
Towards Robust Graph Neural Networks
for Noisy Graphs with Sparse Labels

Enyan Dai
†
, Wei Jin

‡
, Hui Liu

‡
, Suhang Wang

†

† The Pennsylvania State University, ‡Michigan State University

{emd5759,szw494}@psu.edu,{jinwei2,liuhui7}@msu.edu

ABSTRACT
Graph Neural Networks (GNNs) have shown their great ability

in modeling graph structured data. However, real-world graphs

usually contain structure noises and have limited labeled nodes.

The performance of GNNs would drop significantly when trained

on such graphs, which hinders the adoption of GNNs on many

applications. Thus, it is important to develop noise-resistant GNNs

with limited labeled nodes. However, the work on this is rather

limited. Therefore, we study a novel problem of developing robust

GNNs on noisy graphs with limited labeled nodes. Our analysis

shows that both the noisy edges and limited labeled nodes could

harm the message-passing mechanism of GNNs. To mitigate these

issues, we propose a novel framework which adopts the noisy edges

as supervision to learn a denoised and dense graph, which can down-

weight or eliminate noisy edges and facilitate message passing of

GNNs to alleviate the issue of limited labeled nodes. The generated

edges are further used to regularize the predictions of unlabeled

nodes with label smoothness to better train GNNs. Experimental

results on real-world datasets demonstrate the robustness of the

proposed framework on noisy graphs with limited labeled nodes.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings; Neural networks.

KEYWORDS
Noisy Edges; Robustness; Graph Neural Networks

ACM Reference Format:
Enyan Dai

†
, Wei Jin

‡
, Hui Liu

‡
, Suhang Wang

†
. 2022. Towards Robust

Graph Neural Networks for Noisy Graphs with Sparse Labels. In Proceedings
of the Fifteenth ACM International Conference onWeb Search and Data Mining
(WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3488560.3498408

1 INTRODUCTION
Graph Neural Networks (GNNs) [15, 22] have made remarkable

achievements in modeling graphs from various domains such as

social networks [15], financial system [35], and recommendation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498408

+

Adversarial edge

Deleted edge

Added edge

Noisy edge

+ Labeled nodes-
2-Hop neighbors

? ? Distant nodes

?

+

? ?

?

?

?

?

?
?

+

?

? ? ?

-
-

+ Wrong predictions-

-

Noisy Graph

Learned Graph

-

Down-weighted edge

Figure 1: An illustration of down-weighting/removing noise
edges and densifying the graph for better performance.

system [36]. The success of GNNs relies on the message-passing

mechanism [15, 22], where node representations are updated by

aggregating the information from neighbors. With this mechanism,

the node representations capture node features, information of

neighbors and local graph structure, which facilitate various tasks,

especially semi-supervised node classification.

Although GNNs have shown great ability in modeling graphs,

their performance can degrade significantly when trained on graphs

with noisy edges and/or limited labeled nodes. First, due to the mes-

sage passing, GNNs are vulnerable to adversarial or noisy edges. For

example, as shown in Fig. 1, poisoning attacks [46] add/delete care-

fully chosen edges to the graph. These adversarial edges (shown in

red) usually connect nodes of different labels or features, thus con-

taminating the neighborhoods of nodes, propagating noises/errors

to node representations. In addition, inherent edge noises also exist

in real-world graphs. For instance, in social networks, bots tend to

build connections with normal users to spread misinformation [11],

which can also harm the performance of GNNs for bot detection.

Second, for many applications, graphs are often sparsely labeled

such as cell phone network for fraud detection [13]. Label sparsity

can severely reduce the involvement of unlabeled nodes during mes-

sage passing, leading to poor performance. Generally, in a 𝐾-layer

GNN, a labeled node aggregates its 𝐾-hop neighborhood informa-

tion, thus making many unlabeled nodes in 𝐾-hop neighborhood

participate in the training, which is one major reason that GNNs

can leverage unlabeled nodes for semi-supervised node classifica-

tion. However, as verified in our preliminary analysis in Fig. 2a of

Sec. 3.3, when the number of labeled nodes decreases, the amount

of unlabeled nodes participating in training drops quickly, making

message passing less effective. These shortcomings of GNNs hinder

the adoption of GNNs for many real-world applications. Thus, it is

important to develop robust GNNs that can simultaneously handle

noisy graphs with sparse labels.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

181

https://doi.org/10.1145/3488560.3498408
https://doi.org/10.1145/3488560.3498408

However, developing robust GNNs for graphs with noisy edges

and limited labeled nodes is challenging. First, the training graph
itself is noisy, i.e., noisy edges are mixed with the normal edges.

Thus, we need supervision in down-weighting or eliminating noisy

edges. Second, alleviating the limited label issue requires more la-

bels, while obtaining more labeled nodes is time-consuming and

expensive. Hence, we need alternative approaches to more effec-

tively utilize the limited labels. Some initial efforts [20, 20, 33, 38]

have been taken to alleviate the effects of the adversarial edges

such as pruning edges by using node similarity [38], and adopting

Gaussian distribution as node representations to absorb noises [43].

To address the problem of sparsely labeled graphs, some meth-

ods [24, 30, 32] propose to obtain better representations by training

GNNs with self-supervised learning tasks such as pseudo label pre-

diction [24, 32] and global context predictions [30]. However, little

efforts are taken for robust GNNs that can simultaneously handle

noisy edges and label sparsity.

Since both the noisy edges and limited labeled nodes harm the

message passing of GNNs and message passing is directly related

to the graph structure, we argue that learning a denoised and dense

graph guided by the raw attributed graph is promising to facilitate

message passing for robust GNNs. First, for many graphs such as

social networks, nodes with similar features and labels tend to be

linked [26], while noisy edges would link nodes of dissimilar fea-

tures [38]. Thus, we can use node attributes to predict the links. For

existing links, the link predictor will assign small weights to links

connecting nodes of dissimilar features while large weights to links

connecting nodes of similar features, thus alleviating negative issue

of noisy edges during message passing. Second, real-world graphs

are usually very sparse, containing many missing edges. With the

link predictor, nodes that are potentially to be linked could be iden-

tified. Densifying the graph by linking similar nodes would induce

more unlabeled nodes to become neighbors of labeled nodes with

the same labels as shown in Fig. 1, which can alleviate the label

sparsity issue. In addition, since adjacent nodes tend to have the

same labels, the predicted new links can be used to further regu-

larize the label predictions of unlabeled nodes. Though promising,

the work on down-weighting noisy edges and densifying graph for

robust GNN on noisy graphs with sparse labels are rather limited.

Therefore, in this paper, we investigate a novel problem of de-

veloping robust noise-resistant GNNs with limited labeled nodes

by learning a denoised and densified graph. In essence, we need to

solve two challenges: (i) how to effectively learn a link predictor

from the noisy graph which can eliminate noisy edges and densify

the graph; and (ii) how to simultaneously use the learned graph to

learn a structural noise-resistant GNNs with limited labeled nodes.

To address these challenges, we propose a novel framework named

robust structural noise-resistant GNN (RS-GNN)
1
. RS-GNN adopts

the node attributes and supervision from the noisy edges to denoise

and dense graph, which can alleviate the negative effects of noisy

edges and facilitate the message passing between unlabeled nodes

and labeled nodes. The learned graph is used as input for learning a

GNN. RS-GNN also adopts the predicted edges to further explicitly

regularize the predictions of unlabeled nodes to alleviate the label

sparsity issue. In summary, our main contributions are:

1
Codes are available at: https://github.com/EnyanDai/RSGNN

• We study a new problem of learning robust noise-resistant GNNs

with limited labeled nodes;

• We propose a novel framework RS-GNN, which can simultane-

ously learn a denoised and densified graph and a robust GNN on

noisy graphs with limited labeled nodes; and

• We conduct extensive experiments on real-world datasets to

demonstrate the robustness of RS-GNN on both noisy/clean

graphs with limited labeled nodes.

2 RELATED WORK
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have shown their great power in

modeling graph structured data for various applications [7, 35, 37,

41, 42]. To generalize neural networks for graphs, two categories of

GNNs are proposed, i.e., spectral-based [1, 17, 22, 23] and spatial-

based [2, 5, 15, 34]. Bruna et al. [1] first propose spectral-based

GNNs by defining graph convolution with spectral graph theory.

For instance, GCN [22] simplifies the convolutional operation by

using the first order approximation. Spatial-based graph convolu-

tion is defined in spatial domain, which updates node representa-

tion by aggregating its neighbors’ representations [14, 15, 29]. For

example, self-attention of neighbor nodes is leveraged in graph

attention network (GAT) [34]. Moreover, various spatial meth-

ods are proposed to solve the scalability issue [2, 5] and learn

deeper GNNs [3]. Recently, to alleviate the problem of lacking

labeled nodes, many efforts are taken to explore GNNs using self-

supervision, which aims to learn better node representations with

pretext tasks [8, 19, 21, 24, 32, 44]. For instance, superGAT [21]

deploys edge prediction in GAT to guide the learning of attention

for better representations. SE-GNN [8] deploys contrastive learning

to benefit the similarity modeling for self-explainable GNN.

Inspired by the great success of GNNs, methods that construct

graphs and adopt GNNs for data without explicit relational struc-

ture are also explored [4, 6, 17, 18]. Generally, a graph would be

built based on certain rules [4, 17] or be learned in an end-to-end

model [6, 18]. Our RS-GNN is inherently different from these meth-

ods as we eliminate/down-weight the noisy edges and predict the

missing edges for robust GNNs on noisy graphs with limited labels.

2.2 Robust GNNs
Although GNNs have obtained great achievements, they are vulner-

able to adversarial attacks [9, 38, 45, 46]. Based on the objective, the

adversarial attacks on GNNs can be split into two categories, i.e.,

targeted attack [9, 45] and non-targeted attack [46]. Targeted attack

methods aim to degrade the performance of the GNNs on target

nodes. For instance, nettack [45] adds adversarial perturbations to

a graph to attack targeted nodes. Non-targeted attack aims to re-

duce the overall performance of GNNs. For example,metattack [46]
poisons the graph globally to achieve non-targeted attack with

meta-learning. To defend against adversarial attacks, many efforts

are taken recently [10, 20, 33, 38, 40, 43]. [38] prune the perturbed

edges based on Jaccard similarity of node features. Another prepro-

cessing method by low-rank approximation of adjacent matrix is

investigated [10]. Pro-GNN [20] is the most similar work to ours,

which learns a clean graph structure by low-rank constraint. How-

ever, they only tackle the adversarial edges and their computational

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

182

cost is very large due to the direct learning of the graph and the

sparse low-rank constraint. This work is inherently different from

these methods as: (i) we study a novel problem of developing robust

GNN for both noisy graphs and label sparsity issues; and (ii) the

proposed RS-GNN simultaneously tackles the two issues by learn-

ing an link predictor to down-weight noisy edges and connecting

nodes with high similarity to facilitate message-passing; and (iii)

RS-GNN uses link predictor instead of direct graph learning to save

computational cost.

3 PRELIMINARY ANALYSIS
In this section, we discuss the inner working of GNNs, conduct

preliminary analysis to show the issues of GNN with sparse labels

and verify that densifying graphs by connecting similar nodes can

potentially alleviate the issue.

3.1 Notations
We use G = (V, E,X) to denote an attributed graph, where V =

{𝑣1, ..., 𝑣𝑁 } is the set of 𝑁 nodes, E ⊆ V × V is the set of edges,

and X = {x1, ..., x𝑁 } is the set of attributes of V . A ∈ R𝑁×𝑁
is

the adjacency matrix of the graph G, where A𝑖 𝑗 = 1 if nodes 𝑣𝑖
and 𝑣 𝑗 are connected, otherwise A𝑖 𝑗 = 0. In our setting, only a

limited number of nodes V𝐿 = {𝑣1, ..., 𝑣𝑙 } are provided with labels

Y = {y1, ..., y𝑙 }, where y𝑖 ∈ R𝐶 is a one-hot vector of node 𝑣𝑖 ’s

label for multi-class classification. Note that the topology of the

graph G could be noisy such as poisoned by adversarial edges or

containing inherent noises, which leads to poor performance.

3.2 Basic Design and Inner Working of GNNs
In this subsection, we briefly introduce the common architecture of

graph neural networks (GNNs). Generally, GNNs adopt message-

passing mechanism to learn node representations, i.e., they update

the representation of a node by aggregating the representations of

the neighborhood nodes. The updating process of the 𝑘-th layer in

GNNs could be written as:

a(𝑘)𝑣 = AGGREGATE
(𝑘−1) ({h(𝑘−1)𝑢 : 𝑢 ∈ N (𝑣)}),

h(𝑘)𝑣 = COMBINE
(𝑘) (h(𝑘−1)𝑣 , a(𝑘)𝑣),

(1)

where h(𝑘)𝑣 is the representation vector of node 𝑣 ∈ V at the 𝑘-th

layer andN(𝑣) is the set of neighborhoods of 𝑣 . During the training
of node classification, the representations of labeled nodes are used

to give prediction and obtain the training loss to minimize. With

the message-passing mechanism, after 𝐾-layers of GNN, the node

representation of 𝑣𝑖 would capture the node features and structure

information of the 𝐾-hop neighborhoods of 𝑣𝑖 , and thus facilitating

downstream tasks. In other words, in GNN, one labeled node would
make the 𝐾-hop neighborhood participate in the training of GNN,
which is one reason that GNNs have great ability in leveraging

unlabeled nodes for semi-supervised node classification.

3.3 Analysis of GNNs with Sparse Labels
In this subsection, we conduct preliminary analysis on real-world

graphs to show the issues of GNNs when limited labeled nodes are

available for training, which paves us a way to design robust GNNs

(a) Impacts of label rate (b) Impacts of graph density
Figure 2: The impacts of label rate and density of graph to
uninvolved node rate in the training phase.

for alleviating the label sparsity issue. The analysis is based on three

widely used datasets, i.e., Citeseer [31], Cora and Cora-ML [27].

Generally, GNNs, such as GCN andGAT, rely on the classification

loss of the labeled nodes to learn the parameters, which is effective

when we have adequate labeled nodes. However, when the size of

labeled node setV𝐿 is small and the graph is sparse, only a small

portion of nodes would be involved in the training. This may lead

to poor performance of GNNs. More specifically, for a𝐾-layer GNN,

the nodes involved in the training phase include the labeled nodes

and the unlabeled nodes within 𝐾-hop distance of labeled nodes.

We usually set 𝐾 as 2 to 3 because deep GNNs have over-smoothing

issue [24]. Since real-world graphs are usually sparse, the 𝐾-hop

neighbors of the labeled nodes would be limited as well. Thus, when

V𝐿 is small, only a small portion of nodes would be involved in

training, making GNNs less effective in leveraging unlabeled nodes.

We analyze how the label rate affects the rates of uninvolved

nodes of real-world datasets for a two layer GNN. We vary label

rates from 0.01 to 0.25. The average uninvolved node rates and the

standard deviations are shown in Fig. 2a. From the figure, we ob-

serve that (i) when the label rate is high, say above 0.1, most of the

nodes are involved in training GNN. The benefit of further increas-

ing label rate is marginal as the 2-hop neighbors of labeled nodes

could overlap. This is one reason that GNNs have great ability for

semi-supervised node classificationwith small but adequate amount

of labeled nodes, and the increase of labeled nodes can marginally

improve the performance; (ii) As the label rate decreases from 0.1,

the uninvolved node rate increases significantly, i.e., the majority

of nodes are not involved in the training. This indicates that GNNs

would have difficulty in handling sparsely labeled graphs.

Although a higher label rate could help to reduce the uninvolved

node rate, it can be expensive to obtain more labels [12]. Thus, we

need an alternative approach to effectively use the labels. From the

analysis above, one potential solution is to make the graph denser so

that one labeled node could have more neighbors to be involved in

the training of GNN. To verify it, we randomly add different amount

of edges to the three graphs. We denote the number of edges of the

new graph as |E𝐴 | and that of raw graph as |E |. We fix label rate

as 0.01. The impact of the graph density on the uninvolved node

rate is presented in Fig. 2b. From the figure, we observe that when

|E𝐴 |/|E | increases from 1 to 3, i.e., we add two times the number

of original edges, the uninvoled node rate drops significantly. For

example, it drops from 0.8 to around 0.3 on Citeseer.

As real-world graphs such as social networks have many pairs

of nodes who are similar but not connected together, the analysis

above shows that it is promising to predict links to densify the

graph, which can help the message passing of GNNs to alleviate the

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

183

issue of limited labeled nodes. In addition, these predicted edges can

also be directly used to regularize the predicted labels of unlabeled

nodes, i.e., if two nodes are more likely to have a link, they are more

likely to have the same labels.

3.4 Problem Definition
Our preliminary analysis shows that predicting links to densify the

graph can potentially alleviate the label sparsity issue. In addition,

the link prediction can potentially down-weight or eliminate noisy

edges as noisy edges usually connect nodes with low node attribute

similarity. Therefore, we aim to simultaneously eliminate noisy

edges and densify the graph with a link predictor and train a robust

GNN on the new graph. The problem is formally defined as:

Problem 1. Given an attributed graph G = (V, E,X) with edge
set E might contain a small amount of noisy edges, and a small
set of labeled nodes V𝐿 ∈ V with the corresponding labels in Y,
simultaneously learn adjacency matrix S ∈ [0, 1]𝑁×𝑁 which down-
weights/removes noisy edges and completes missing links by a link
predictor 𝑓𝐸 : (𝑣𝑖 , 𝑣 𝑗) → S𝑖 𝑗 , and a GNN on the learned graph for
node classification, i.e., 𝑓G : (S,X) → ˆY, where S𝑖 𝑗 indicates the
weight of edge linking 𝑣𝑖 and 𝑣 𝑗 and ˆY is the set of predictions for
unlabeled nodes.

4 PROPOSED FRAMEWORK – RS-GNN
In this section, we present the details of the proposed RS-GNN. The

main challenges are: (i) given the noisy graph, how can we learn a

link predictor which can down-weight/eliminate noisy edges and

densify the graph; and (ii) how to simultaneously use the learned

graph for node classification. As the graph topology is noisy, we

cannot directly apply a GNN on G to predict edges because the

message passing would magnify the negative effects of the noisy

edges. Generally, nodes sharing similar features tend to connect to

each other; while noisy edges tend to connect nodes of dissimilar

nodes. Thus, we propose to learn a MLP-based link predictor which

predicts links using node attributes. The more similar the node

features of two nodes are, the larger weights the link predictor will

assign. Thus, the link predictor is able to down-weight or eliminate

noisy edges in the initial graph. Meanwhile, the edge predictor can

predict missing links to alleviate label sparsity issue. We design a

novel feature similarity weighted edge-reconstruction loss to train

the link predictor so as to reduce the negative effects of noisy edges

on the link predictor. An illustration of the framework is shown in

Figure 3, which contains a link predictor 𝑓𝐸 and a GCN classifier

𝑓G . The link predictor 𝑓𝐸 takes node features as input to learn

a dense adjacency matrix S, aiming to remove adversarial edges

and assign edges that benefit predictions. The GCN classifier 𝑓G
takes S and node features X to predict the node labels with the

node features. Finally, label smoothness constraint based on the

predicted edges will be added to the predictions of unlabeled nodes

to further alleviate label sparsity issue. Next, we give the details of

each component.

4.1 Link Prediction
As the given graph contains structural noises and has missing edges,

we propose to learn a new graph that down-weights noisy edges to

Figure 3: An illustration of the proposed RS-GNN.
eliminate their negative effects and completes the missing links to

facilitate GNN in dealing noisy graphs with sparse labels.

Building Link Predictor. Generally, noisy edges connect two

nodes with dissimilar node features; while nodes of similar fea-

tures are likely to have similar labels and should be connected.

Therefore, we propose to predict edge weights and missing edges

between nodes using nodes features. Specifically, for node 𝑣𝑖 , a

MLP takes its node attributes x𝑖 to learn its node representation

as: z𝑖 = 𝑀𝐿𝑃 (x𝑖). With the node representations, we predict the

weight𝑤 (𝑖, 𝑗) between 𝑣𝑖 ∈ V and 𝑣 𝑗 ∈ V as:

𝑤 (𝑖, 𝑗) = 𝑓 (z𝑇𝑖 z𝑗), (2)

where 𝑓 is the activation function. For 𝑓 , we use ReLU instead of

sigmoid as we find that when the learned adjacency matrix is used

as the input of GCN, the use of sigmoid functionwill lead to gradient

vanishing, which is consistent with previous observations [16]. Note

that we use MLP instead of a GNN as the link predictor because

the graph structure is noisy and the message passing of GNN could

magnify the negative effects.

Learning Link Predictor. Our goal is to learn a link predictor

which can (i) assign small weights to two nodes of different fea-

tures so as to eliminate noisy edges; and (ii) assign larger weights

to two nodes of similar node features so as to densify the graph to

facilitate message passing. As for many real-world graphs, similar

nodes tend to link together and linked nodes usually have high

feature similarity. Thus, to learn a good link predictor 𝑓𝐸 , we uti-

lize the adjacency matrix reconstruction as the loss function. Since

the graph is sparse, the adjacency matrix A contains many zero

entries. Directly adopting adjacency matrix reconstruction as the

loss function would (i) result in poor performance as the link pre-

dictor will be biased on predicting missing links; and (ii) require

large computational cost as we need to calculate 𝑁 2
edges. To ad-

dress this problem, negative sampling [28] is adopted, i.e., for each

𝑣 𝑗 ∈ N (𝑣𝑖), we randomly sample 𝑄 nodes that’s not connected to

𝑣𝑖 and use them as negative samples.

However, a small portion of edges in A are noisy, which might

have negative effects in training the predictor. To mitigate the

negative effects of noisy edges and to learn a link predictor that can

assign lower weights to edges that link dissimilar nodes, we propose

to reweight the positive and negative samples based on the feature

similarity of two nodes. Specifically, for node 𝑣𝑖 and its positive

sample 𝑣 𝑗 ∈ N (𝑣𝑖), we minimize exp(− ∥x𝑖−x𝑗 ∥2
𝜎2

) (𝑤 (𝑖, 𝑗) − 1)2,
where 𝜎 is the hyperparameter to control the variance of the sample

weights. Thus, if the node features of 𝑣𝑖 and 𝑣 𝑗 are similar, 𝐴𝑖 𝑗

is likely to be a clean edge and exp(− ∥x𝑖−x𝑗 ∥2
𝜎2

) would be large.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

184

Minimizing the loss will force𝑤 (𝑖, 𝑗) to be close to 1; while if the

features are dissimilar, then 𝐴𝑖 𝑗 is likely to be a noisy edge and

exp(− ∥x𝑖−x𝑗 ∥2
𝜎2

) would be small, thus minimizing the loss will have

little effect on𝑤 (𝑖, 𝑗). Similarly, for 𝑣𝑖 and its negative sample 𝑣𝑛 ,

we minimize exp(∥x𝑖−x𝑛 ∥
2

𝜎2
) (𝑤 (𝑖, 𝑛) − 0)2. If the node features of 𝑣𝑖

and 𝑣𝑛 are dissimialr, then exp(∥x𝑖−x𝑛 ∥
2

𝜎2
) is large, minimizing the

loss would make 𝑤 (𝑖, 𝑛) close to 0 as expected. With the weight

defined in this way, the loss for training the link predictor is:

L𝐸 =
∑
𝑣𝑖 ∈V

∑
𝑣𝑗 ∈N(𝑣𝑖)

[
exp(−

∥x𝑖 − x𝑗 ∥2

𝜎2
) (𝑤 (𝑖, 𝑗) − 1)2

+
𝑄∑
𝑛=1

·E𝑣𝑛∼𝑃𝑛 (𝑣𝑖) exp(
∥x𝑖 − x𝑛 ∥2

𝜎2
) (𝑤 (𝑖, 𝑛) − 0)2

]
,

(3)

where 𝑃𝑛 (𝑣𝑖) is the distribution of sampling negative nodes for 𝑣𝑖 ,

which is a uniform distribution. With the loss function Eq.(3), the

link predictor would be able to downweight the noisy edges and

densify the graph to facilitate the learning of robust GNN on noisy

graph with limited labels.

GraphDenoising andDensification.With the link predictor, we

could apply the learnedweights to the existing edges and drop edges

whose predicted weights are small to eliminate the negative effects

of noisy/adversarial edges. Moreover, to increase the involvement of

unlabeled nodes to facilitate the message passing of GNNs, we also

link nodes that have large weights predicted by the link predictor.

However, if we predict weights of all pairs of nodes, the computation

cost will be very large because we will train a link predictor and a

GNN classifier end-to-end as shown in Sec. 4.4, which means we

need to do prediction in each iteration. To save the computational

cost, for each node 𝑣𝑖 , we first construct a candidate subset S(𝑣𝑖),
which contains 𝐾 nodes having the largest cosine similarities with

𝑣𝑖 in the raw feature space X. Note that this only needs to be done

once. Since nodes not in S(𝑣𝑖) are not likely to be connected with

𝑣𝑖 , we only need to compute weights between 𝑣𝑖 and S(𝑣𝑖). The
whole process of obtaining a clean and dense adjacency matrix S
could be formally stated as:

S𝑖 𝑗 =
{
𝑤 (𝑖, 𝑗) if𝑤 (𝑖, 𝑗) > 𝑇𝑙 and 𝑣 𝑗 ∈ N (𝑣𝑖) ∪ S(𝑣𝑖);
0 else,

(4)

where N(𝑣𝑖) are neighbors of 𝑣𝑖 in the noisy graph, and 𝑇𝑙 is a

threshold to determine whether we should keep/add the edge. With

the above operation, those noisy edges would be assigned smaller

weights or even dropped, which mitigate the negative effects of

noisy edges. Meanwhile, more edges are introduced to facilitate the

message passing of GNNs during training.

4.2 GNN for Node Classification
With the learned adjacency matrix S, we can apply GNNs to learn

the node representation asH = 𝐺𝑁𝑁 (S,X). Note that the proposed
framework is a flexible framework which can facilitate various

GNNs such as GAT [34] and GIN [39].With the node representation,

the label of node 𝑣𝑖 can be predicted as 𝑦𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (h𝑖), where
h𝑖 is the representation of node 𝑣𝑖 . Then, the training loss is:

L𝐺𝑁𝑁 =
∑

𝑣𝑖 ∈V𝐿

𝑙 (ŷ𝑖 , y𝑖) (5)

where 𝑙 (ŷ𝑖 , y𝑖) is the cross entropy between 𝑦𝑖 and y𝑖 . Since S is
denser than the original graph, more unlabeled nodes are involved

in the training even with limited amount of labeled nodes, thus

making the propagation of information more efficient.

4.3 Label Smoothness on Unlabeled Nodes
Though the dense graph S can help to include more unlabeled

nodes in the loss function, their information is propagated through

the message-passing mechanism instead of being directly used in

the training loss. To further alleviate the issue of limited labeled

nodes, we propose to adopt the predicted weighted edges for label

smoothness regularization. The basic idea is the larger weights of

an edge 𝑆𝑖 𝑗 is, the more likely that 𝑣𝑖 and 𝑣 𝑗 have the same label [36].

Thus, for an unlabeled node 𝑣𝑖 , if its edge weight with node 𝑣 𝑗 is

larger than a threshhold 𝑇ℎ , i.e., 𝑆𝑖 𝑗 > 𝑇ℎ , we want their predicted

labels to be similar with each other. This can be formally written as

L𝑢 =
∑
𝑣𝑖 ∈V𝑢

∑
𝑣𝑗 ∈V

T𝑖 𝑗 ∥ŷ𝑖 − ŷ𝑗 ∥2, (6)

where V𝑢 denotes the set of unlabeled nodes, ŷ𝑖 and ŷ𝑗 represent
the predictions of node 𝑣𝑖 ∈ V𝑢 and 𝑣 𝑗 ∈ V , respectively. T𝑖 𝑗 = S𝑖 𝑗
if S𝑖 𝑗 > 𝑇ℎ ; otherwise 0. In this way, we explicitly smooth the

predicted labels between unlabeled nodes and nodes that are similar

to them. By including T𝑖 𝑗 in L𝑢 , edge weights are also considered.

4.4 Final Objective Function of RS-GNN
With the link predictor denoising and densifying the graph with

the supervision from A, the GNN adopting the learned graph for

label prediction and the label smoothness regularization from the

generated graph, the final loss function can be written as

argmin

𝜃𝐸 ,𝜃G

L𝐺𝑁𝑁 + 𝛼L𝐸 + 𝛽L𝑢 , (7)

where 𝜃𝐸 and 𝜃G are parameters of link predictor 𝑓𝐸 and GNN

classifier 𝑓G , respectively. 𝛼 and 𝛽 are hyperparameters to balance

the contributions of reconstructing the adjacency matrix with 𝑓𝐸
and label smoothness regularization. The proposed framework is

an end-to-end framework where we simultaneously learn the link

predictor and utilize the predicted edges for training a robust GNN

to alleviate the noisy graph and limited labeled nodes issues. The

training algorithm is shown in the supplementary material.

5 EXPERIMENTS
In this section, we evaluate the proposed RS-GNN on noisy graphs

with limited labels to answer the following research questions:

• RQ1 How robust is the proposed framework on various types of

noisy graphs with limited labeled nodes?

• RQ2 How does the proposed framework perform under various

label rates and graph sparsity levels?

• RQ3 What are the contributions of link predictor and label

smoothness regularization from predicted edges on RS-GNN?

5.1 Experimental Settings
5.1.1 Datasets. For a fair comparison, we conduct experiments on

four widely used benchmark datasets, i.e., Cora, Cora-ML, Citeseer

and Pubmed [31]. The statistics of the datasets are presented in the

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

185

Table 1: Node classification performance (Accuracy(%)±Std) on various types of noisy graphs
Dataset Graph GCN SuperGAT Self-Training RGCN GCN-jaccard GCN-SVD Pro-GNN Ours

Cora

Raw Graph 65.5 ±0.5 69.0 ±1.7 67.9 ±0.9 63.0 ±0.7 65.7 ±0.6 62.9 ±1.1 65.9 ±1.3 75.3 ±0.6
Random Noise 59.2 ±0.7 58.8 ±0.4 63.1 ±0.5 51.5 ±0.7 57.8 ±1.4 51.5 ±0.7 56.1 ±3.0 71.8 ±1.5
Non-Targeted Attack 26.8 ±2.5 41.5 ±1.6 29.6 ±0.4 30.4 ±1.0 48.3 ±2.0 37.1 ±1.4 41.7 ±5.7 70.8 ±0.7
Targeted Attack 45.3 ±1.2 44.4 ±1.3 46.7 ±2.1 40.3 ±1.0 49.5 ±1.0 44.8 ±0.7 49.7 ±0.9 67.8 ±1.2

Cora-ML

Raw Graph 72.4 ±0.8 73.8 ±1.4 72.7 ±1.4 72.9 ±0.7 71.0 ±1.2 71.1 ±1.0 62.0 ±1.5 75.6 ±0.4
Random Noise 62.3 ±0.6 63.7 ±0.9 62.8 ±1.3 61.4 ±1.1 61.3 ±0.5 62.6 ±0.6 57.1 ±2.1 72.9 ±0.7
Non-Targeted Attack 13.2 ±1.4 18.6 ±1.5 15.0 ±0.7 11.0 ±1.0 48.9 ±5.3 16.3 ±0.6 18.2 ±2.4 73.2 ±1.2
Targeted Attack 55.7 ±0.7 56.5 ±1.7 57.7 ±1.2 54.6 ±0.6 61.2 ±0.9 53.0 ±0.8 55.1 ±1.6 70.8 ±0.7

Citeseer

Raw Graph 64.8 ±1.4 64.2 ±1.7 65.7 ±1.1 56.6 ±1.2 62.2 ±2.0 61.3 ±2.0 60.6 ±2.0 71.2 ±1.4
Random Noise 57.0 ±1.2 54.6 ±1.3 58.7 ±2.1 48.2 ±1.2 61.1 ±2.8 48.3 ±1.6 54.4 ±2.6 68.8 ±1.5
Non-Targeted Attack 26.6 ±2.5 42.3 ±2.6 28.8 ±2.7 26.6 ±1.1 57.9 ±2.7 41.7 ±1.6 41.6 ±3.1 68.0 ±0.4
Targeted Attack 43.9 ±1.7 42.9 ±0.4 47.6 ±1.2 35.3 ±1.5 52.5 ±2.3 40.5 ±0.7 48.1 ±1.6 67.2 ±1.3

Pubmed

Raw Graph 85.9 ±0.1 86.0 ±1.2 86.1 ±0.2 85.1 ±0.1 86.0 ±0.1 83.0 ±0.1 86.1 ±0.1 86.9 ±0.1
Random Noise 80.5 ±0.1 79.8 ±0.1 81.2 ±0.2 79.7 ±0.1 83.0 ±0.1 82.0 ±0.1 85.1 ±0.2 86.4 ±0.1
Non-Targeted Attack 73.7 ±0.2 73.8 ±0.2 73.5 ±0.3 73.8 ±0.3 84.4 ±0.1 83.0 ±0.1 86.0 ± 0.1 86.3 ±0.1
Targeted Attack 76.5 ±0.1 75.6 ±0.1 76.8 ±0.2 76.2 ±0.2 82.7 ±0.2 78.1 ±1.3 79.1 ±0.1 84.3 ±0.2

Table 3 in Appendix. Note that the split of validation and testing

on all datasets are the same as described in the cited papers to keep

consistence. For the training set, we randomly sample 1% of nodes

as the labeled set for Cora, Cora-ML and Citeseer. For Pubmed, we

randomly sample 10% of nodes to compose the labeled set. The

training node set doesn’t overlap with the validation and test sets.

5.1.2 Noisy Graphs. To show RS-GNN is robust to various struc-

tural noises, we evaluate RS-GNN on the following types of noises:

• Raw Graphs: They are the original graphs of the benchmark

datasets which may contain inherent structural noise.

• Random Noise: We randomly inject fake edges and remove

normal edges to add random noise to graphs.

• Non-Targeted Attack: We adopt metattack [46] to poison the

graph structures by adding and removing edges, which aims to

reduces the overall performance of GNNs on the whole graph.

• Targeted Attack: It aims to lead the GNN to misclassify target

nodes. Following [33], we randomly select 15% nodes as target

nodes and apply nettack [45] to perturb the graph structure.

5.1.3 Baselines. We compare RS-GNN with the representative and

state-of-the-art GNNs, and robust GNNs against adversarial attacks:

• GCN [22]: GCN is a representative GNN which defines Graph

convolution with spectral analysis.

• SuperGAT [21]: This extends GAT [34] with self-supervised

learning. Edge prediction is deployed as the pretext task to guide

the learning of attention to facilitate the message-passing.

• Self-Training [24]: This is a self-supervised learning method. A

GCN is firstly trained on given labels. Then, confident pseudo

labels would be added to the label set to improve the GCN.

• RGCN [43]: It uses Gaussian distributions as representations to

absorb the effects of adversarial edges.

• GCN-jaccard [38]: GCN-Jaccard eliminates edges that connect

nodes with low Jaccard similarity, then apply GCN on the graph.

• GCN-SVD [10]: This preprocessing method is based on low rank

assumption. Low-rank approximation of the perturbed graph is

used to train GNNs against adversarial attacks.

• Pro-GNN [20]: It applies low-rank and sparsity constraints to

learn a clean graph structure close to the noisy graph structure.

(a) Metattack (b) Random Noise
Figure 4: Robustness under different Ptb rates on Cora.

For all the baselines, we use the implementation from the repository

DeepRobust [25]. All the hyperparameters of the baselines are tuned

on the validation set to make a fair comparison with RS-GNN.

5.1.4 Implementation Details. Each experiment is conducted 5 times
and average results with standard deviations are reported. The

hyperparameters are tuned based on the performance of validation

set. More specifically, for RS-GNN, we vary 𝛼 as {0.003, 0.03, 0.3, 3,

30 }, and 𝛽 as {0.01, 0.03, 0.1, 0.3, 1}. For all experiments,𝑇𝑙 ,𝑇ℎ , 𝜎 , and

𝑄 are fixed as 0.1, 0.8, 100, and 50, respectively. 𝐾 is set as 100, 300,

400 and 10 for Cora, Cora-ML, Citeseer and Pubmed, respectively.

More details about the hyperparameters sensitivity is discussed in

Sec. 5.6. A one-hidden layer MLP with 64 filters is applied as the

link predictor. We use GCN as the backbone of RS-GNN. Various

GNNs can be used in RS-GNN and we leave it as a future work.

5.2 Performance on Noisy Graphs
To answer RQ1, we first compare RS-GNN with the baselines on

various noisy graphs. We then evaluate the performance of RS-GNN

on the graphs with different levels of structural noise.

5.2.1 Comparisons with baselines. We conduct experiments on

four types of noisy graphs, i.e., raw graphs, graphs with random

noise, non-targeted attack perturbed graphs and targeted attack

perturbed graphs. The perturbation rate of non-targeted attack and

targeted attack is 0.15. The perturbation rate of random noise is set

as 0.3. Since we focus on noisy graph with sparse labels, we set the

label rates as 0.01 for Cora, Cora-ML, Citeseer and 0.1 for Pubmed.

The results are reported in Table 1, where we can observe:

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

186

(a) Cora (b) CoraML
Figure 5: Distributions of the weights of normal and noisy
edges on the generated graph.

• With limited labeled nodes, GCN even hardly performs well on

raw graph, which indicates the necessity of investigating method

to address the challenge of sparsely labeled graphs. Though re-

cent GNNs such as SuperGAT and Self-Training can improve the

performance with self-supervised learning, our RS-GNN still out-

performs them by a large margin. This shows the effectiveness

of graph densification in dealing with sparsely labeled graphs.

• The structural noise further degrades the performance of GCN,

but its impact to RS-GNN is negligible. RS-GNN achieves better

results than the state-of-the-art robust GNNs. This indicates RS-

GNN could eliminate the effects of the noisy edges.

• Compared with the preprocessing methods and Pro-GNN, RS-

GNN achieves higher accuracy on the sparsely labeled graphs

perturbed by attack methods. This is because the baselines only

focus on eliminating potential noisy edges, which will even result

in less involvement of unlabeled nodes. By contrast, RS-GNN

can down-weights/removes the adversarial edges to defend the

adversarial attacks and densify the graph to facilitate the message

passing for predictions of unlabeled nodes.

5.2.2 Robustness Under Different Ptb Rates . To show that RS-GNN

is resistant to different levels of structural noise, we vary the pertur-

bation rate as {0%, 5%, 10%, . . . , 25%} and compare the performance

of RS-GNN with the most effective baselines. The label rate is fixed

as 0.01. Since we have similar observations on other datasets, we

only report the average accuracy and standard deviation on Cora

in Figure 4. From the figure, we make following observations:

• As the perturbation rate increases, the performance of all the

baselines drop significantly, which is as expected. Though the

performance of RS-GNN also drops, it is much stable and consis-

tently outperforms the baselines, which shows the robustness of

RS-GNN against various levels of attacks and random noise; and

• Compared with GCN, RS-GNN uses GCN as backbone but sig-

nificantly outperforms GCN, especially when the perturbation

rate is large, which shows the effectiveness of eliminating the

effects of noisy edges and densifying the graph to benefit the

predictions given limited labels.

5.3 Analysis of the Learned Graph
To demonstrate that RS-GNN could alleviate negative effects of

noisy edges by downweighting the noisy edges, we investigate the

distribution of the learned edge weights S𝑖 𝑗 of normal and noisy

edges in this subsection. The edge weight distributions of graphs

perturbed by random noise with 30% perturbation rate on Cora

and Cora-ML are shown in Fig. 5. From this figure, we observe: (i)
The weights of noisy edges are significantly lower than the weights

(a) Raw Graph (b) Metattack with 15% Ptb
Figure 6: Performance on Cora with different label rates.

of normal edges, which indicates RS-GNN manages to reduce the

effects of noisy edges for robust GNN; and (ii) Although most

normal edges have higher weights, some of their weights are very

low, which implies inherent noise exists in the graph and RS-GNN

is able to get rid of such inherent structural noise.

We also provide more details about the number of involved

unlabeled nodes with the learned graph in Appendix B, which

proves RS-GNN can enhance the involvement of unlabeled nodes.

5.4 Impacts of Label Rate and Graph Sparsity
To answer RQ2, we study the impacts of the number of labeled

nodes and sparsity of the graph by varying the label rate and edge

rate of the graph. The hyperparameters are selectedwith the process

described in Sec. 5.1.4. Each experiment is conducted 5 times and

average accuracy with standard deviation are reported.

5.4.1 Impacts of Label Rate. We vary label rates as {0.01, 0.02,. . . ,

0.06}. Experiments are conducted on raw graphs and graphs per-

turbed by mettack to study the effectiveness of RS-GNN under

various label rates. The results on Cora are shown in Fig. 6. We

have similar observations on other datasets. From Fig. 6, we observe:

• Generally, as the increase of label rate, the performances of all

the methods increase, which is as expected.

• For the raw graph, though RS-GNN consistently outperforms

the baselines, as the label rate increases, the improvement of RS-

GNN becomes marginal. This is because the raw graph doesn’t

contain much noise. Thus, as label rate increases to 6%, there are

already adequate labels. Since higher label rates would result in

more unlabeled nodes involving in the training, the effects of

densifying graphs and label smoothness become less significant;

• For the metattack graph, as the label rate increases, RS-GNN still

significantly outperforms baselines. That’s because the training

graph contains a lot of adversarial edges. Thoughwe have enough

training labels, the adversarial edges can still contaminate the

message passing of GNNs. But RS-GNN can eliminate noisy edges

and densify the graph, thus having better results.

5.4.2 Impacts of Graph Sparsity. As RS-GNN can generate dense

graphs, it should have the ability to handle sparse graphs. Thus, we

randomly select 𝑥% edges from the raw graph to build graphs of

different sparsity levels. We vary edge rate 𝑥% from 20% to 100%

with a step of 40%. Since we are interested in how the sparsity of

the graph could affect RS-GNN in generating dense graphs, we only

focus on the performance on raw graphs. The average results of 5

runs on Citeseer are reported in Table 2. From the table, we have

the following observations:

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

187

Table 2: Accuracy (%) on Citeseer in different sparsity levels.
Edge Rate (%) GCN Pro-GNN RS-GNN

20 54.5 ±1.2 55.2 ±1.6 63.7 ±2.2
60 58.7 ±1.8 58.3 ±2.4 69.8 ±1.1
100 64.8 ±1.4 60.6 ±2.0 71.2 ±1.4

• As the edge rate decreases, the performance of all the methods

decrease, which is because message-passing of GNNs becomes

ineffective on very sparse graphs;

• RS-GNN consistently outperforms the baselines. In particular,

when the graph becomes more sparse, the improvement of RS-

GNN over the baselines becomes larger. For example, the im-

provement of RS-GNN over GCN on Citeseer is 6.4% when Edge

Rate is 100%, and becomes 9.2% when Edge Rate is 20%, which

shows the importance of generating edges for densifying the

graph and smoothing predictions with the learned graph.

(a) Nettack (b) Metattack with 15% Ptb
Figure 7: Ablation studies on Cora with different label rates.

5.5 Ablation Study
To answer RQ3, we conduct ablation studies to understand the

effects of graph densification, graph purification and label smooth-

ness regularization. In RS-GNN, the link predictor densify the graph

to enhance the performance on unlabeled nodes. To demonstrate

the effects of adding edges with the link predictor, we remove the

process of adding edges and obtain RS-GNN\A. To testify the ef-

fectiveness of the label smoothness regularization based on the

generated graph, we eliminate the label smoothness regularization

and get RS-GNN\U. To show our link predictor can eliminate the

effects of noisy edges, we compare a variant named as RS-GNN\AU
which only use the link predictor to denoise graphs. Graph desifi-

cation and label smoothness are not applied in RS-GNN\AU. We

also implement a variant named as RS-GNN𝐺𝐶𝑁 which uses GCN

as link predictor to show that the noisy edges would largely affects

the GNNs for link prediction. Hyperparameters selection follows

the process in Sec 5.1.4. We only show the results on the Cora graph

perturbed withmetattack and random noise, because similar trends

are observed on other datasets. Results are presented in Fig. 7. From

this figure, we observe that:

• RS-GNN performs much better than RS-GNN\A and RS-GNN\U,
which shows that densifying graphs and label smoothness with

the learned graph can address the label sparsity issue;

• With the increase of label rate, the gap between RS-GNN and

RS-GNN\U will be narrowed. This is consistent with our analysis

that higher label rates would involve more unlabeled nodes;

• RS-GNN𝐺𝐶𝑁 performs much worse than RS-GNN, which indi-

cates adversarial edges would impair GCN and result in a poor

link predictor for denoising and densification.

(a) Raw Graph (b) Metattack with 15% Ptb

Figure 8: Parameter sensitivity analysis on Cora.

5.6 Parameter Sensitivity Analysis
In this subsection, we explore the sensitivity of the most crucial

hyperparameters 𝛼 and 𝛽 which are in the final objective function of

RS-GNN. The analysis about other hyperparameters is presented in

the supplementary material. 𝛼 controls how well the link predictor

reconstructs the noisy graph and 𝛽 controls the contribution of label

smoothness. To investigate the effects of 𝛼 and 𝛽 , we vary the values

of 𝛼 as {0.003, 0.03, 0.3, 3, 30} and 𝛽 as {0.01, 0.03, 0.1, 0.3, 1, 3} on
Cora. The results are shown in Fig 8. In the raw graph, when 𝛼 is

large, the accuracy is stable and high. But if the 𝛼 is too large in the

perturbed graph, the performance would decrease. This difference

is due to the noise levels of the raw graph and the perturbed graph.

The structural noise in the perturbed graph is severe, faithfully

reconstructing the perturbed graphwith high𝛼 would lead to a poor

link predictor. As for the 𝛽 , a value between 0.03 to 0.3 generally

gives good performance, which eases the parameter selection.

6 CONCLUSION AND FUTUREWORK
In this paper, we study a novel problem of learning robust GNNs

on noisy graphs with limited labeled nodes. We demonstrate that

noisy edges and limited labeled nodes would largely impair the

performance of GNNs. A novel RS-GNN is proposed to mitigate

these issues. More specially, we adopt the edges in the noisy graph

as supervision to obtain a denoised and densified graph to facilitate

the message passing for predictions of unlabeled nodes. Moreover,

we also utilize the supervision from the generated graph to explic-

itly involve unlabeled nodes. Extensive experiments on real-world

datasets demonstrate the robustness of the proposed framework on

noisy graphs with limited labeled nodes. There are several direc-

tions requiring further investigation. First, we focus on structural

noise in this paper. However, for some applications, such as social

networks, users may provide fake attributes for privacy. Thus, we

will extend it to graphs with structural noise as well as attribute

noise under the setting of limited labeled nodes. Second, the labels

may also contain noise which may degrade the performance of

GNNs due to the message passing. Therefore, we will also explore

methods that handle noisy graphs with limited and noisy labels.

7 ACKNOWLEDGEMENT
This material is based upon work supported by, or in part by, the

National Science Foundation (NSF) under grant #IIS1955851, and

Army Research Office (ARO) under grant #W911NF-21-1-0198. The

findings and conclusions in this paper do not necessarily reflect the

view of the funding agency.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

188

REFERENCES
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

networks and locally connected networks on graphs. ICLR (2014).

[2] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph

convolutional networks via importance sampling. ICLR (2018).

[3] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In ICML. PMLR, 1725–1735.

[4] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. 2019. Multi-label

image recognition with graph convolutional networks. In CVPR. 5177–5186.
[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-GCN: An efficient algorithm for training deep and large graph

convolutional networks. In SIGKDD. 257–266.
[6] Enyan Dai, Charu Aggarwal, and Suhang Wang. 2021. NRGNN: Learning a Label

Noise Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 227–236. https://doi.org/10.1145/3447548.3467364

[7] Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair

graph neural networks with limited sensitive attribute information. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining. 680–
688.

[8] Enyan Dai and Suhang Wang. 2021. Towards Self-Explainable Graph Neural

Network. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 302–311.

[9] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial attack on graph structured data. ICML (2018).

[10] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E

Papalexakis. 2020. All You Need Is Low (Rank) Defending Against Adversarial

Attacks on Graphs. InWSDM. 169–177.

[11] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro

Flammini. 2016. The rise of social bots. Commun. ACM 59, 7 (2016), 96–104.

[12] Brian Gallagher and Tina Eliassi-Rad. 2008. Leveraging label-independent fea-

tures for classification in sparsely labeled networks: An empirical study. In

International Workshop on Social Network Mining and Analysis. Springer, 1–19.
[13] Brian Gallagher, Hanghang Tong, Tina Eliassi-Rad, and Christos Faloutsos. 2008.

Using ghost edges for classification in sparsely labeled networks. In SIGKDD.
256–264.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. ICML (2017).

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[17] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks

on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).
[18] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-supervised

learning with graph learning-convolutional networks. In CVPR. 11313–11320.
[19] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang

Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.

arXiv preprint arXiv:2006.10141 (2020).
[20] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph structure learning for robust graph neural networks. In SIGKDD.
66–74.

[21] Dongkwan Kim and Alice Oh. 2021. How to find your friendly neighborhood:

Graph attention design with self-supervision. In International Conference on
Learning Representations.

[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.

Cayleynets: Graph convolutional neural networks with complex rational spectral

filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97–109.

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. AAAI (2018).
[25] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. DeepRobust: A PyTorch Library

for Adversarial Attacks and Defenses. arXiv preprint arXiv:2005.06149 (2020).
[26] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for

social networks. JASIST 58, 7 (2007), 1019–1031.

[27] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

2000. Automating the construction of internet portals with machine learning.

Information Retrieval 3, 2 (2000), 127–163.
[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

NeurIPS. 3111–3119.
[29] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In ICML. 2014–2023.
[30] Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-MingWu, and Qinghua Zheng. 2020.

Self-Supervised Graph Representation Learning via Global Context Prediction.

arXiv preprint arXiv:2003.01604 (2020).
[31] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[32] Ke Sun, Zhanxing Zhu, and Zhouchen Lin. 2020. Multi-stage self-supervised

learning for graph convolutional networks. AAAI (2020).
[33] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang

Wang. 2020. Transferring Robustness for Graph Neural Network Against Poison-

ing Attacks. InWSDM. 600–608.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

[35] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,

Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A Semi-supervised Graph

Attentive Network for Financial Fraud Detection. In ICDM. IEEE, 598–607.

[36] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,

Wenjie Li, and ZhongyuanWang. 2019. Knowledge-aware graph neural networks

with label smoothness regularization for recommender systems. In SIGKDD. 968–
977.

[37] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual

knowledge graph alignment via graph convolutional networks. In EMNLP. 349–
357.

[38] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and

defense. arXiv preprint arXiv:1903.01610 (2019).
[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[40] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural

networks against adversarial attacks. arXiv preprint arXiv:2006.08149 (2020).
[41] Tianxiang Zhao, Xianfeng Tang, Xiang Zhang, and Suhang Wang. 2020. Semi-

Supervised Graph-to-Graph Translation. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Management. 1863–1872.

[42] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. 2021. GraphSMOTE: Imbal-

anced Node Classification on Graphs with Graph Neural Networks. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining. 833–
841.

[43] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph

convolutional networks against adversarial attacks. In SIGKDD. 1399–1407.
[44] Qikui Zhu, Bo Du, and Pingkun Yan. 2020. Self-supervised Training of Graph

Convolutional Networks. arXiv preprint arXiv:2006.02380 (2020).
[45] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

attacks on neural networks for graph data. In SIGKDD. 2847–2856.
[46] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph

neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019).

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

189

https://doi.org/10.1145/3447548.3467364

Table 5: The impacts of hyperparameter 𝐾 .

𝐾 50 100 200 400

Cora 66.4 ±1.8 70.8 ±0.7 69.5 ±2.9 68.2 ±3.3
Cora-ML 44.8 ±1.2 53.8 ±2.7 73.2 ±1.2 69.0 ±5.0
Citeseer 63.3 ±2.0 66.0 ±1.4 68.0 ±0.4 67.8 ±1.4

Table 6: The impacts of hyperparameter 𝑇ℎ .

𝑇ℎ 0.6 0.7 0.8 0.9

Cora 68.3 ±0.7 68.9 ±1.5 70.8 ±0.7 69.8 ±2.1
Cora-ML 64.8 ±4.1 68.2 ±3.6 73.2 ±1.2 69.2 ±4.8
Citeseer 66.6 ±1.7 67.5 ±2.1 68.0 ±0.4 67.8 ±2.2

Table 7: The impacts of hyperparameter 𝑇𝑙 .

𝑇𝑙 0.0 0.05 0.1 0.2

Cora 65.5 ±2.8 68.5 ±3.3 70.8 ±0.7 70.3 ±1.4
Cora-ML 65.9 ±2.6 72.5 ±1.3 73.2 ±1.2 69.6 ±3.9
Citeseer 65.8 ±0.6 66.8 ±0.8 68.0 ±0.4 66.6 ±1.3

Table 8: The impacts of hyperparameter 𝜎 .

𝜎 30 100 300 1000

Cora 70.2 ±1.2 70.8 ±0.7 70.1 ±1.1 68.9 ±2.8
Cora-ML 72.7 ±1.0 73.2 ±1.2 72.5 ±0.8 72.4 ±0.5
Citeseer 66.1 ±1.3 68.0 ±0.4 67.3 ±0.9 66.5 ±1.0

Table 3: Statistics of datasets.

Cora Cora-ML Citeseer Pubmed

#nodes 2,485 2,810 2,110 19,717

#edges 5,069 7,981 3,668 44,338

#features 1,433 2,879 3,703 500

#classes 7 7 6 3

Algorithm 1 Training Algorithm of RS-GNN.

Input: G = (V, E,X), Y, 𝐾 , 𝑄 𝑇𝑙 , 𝑇ℎ , 𝜎 , 𝛼 and 𝛽 .

Output: 𝑓G and 𝑓𝐸
1: Randomly initialize the parameters of 𝑓G and 𝑓𝐸 .

2: repeat
3: Get the denoised and densified graph S with 𝑓𝐸 by Eq.(4).

4: Input the learned graph S and node attributes X to GCN

classifier 𝑓G to get robust predictions.

5: Jointly optimize the GCN classifier parameters 𝜃G and the

link predictor parameters 𝜃𝐸 by Eq.(7).

6: until convergence
7: return 𝑓G and 𝑓𝐸

A A TRAINING ALGORITHM OF RS-GNN
The training algorithm of RS-GNN is presented in Algorithm

1. In line 1, link predictor 𝑓𝐸 and GCN classifier 𝑓G are randomly

initialized. In line 2, we generate the graph with 𝑓𝐸 . Then the link

predictor and GCN classifier are jointly trained in an end-to-end

manner by Eq. (7) in line 3. Adam optimizer with learning rate set

as 0.001 is applied to update all the parameters.

Table 4: Number of involved unlabeled nodes

Dataset Cora CoraML Citeseer Pubmed

Raw Graph 212 447 168 12,430

Generated Graph 1,383 2,161 955 18,555

B MORE DETAILS OF THE LEARNED GRAPH
Since RS-GNN aims to densify the graphs to benefit predictions

in sparsely labeled graphs, we compare the number of involved

unlabeled nodes in raw and generated graphs. More specially, in

a two layer GNN, the neighbors of labeled nodes within two hops

will participate in the training process. The generated graphs are

attained by training RS-GNN on graphs perturbed by random noise.

We binarize weighted edges by setting 0.5 as the threshold. The

comparisons are given in Table 4. We can find that more unlabeled

nodes are involved in the training with the generated graphs, which

implies that RS-GNN could promote predictions of unlabeled nodes

by densifying graphs.

C THE IMPACTS OF HYPERPARMETERS
Impacts of 𝐾 . When we add edges with the link predictor, for

each node, we select 𝐾 nodes with the largest cosine similarity as

candidate node set to predict the links to reduce the computational

cost. To investigate how the selection of 𝐾 would influence the

training, we vary 𝐾 as {50, 100, 200, 400} and report the average

accuracy of 5 runs on Cora, Cora-ML andCiteseer that are perturbed

by metattack in Table 5. The perturbation rate is set as 0.15. The

label rate is set as 0.01 which is the same as that of main paper. We

can observe that with the increase of 𝐾 , the performance would

firstly increase a lot then slightly decrease. Because when𝐾 is small,

there are not adequate candidate nodes to predict links for each

node. In this situation, the learned graph will be still sparse, which

leads to poor performance on the noisy graphs with sparse labels.

When 𝐾 is very large, for a node 𝑣 , nodes that dissimilar with 𝑣 in

raw features space would also be added into the candidate set. As a

result, the performance slightly decrease.

Impacts of𝑇ℎ .When we apply the label smoothness regulariza-

tion based on the generated graph, we will smooth the predictions

of nodes linked by predicted links whose weights are larger than𝑇ℎ .

To investigate how the setting of 𝑇ℎ affects the label smoothness

regularization, we vary 𝑇ℎ as {0.6, 0.7, 0.8, 0.9}. We conduct experi-

ments on the graphs perturbed by metattack. The perturbation rate

is set as 0.15. The label rate is set as 0.01. Other parameters follows

the same settings in the main paper. Average results of 5 runs are

reported in Table 6. It shows that𝑇ℎ should be set as an appropriate

value such as 0.8 to benefit the predictions with label smoothness.

Impacts of𝑇𝑙 .When we deniose and desify the graph, a𝑇𝑙 is ap-

plied to the results of link predictor to determine whether we should

keep/add the links. We vary the value of 𝑇𝑙 as {0.0, 0.05, 0.1, 0.2}
to investigate the influence of 𝑇𝑙 . Experiments are conducted on

the graphs perturbed by metattack with the perturbation rate set

as 0.15. The average results of 5 runs are reported in Table 7. As

we can see, with the increase of 𝑇𝑙 , the performance will firstly

increase and then decrease. Because when 𝑇𝑙 is very small, a lot

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

190

of down-weighted noisy edges are not removed, which degrades

the performance of RS-GNN. If 𝑇𝑙 is too large, the size of assigned

links will be limited and some normal edges are likely to be deleted.

Thus, the performance will drop when 𝑇𝑙 is too large.

Impacts of 𝜎 . In Eq.(3) of our main paper, a parameter 𝜎 is

used to control the variance of the weights of positive samples

and negative samples when we train the link predictor with the

loss of reconstructing the noisy graph. We vary the value of 𝜎 as

{30, 100, 300, 1000} and fix other hyperparameters. Similarly, exper-

iments are conducted of the Cora, Cora-ML, and citeseer graphs

perturbed by metattack with the perturbation rate set as 0.15. The

results are presented in Table 8. From this table we could observe

that when the 𝜎 is set too large, the performance will decrease.

When 𝜎 is very large, the weights of all the negative samples and

positive samples will be similar, which results a poor link predic-

tor affected by noisy edges. This demonstrates the effectiveness of

reweighting the samples based on raw feature similarity. However,

if the 𝜎 is too small, the variance of sample weights would be too

large, which negatively affects the learning of link predictor.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

191

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Robust GNNs

	3 Preliminary Analysis
	3.1 Notations
	3.2 Basic Design and Inner Working of GNNs
	3.3 Analysis of GNNs with Sparse Labels
	3.4 Problem Definition

	4 Proposed Framework – RS-GNN
	4.1 Link Prediction
	4.2 GNN for Node Classification
	4.3 Label Smoothness on Unlabeled Nodes
	4.4 Final Objective Function of RS-GNN

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance on Noisy Graphs
	5.3 Analysis of the Learned Graph
	5.4 Impacts of Label Rate and Graph Sparsity
	5.5 Ablation Study
	5.6 Parameter Sensitivity Analysis

	6 Conclusion and Future Work
	7 Acknowledgement
	References
	A A Training Algorithm of RS-GNN
	B More details of the Learned Graph
	C The Impacts of Hyperparmeters

