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ABSTRACT

Graph Neural Networks (GNNs) have shown their great ability
in modeling graph structured data. However, real-world graphs
usually contain structure noises and have limited labeled nodes.
The performance of GNNs would drop significantly when trained
on such graphs, which hinders the adoption of GNNs on many
applications. Thus, it is important to develop noise-resistant GNNs
with limited labeled nodes. However, the work on this is rather
limited. Therefore, we study a novel problem of developing robust
GNNs on noisy graphs with limited labeled nodes. Our analysis
shows that both the noisy edges and limited labeled nodes could
harm the message-passing mechanism of GNNs. To mitigate these
issues, we propose a novel framework which adopts the noisy edges
as supervision to learn a denoised and dense graph, which can down-
weight or eliminate noisy edges and facilitate message passing of
GNNss to alleviate the issue of limited labeled nodes. The generated
edges are further used to regularize the predictions of unlabeled
nodes with label smoothness to better train GNNs. Experimental
results on real-world datasets demonstrate the robustness of the
proposed framework on noisy graphs with limited labeled nodes.
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« Computing methodologies — Semi-supervised learning set-
tings; Neural networks.
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1 INTRODUCTION

Graph Neural Networks (GNNs) [15, 22] have made remarkable
achievements in modeling graphs from various domains such as
social networks [15], financial system [35], and recommendation
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Figure 1: An illustration of down-weighting/removing noise
edges and densifying the graph for better performance.

system [36]. The success of GNNs relies on the message-passing
mechanism [15, 22], where node representations are updated by
aggregating the information from neighbors. With this mechanism,
the node representations capture node features, information of
neighbors and local graph structure, which facilitate various tasks,
especially semi-supervised node classification.

Although GNNs have shown great ability in modeling graphs,
their performance can degrade significantly when trained on graphs
with noisy edges and/or limited labeled nodes. First, due to the mes-
sage passing, GNNs are vulnerable to adversarial or noisy edges. For
example, as shown in Fig. 1, poisoning attacks [46] add/delete care-
fully chosen edges to the graph. These adversarial edges (shown in
red) usually connect nodes of different labels or features, thus con-
taminating the neighborhoods of nodes, propagating noises/errors
to node representations. In addition, inherent edge noises also exist
in real-world graphs. For instance, in social networks, bots tend to
build connections with normal users to spread misinformation [11],
which can also harm the performance of GNNs for bot detection.
Second, for many applications, graphs are often sparsely labeled
such as cell phone network for fraud detection [13]. Label sparsity
can severely reduce the involvement of unlabeled nodes during mes-
sage passing, leading to poor performance. Generally, in a K-layer
GNN, a labeled node aggregates its K-hop neighborhood informa-
tion, thus making many unlabeled nodes in K-hop neighborhood
participate in the training, which is one major reason that GNNs
can leverage unlabeled nodes for semi-supervised node classifica-
tion. However, as verified in our preliminary analysis in Fig. 2a of
Sec. 3.3, when the number of labeled nodes decreases, the amount
of unlabeled nodes participating in training drops quickly, making
message passing less effective. These shortcomings of GNNs hinder
the adoption of GNNs for many real-world applications. Thus, it is
important to develop robust GNNs that can simultaneously handle
noisy graphs with sparse labels.
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However, developing robust GNNs for graphs with noisy edges
and limited labeled nodes is challenging. First, the training graph
itself is noisy, i.e., noisy edges are mixed with the normal edges.
Thus, we need supervision in down-weighting or eliminating noisy
edges. Second, alleviating the limited label issue requires more la-
bels, while obtaining more labeled nodes is time-consuming and
expensive. Hence, we need alternative approaches to more effec-
tively utilize the limited labels. Some initial efforts [20, 20, 33, 38]
have been taken to alleviate the effects of the adversarial edges
such as pruning edges by using node similarity [38], and adopting
Gaussian distribution as node representations to absorb noises [43].
To address the problem of sparsely labeled graphs, some meth-
ods [24, 30, 32] propose to obtain better representations by training
GNNs with self-supervised learning tasks such as pseudo label pre-
diction [24, 32] and global context predictions [30]. However, little
efforts are taken for robust GNNs that can simultaneously handle
noisy edges and label sparsity.

Since both the noisy edges and limited labeled nodes harm the
message passing of GNNs and message passing is directly related
to the graph structure, we argue that learning a denoised and dense
graph guided by the raw attributed graph is promising to facilitate
message passing for robust GNNs. First, for many graphs such as
social networks, nodes with similar features and labels tend to be
linked [26], while noisy edges would link nodes of dissimilar fea-
tures [38]. Thus, we can use node attributes to predict the links. For
existing links, the link predictor will assign small weights to links
connecting nodes of dissimilar features while large weights to links
connecting nodes of similar features, thus alleviating negative issue
of noisy edges during message passing. Second, real-world graphs
are usually very sparse, containing many missing edges. With the
link predictor, nodes that are potentially to be linked could be iden-
tified. Densifying the graph by linking similar nodes would induce
more unlabeled nodes to become neighbors of labeled nodes with
the same labels as shown in Fig. 1, which can alleviate the label
sparsity issue. In addition, since adjacent nodes tend to have the
same labels, the predicted new links can be used to further regu-
larize the label predictions of unlabeled nodes. Though promising,
the work on down-weighting noisy edges and densifying graph for
robust GNN on noisy graphs with sparse labels are rather limited.

Therefore, in this paper, we investigate a novel problem of de-
veloping robust noise-resistant GNNs with limited labeled nodes
by learning a denoised and densified graph. In essence, we need to
solve two challenges: (i) how to effectively learn a link predictor
from the noisy graph which can eliminate noisy edges and densify
the graph; and (ii) how to simultaneously use the learned graph to
learn a structural noise-resistant GNNs with limited labeled nodes.
To address these challenges, we propose a novel framework named
robust structural noise-resistant GNN (RS-GNN) 1. RS-GNN adopts
the node attributes and supervision from the noisy edges to denoise
and dense graph, which can alleviate the negative effects of noisy
edges and facilitate the message passing between unlabeled nodes
and labeled nodes. The learned graph is used as input for learning a
GNN. RS-GNN also adopts the predicted edges to further explicitly
regularize the predictions of unlabeled nodes to alleviate the label
sparsity issue. In summary, our main contributions are:

1Codes are available at: https://github.com/EnyanDai/RSGNN
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e We study a new problem of learning robust noise-resistant GNNs
with limited labeled nodes;

e We propose a novel framework RS-GNN, which can simultane-
ously learn a denoised and densified graph and a robust GNN on
noisy graphs with limited labeled nodes; and

e We conduct extensive experiments on real-world datasets to
demonstrate the robustness of RS-GNN on both noisy/clean
graphs with limited labeled nodes.

2 RELATED WORK

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) have shown their great power in
modeling graph structured data for various applications [7, 35, 37,
41, 42]. To generalize neural networks for graphs, two categories of
GNNss are proposed, i.e., spectral-based [1, 17, 22, 23] and spatial-
based [2, 5, 15, 34]. Bruna et al. [1] first propose spectral-based
GNNss by defining graph convolution with spectral graph theory.
For instance, GCN [22] simplifies the convolutional operation by
using the first order approximation. Spatial-based graph convolu-
tion is defined in spatial domain, which updates node representa-
tion by aggregating its neighbors’ representations [14, 15, 29]. For
example, self-attention of neighbor nodes is leveraged in graph
attention network (GAT) [34]. Moreover, various spatial meth-
ods are proposed to solve the scalability issue [2, 5] and learn
deeper GNNs [3]. Recently, to alleviate the problem of lacking
labeled nodes, many efforts are taken to explore GNNs using self-
supervision, which aims to learn better node representations with
pretext tasks [8, 19, 21, 24, 32, 44]. For instance, superGAT [21]
deploys edge prediction in GAT to guide the learning of attention
for better representations. SE-GNN [8] deploys contrastive learning
to benefit the similarity modeling for self-explainable GNN.
Inspired by the great success of GNNs, methods that construct
graphs and adopt GNNs for data without explicit relational struc-
ture are also explored [4, 6, 17, 18]. Generally, a graph would be
built based on certain rules [4, 17] or be learned in an end-to-end
model [6, 18]. Our RS-GNN is inherently different from these meth-
ods as we eliminate/down-weight the noisy edges and predict the
missing edges for robust GNNs on noisy graphs with limited labels.

2.2 Robust GNNs

Although GNNs have obtained great achievements, they are vulner-
able to adversarial attacks [9, 38, 45, 46]. Based on the objective, the
adversarial attacks on GNNs can be split into two categories, i.e.,
targeted attack [9, 45] and non-targeted attack [46]. Targeted attack
methods aim to degrade the performance of the GNNs on target
nodes. For instance, nettack [45] adds adversarial perturbations to
a graph to attack targeted nodes. Non-targeted attack aims to re-
duce the overall performance of GNNs. For example, metattack [46]
poisons the graph globally to achieve non-targeted attack with
meta-learning. To defend against adversarial attacks, many efforts
are taken recently [10, 20, 33, 38, 40, 43]. [38] prune the perturbed
edges based on Jaccard similarity of node features. Another prepro-
cessing method by low-rank approximation of adjacent matrix is
investigated [10]. Pro-GNN [20] is the most similar work to ours,
which learns a clean graph structure by low-rank constraint. How-
ever, they only tackle the adversarial edges and their computational
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cost is very large due to the direct learning of the graph and the
sparse low-rank constraint. This work is inherently different from
these methods as: (i) we study a novel problem of developing robust
GNN for both noisy graphs and label sparsity issues; and (ii) the
proposed RS-GNN simultaneously tackles the two issues by learn-
ing an link predictor to down-weight noisy edges and connecting
nodes with high similarity to facilitate message-passing; and (iii)
RS-GNN uses link predictor instead of direct graph learning to save
computational cost.

3 PRELIMINARY ANALYSIS

In this section, we discuss the inner working of GNNs, conduct
preliminary analysis to show the issues of GNN with sparse labels
and verify that densifying graphs by connecting similar nodes can
potentially alleviate the issue.

3.1 Notations

We use G = (V, E,X) to denote an attributed graph, where V =
{01, ...,oN} is the set of N nodes, & € V X V is the set of edges,
and X = {x1,...,xn} is the set of attributes of V. A € RNXN g
the adjacency matrix of the graph G, where A;; = 1 if nodes v;
and v; are connected, otherwise A;; = 0. In our setting, only a
limited number of nodes V = {v1, ...,v;} are provided with labels
Y = {y1,...yi}, where y; € R is a one-hot vector of node v;’s
label for multi-class classification. Note that the topology of the
graph G could be noisy such as poisoned by adversarial edges or
containing inherent noises, which leads to poor performance.

3.2 Basic Design and Inner Working of GNNs

In this subsection, we briefly introduce the common architecture of
graph neural networks (GNNs). Generally, GNNs adopt message-
passing mechanism to learn node representations, i.e., they update
the representation of a node by aggregating the representations of
the neighborhood nodes. The updating process of the k-th layer in
GNNs could be written as:

al® = AGGREGATE* D ({h{* V) . u e N(0)}), "
1
h{® = cOMBINE® (h{FV a(R)),

where hgk) is the representation vector of node v € V at the k-th
layer and N (v) is the set of neighborhoods of v. During the training
of node classification, the representations of labeled nodes are used
to give prediction and obtain the training loss to minimize. With
the message-passing mechanism, after K-layers of GNN, the node
representation of v; would capture the node features and structure
information of the K-hop neighborhoods of v;, and thus facilitating
downstream tasks. In other words, in GNN, one labeled node would
make the K-hop neighborhood participate in the training of GNN,
which is one reason that GNNs have great ability in leveraging
unlabeled nodes for semi-supervised node classification.

3.3 Analysis of GNNs with Sparse Labels

In this subsection, we conduct preliminary analysis on real-world
graphs to show the issues of GNNs when limited labeled nodes are
available for training, which paves us a way to design robust GNNs

183

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

o
=

—— Cora
Cora-ML
—— Citeseer

—— Cora
Cora-ML
—— Citeseer

o
©

o

o
o
o

o

)
o
)

o
o

Uninvolved Node Rate
2
Uninvolved Node Rate
o
~

=}
==}
o
—-

0.1 0.2
Label Rate
(a) Impacts of label rate

[Eal/1€]
(b) Impacts of graph density
Figure 2: The impacts of label rate and density of graph to
uninvolved node rate in the training phase.

for alleviating the label sparsity issue. The analysis is based on three
widely used datasets, i.e., Citeseer [31], Cora and Cora-ML [27].

Generally, GNNs, such as GCN and GAT, rely on the classification
loss of the labeled nodes to learn the parameters, which is effective
when we have adequate labeled nodes. However, when the size of
labeled node set V, is small and the graph is sparse, only a small
portion of nodes would be involved in the training. This may lead
to poor performance of GNNs. More specifically, for a K-layer GNN,
the nodes involved in the training phase include the labeled nodes
and the unlabeled nodes within K-hop distance of labeled nodes.
We usually set K as 2 to 3 because deep GNNs have over-smoothing
issue [24]. Since real-world graphs are usually sparse, the K-hop
neighbors of the labeled nodes would be limited as well. Thus, when
VL is small, only a small portion of nodes would be involved in
training, making GNNss less effective in leveraging unlabeled nodes.

We analyze how the label rate affects the rates of uninvolved
nodes of real-world datasets for a two layer GNN. We vary label
rates from 0.01 to 0.25. The average uninvolved node rates and the
standard deviations are shown in Fig. 2a. From the figure, we ob-
serve that (i) when the label rate is high, say above 0.1, most of the
nodes are involved in training GNN. The benefit of further increas-
ing label rate is marginal as the 2-hop neighbors of labeled nodes
could overlap. This is one reason that GNNs have great ability for
semi-supervised node classification with small but adequate amount
of labeled nodes, and the increase of labeled nodes can marginally
improve the performance; (ii) As the label rate decreases from 0.1,
the uninvolved node rate increases significantly, i.e., the majority
of nodes are not involved in the training. This indicates that GNNs
would have difficulty in handling sparsely labeled graphs.

Although a higher label rate could help to reduce the uninvolved
node rate, it can be expensive to obtain more labels [12]. Thus, we
need an alternative approach to effectively use the labels. From the
analysis above, one potential solution is to make the graph denser so
that one labeled node could have more neighbors to be involved in
the training of GNN. To verify it, we randomly add different amount
of edges to the three graphs. We denote the number of edges of the
new graph as |E 4| and that of raw graph as |E|. We fix label rate
as 0.01. The impact of the graph density on the uninvolved node
rate is presented in Fig. 2b. From the figure, we observe that when
|E4l/|E| increases from 1 to 3, i.e., we add two times the number
of original edges, the uninvoled node rate drops significantly. For
example, it drops from 0.8 to around 0.3 on Citeseer.

As real-world graphs such as social networks have many pairs
of nodes who are similar but not connected together, the analysis
above shows that it is promising to predict links to densify the
graph, which can help the message passing of GNNs to alleviate the
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issue of limited labeled nodes. In addition, these predicted edges can
also be directly used to regularize the predicted labels of unlabeled
nodes, i.e., if two nodes are more likely to have a link, they are more
likely to have the same labels.

3.4 Problem Definition

Our preliminary analysis shows that predicting links to densify the
graph can potentially alleviate the label sparsity issue. In addition,
the link prediction can potentially down-weight or eliminate noisy
edges as noisy edges usually connect nodes with low node attribute
similarity. Therefore, we aim to simultaneously eliminate noisy
edges and densify the graph with a link predictor and train a robust
GNN on the new graph. The problem is formally defined as:

PROBLEM 1. Given an attributed graph G = (V, E,X) with edge
set & might contain a small amount of noisy edges, and a small
set of labeled nodes V;, € V with the corresponding labels in Y,
simultaneously learn adjacency matrix S € [0, 11NN which down-
weights/removes noisy edges and completes missing links by a link
predictor fg : (vi,0;) — Sij, and a GNN on the learned graph for
node classification, i.e., fg : (§,X) — y where S;j indicates the
weight of edge linking v; and vj and Y is the set of predictions for
unlabeled nodes.

4 PROPOSED FRAMEWORK - RS-GNN

In this section, we present the details of the proposed RS-GNN. The
main challenges are: (i) given the noisy graph, how can we learn a
link predictor which can down-weight/eliminate noisy edges and
densify the graph; and (ii) how to simultaneously use the learned
graph for node classification. As the graph topology is noisy, we
cannot directly apply a GNN on G to predict edges because the
message passing would magnify the negative effects of the noisy
edges. Generally, nodes sharing similar features tend to connect to
each other; while noisy edges tend to connect nodes of dissimilar
nodes. Thus, we propose to learn a MLP-based link predictor which
predicts links using node attributes. The more similar the node
features of two nodes are, the larger weights the link predictor will
assign. Thus, the link predictor is able to down-weight or eliminate
noisy edges in the initial graph. Meanwhile, the edge predictor can
predict missing links to alleviate label sparsity issue. We design a
novel feature similarity weighted edge-reconstruction loss to train
the link predictor so as to reduce the negative effects of noisy edges
on the link predictor. An illustration of the framework is shown in
Figure 3, which contains a link predictor fr and a GCN classifier
fg- The link predictor fg takes node features as input to learn
a dense adjacency matrix S, aiming to remove adversarial edges
and assign edges that benefit predictions. The GCN classifier fg
takes S and node features X to predict the node labels with the
node features. Finally, label smoothness constraint based on the
predicted edges will be added to the predictions of unlabeled nodes
to further alleviate label sparsity issue. Next, we give the details of
each component.

4.1 Link Prediction

As the given graph contains structural noises and has missing edges,
we propose to learn a new graph that down-weights noisy edges to
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Figure 3: An illustration of the proposed RS-GNN.
eliminate their negative effects and completes the missing links to
facilitate GNN in dealing noisy graphs with sparse labels.
Building Link Predictor. Generally, noisy edges connect two
nodes with dissimilar node features; while nodes of similar fea-
tures are likely to have similar labels and should be connected.
Therefore, we propose to predict edge weights and missing edges
between nodes using nodes features. Specifically, for node v;, a
MLP takes its node attributes x; to learn its node representation
as: z; = MLP(x;). With the node representations, we predict the
weight w(i, j) between v; € V and vj € V as:

w(i, ) = f(z 2)), (@)

where f is the activation function. For f, we use ReLU instead of
sigmoid as we find that when the learned adjacency matrix is used
as the input of GCN, the use of sigmoid function will lead to gradient
vanishing, which is consistent with previous observations [16]. Note
that we use MLP instead of a GNN as the link predictor because
the graph structure is noisy and the message passing of GNN could
magnify the negative effects.
Learning Link Predictor. Our goal is to learn a link predictor
which can (i) assign small weights to two nodes of different fea-
tures so as to eliminate noisy edges; and (ii) assign larger weights
to two nodes of similar node features so as to densify the graph to
facilitate message passing. As for many real-world graphs, similar
nodes tend to link together and linked nodes usually have high
feature similarity. Thus, to learn a good link predictor fg, we uti-
lize the adjacency matrix reconstruction as the loss function. Since
the graph is sparse, the adjacency matrix A contains many zero
entries. Directly adopting adjacency matrix reconstruction as the
loss function would (i) result in poor performance as the link pre-
dictor will be biased on predicting missing links; and (ii) require
large computational cost as we need to calculate N? edges. To ad-
dress this problem, negative sampling [28] is adopted, i.e., for each
vj € N(v;), we randomly sample Q nodes that’s not connected to
v; and use them as negative samples.

However, a small portion of edges in A are noisy, which might
have negative effects in training the predictor. To mitigate the
negative effects of noisy edges and to learn a link predictor that can
assign lower weights to edges that link dissimilar nodes, we propose
to reweight the positive and negative samples based on the feature
similarity of two nodes. Specifically, for node v; and its positive

.12
sample v; € N(v;), we minimize exp(—”xld—)z(’”)(w(i, j) = 1)2,
where o is the hyperparameter to control the variance of the sample
weights. Thus, if the node features of v; and v; are similar, A;;

is likely to be a clean edge and exp(— ) would be large.

Il = 12
Yz
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Minimizing the loss will force w(i, j) to be close to 1; while if the
features are dissimilar, then A;; is likely to be a noisy edge and

exp(— M) would be small, thus minimizing the loss will have

little effect on w(i, j). Similarly, for v; and its negative sample vy,

we minimize exp(~—3%"— Ixixn |7 x” [ Y(w(i, n) — 0)2. If the node features of v;

and vy, are dissimialr, then exp( M) is large, minimizing the
loss would make w(i, n) close to 0 as expected. With the weight

defined in this way, the loss for training the link predictor is:

LE=Z Z [eXp(—LXi;sz”2

v;€V vjeN (v;)

) (w(i, j) - 1)
®3)

+ D Bopba(op) XD ) (wi,m) = 0)?],

n=1

lIxi = xn ||*
o2

where Py (v;) is the distribution of sampling negative nodes for v;,
which is a uniform distribution. With the loss function Eq.(3), the
link predictor would be able to downweight the noisy edges and
densify the graph to facilitate the learning of robust GNN on noisy
graph with limited labels.

Graph Denoising and Densification. With the link predictor, we
could apply the learned weights to the existing edges and drop edges
whose predicted weights are small to eliminate the negative effects
of noisy/adversarial edges. Moreover, to increase the involvement of
unlabeled nodes to facilitate the message passing of GNNs, we also
link nodes that have large weights predicted by the link predictor.
However, if we predict weights of all pairs of nodes, the computation
cost will be very large because we will train a link predictor and a
GNN classifier end-to-end as shown in Sec. 4.4, which means we
need to do prediction in each iteration. To save the computational
cost, for each node v;, we first construct a candidate subset S(v;),
which contains K nodes having the largest cosine similarities with
v; in the raw feature space X. Note that this only needs to be done
once. Since nodes not in S(v;) are not likely to be connected with
v;, we only need to compute weights between v; and S(v;). The
whole process of obtaining a clean and dense adjacency matrix S
could be formally stated as:

S, = { X(l, )]
where N (v;) are neighbors of v; in the noisy graph, and T; is a
threshold to determine whether we should keep/add the edge. With
the above operation, those noisy edges would be assigned smaller
weights or even dropped, which mitigate the negative effects of
noisy edges. Meanwhile, more edges are introduced to facilitate the
message passing of GNNs during training.

ifw(i, j) > Ty and vj € N(v;) U S(0;);

else,

©

4.2 GNN for Node Classification

With the learned adjacency matrix S, we can apply GNNs to learn
the node representation as H = GNN (S, X). Note that the proposed
framework is a flexible framework which can facilitate various
GNN s such as GAT [34] and GIN [39]. With the node representation,
the label of node v; can be predicted as §J; = softmax(h;), where
h; is the representation of node v;. Then, the training loss is:

LGNN = Z (§i,y1)

v; eV

®)
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where I(¥;,y;) is the cross entropy between ¢; and y;. Since S is
denser than the original graph, more unlabeled nodes are involved
in the training even with limited amount of labeled nodes, thus
making the propagation of information more efficient.

4.3 Label Smoothness on Unlabeled Nodes

Though the dense graph S can help to include more unlabeled
nodes in the loss function, their information is propagated through
the message-passing mechanism instead of being directly used in
the training loss. To further alleviate the issue of limited labeled
nodes, we propose to adopt the predicted weighted edges for label
smoothness regularization. The basic idea is the larger weights of
an edge S;; is, the more likely that v; and v; have the same label [36].
Thus, for an unlabeled node v;, if its edge weight with node v; is
larger than a threshhold Ty, i.e., S;; > Tj,, we want their predicted
labels to be similar with each other. This can be formally written as

33 Tyls -9 ©

v, €V, UjE(V

where V,, denotes the set of unlabeled nodes, y; and §; represent
the predictions of node v; € V,, and vj € V, respectively. T;j = S;;
if S;; > Tj; otherwise 0. In this way, we explicitly smooth the
predicted labels between unlabeled nodes and nodes that are similar
to them. By including T;; in £y, edge weights are also considered.

4.4 Final Objective Function of RS-GNN

With the link predictor denoising and densifying the graph with
the supervision from A, the GNN adopting the learned graph for
label prediction and the label smoothness regularization from the
generated graph, the final loss function can be written as

™)

argmin LgNN + aLg + Ly,
QE,eg

where 0 and 0g are parameters of link predictor fz and GNN
classifier fg, respectively. « and 8 are hyperparameters to balance
the contributions of reconstructing the adjacency matrix with fg
and label smoothness regularization. The proposed framework is
an end-to-end framework where we simultaneously learn the link
predictor and utilize the predicted edges for training a robust GNN
to alleviate the noisy graph and limited labeled nodes issues. The
training algorithm is shown in the supplementary material.

5 EXPERIMENTS

In this section, we evaluate the proposed RS-GNN on noisy graphs
with limited labels to answer the following research questions:

e RQ1 How robust is the proposed framework on various types of
noisy graphs with limited labeled nodes?

e RQ2 How does the proposed framework perform under various
label rates and graph sparsity levels?

e RQ3 What are the contributions of link predictor and label
smoothness regularization from predicted edges on RS-GNN?

5.1 Experimental Settings

5.1.1 Datasets. For a fair comparison, we conduct experiments on
four widely used benchmark datasets, i.e., Cora, Cora-ML, Citeseer
and Pubmed [31]. The statistics of the datasets are presented in the
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Table 1: Node classification performance (Accuracy(%)+Std) on various types of noisy graphs

Dataset | Graph GCN SuperGAT  Self-Training RGCN GCN-jaccard GCN-SVD  Pro-GNN Ours
Raw Graph 65.5+0.5  69.0 1.7 67.9 £0.9 63.0 +£0.7 65.7 £0.6 62.9 1.1 659 +1.3 75.3 £0.6
Cora Random Noise 59.2+0.7 58.8+0.4 63.1 £0.5 51.5 +£0.7 57.8 +1.4 51.5 0.7 56.1+3.0 71.8+1.5
Non-Targeted Attack 26.8 +2.5 415 *1.6 29.6 £0.4 30.4 +1.0 48.3 £2.0 37.1+1.4 41.7 £5.7  70.8 +£0.7
Targeted Attack 453 +1.2 444 +13 46.7 +2.1 40.3 £1.0 49.5 £1.0 44.8 £0.7 49.7 0.9 67.8 £1.2
Raw Graph 72.4 £0.8 73.8 £1.4 72.7 £1.4 72.9 £0.7 71.0 £1.2 71.1 £1.0 62.0 1.5 75.6 +0.4
Cora-ML Random Noise 62.3+0.6  63.7 £0.9 62.8 +1.3 61.4 +1.1 61.3 £0.5 62.6 +0.6 57.1+2.1 729 +£0.7
Non-Targeted Attack 13.2 +1.4 18.6 £1.5 15.0 £0.7 11.0 £1.0 48.9 5.3 16.3 £0.6 18.2 2.4 73.2 £1.2
Targeted Attack 55.7+0.7 56,5 %1.7 57.7 £1.2 54.6 £0.6 61.2 £0.9 53.0 £0.8 55.1+1.6 70.8 £0.7
Raw Graph 648 +1.4 642 +1.7 65.7 +1.1 56.6 +1.2 62.2 £2.0 61.3 £2.0 60.6 +2.0 71.2+1.4
Citeseer Random Noise 57.0+1.2 546 %13 58.7 2.1 48.2 £1.2 61.1 £2.8 48.3 1.6 544 +2.6 68.8 1.5
Non-Targeted Attack 26.6 +2.5 423 +2.6 28.8 £2.7 26.6 +1.1 57.9 £2.7 41.7 £1.6 41.6 £3.1  68.0 +0.4
Targeted Attack 439 £1.7 42904 47.6 £1.2 353 +1.5 52.5+2.3 40.5 0.7 48.1 £1.6 67.2 %13
Raw Graph 859 +0.1  86.0 1.2 86.1 +0.2 85.1 0.1 86.0 0.1 83.0 +0.1 86.1 0.1  86.9 £0.1
Pubmed Random Noise 80.5 +0.1 79.8 £0.1 81.2 £0.2 79.7 £0.1 83.0 £0.1 82.0 0.1 85.1+0.2 86.4 +0.1
Non-Targeted Attack 73.7+0.2  73.8 0.2 73.5 £0.3 73.8 £0.3 84.4 0.1 83.0 +0.1 86.0 +0.1 86.3 £0.1
Targeted Attack 76.5 0.1 75.6 £0.1 76.8 £0.2 76.2 £0.2 82.7 £0.2 78.1 £1.3 79.1£0.1 84.3 +0.2
Table 3 in Appendix. Note that the split of validation and testing 80l o Gomjucard . pro.GNN 801 T o et i mGN
on all datasets are the same as described in the cited papers to keep g R g ‘\'\’\\‘\‘
consistence. For the training set, we randomly sample 1% of nodes 260 570
as the labeled set for Cora, Cora-ML and Citeseer. For Pubmed, we g g
randomly sample 10% of nodes to compose the labeled set. The 840 860
training node set doesn’t overlap with the validation and test sets. < < o
20 5
5.1.2  Noisy Graphs. To show RS-GNN is robust to various struc- Opertilrb;(t)ionl Ef{atio(%gs (}»erigrbfl%of %atto(%f;o

tural noises, we evaluate RS-GNN on the following types of noises:

o Raw Graphs: They are the original graphs of the benchmark
datasets which may contain inherent structural noise.

e Random Noise: We randomly inject fake edges and remove
normal edges to add random noise to graphs.

o Non-Targeted Attack: We adopt metattack [46] to poison the
graph structures by adding and removing edges, which aims to
reduces the overall performance of GNNs on the whole graph.

o Targeted Attack: It aims to lead the GNN to misclassify target
nodes. Following [33], we randomly select 15% nodes as target
nodes and apply nettack [45] to perturb the graph structure.

5.1.3 Baselines. We compare RS-GNN with the representative and
state-of-the-art GNNSs, and robust GNNs against adversarial attacks:

e GCN [22]: GCN is a representative GNN which defines Graph
convolution with spectral analysis.

o SuperGAT [21]: This extends GAT [34] with self-supervised
learning. Edge prediction is deployed as the pretext task to guide
the learning of attention to facilitate the message-passing.

o Self-Training [24]: This is a self-supervised learning method. A
GCN is firstly trained on given labels. Then, confident pseudo
labels would be added to the label set to improve the GCN.

o RGCN [43]: It uses Gaussian distributions as representations to
absorb the effects of adversarial edges.

e GCN-jaccard [38]: GCN-Jaccard eliminates edges that connect
nodes with low Jaccard similarity, then apply GCN on the graph.

e GCN-SVD [10]: This preprocessing method is based on low rank
assumption. Low-rank approximation of the perturbed graph is
used to train GNNs against adversarial attacks.

e Pro-GNN [20]: It applies low-rank and sparsity constraints to
learn a clean graph structure close to the noisy graph structure.
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(a) Metattack (b) Random Noise
Figure 4: Robustness under different Ptb rates on Cora.

For all the baselines, we use the implementation from the repository
DeepRobust [25]. All the hyperparameters of the baselines are tuned
on the validation set to make a fair comparison with RS-GNN.

5.1.4 Implementation Details. Each experiment is conducted 5 times
and average results with standard deviations are reported. The
hyperparameters are tuned based on the performance of validation
set. More specifically, for RS-GNN, we vary « as {0.003, 0.03, 0.3, 3,
30}, and S as {0.01, 0.03, 0.1, 0.3, 1}. For all experiments, Tj, T, o, and
Q are fixed as 0.1, 0.8, 100, and 50, respectively. K is set as 100, 300,
400 and 10 for Cora, Cora-ML, Citeseer and Pubmed, respectively.
More details about the hyperparameters sensitivity is discussed in
Sec. 5.6. A one-hidden layer MLP with 64 filters is applied as the
link predictor. We use GCN as the backbone of RS-GNN. Various
GNNs can be used in RS-GNN and we leave it as a future work.

5.2 Performance on Noisy Graphs

To answer RQ1, we first compare RS-GNN with the baselines on
various noisy graphs. We then evaluate the performance of RS-GNN
on the graphs with different levels of structural noise.

5.2.1 Comparisons with baselines. We conduct experiments on
four types of noisy graphs, i.e., raw graphs, graphs with random
noise, non-targeted attack perturbed graphs and targeted attack
perturbed graphs. The perturbation rate of non-targeted attack and
targeted attack is 0.15. The perturbation rate of random noise is set
as 0.3. Since we focus on noisy graph with sparse labels, we set the
label rates as 0.01 for Cora, Cora-ML, Citeseer and 0.1 for Pubmed.
The results are reported in Table 1, where we can observe:
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Figure 5: Distributions of the weights of normal and noisy
edges on the generated graph.

o With limited labeled nodes, GCN even hardly performs well on
raw graph, which indicates the necessity of investigating method
to address the challenge of sparsely labeled graphs. Though re-
cent GNNs such as SuperGAT and Self-Training can improve the
performance with self-supervised learning, our RS-GNN still out-
performs them by a large margin. This shows the effectiveness
of graph densification in dealing with sparsely labeled graphs.

o The structural noise further degrades the performance of GCN,
but its impact to RS-GNN is negligible. RS-GNN achieves better
results than the state-of-the-art robust GNNs. This indicates RS-
GNN could eliminate the effects of the noisy edges.

e Compared with the preprocessing methods and Pro-GNN, RS-
GNN achieves higher accuracy on the sparsely labeled graphs
perturbed by attack methods. This is because the baselines only
focus on eliminating potential noisy edges, which will even result
in less involvement of unlabeled nodes. By contrast, RS-GNN
can down-weights/removes the adversarial edges to defend the
adversarial attacks and densify the graph to facilitate the message
passing for predictions of unlabeled nodes.

5.2.2  Robustness Under Different Ptb Rates . To show that RS-GNN
is resistant to different levels of structural noise, we vary the pertur-
bation rate as {0%, 5%, 10%, . . ., 25%} and compare the performance
of RS-GNN with the most effective baselines. The label rate is fixed
as 0.01. Since we have similar observations on other datasets, we
only report the average accuracy and standard deviation on Cora
in Figure 4. From the figure, we make following observations:

o As the perturbation rate increases, the performance of all the
baselines drop significantly, which is as expected. Though the
performance of RS-GNN also drops, it is much stable and consis-
tently outperforms the baselines, which shows the robustness of
RS-GNN against various levels of attacks and random noise; and

e Compared with GCN, RS-GNN uses GCN as backbone but sig-
nificantly outperforms GCN, especially when the perturbation
rate is large, which shows the effectiveness of eliminating the
effects of noisy edges and densifying the graph to benefit the
predictions given limited labels.

5.3 Analysis of the Learned Graph

To demonstrate that RS-GNN could alleviate negative effects of
noisy edges by downweighting the noisy edges, we investigate the
distribution of the learned edge weights S;; of normal and noisy
edges in this subsection. The edge weight distributions of graphs
perturbed by random noise with 30% perturbation rate on Cora
and Cora-ML are shown in Fig. 5. From this figure, we observe: (i)
The weights of noisy edges are significantly lower than the weights
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Figure 6: Performance on Cora with different label rates.

of normal edges, which indicates RS-GNN manages to reduce the
effects of noisy edges for robust GNN; and (ii) Although most
normal edges have higher weights, some of their weights are very
low, which implies inherent noise exists in the graph and RS-GNN
is able to get rid of such inherent structural noise.

We also provide more details about the number of involved
unlabeled nodes with the learned graph in Appendix B, which
proves RS-GNN can enhance the involvement of unlabeled nodes.

5.4 Impacts of Label Rate and Graph Sparsity

To answer RQ2, we study the impacts of the number of labeled
nodes and sparsity of the graph by varying the label rate and edge
rate of the graph. The hyperparameters are selected with the process
described in Sec. 5.1.4. Each experiment is conducted 5 times and
average accuracy with standard deviation are reported.

5.4.1 Impacts of Label Rate. We vary label rates as {0.01, 0.02,...,
0.06}. Experiments are conducted on raw graphs and graphs per-
turbed by mettack to study the effectiveness of RS-GNN under
various label rates. The results on Cora are shown in Fig. 6. We
have similar observations on other datasets. From Fig. 6, we observe:

e Generally, as the increase of label rate, the performances of all
the methods increase, which is as expected.

e For the raw graph, though RS-GNN consistently outperforms
the baselines, as the label rate increases, the improvement of RS-
GNN becomes marginal. This is because the raw graph doesn’t
contain much noise. Thus, as label rate increases to 6%, there are
already adequate labels. Since higher label rates would result in
more unlabeled nodes involving in the training, the effects of
densifying graphs and label smoothness become less significant;

e For the metattack graph, as the label rate increases, RS-GNN still
significantly outperforms baselines. That’s because the training
graph contains a lot of adversarial edges. Though we have enough
training labels, the adversarial edges can still contaminate the
message passing of GNNs. But RS-GNN can eliminate noisy edges
and densify the graph, thus having better results.

5.4.2  Impacts of Graph Sparsity. As RS-GNN can generate dense
graphs, it should have the ability to handle sparse graphs. Thus, we
randomly select x% edges from the raw graph to build graphs of
different sparsity levels. We vary edge rate x% from 20% to 100%
with a step of 40%. Since we are interested in how the sparsity of
the graph could affect RS-GNN in generating dense graphs, we only
focus on the performance on raw graphs. The average results of 5
runs on Citeseer are reported in Table 2. From the table, we have
the following observations:
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Table 2: Accuracy (%) on Citeseer in different sparsity levels.

Edge Rate (%) GCN Pro-GNN RS-GNN
20 54.5+1.2 55.2 1.6 63.7 +2.2
60 58.7 +1.8 583 +2.4 69.8 +1.1
100 64.8 £1.4 60.6 +2.0 71.2 £1.4

o As the edge rate decreases, the performance of all the methods
decrease, which is because message-passing of GNNs becomes
ineffective on very sparse graphs;

e RS-GNN consistently outperforms the baselines. In particular,
when the graph becomes more sparse, the improvement of RS-
GNN over the baselines becomes larger. For example, the im-
provement of RS-GNN over GCN on Citeseer is 6.4% when Edge
Rate is 100%, and becomes 9.2% when Edge Rate is 20%, which
shows the importance of generating edges for densifying the
graph and smoothing predictions with the learned graph.
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Figure 7: Ablation studies on Cora with different label rates.

5.5 Ablation Study

To answer RQ3, we conduct ablation studies to understand the
effects of graph densification, graph purification and label smooth-
ness regularization. In RS-GNN, the link predictor densify the graph
to enhance the performance on unlabeled nodes. To demonstrate
the effects of adding edges with the link predictor, we remove the
process of adding edges and obtain RS-GNN\A. To testify the ef-
fectiveness of the label smoothness regularization based on the
generated graph, we eliminate the label smoothness regularization
and get RS-GNN\U. To show our link predictor can eliminate the
effects of noisy edges, we compare a variant named as RS-GNN\AU
which only use the link predictor to denoise graphs. Graph desifi-
cation and label smoothness are not applied in RS-GNN\AU. We
also implement a variant named as RS-GNNgcn which uses GCN
as link predictor to show that the noisy edges would largely affects
the GNNss for link prediction. Hyperparameters selection follows
the process in Sec 5.1.4. We only show the results on the Cora graph
perturbed with metattack and random noise, because similar trends
are observed on other datasets. Results are presented in Fig. 7. From
this figure, we observe that:

o RS-GNN performs much better than RS-GNN\A and RS-GNN\U,
which shows that densifying graphs and label smoothness with
the learned graph can address the label sparsity issue;

o With the increase of label rate, the gap between RS-GNN and
RS-GNN\U will be narrowed. This is consistent with our analysis
that higher label rates would involve more unlabeled nodes;

o RS-GNNgcn performs much worse than RS-GNN, which indi-
cates adversarial edges would impair GCN and result in a poor
link predictor for denoising and densification.
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Figure 8: Parameter sensitivity analysis on Cora.

5.6 Parameter Sensitivity Analysis

In this subsection, we explore the sensitivity of the most crucial
hyperparameters o and  which are in the final objective function of
RS-GNN. The analysis about other hyperparameters is presented in
the supplementary material. « controls how well the link predictor
reconstructs the noisy graph and § controls the contribution of label
smoothness. To investigate the effects of  and 8, we vary the values
of a as {0.003,0.03,0.3,3,30} and f as {0.01,0.03,0.1,0.3,1,3} on
Cora. The results are shown in Fig 8. In the raw graph, when « is
large, the accuracy is stable and high. But if the « is too large in the
perturbed graph, the performance would decrease. This difference
is due to the noise levels of the raw graph and the perturbed graph.
The structural noise in the perturbed graph is severe, faithfully
reconstructing the perturbed graph with high @ would lead to a poor
link predictor. As for the 5, a value between 0.03 to 0.3 generally
gives good performance, which eases the parameter selection.

6 CONCLUSION AND FUTURE WORK

In this paper, we study a novel problem of learning robust GNNs
on noisy graphs with limited labeled nodes. We demonstrate that
noisy edges and limited labeled nodes would largely impair the
performance of GNNs. A novel RS-GNN is proposed to mitigate
these issues. More specially, we adopt the edges in the noisy graph
as supervision to obtain a denoised and densified graph to facilitate
the message passing for predictions of unlabeled nodes. Moreover,
we also utilize the supervision from the generated graph to explic-
itly involve unlabeled nodes. Extensive experiments on real-world
datasets demonstrate the robustness of the proposed framework on
noisy graphs with limited labeled nodes. There are several direc-
tions requiring further investigation. First, we focus on structural
noise in this paper. However, for some applications, such as social
networks, users may provide fake attributes for privacy. Thus, we
will extend it to graphs with structural noise as well as attribute
noise under the setting of limited labeled nodes. Second, the labels
may also contain noise which may degrade the performance of
GNNs due to the message passing. Therefore, we will also explore
methods that handle noisy graphs with limited and noisy labels.
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Table 5: The impacts of hyperparameter K.

K 50 100 200 400

Cora 66.4 +1.8 70.8 0.7 69.5+2.9 68.2 £3.3
Cora-ML 44.8 +1.2 53.8 £2.7 73.2+1.2 69.0 £5.0
Citeseer 63.3 £2.0 66.0 £1.4 68.0+0.4 67.8+1.4

Table 6: The impacts of hyperparameter Tj,.

Ty 0.6 0.7 0.8 0.9

Cora 68.3 £0.7 68.9£1.5 70.8+0.7 69.8 £2.1

Cora-ML 64.8 £4.1 68.2+3.6 73.2+1.2 69.2+4.8

Citeseer 66.6 +1.7 67.5 £2.1 68.0 £0.4  67.8 £2.2

Table 7: The impacts of hyperparameter 7T;.

T 0.0 0.05 0.1 0.2

Cora 65.5 +2.8 68.5+3.3 70.8+0.7 703+14

Cora-ML 659 +2.6 725%1.3 73212 69.6 3.9

Citeseer 65.8 £0.6 66.8 £0.8 68.0 £0.4 66.6 £1.3

Table 8: The impacts of hyperparameter o.

o 30 100 300 1000

Cora 70.2 £1.2 70.8 £0.7  70.1 £1.1 68.9 £2.8

Cora-ML 727 1.0 73.2+1.2 725+0.8 72405

Citeseer 66.1 +1.3 68.0 +0.4 67.3 0.9 66.5 +1.0

Table 3: Statistics of datasets.
Cora Cora-ML Citeseer Pubmed

#nodes 2,485 2,810 2,110 19,717
#edges 5,069 7,981 3,668 44,338
#features 1,433 2,879 3,703 500
#classes 7 7 6 3

Algorithm 1 Training Algorithm of RS-GNN.

Input: G =(V,5,X),Y,K,Q1;, Ty, 0,2 and S.
Output: fg and fg
1: Randomly initialize the parameters of fg and fg.
2: repeat
3. Get the denoised and densified graph S with fg by Eq.(4).
4:  Input the learned graph S and node attributes X to GCN
classifier fg to get robust predictions.
5. Jointly optimize the GCN classifier parameters 6g and the
link predictor parameters 6g by Eq.(7).
6: until convergence
7: return fg and fg

A A TRAINING ALGORITHM OF RS-GNN

The training algorithm of RS-GNN is presented in Algorithm
1. In line 1, link predictor fg and GCN classifier fg are randomly
inijtialized. In line 2, we generate the graph with fg. Then the link
predictor and GCN classifier are jointly trained in an end-to-end
manner by Eq. (7) in line 3. Adam optimizer with learning rate set
as 0.001 is applied to update all the parameters.
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Table 4: Number of involved unlabeled nodes

Dataset Cora CoraML  Citeseer =~ Pubmed
Raw Graph 212 447 168 12,430
Generated Graph 1,383 2,161 955 18,555

B MORE DETAILS OF THE LEARNED GRAPH

Since RS-GNN aims to densify the graphs to benefit predictions
in sparsely labeled graphs, we compare the number of involved
unlabeled nodes in raw and generated graphs. More specially, in
a two layer GNN, the neighbors of labeled nodes within two hops
will participate in the training process. The generated graphs are
attained by training RS-GNN on graphs perturbed by random noise.
We binarize weighted edges by setting 0.5 as the threshold. The
comparisons are given in Table 4. We can find that more unlabeled
nodes are involved in the training with the generated graphs, which
implies that RS-GNN could promote predictions of unlabeled nodes
by densifying graphs.

C THE IMPACTS OF HYPERPARMETERS

Impacts of K. When we add edges with the link predictor, for
each node, we select K nodes with the largest cosine similarity as
candidate node set to predict the links to reduce the computational
cost. To investigate how the selection of K would influence the

training, we vary K as {50, 100, 200, 400} and report the average
accuracy of 5 runs on Cora, Cora-ML and Citeseer that are perturbed

by metattack in Table 5. The perturbation rate is set as 0.15. The
label rate is set as 0.01 which is the same as that of main paper. We
can observe that with the increase of K, the performance would
firstly increase a lot then slightly decrease. Because when K is small,
there are not adequate candidate nodes to predict links for each
node. In this situation, the learned graph will be still sparse, which
leads to poor performance on the noisy graphs with sparse labels.
When K is very large, for a node v, nodes that dissimilar with v in
raw features space would also be added into the candidate set. As a
result, the performance slightly decrease.

Impacts of Tj,. When we apply the label smoothness regulariza-
tion based on the generated graph, we will smooth the predictions
of nodes linked by predicted links whose weights are larger than Tj,.
To investigate how the setting of Ty, affects the label smoothness
regularization, we vary Ty, as {0.6,0.7,0.8,0.9}. We conduct experi-
ments on the graphs perturbed by metattack. The perturbation rate
is set as 0.15. The label rate is set as 0.01. Other parameters follows
the same settings in the main paper. Average results of 5 runs are
reported in Table 6. It shows that T, should be set as an appropriate
value such as 0.8 to benefit the predictions with label smoothness.

Impacts of T;. When we deniose and desify the graph, a Tj is ap-
plied to the results of link predictor to determine whether we should
keep/add the links. We vary the value of T; as {0.0,0.05,0.1,0.2}
to investigate the influence of T;. Experiments are conducted on
the graphs perturbed by metattack with the perturbation rate set
as 0.15. The average results of 5 runs are reported in Table 7. As
we can see, with the increase of Tj, the performance will firstly
increase and then decrease. Because when T; is very small, a lot
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of down-weighted noisy edges are not removed, which degrades
the performance of RS-GNN. If T; is too large, the size of assigned
links will be limited and some normal edges are likely to be deleted.
Thus, the performance will drop when Tj is too large.

Impacts of . In Eq.(3) of our main paper, a parameter o is
used to control the variance of the weights of positive samples
and negative samples when we train the link predictor with the
loss of reconstructing the noisy graph. We vary the value of ¢ as
{30, 100,300, 1000} and fix other hyperparameters. Similarly, exper-
iments are conducted of the Cora, Cora-ML, and citeseer graphs
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perturbed by metattack with the perturbation rate set as 0.15. The
results are presented in Table 8. From this table we could observe
that when the o is set too large, the performance will decrease.
When o is very large, the weights of all the negative samples and
positive samples will be similar, which results a poor link predic-
tor affected by noisy edges. This demonstrates the effectiveness of
reweighting the samples based on raw feature similarity. However,
if the o is too small, the variance of sample weights would be too
large, which negatively affects the learning of link predictor.
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