

regularize the model, we can learn fairer classifier;

• We propose a novel framework FairRF which can simultane-

ously utilize the related features to learn fair classifiers and

adjust the importance weights of each related feature; and

• We conduct extensive experiments on real-world datasets to

demonstrate the effectiveness of the proposed method for

fair classifiers with high classification accuracy.

2 RELATED WORK
To address the concerns of fairness in machine learning models, a

number of fairness approaches are proposed. They can be gener-

ally split into three categories: (i) individual fairness [9, 20, 22, 36],

which requires the model to give similar prediction to similar indi-

viduals; (ii) group fairness [9, 15, 39], which aims to treat the groups

with different protected sensitive attributes equally; (iii) Max-Min

fairness [16, 21, 38], which tries to maximize the minimum expected

utility across groups. We focus on group fairness in this work.

Extensive works have been conducted to for group fairness-

aware machine learning [3, 9, 15, 21, 23, 36, 39]. Based on the stage

of applying fairness in training, these algorithms can be generally

split into three categories: pre-processing approaches [19, 32, 39], in-

processing approaches [35, 37], and post-processing approaches [15,

27]. Pre-processing approaches modify the training data to reduce

the historical discrimination in the dataset. For instance, the bias

could be eliminated by correcting labels [18, 39], revising attributes

[11, 19], generating non-discriminatory data [28, 32], and obtaining

fair representations [3, 6, 10, 23, 24, 36]. In-processing approaches

revise the training of the state-of-the-art models to achieve fairness.

More specifically, they apply fairness constraints or design a ob-

jective function considering the fairness of predictions [9, 35, 37].

Finally, the post-processing approaches directly change the predic-

tive labels of trained models to obtain fair predictions [15, 27].

Despite their ability in alleviating the bias issues, aforementioned

methods generally require the sensitive attributes of each data sam-

ple available to achieve fairness; while for many real-world appli-

cations, it is difficult to collect sensitive attributes of subjects due

to various reasons such as privacy issues, legal problems and regu-

latory restrictions. The lacking of sensitive attributes of training

data challenges the aforementioned methods [3]. Investigating fair

models without sensitive attributes is important and challenging,

and it is still in its early stage. There are only a few works on this di-

rection [16, 21, 33]. One branch of approaches [16, 21] investigates

fairness without demographics via solving a Max-Min problem. For

instance, Lahoti et al. [21] proposes adversarial reweighted learning

that leverages the notion of computationally-identifiable errors to

achieve Rawlsian Max-Min fairness without sensitive attributes.

However, these methods are only effective for achieving Max-Min

fairness. The other branch [7, 33] addresses this missing sensitive at-

tribute scenario via providing pseudo group splits. For instance, Yan

et al. [33] pre-processes the data via clustering and uses obtained

groups as the proxy. However, the conformity between obtained

groups from these approaches and real protected groups are highly

dependent on data distribution.

The proposed FairRF is inherently different from the aforemen-

tioned approaches: (i) We study a novel problem of exploring

features that are highly related to the unseen sensitive ones for

learning fair and accurate classifiers. Obtaining these features re-

quires just a little prior domain knowledge, and it prevents the diffi-

culty and instability of previous approaches in detecting protected

groups [21, 33]; and (ii) We theoretically show that by regularizing

the model prediction with the related features that are highly cor-

rected with sensitive attributes, we can learn a fair model w.r.t the

sensitive attribute. In addition, our experimental results show that

the given related feature set can be incomplete or noisy.
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3 PROBLEM DEFINITION
Throughout this paper, matrices are written as boldface capital

letters and vectors are denoted as boldface lowercase letters. For

an arbitrary matrix M ∈ R𝑛×𝑚 , 𝑀𝑖 𝑗 denotes the (𝑖, 𝑗)-th entry

of M while m𝑖 and m𝑗
mean the 𝑖-th row and 𝑗-th column of M,

respectively. Capital letters in calligraphic math font such as P are

used to denote sets or cost function.

LetX ∈ R𝑛×𝑚 be the data matrix with each row x𝑖 ∈ R1×𝑚 as an

𝑚-dimensional data instance. We use F = {𝑓1, . . . , 𝑓𝑚} to denote

the𝑚 features and x1, . . . , x𝑚 are the corresponding feature vectors,

where x𝑗 is the 𝑗-th column of X. Let y ∈ R𝑛 be the label vector,

where the 𝑖-th element of y, i.e., 𝑦𝑖 , is the label of x𝑖 . Following
existing work on fair machine learning models [21], we focus on

binary classification problem, i.e., 𝑦𝑖 ∈ {0, 1}. Given X and y, we
aim to train a fair classifier with good classification performance.

Extensive studies [17, 21] have revealed that historical data may

include previous discrimination and societal bias on sensitive at-

tribute 𝑆 such as ages, genders, skin color, and regions. Though

sensitive attributes 𝑆 are not used as features, i.e., 𝑆 ∉ F , a subset of

none-sensitive features F𝑠 ∈ F are highly correlated with sensitive

attributes, making machine learning models trained on such data

inherit the bias. For example, in dataset containing US criminal

records [17], racial information is taken as sensitive. Although it is

unseen, trained model could still be unfair as distribution of racial

groups population may be leaked from the distribution of ages [30].

In many real-world applications, sensitive attributes of data sam-

ples are unavailable due to various reasons such as difficulty in

data collection, security or privacy issues. It challenges existing fair

machine leaning approaches that require sensitive attributes of data

samples for fair models. Though sensitive attribute of each data

sample is unknown, since the bias is caused by the subset of features

F𝑆 that are highly correlated with 𝑆 , F𝑆 can provide alternative

supervision to learn fair models. Therefore, we aim to explore the

utilization of F𝑆 to help learn more fair model meanwhile maintain

high classification performance. The problem is defined as:

Problem Definition Given the data matrix X ∈ R𝑛×𝑚 , with cor-

responding labels y ∈ R𝑛 , and a predefined feature subset F𝑆 ∈ F ,

where each 𝑓𝑖 ∈ F called related feature which highly correlates

with the unobserved protected attribute 𝑆 , e.g., race or gender, learn
a classifier that maintains high accuracy and is fair on 𝑆 .

Note that we assume F𝑆 ∈ F is given from domain knowledge

or experts. In practice, F𝑆 can be incomplete and noisy. We design

FairRF that is able to re-weight each 𝑓𝑖 ∈ F𝑆 , so that it has the

potential of remaining effective, as shown in experiments.

4 PRELIMINARY THEORETICAL ANALYSIS
In this paper, we adopt Pearson correlation coefficient to measure

the correlation between two variables, defined as below:

Definition 1 (Pearson Correlation Coefficient). Pearson correla-

tion coefficientmeasures the linear correlation between two random

variables 𝑋 and 𝑌 as:

𝜌𝑋,𝑌 =
E[(𝑋 − 𝜇𝑋 ) · (𝑌 − 𝜇𝑌 )]

𝜎𝑋 · 𝜎𝑌
, (1)

where 𝜇𝑋 is the mean and 𝜎𝑋 is the standard deviation of 𝑋 .

Next, we will show a theorem on the propagation property of

Pearson correlation coefficient, which justifies our motivation of

using F𝑆 to regularize model predictions in the case of absent 𝑆 .

Below, we first present a rule depicting the relation of three included

angles in space, which is the basis of our proof.

Lemma 1. Given a unit sphere centered at origin 𝑂 , 𝐴, 𝐵 and 𝐶
are three points on the surface of the sphere. Assume that the angle
𝐴𝑂𝐵 = 𝜃1 and the angle 𝐵𝑂𝐶 = 𝜃2, then the cosine value of angle
𝐴𝑂𝐶 is within: [𝑐𝑜𝑠 (𝜃1 + 𝜃2), 𝑐𝑜𝑠 (𝜃1 − 𝜃2)].

Proof. From Spherical law of cosines [12], we can know that:

𝑐𝑜𝑠𝜃3 = 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝐵′, (2)

where 𝐵′ corresponds to the angle opposites 𝐵 in spherical triangle

𝐴𝐵𝐶 . As all angles are in the scale [0, 𝜋], we can directly induce:

𝑐𝑜𝑠𝜃3 ≥ 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 = 𝑐𝑜𝑠 (𝜃1 + 𝜃2)
𝑐𝑜𝑠𝜃3 ≤ 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 = 𝑐𝑜𝑠 (𝜃1 − 𝜃2),

(3)

which completes the proof. □

Next, we will show the relationship between Pearson correlation

coefficient and cosine similarity of two variables.

Lemma 2. Given two random variables 𝑋,𝑌 , Pearson correlation
coefficient between them can be calculated as the cosine distance
between x′ and y′, where x′ is an infinite-length vector constructed
by sampling z-score value of 𝑋 , i.e., 𝑥 ′

𝑖
=
𝑋𝑖−𝜇𝑋
𝜎𝑋

and 𝑋𝑖 is the 𝑖-th
sample. Similarly, 𝑦′

𝑖
=
𝑦𝑖−𝜇𝑌
𝜎𝑌

.

Proof. This can be easily proven by re-writing the form of

Pearson correlation coefficient as:

𝜌𝑋,𝑌 =
E[ (𝑋 − 𝜇𝑋 ) · (𝑌 − 𝜇𝑦 ) ]

𝜎𝑋 · 𝜎𝑌
= lim

𝑛→∞

𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋 ) · (𝑌𝑖 − 𝜇𝑦 )
𝜎𝑋 · 𝜎𝑌

= lim

𝑛→∞

𝑛∑
𝑖=1

𝑥′𝑖 · 𝑦′𝑖 = 𝑐𝑜𝑠 (x′, y′),
(4)

which completes the proof. □

With these preparations, we can now turn to our main theorem:

Theorem 1. Given three random variables {𝑋,𝑌, 𝑍 }, with corre-
lation coefficient 𝜌𝑋,𝑌 = 𝑐𝑜𝑠𝛼 and 𝜌𝑌,𝑍 = 𝑐𝑜𝑠𝛽 , 𝛼, 𝛽 ∈ [0, 𝜋], then
𝜌𝑋,𝑍 is within [𝑐𝑜𝑠 (𝛼 + 𝛽), 𝑐𝑜𝑠 (𝛼 − 𝛽)].

Proof. The proof can be developed via the following steps:

(1) Cosine similarity between x′ and y′ shows the cosine value of
included angle between them. Hence, based on Lemma 2, we

can learn that the cosine of angle between x′ and y′ is 𝑐𝑜𝑠 (𝛼)
and that of angle between y′ and z′ is 𝑐𝑜𝑠 (𝛽) from the given

correlation coefficients.

(2) x′, y′, z′ can be taken as line 𝑂𝐴, 𝑂𝐵, 𝑂𝐶 in Lemma 1 respec-

tively. Hence, utilizing Lemma 1, we could induce that the cosine

value of angle 𝛾 between x and z should fall within the scale

[𝑐𝑜𝑠 (𝛼 + 𝛽), 𝑐𝑜𝑠 (𝛼 − 𝛽)].
(3) Finally, based on Lemma2, we can map the cosine value of angle

𝛾 back into correlation coefficient between 𝑋 and 𝑍 .

After these steps, we can obtain that 𝜌𝑋,𝑍 = 𝑐𝑜𝑠 (x′, z′) ∈ [𝑐𝑜𝑠 (𝛼 +
𝛽), 𝑐𝑜𝑠 (𝛼 − 𝛽)] and finish the proof. □
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Figure 1: An illustration of the proposed framework FairRF.
In Fairness Constraint block, 𝜆𝑖 controls the importance of
regularization on 𝑖-th feature of F𝑆 . 𝝀 is dynamically up-
dated, reducing prior domain knowledge required.

Basing on theorem 1, we can show how the constraint of cor-

relation scale is propagated from F𝑆 to 𝑆 in Theorem 2, which

theoretically proves our idea.

Theorem 2. Let 𝑓 and 𝑆 represent an input feature and sensitive
attribute, respectively. Let 𝑦 denotes the variable of model’s prediction.
Assume that 𝑓 is highly correlated with 𝑆 , i.e., 𝜌 𝑓 ,𝑆 is larger than a
positive constant 𝑐𝑜𝑠𝛼 . If the model is trained to make 𝜌 𝑓 ,𝑦̂ near 0, i,e,
within [𝑐𝑜𝑠 ( 1

2
𝜋 + 𝛿), 𝑐𝑜𝑠 ( 1

2
𝜋 − 𝛿)], where 𝛿 is close to 0, then 𝜌𝑆,𝑦̂

would be within [𝑐𝑜𝑠 ( 1
2
𝜋 + 𝛿 + 𝛼), 𝑐𝑜𝑠 ( 1

2
𝜋 − 𝛿 − 𝛼)].

Theorem 2 can be easily proved based on Theorem 1. From

it, we can see that when 𝑐𝑜𝑠𝛼 ≈ 1 and 𝛿 ≈ 0, 𝜌𝑆,𝑦̂ would also

approximate 0. In this way, the prediction would be insensitive

towards 𝑆 , achieving fairness w.r.t sensitive attribute 𝑆 .

We can extend Theorem 2 to the case of utilizing multiple re-

lated features simultaneously. For a set of related features F𝑆 =

{𝑓1, 𝑓2, ..., 𝑓𝐾 }, assume their correlation coefficient with 𝑆 in the

form of {𝑐𝑜𝑠𝛼1, 𝑐𝑜𝑠𝛼2, ..., 𝑐𝑜𝑠𝛼𝐾 }, andwith𝑌 in the range of [𝑐𝑜𝑠 ( 1
2
𝜋+

𝛿), 𝑐𝑜𝑠 ( 1
2
𝜋 − 𝛿)]. Then 𝜌

𝑆,𝑌
would fall upon the intersections of

their resulting value space, which can be written as:

𝜌
𝑆,𝑌

∈ [𝑐𝑜𝑠 ( 1
2

𝜋 + 𝛿 + 𝛼𝑚𝑖𝑛), 𝑐𝑜𝑠 (
1

2

𝜋 − 𝛿 − 𝛼𝑚𝑖𝑛)] . (5)

where 𝛼𝑚𝑖𝑛 is the smallest value in {𝛼1, 𝛼2, ..., 𝛼𝐾 }. Note that this
range is usually not tight, and high divergence within F𝑆 would

often restrict the range of 𝜌
𝑆,𝑌

more.

5 METHODOLOGY
In this section, we present the details of the proposed framework

FairRF. The basic idea is using the regularization on correlated fea-

tures F𝑆 as the surrogate fairness objective. With the motivation

theoretically justified in Sec 4, an illustration of FairRF is shown

in Figure 1. It is composed of three parts: (i) a base classifier 𝑔𝜃 (·)
which predicts its label𝑦𝑖 given data sample x𝑖 ; (ii) a covariance reg-
ularizer which constrains correlation between F𝑆 and 𝑦 to achieve

fairness; and (iii) an importance learning module which adjusts

importance score 𝜆 𝑗 of each related feature 𝑓𝑗 ∈ F𝑆 . Next, we
introduce each component in detail.

5.1 Base Classifier
The proposed FairRF is flexible to use various classifiers as backbone

such as neural networks, logistic regression and SVM. Without loss

of generality, we use 𝑔𝜃 (·) to denote the base classifier, where 𝜃

is the set of parameters of the base classifier. Following existing

work on fairness [21], we consider binary classification. We leave

the extension to multi-class classification as future work. For a data

sample x𝑖 , the predicted probability of x𝑖 having label 1 is

𝑦𝑖 = 𝑔𝜃 (x𝑖 ) (6)

Then the binary cross entropy loss for training the classifier 𝑔𝜃 (·)
can be written as

min

𝜃
L𝑐𝑙𝑠 =

𝑛∑
𝑖=1

−𝑦𝑖 log𝑦𝑖 − (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 ) (7)

where 𝑦𝑖 ∈ {0, 1} is the label of x𝑖 .
Generally, the well trained model is good at classification. How-

ever, as shown in previous studies [3, 39], the obtained model could

make unfair predictions because spurious correlation may exist

in the training data between sensitive attributes and labels due to

societal bias. Though various efforts have been taken to mitigate

the bias [9, 15, 35], most of them require knowing the sensitive at-

tributes.With the sensitive attributes unknown, to learn fair models,

we propose to regularize the predictions using the related features

F𝑆 that are highly correlated with 𝑆 , which will be introduced next.

5.2 Exploring Related Features for Fairness
If the sensitive attribute 𝑠𝑖 of each data sample x𝑖 is known, we can
adopt 𝑠𝑖 to achieve fairness of the classification model by making

the prediction independent of the sensitive attributes [9, 35]. Let

s ∈ R𝑛×1 be the sensitive attribute vector with the 𝑖-th element

of s, i.e., 𝑠𝑖 , as the sensitive attribute of x𝑖 . Similarly, let ŷ ∈ R𝑛×1
be the predictions with the 𝑖-th element being the prediction for

x𝑖 . Following the design in [7, 35], the pursuit of non-dependence

between prediction 𝑦 and sensitive attribute s can be achieved

through minimizing the correlation score between them, which can

be mathematically written as:

min

𝜃
R(s, ŷ) =

��� 𝑛∑
𝑖=1

(𝑠𝑖 − 𝜇𝑠 ) (𝑦𝑖 − 𝜇𝑦̂)
��� (8)

where 𝜇𝑠 and 𝜇𝑦̂ are the mean of s and ŷ, respectively. Note that we
set constraints directly on the correlation score instead of correla-

tion coefficient, but it can be seen from Eq.1 that it only differs from

correlation coefficient by a constant multiplier 𝜎s ·𝜎𝑦̂ . Constraining
the scale of this regularization term, s and 𝑦 would be encouraged

to have no statistical correlation with each other.

However, as sensitive attribute s is unavailable in our problem,
directly adopting the above regularization is impossible. Fortunately,
from Theorem 2, we can see that if we have a set of non-sensitive

features F𝑠 , with each feature 𝑓𝑗 ∈ F𝑠 , i.e., x𝑗 , having high cor-

relation with s, then reducing the correlation between x𝑗 with ŷ
can indirectly reduce the correlation between s and ŷ, which helps

to achieve fairness, even though s is unknown. Hence, in FairRF,

we apply correlation regularization on each feature 𝑓𝑗 ∈ F𝑆 , in
the purpose of making trained model fair towards 𝑆 . Without loss

of generality, let the set of features in F𝑆 be {𝑓1, . . . , 𝑓𝐾 }, where
1 ≤ 𝐾 < 𝑚. The regularization term is written as

min

𝜃
R𝑟𝑒𝑙𝑎𝑡𝑒𝑑 =

∑𝐾

𝑗=1
𝜆 𝑗 · R(x𝑗 , ŷ), (9)
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where 𝜆 𝑗 is the weight for regularizing correlation coefficient be-

tween x𝑗 and ŷ. R(x𝑗 , ŷ) is given as

R(x𝑗 , ŷ) =
��� 𝑛∑
𝑖=1

(𝑋𝑖 𝑗 − 𝜇𝑥 𝑗 ) (𝑦𝑖 − 𝜇𝑦̂)
��� (10)

where 𝜇𝑥 𝑗 is the mean of x𝑗 .
Generally, if the correlation between x𝑗 and s is large, we would

prefer large 𝜆 𝑗 to enforce R(x𝑗 , ŷ) to be close to 0, which can better

reduce the correlation between s and ŷ, resulting in a more fair

classifier. If the correlation between x𝑗 and s is not that large, a small

𝜆 𝑗 is preferred because under such case, making R(x𝑗 , ŷ) close to 0
doesn’t help much in making s and ŷ independent, but may instead

introduce large noise in label prediction. Domain knowledge would

be helpful in setting 𝜆 𝑗 .

5.3 Learning Importance of Related Features
One limitation of this approach is the requirement of pre-defined

𝝀. This information provides prior knowledge and is important

for the success of the proposed proxy regularization. However, in

real-world applications, it is difficult to get accurate values, and F𝑆
could be inaccurate. In addition, 𝜆 𝑗 is also important in balancing
the contribution of 𝑓𝑗 in model prediction and fairness. Larger 𝜆 𝑗 will
result in the independence between x𝑗 and ŷ, making 𝑓𝑗 contributes

little in model prediction. Hence, in this section, we propose to learn

𝝀, allowing the model to automatically adjust its value.

Specifically, before learning, each related weight 𝜆 𝑗 is initialized

to a pre-defined value 𝜆0
𝑗
, which serves as an inaccurate estimation

of its importance. Then, during training, the value of 𝝀 will be

optimized along with model parameters iteratively. As no other

information is available, we update 𝝀 by minimizing the total regu-

larization loss, based on the intuition that an ideal surrogate correla-

tion regularization should be achieved without causing significant

performance drop. We limit the range of 𝝀 as [0, 1], and the full

optimization objective function can be written as follows:

min

𝜽 ,𝝀
L𝑐𝑙𝑠+𝜂·

∑𝐾

𝑗=1
𝜆 𝑗 ·R(x𝑗 , ŷ) s.t. 𝜆 𝑗 ≥ 0,∀𝑓𝑗 ∈ F𝑆 ;

∑𝐾

𝑗=1
𝜆 𝑗 = 1

(11)

where 𝜂 sets the weights of regularization term, and 𝜽 is the set of

parameters of the classifier.

Eq.(11) can lead to a trivial solution, i.e., to minimize the cost

function, it tends to set 𝜆 𝑗 corresponding to the smallest R(x𝑗 , ŷ)
to 1 and others to 0. To alleviate this issue, we add ∥𝝀∥2

2
to penalize

𝜆 𝑗 being close to 1. Thus, The final objective function of FairRF is

min

𝜽 ,𝝀
L𝑐𝑙𝑠 + 𝜂 ·

∑𝐾

𝑗=1
𝜆 𝑗 · R(x𝑗 , ŷ) + 𝛽 ∥𝝀∥2

2

s.t. 𝜆 𝑗 ≥ 0,∀𝑓𝑗 ∈ F𝑆 ;
∑𝐾

𝑗=1
𝜆 𝑗 = 1

(12)

where 𝛽 is used to control the contribution of ∥𝝀∥2
2
.

6 OPTIMIZATION ALGORITHM
The objective function in Eq.(12) is constrained optimization, which

is difficult to be optimized directly. We take the alternating direction

optimization [14] strategy to update 𝜃 and 𝝀 iteratively. The basic

idea is to update one variable with the other one fixed at each step,

which can ease the optimization process. Next, we give the details.

Update 𝜽 . To optimize 𝜽 , we fix 𝝀 and remove terms that are

irrelevant to 𝜽 , which arrives at

min

𝜽
L𝑐𝑙𝑠 + 𝜂

∑𝐾

𝑗=1
𝜆 𝑗 · R(x𝑗 , ŷ) (13)

This is a non-constrained cost function, and we can directly apply

gradient descent to learn 𝜽 .
UPDATE 𝝀. Then, given 𝜽 at the current step, 𝝀 can be obtained

through solving the following optimization problem:

𝝀 = argmin

𝝀

∑𝐾

𝑗=1
𝜆 𝑗 · R(x𝑗 , ŷ) + 𝛽 ∥𝝀∥2

2
,

s.t. − 𝜆 𝑗 ≤ 0,∀𝑓𝑗 ∈ F𝑆 ;
∑𝐾

𝑗=1
𝜆 𝑗 − 1 = 0

(14)

It is a convex primal problem, and strong duality holds as it follows

Slater’s condition. For simplicity of notation, we use R 𝑗 to represent
R(x𝑗 , ŷ). Then, we can solve this problem using Karush-Kuhn-

Tucker(KKT) [25] conditions as:
R 𝑗 + 2𝛽 · 𝜆 𝑗 − 𝑢 𝑗 + 𝑣 = 0, ∀𝑗 ; (stationary)
𝑢 𝑗 · 𝜆 𝑗 = 0, ∀𝑗 ; (complementary slackness)
𝜆 𝑗 ≥ 0 ∀𝑗 ; ∑𝐾

𝑗=1 𝜆 𝑗 = 1; (primal feasibility)

𝑢 𝑗 ≥ 0 ∀𝑗 .

(15)

In the above equation, 𝒖 and 𝑣 are Lagrange multipliers. From the

stationary condition, we can get:

𝜆 𝑗 =
𝑢 𝑗 − 𝑣 − R 𝑗

2 · 𝛽 , 𝑗 = 1, . . . , 𝐾 (16)

Eliminating 𝒖 using complementary slackness, we have:
𝜆 𝑗 = 0, if 𝑢 𝑗 = 𝑣 + R 𝑗 ≥ 0;

𝜆 𝑗 =
−𝑣−R 𝑗
2·𝛽 , if 𝑢 𝑗 = 0;

𝜆 𝑗 ≥ 0 ∀𝑗 ; ∑𝐾
𝑗 𝜆 𝑗 = 1

(17)

From this condition, we know that 𝜆 𝑗 = max{0, −𝑣−R 𝑗
2·𝛽 }. Since∑𝐾

𝑗=1 𝜆 𝑗 = 1, 𝑣 can be computed via solving the following equation:∑𝐾

𝑗=1
max{0,−𝑣 − R 𝑗 } = 2𝛽. (18)

Solving the above equation can be done as follows: we first rank R 𝑗
in descending order as R ′

𝑗
, i.e., R ′

𝑗−1 ≥ R ′
𝑗
. Assume that 𝑣 is within

[−R ′
𝑙−1,−R

′
𝑙
], then the above equation is reduced to∑𝐾

𝑗=𝑙
− 𝑣 − R ′

𝑗 = 2 · 𝛽 (19)

Then, we have

𝑣 = −
2 · 𝛽 +∑𝐾

𝑗=𝑙
R ′
𝑗

𝐾 − 𝑙 + 1

(20)

If 𝑣 = −
2·𝛽+∑𝐾

𝑗=𝑙
R′
𝑗

𝐾−𝑙+1 ∈ [−R ′
𝑙−1,−R

′
𝑙
], it is a valid solution; otherwise,

it is invalid. We do this for every interval and find 𝑣 . With 𝑣 learned,

we can calculate 𝝀 as:

𝜆 𝑗 = max{0,
−𝑣 − R 𝑗
2 · 𝛽 } (21)

Training Algorithm. With the updating rules above, the full

pipeline of the training algorithm for FairRF can be summarized in

Algorithm 1 in the supplementary material.
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7 EXPERIMENT
In this section, we conduct experiments to evaluate the effectiveness

of the proposed FairRF in terms of both fairness and classification

performance when sensitive attributes are unavailable. In particular,

we aim to answer the following research questions:

• RQ1 Can the proposed FairRF achieve fairness without sensitive

attributes while maintain high accuracy?

• RQ2 How would FairRF perform when the provided F𝑆 contains

misidentified related features or is incomplete?

• RQ3How would different choices of hyper-parameters influence

the performance of FairRF?

7.1 Datasets
We conduct experiments on three publicly available benchmark

datasets, including Adult [1], COMPAS [17] and LSAC [31].

• ADULT1
: It contains 45, 221 records of personal yearly income,

with binary label indicating if the yearly salary is over or under

$50𝐾 . Gender is considered as sensitive attribute. and we select

age, relation and marital status as F𝑠 .
• COMPAS2: This dataset assesses the possibility of recidivism

within a certain future, containing 11, 750 criminal records col-

lected in US.The race of each defendant is the sensitive attribute.

In constructing F𝑠 , score, decile text and sex are selected.

• LSAC3
: It contains 65, 307 admissions data from 25 law schools

in US over the 2005, 2006, and 2007 admission cycles. Labels

indicate whether each candidate successfully pass the bar exam

or not, and their gender information is considered as sensitive.

For this dataset, we use race, year and residence as F𝑠 .
We make the train:eval:test splits as 5 : 2 : 3. Note that for all

three datasets, features in F𝑠 are selected following existing analysis or
prior domain knowledge. For example, in COMPAS, biases towards

race have been found to exist in score and decile text [17]. The

correlation between race and gender is also from reports by U.S.

Bureau of Justice Statistics(BJS). Since race is the sensitive attribute

of the dataset, we include score, decile text and gender in F𝑆 .

7.2 Experimental Settings
7.2.1 Baselines. To evaluate the effectiveness of FairRF, we first

compare it with the vanilla model and sensitive-attribute-aware

model, which can be treated as the lower and upper bound of our

model’s performance:

• Vanilla model: It directly uses the base classifier without any

regularization terms. It is used to show the performance without

fairness-assuring algorithm taken.

• ConstrainS: In this baseline, we assume that the sensitive at-

tribute of each data sample is known. We add the correlation

regularization between sensitive attribute vector s and model

output ŷ, i.e.,R(s, ŷ). It sets a reference point for the performance

of the proposed framework. Note that for all the other baselines

and our model, s is unknown.
We also include following representative approaches in fair learning

without sensitive attributes as baselines:

1
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/

2
https://github.com/propublica/compas-analysis

3
http://www.seaphe.org/databases.php

Table 1: Comparison of different approaches on ADULT.

Methods ACC Δ𝐸𝑂 Δ𝐷𝑃
Vanilla 0.856 ± 0.001 0.046 ± 0.006 0.089 ± 0.005

ConstrainS 0.845 ± 0.002 0.040 ± 0.004 0.058 ± 0.003

ARL 0.861 ± 0.003 0.034 ± 0.012 0.141 ± 0.008

KSMOTE 0.560 ± 0.002 0.141 ± 0.031 0.120 ± 0.022

RemoveR 0.801 ± 0.010 0.124 ± 0.004 0.071 ± 0.002

FairRF 0.832 ± 0.001 0.025 ± 0.009 0.066 ± 0.004

Table 2: Comparison of different approaches on COMPAS

Methods ACC Δ𝐸𝑂 Δ𝐷𝑃
Vanilla 0.681 ± 0.004 0.242 ± 0.021 0.171 ± 0.015

ConstrainS 0.674 ± 0.002 0.154 ± 0.032 0.122 ± 0.031

ARL 0.672 ± 0.023 0.197 ± 0.042 0.286 ± 0.033

KSMOTE 0.601 ± 0.021 0.203 ± 0.042 0.151 ± 0.023

RemoveR 0.595 ± 0.024 0.205 ± 0.049 0.185 ± 0.024

FairRF 0.661 ± 0.009 0.166 ± 0.022 0.143 ± 0.021

Table 3: Comparison of different approaches on LSAC.

Methods ACC Δ𝐸𝑂 Δ𝐷𝑃
Vanilla 0.805 ± 0.001 0.042 ± 0.007 0.016 ± 0.004

ConstrainS 0.801 ± 0.001 0.014 ± 0.007 0.004 ± 0.002

ARL 0.811 ± 0.005 0.029 ± 0.029 0.022 ± 0.013

KSMOTE 0.722 ± 0.012 0.028 ± 0.062 0.012 ± 0.041

RemoveR 0.763 ± 0.002 0.037 ± 0.024 0.015 ± 0.006

FairRF 0.796 ± 0.002 0.023 ± 0.008 0.007 ± 0.004

• KSMOTE [33]: It performs clustering to obtain pseudo groups,

and use them as substitute. The model is regularized to be fair

with respect to those pseudo groups.

• RemoveR: This method directly removes all candidate related

features, i.e., F𝑆 . We design this baseline in order to validate the

benefits of our proposed method in regularizing related features.

• ARL [21] It follows Rawlsian principle of Max-Min welfare for

distributive justice. It optimizes model’s performance through

re-weighting regions detected by an adversarial model.

Note that the fairness formulation of ARL is different from the
group fairness we focus on. ARL [21] is inefficient in obtaining de-

mographic fairness by design, which is also verified by our experi-

ments. Although not working on the same fairness definition, we

still include it as one baseline for completeness of the experiment.

7.2.2 Configurations. For KSMOTE, we directly use the code pro-

vided by [33]. For all other approaches, we implement a multi-layer

perceptron (MLP) network with three layers as the backbone clas-

sifier. The two hidden dimensions are 64 and 32. Adam optimizer is

adopted to train the model, with initial learning rate as 0.001.

7.2.3 Evaluation Metrics. To measure the fairness, following ex-

isting work on fair models [29, 33], we adopt two widely used

evaluation metrics, i.e., equal opportunity and demographic parity,

which are defined as follows:

Equal Opportunity [26] Equal opportunity requires that the prob-

ability of positive instances with arbitrary protected attributes 𝑖, 𝑗

being assigned to a positive outcome are equal:

E(𝑦 | 𝑆 = 𝑖, 𝑦 = 1) = E(𝑦 | 𝑆 = 𝑗, 𝑦 = 1), (22)
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where 𝑦 is the output of model 𝑔𝜃 , representing the probability of

being predicted as positive. In the experiments, we report difference

in equal opportunity(Δ𝐸𝑂 ):

Δ𝐸𝑂 = |E(𝑦 | 𝑆 = 𝑖, 𝑦 = 1) − E(𝑦 | 𝑆 = 𝑗, 𝑦 = 1) | (23)

Demographic Parity [26] Demographic parity requires the be-

havior of prediction model to be fair on different sensitive groups.

Concretely, it requires that the positive rate across sensitive at-

tributes are equal:

E(𝑦 | 𝑆 = 𝑖) = E(𝑦 | 𝑆 = 𝑗),∀𝑖, 𝑗 (24)

Similarly, in the experiment, we report the difference in demo-

graphic parity(Δ𝐷𝑃 ):

Δ𝐷𝑃 = |E(𝑦 | 𝑆 = 𝑖) − E(𝑦 | 𝑆 = 𝑗) | (25)

Equal opportunity and demographic parity measure the fairness

from different perspectives. Equal opportunity requires similar

performance across protected groups, while demographic parity is

more focused on fair demographics. The smaller Δ𝐸𝑂 and Δ𝐷𝑃 are,

the more fair a model is. Furthermore, to measure the classification

performance, accuracy (ACC) is also reported.

7.3 Classification Performance Comparison
To answer RQ1, we fix the base classifier as MLP and conduct

classification on all three datasets. For all the baselines, the hyper-

parameters are tuned via grid search on the validation dataset. In

particular, for FairRF, 𝛽 is set to 0.5 on ADULT, 0.8 on COMPAS,

and 1.0 on LSAC. 𝜂 is set as 0.15 for COMPAS and 0.3 for other

two datasets. More details on the hyperparameters sensitivity will

be discussed in Sec 7.5. Each experiment is conducted 5 times and

the average performance in terms of accuracy, Δ𝐸𝑂 and Δ𝐷𝑃 with

standard deviation are reported in Table 1, Table 2 and Table 3.

From the tables, we make the following observations:

• Constraining related features can help the model to perform

fairer on sensitive groups. For example, compared with vanilla

approach in which no fair-learning techniques are applied, FairRF

shows a clear improvement w.r.t Equal Opportunity and Demo-

graphic Parity across all three datasets;

• FairRF improves the fairness without causing significant per-

formance drop, and works stably. No pre-computed clusters are

required, and it does not involve training an adversarial model,

hence FairRF can get results with less deviation compared to ARL

and KSMOTE;

• Compared with baselines without sensitive attribute, FairRF is ef-

fective for both two fairness metrics; while other approaches such

as ARL is able to improve on “equal opportunity”, but the perfor-

mance would drop w.r.t “demographic parity”. This is because

FairRF is able to learn 𝜆 𝑗 to balance the fairness and accuracy.

7.4 Impact of the Quality of F𝑆 on FairRF
In this section, we conduct experiment to investigate the impact of

the quality of F𝑆 on the performance of FairRF to answer RQ2. In
particular, we consider the following variants of FairRF:

• Random: We randomly select five sets of F𝑆 with the same

number of attributes as FairRF. Average results are reported. We

use it to show the influence of prior knowledge.

Table 4: Comparison of different strategies in selecting re-
lated features on ADULT.

Methods ACC Δ𝐸𝑂 Δ𝐷𝑃

Vanilla 0.856±0.001 0.046±0.006 0.089±0.005

Random 0.830±0.001 0.041±0.012 0.057±0.007

Top-1 0.830±0.002 0.029±0.008 0.067±0.002

ConstrainAll 0.835±0.001 0.035±0.005 0.068±0.003

Noisy 0.834±0.002 0.030±0.011 0.068±0.006

Fix-𝝀 0.822±0.002 0.065±0.007 0.057±0.004

FairRF 0.832±0.001 0.025±0.009 0.066±0.004

Table 5: Comparison of different strategies in selecting re-
lated features on COMPAS.

Methods ACC Δ𝐸𝑂 Δ𝐷𝑃

Vanilla 0.681±0.004 0.242±0.021 0.171±0.015

Random 0.637±0.006 0.226±0.028 0.161±0.016

Top-1 0.648±0.007 0.183±0.016 0.164±0.013

ConstrainAll 0.651±0.004 0.235±0.012 0.168±0.008

Noisy 0.653±0.006 0.219±0.023 0.154±0.019

Fix-𝝀 0.631±0.011 0.256±0.025 0.159±0.018

FairRF 0.661±0.009 0.166±0.022 0.143±0.021

• Fix-𝝀: The same 𝜆𝑖 is adopted for all related features, and its value

is not automatically updated during training. Selected related

features are exactly the same as those chosen in FairRF.

• Top-1: It uses only the most-effective related features. We test all

candidates and select the one that achieves highest performance

when used as related feature, and report its performance.

• ConstrainAll: It includes all features in F𝑆 , i.e., all features are
treated as related features. This is used to show if noisy features

are included or no prior knowledge about related feature is given,

FairRF can still work. We also learn 𝝀 for this variant.

• Noisy: Its contains features randomly sampled from both F𝑆 and
non-related attributes. In implementation, we randomly replace

one attribute in F𝑆 with non-related ones.

For all these baselines, hyper-parameters are found via grid search,

and experiments are conducted for 5 times randomly. From Table 4

and 5, we can make following observations:

• FairRF can still bring improvements when F𝑆 is inaccurate. The

variant Noisy is shown to be effective across ADULT and COM-

PAS datasets.

• In the extreme case that no prior knowledge is available, FairRF

still has potentials on fairness metrics compared with vanilla

model, as shown by Random and ConstrainAll. It again shows

that FairRF can cope with little domain knowledge scenario.

• FairRF benefits from automatically learning the importance of

each given related attribute. Compared with Fix-𝝀, FairRF shows
a much stronger fairness in terms of equal opportunity, and

achieves better accuracy at the same time.

• FairRF shows a moderate improvement compared with Top-1.

However, Top-1 requires careful selection of the most effective

related feature, while FairRF can achieve better performance with

less prior domain knowledge;

Due to space limitation, we only report the results on ADULT and

COMPAS, but similar observations can be made on LSAC.
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(a) ACC (b) Δ𝐸𝑂 (c) Δ𝐷𝑃
Figure 2: Parameter Sensitivity on ADULT

Table 6: Examples of learned 𝝀 on a set of selected related
attributes. 𝜌 ·,𝑌 represents its correlationwith class label, and
𝜌 ·,𝑆 is the correlation with sensitive attributes 𝑆 .

ADULT COMPAS

Attr 𝜌 ·,𝑌 𝜌 ·,𝑆 𝜆 Attr 𝜌 ·,𝑌 𝜌 ·,𝑆 𝜆

Age 0.09 0.05 0.51 Sex 0.11 0.07 0.27

Workclass 0.11 0.14 0.49 Score 0.31 0.27 0.00

Relation 0.41 0.58 0.00 Decile 0.25 0.24 0.21

Education 0.18 0.06 0.00 Duration 0.02 0.30 0.52

7.5 Parameter Sensitivity Analysis
In this subsection, we analyze the sensitivity of FairRF on hyper-

parameters 𝜂 and 𝛽 . 𝜂 controls the importance of coefficient reg-

ularization term, and 𝛽 can adjust the distribution of learned 𝝀.
We vary 𝜂 as {0.2, 0.25, 0.3, 0.35, 0.4} and 𝛽 as {0.4, 0.5, 0.6, 0.7, 0.8}.
Other settings are the same as FairRF. This experiment is performed

on ADULT, with results shown in Figure 2. From the figure, we

can observe that: (i) Larger 𝜂 will achieve fairer predictions, but

may also cause severe drop in accuracy when it is larger than some

thresholds; (ii) Generally, smaller 𝛽 requires larger 𝜂 to achieve

fairness. Small 𝛽 allows learned 𝝀 to be sparse. As a result, a large

portion of coefficient regularization term could be enforced on less-

discriminative attributes that are less-related at the same time; and

(iii) 𝛽 encourages learned 𝝀 to be uniform, resulting a faster drop

in accuracy when 𝜂 goes large. These observations could help to

find suitable hyper-parameter choices in other applications.

7.6 Case Study on 𝝀
In this subsection, we conduct case studies to analyze the behav-

ior of FairRF in learning 𝝀, i.e., the weights of related attributes.

Specifically, we calculate the ground-truth correlation between the

sensitive attribute 𝑆 and others are computed, and a set of attributes

with varying range of correlation coefficient magnitudes are se-

lected as F𝑆 . 𝜂 and 𝛽 are set using grid search to make sure that

fairness is obtained without significant drop in accuracy.We report

the distribution of learned 𝝀. Results on ADULT and COMPAS are

shown in Table 6. From the result, we can observe

• FairRF tends to assign higher weight to features that have high

correlation with 𝑆 but small correlation with 𝑌 . For example, the

correlation of “Duration” with label is 0.02 and with 𝑆 is 0.30,

FairRF assigns 0.52 to the feature. This is because such features

have little effect on model accuracy but introduce a lot of bias.

Assigning a large weight can help achieve fairness with marginal

affects on performance;

• On the contrary, when a feature 𝑓𝑗 has high correlation with 𝑌 ,

FairRF tends to assign smaller number to 𝜆 𝑗 even if the correlation

of the feature with 𝑆 is large. For example, FairRF assigns 0 to

“Relation”. This is because when a feature has high correlation

with label, it is important for model prediction. A large weight

on fairness regularizer will significantly reduce the accuracy.

These observations further demonstrate that by learning𝝀, FairRF
can balance the accuracy and fairness.

7.7 Flexibility of FairRF to Various Backbones
In the above experiment, we fix the base classifier as MLP. In this

section, we investigate if FairRF can also benefit various classifiers

to achieve fairness while maintaining high accuracy when the

sensitive attributes are unknown. Specifically, we also adopt two

other widely-used classifiers as the base classifiers of FairRF, i.e.,

Linear Regression (LR) and Support Vector Machine (SVM). The
details of experimental setting and results are given in Supplementary
Material. For both models, we find that FairRF only scarifies a

little bit of accuracy while significantly improves the fairness. For

example, by adding FairRF to LR , Δ𝐸𝑂 drops by 58.5% while the

accuracy only drops by 2%.

8 CONCLUSION
In this paper, we study a novel and challenging problem of explor-

ing related features for learning fair and accurate classifiers without

knowing the sensitive attribute of each data sample. We propose a

new framework FairRF which utilizes the related features as pseudo

sensitive attribute to regularize the model prediction. Our theoreti-

cal analysis shows that if the related features are highly correlated

with the sensitive attribute, by minimizing the correlation between

the related features and model’s prediction, we can learn a fair clas-

sifier with respect to the sensitive attribute. Since we lack the prior

knowledge of the importance of each related feature, we design a

mechanism for the model to automatically learn the importance

weight of each feature to trade-off their contribution on classifi-

cation accuracy and fairness. Experiments on real-world datasets

show that the proposed approach is able to achieve more fair per-

formance compared to existing approaches while maintain high

classification accuracy when no sensitive attributes are known.
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Table 7: Effectiveness of FairRF with various base classifiers
on ADULT dataset.

Method ACC Δ𝐸𝑂 Δ𝐷𝑃

LR 0.832±0.004 0.053±0.003 0.125±0.005

FairRF(LR) 0.815±0.008 0.022±0.009 0.072±0.014

SVM 0.775±0.013 0.083±0.008 0.117±0.013

FairRF(SVM) 0.775±0.015 0.031±0.017 0.056±0.024

MLP 0.856±0.001 0.046±0.006 0.089±0.005

FairRF(MLP) 0.832±0.001 0.025±0.009 0.066±0.004

Table 8: Evaluate effectiveness of FairRF on different base
classifiers on COMPAS.

Method ACC Δ𝐸𝑂 Δ𝐷𝑃

LR 0.678±0.002 0.215±0.033 0.198±0.026

FairRF(LR) 0.671±0.001 0.201±0.011 0.146±0.008

SVM 0.664±0.013 0.241±0.006 0.151±0.008

FairRF(SVM) 0.661±0.008 0.162±0.008 0.134±0.013

MLP 0.681±0.004 0.242±0.021 0.171±0.015

FairRF(MLP) 0.661±0.009 0.166±0.022 0.143±0.021

Algorithm 1 Training Algorithm of FairRF

Input: X ∈ R𝑛×𝑚, y ∈ R𝑛×1, F𝑆
Output: classifier parameters 𝜽
1: Randomly initialize 𝜽 ; Initialize all entries in 𝝀 as

1

𝐾
;

2: for batch in (𝑋,𝑌 ) do
3: Update 𝜽 based on classification loss of current batch;

4: end for
5: while Not Converged do
6: for step in MODEL_TRAIN_STEP do
7: Update 𝜽 based on Equation 11;

8: end for
9: if Require learning weight then
10: Obtain R 𝑗 for each related feature x𝑗 ;
11: Calculate 𝑣 and 𝝀 based on Eq.(18) to Eq.(21);

12: end if
13: end while
14: return Trained classifier 𝜃 .

A TRAINING ALGORITHM
With the updating rules introduced in Section 6, the full pipeline

of the training algorithm for FairRF can be summarized in Algo-

rithm 1. Before adding the regularization, we first pre-train the

model to converge at a good start point in line 3 in order to prevent

correlation constraint from providing noisy signals. Then, from line

5 to line 13, we fine-tune the model to be fair w.r.t related features.

If not refining related weights, 𝝀 will stay fixed. Otherwise, it will

be updated iteratively with parameter 𝜃 , as shown from line 9 to

12.

B IMPLEMENTATION ON DIFFERENT BASE
MODEL

In the experiments of main paper, we fix the base classifier as MLP.

In this section, we present the incorporation of FairRF into various

machine learning models to achieve fairness while maintain high

accuracy when the sensitive attributes are unknown. Specifically,

in addition to MLP, we also adopt two other widely-used classifiers

as the base classifiers of FairRF, i.e., Linear Regression (LR) and

Support Vector Machine (SVM). We implement both of them in

a gradient-based manner. so that parameters can be optimized

alternatively with the regularization term on related features, as in

Algorithm 1.

Concretely, we tune the hyperparameters on the validation set. 𝜂

is fixed to 0.4, and 𝛽 is set to 0.4 and 0.6 for LR and SVM, respectively.

Adam optimizer is adopted to train them, with the initial learning

rate as 0.001. Each experiment is conducted for 5 times, and average

results on ADULT and COMPAS are reported in Table 7 and 8,

respectively.

From the table, we observe that

• Compared with the base classifiers, integrating FairRF makes the

accuracy drops a little bit, which is in consistent with observa-

tions in other work on fair models [33] as the fairness regularizer

usually drops the accuracy. However, the accuracy decrease is

marginal. For example, for LR, the accuracy only drops by 2%,

which shows that we are still able to maintain high accuracy;

• Though the accuracy drops a little bit, the fairness in terms ofΔ𝐸𝑂
and Δ𝐷𝑃 on three models improves significantly, even though the

sensitive attributes are not observed. For instance, for LR, with

the FairRF framework, Δ𝐸𝑂 drops by 58.5% while the accuracy

only drops by 2%. In other words, we scarify a little bit of accuracy

while significantly improves the fairness.

These observations show that FairRF can benefit various ma-

chine learning models to achieve fairness while maintaining high

accuracy when the sensitive attributes are unknown
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