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ABSTRACT

Social platforms have paved the way in creating new, modern ways
for users to communicate with each other. In recent years, mul-
tiple platforms have introduced “Stories” features, which enable
broadcasting of ephemeral multimedia content. Specifically, “Friend
Stories,” or Stories meant to be consumed by one’s close friends, are
a popular feature, promoting significant user-user interactions by
allowing people to see (visually) what their friends and family are
up to. A key challenge in surfacing Friend Stories for a given user,
is in ranking over each viewing user’s friends to efficiently priori-
tize and route limited user attention. In this work, we explore the
novel problem of Friend Story Ranking from a graph representation
learning perspective. More generally, our problem is a link ranking
task, where inferences are made over existing links (relations), unlike
common node or graph-based tasks, or link prediction tasks, where
the goal is to make inferences about non-existing links. We propose
ELR, an edge-contextual approach which carefully considers local
graph structure, differences between local edge types and direction-
ality, and rich edge attributes, building on the backbone of graph
convolutions. ELR handles social sparsity challenges by considering
and attending over neighboring nodes, and incorporating multiple
edge types in local surrounding egonet structures. We validate ELR
on two large country-level datasets with millions of users and tens
of millions of links from Snapchat. ELR shows superior performance
over alternatives by ~ 8% and ~ 5% error reduction measured by MSE
and MAE correspondingly. Further generality, data efficiency and
ablation experiments confirm the advantages of ELR.
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1 INTRODUCTION

Inrecent years, social platforms have become increasingly prevalent.
Such platforms have revolutionized how users communicate with
each other through new features which are enhanced by, and mutu-
ally benefit users in creating and maintaining friendships. “Stories” is
one such extremely popular feature, initially introduced by Snapchat
in 2013!, which enables each user to broadcast user-generated mul-
timedia (photos and short videos) to their friends and other viewers.
Stories on Snapchat are ephemeral, and last for a short duration (24
hours), promoting frequent and ephemeral communication in the
form of visual status updates. Since their inception, many social plat-
forms such as Instagram, Twitter, Weibo, etc. have incorporated sim-
ilar concepts into their apps, increasing their prevalence and wide-
spread use. One of the most prevalent forms of Stories on Snapchat
is Friend Stories, in which the target audience for posted Stories are
friends and family. Users can see Friend Stories from their friends,
each of which contains an ephemeral reel of content. Shown in Figure
1, these appear as circles with snapshots on each user’s Discover page
(left), each of which can be clicked and expanded to show the content
reel (right). Since each user is exposed to content from possibly many
friends, attention routing and prioritization becomes an important
facet in promoting engagement. Our work focuses on this task of al-
gorithmic Friend Story Ranking (FSR) with machine learning models.

Our problem is an instantiation of a link ranking task, of rank-
ing relations for each user by affinity. Although typical modeling
approaches for tabular data could be used (gradient boosting, feedfor-
ward networks) for this problem, we approachithere instead from the
perspective of graph representation learning. Recently, graph neural
networks (GNNs), which learn node representations via convolution
over node features and graph topology, have emerged as a prevalent
modeling paradigm for graph data. GNNs have shown promising
results on several graph learning tasks, such as node classification
[16, 24], link prediction [30, 61] and social network analysis [43, 49,
57]. However, their direct application for our problem is impeded by
afew factors: (i) Most prior work in GNNs focuses on node and graph
classification [16, 24, 54]; although a few works tackle prediction
of missing links [60, 61], this is a different context than ours, which
involves ranking over existing links. The link ranking task is central
to our learning objective, and is mostly unexplored in prior work.
(ii) Rich user-user interactions are common in social data, and key
in relation measurement [22]; yet, most existing GNN frameworks
are not proposed to handle edge-level attributes [16, 24, 52]. (iii) The
exploration of GNNs for large-scale social graph learning problems

!https://snap.com/en-US/news/post/surprise


https://doi.org/10.1145/3488560.3498398
https://doi.org/10.1145/3488560.3498398

Research Paper

Stories b S

/3\“ G A

) & ) ¢

- e,,/ =
Aice s

Emily "

Tantarar
Q
Friet
ABN
f@: (
;\\77//;

Subscriptions K

Discover
y -

w . -

[atg ® [ R wsinds chat

Figure 1: An example of Friend Stories on Snapchat. Friend
Stories are displayed as aranked list of circles (friends) on the
“Stories” page (left). Tapping on a circle opens the Friend’s
Story, containing the friend’s user-generated photos and
videos about their activities (right).

is still quite limited [43, 49, 57], and subject to real-world challenges,
including social graph structure and user interaction sparsity.

Our work discusses the use of GNNs in pursuit of solving the
FSR problem. We first formulate our goal as pointwise prediction
of (directed) Friend Story affinity between two users. In our model,
we expand the perception of ranking a given link beyond the link
in question, such that Friend Story affinity between two users is
predicted as a function of not only their activities, but also based on
interactions and influence from their local communities. To this end,
we differentiate multiple types of relationships (pairwise, intra-ego,
and inter-ego) in the union of the two users’ egonets and consider
each of their contributions, governed via self-attention over neigh-
bors, improving learning over sparse user activity. We also consider
edge attributes as a key component of message passing during ag-
gregation, with the goal of learning rich representations for each
user, link, and relation type, utilizing them to predict directed Friend
Story affinity for ranking. Intuitively, our enhancements enable us
to well-utilize local community information between the two user’s
friends and shared relations to overcome potential interaction spar-
sity and enhance inference quality. We propose a novel framework
realizing these ideas, called ELR (Edge-contextual Local Graph Con-
volutions for Friend Story Ranking. We evaluate ELR using two
large-scale datasets using country-level data from Snapchat. We
show that ELR outperforms various tabular and graph-aware base-
lines across datasets and error metrics. We also study the generality
of ELR, showing outperformance on multiple FSR-related objectives.
Further ablation studies confirm the value of each of ELR’ compo-
nents. Lastly, we show some qualitative results demonstrating the
importance of neighbor attention in our design.

In summary, our contributions are as follows:

o We study the Friend Story Ranking (FSR) problem, with applica-
tion to different social platforms, using Graph Neural Networks
(GNNs). FSR is a link ranking problem, differentiating it from most
prior GNN-related work.

e We propose a novel model, ELR, which (i) utilizes local neigh-
borhood information, (ii) heavily leverages edge attributes (ii)
differentiates relation types, and (iv) attends over neighbors to
learn predict Friend Story affinity.
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e We experimentally show ELR’s capacity for error reduction (up
to 8%) against other approaches, generality and careful design
on two large-scale graph datasets from Snapchat with millions of
users and edges and hundreds of node and edge attributes.

We note that although ELR was designed for FSR, its intuition extends
naturally to diverse link ranking problems, which the community
may explore at large in future years.

2 RELATED WORK

We discuss related work in three areas: graph representation learn-
ing, edge-based inference, and social network analysis.

Graph representation learning. Graph representation learn-
ing (GRL) aims to learn representations suitable for graph-based
tasks, mainly including node/graph classification [21, 48, 50, 62],
and link prediction [17]. Early methods focused on non-attributed
graphs, leveraging insights from language modeling [39] to learn
embeddings which preserve node co-occurrence statistics on ran-
dom walks [40]. Several future works explored variations including
biased random walks [15], multiple orders of proximity [47, 53], at-
tribute awareness [8], and more. [41] unified such methods as matrix
factorization problems with nuanced differences. In recent years,
graph neural networks (GNNs) have risen to prominence as a flex-
ible modeling solution for attributed graphs. GNNs can be viewed
from both spectral and spatial perspectives as convolutions of node
features over graph topology [5], with components of feature trans-
formation and aggregation [36]. Multiple architectures have been
proposed in recent years, which adapt the aggregation scheme. Some
notable architectural ideas include mean-pooling and first-order ap-
proximations [24], generalized aggregation, feature concatenation
and inductive usage [16], adaptive aggregation via self-attention on
node features [52], jump connections [54], and more. Several other
works extend these ideas to graph-level representations via pooling
[37,58]. Most of these works focus on academic settings, with smaller
datasets on well-defined, homophilic node classification tasks; only
few works apply GNNs to large-scale industrial tasks [43, 49, 57],
and these do not focus on link ranking as ours does.

Link-Based Inference. Several methods focus on inferences on
edges, or links. The main line of edge-based inference is on link
prediction (LP), which aims to predict missing (or future) links given
existing graph information [34]. LP is a common problem in social
networks, where it often manifests as a friend recommendation
task. Early work in LP used unsupervised heuristics, such as com-
mon neighbors [56], centrality and random walks [31]. Later works
used pair-based features to train traditional supervised models. In
recent years, neural methods for modeling pairwise associations
have become popular, such as neural collaborative filtering [18] and
other feedforward architectures [6]. Many GRL methods [15, 40] also
naturally produce edge probabilities between pairs of nodes, and
GNN-based methods common often equip inner product decoders
on top of node representations to train on LP tasks [16, 25]. A few
works use more complex decoders; [1, 28] propose using asymmetric
projections on learned node embeddings, while [12] suggests learn-
ing node embeddings conditioned on edge type. [60, 61] recently
proposed methods for LP via enclosing subgraph classification on
academic data, but suffers in scalability. Unlike these works, ours no-
tably uses link attributes in learning, focuses on link ranking rather
than LP, and uses a GNN encoder.
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Social Network Analysis. Social network analysis literature
coincides with graph mining literature on topics including graph
clustering [4, 7, 46], community detection [3] anomaly detection
[2, 9, 45], engagement modeling [44, 49, 55] and pattern or motif
mining [27, 42]. Many works also focus on characterization and
behavioral understanding in social networks. Different disciplines
from sociology, computational social science and machine learning
have yielded shared insights on the value of learning from “friends of
friends” relationships. For example, [38, 59] observe homophilic ten-
dencies between users across multiple modalities in social platforms.
[19, 33] amongst others discuss the value of social triadic closure
in link formation, and [26, 29] demonstrate evidence of supporting
structural balance theory in signed networks. Other works in social
sciences demonstrate the evident impact of users’ local communities
on success of relationships [23]. Several works have also shown
the value of utilizing neighborhood information to enhance user-
item recommendation [11, 20, 35], based on the idea that similar
users have similar preferences. Our work incorporates these ideas of
neighbor preference smoothness more directly to the task of affinity
prediction via a GNN-based model.

3 PRELIMINARIES

Social Network: We consider a social network to be described by a
graph G, where nodes are defined over a set of registered users V, and
edges are defined over dyadic ties between users (commonly called
edges or links) &, reflecting friendships on the platform. We also con-
sider that each node is endowed with d, features, and each edge with
de features. We denote the node features asamatrix X e R [VIxdu_and
the edge features as a (sparse) tensor E € RIVIXIVIxde We write x,,
to indicate the node features of a user u (a single row from X), and e
to indicate the edge features on directed edge u — v (denoted as (u,0)
as an ordered tuple, for brevity). Although all friendships are bidirec-
tional in our case (if u — v exists, v — u also exists), we consider G
to be a directed graph, since relationships are directed and two users
may have asymmetric interactions. As such, e, # ey, in general.

Node features on users typically include information about how
users use the app, such as login frequency, aggregate engagement
habits, ad consumption, app tenure, etc. Edge features include in-
formation about social interactions, like sending and viewing direct
messages (Chats, Snaps), watching each others’ Friend Stories, etc.
Although social network graphs are in general dynamic given users
change engagement patterns, new users are added and removed,
and new friendships formed and removed (i.e. G,X,E all change over
time), we simplify the problem here by fixing the state of all three
at time ¢. In practice, the model we will describe can be re-trained
over time accordingly to maintain its accuracy and accommodate
the evolving social network.

Ego Network: Let u denote a registered user. We use N (u) to
represent the set of friends of u, or formally, {v € V||(u,v) € E}.
The ego network (egonet) [10] of u is a subgraph of the whole social
network graph G. Nodes in the egonet include the focal node (ego)
u and neighbors N (u) (alters). The egonet inherits all edges that are
between any two nodes in {u} UN (u) Formally, the set of edges is
{((u0) €eE)U((v,u) €E)|veuUN (u)}.

Friend Story Affinity: Friend Story affinity measures the pos-
sibility of a user engaging with a friend’s Stories. To quantify the
engagement, we define the affinity score, sy, € (0,1) for directed
relation (u,0), where larger s,, implies a higher engagement. Note
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that s, and s,y are different. A high engagement on v’s stories by
u does not indicate u’s stories are also attractive to v. Solving the
FSR problem of u can be simplified as sorting the Friend Story en-
gagement scores for all v € N'(u). In particular, let v1 and v3 denote
two friends of u, if s,4, > Syo,, then the story from v; should be
ranked higher than the story from vy. This is effectively a pointwise
learning-to-rank task, where u is the query, and N (u) are the results.
Various empirically observed metrics of interest can be selected to
define s, such as the click-through rate (CTR) for Friend Story (how
many times did u view v’s Friend Story normalized by the number
of total opportunities or impressions), or the total view time (TVT)
that u spends watching v’s stories.
We define the Friend Story Ranking (FSR) problem as follows:

PROBLEM (FRIEND STORY RANKING). Given graph G(V,E), node
features X and edge features E, design a model to predict the future
Friend Story affinity score s,y for each (u,0) €E.

More generally, we can consider a generalized link ranking prob-
lem by replacing the Friend Story specificity of the affinity score
with a more general link-based affinity score. Note that we gener-
ally consider the observed edge features ey, to contain information
(explicitly or implicitly) about previously observed affinity s,,; we
clarify that observed ey, are from past interactions, while our goal
is to predict sy, for a future time. Upon solving the problem, we can
sort all relevant s, for (u,0) € &, keyed by u offline. In practice, we
technically only need to make inferences for each v € N (u) that
actually has posted a Friend Story at the time when u views the
Discover page; if v does not post a Friend Story, they cease to be a
ranking candidate. Note that generating predictions for (u,0) € &
imposes a total ordering, which allows us to trivially select eligible,
relevant candidates at the time of ranking.

4 OURAPPROACH: ELR

A straightforward way to approach the FSR problem would be to
learn a tabular model over the edge features e;;,. While conceptually
simple, this approach falls short by missing the opportunity to use
social information outside the relation of interest (u,0) to enhance
our prediction. Thus, we approach the FSR problem from a graph
representation learning perspective, which allows us to incorporate
information from neighboring nodes, edges and their features into
the inference. We reason that, intuitively, other social factors may
govern the prediction of s;,. For example, if u is a new user who has
never watched v’s Friend Story in the past, but several of u’s friends
enjoy v’s Friend Stories, this improves our assessment of the future
Sup- Additionally, knowing that u’s best friend enjoys v’s Friend Story
is especially informative, compared to a casual acquaintance u does
not interact with. More generally, u and v may share some friends,
and their relations could also mediate our estimate of s,,,. We utilize
all these insights in designing our model, ELR.

Figure 2 illustrates ELR’s design, which consists of three modules
including local graph encoding, friendship categorization, and affin-
ity score prediction. The local graph encoding module leverages a
GNN-inspired neural network to learn representations for both users
andrelationsin the local community graph; the friendship categoriza-
tion module differentiates three types of relations including pairwise
relation, intra-ego relation and inter-ego relation according to their
relative locations and status in the local graph. Finally, the affinity
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score prediction module jointly utilizes the three types of relations
to predict the affinity score s,,. Next, we introduce ELR in detail.

4.1 Edge-Contextual Graph Encoding

As aforementioned, predicting Friend Story affinity purely based
on (u,0) neglects contextual information in the social network. We
first introduce the concept of edge-contextual graph as an augmented
input which expands our perception from pairwise relations to the
context-providing surrounding edges.

4.1.1 Edge-Contextual Graph. The edge-contextual graph is a sub-
graph of the social network based on the egonets of the source and
target nodes. We define it as

DEFINITION 4.1 (EDGE-CONTEXTUAL GRAPH). Given an edge (u,0)
€ G, we define its edge-contextual graph Gy, as the induced subgraph
over nodes in the egonets of u and v. Formally, it contains the nodes
Vo = N(u) UN (v) and edges Eyp = {((i,j) € E)U((j,i) € )i €
(N(@)UN () Aje(N(@)UN(0))}.

Informally, the node set contains all users that are friends of u or v;
this includes both u and v, since u € N (v) and v € N'(u) by construc-
tion. The edge set includes all relations between u, v, and both their
friends. While egonets focus on the local community centered around
a single node, the edge-contextual graph, G,,, provides an expanded
view of network relations with (u,0) as the focal point. Note that G,
is not quite the same as the union of egonets for u and v, since it also
includes all edges between u’s friends and v’s friends, but is similar in
its intent to capture local community structure as a subgraph of G.In
the remainder of this section, as we build towards making inferences
for sy, we utilize only the graph structure encompassed in edge-
contextual graph G, with globally shared node and edge features
XE, rather than G as a whole. Specifically, ELR takes edge-contextual
graph as an instance of input when making inferences for s,. We
find this choice is advantageous, as it allows us to ignore spurious
and irrelevant links too far from the edge (,0) in question, and limits
the accesses required when producing an inference for any edge.

In practice, we construct node features X and edge features E from
historical user activities and user-user interactions respectively, us-
ing summary statistics such as number of Snaps/Chats sent, total
session time, etc. A list of representative features are given in sup-
plementary material. We note that G,;, contains rich edge features
which characterize link behaviors. Since the affinity score s, is
defined on links, modeling edge features properly is essential.

To capture complex associations between nodes, their features
and interactions, our first step is to encode the edge-contextual graph
into Euclidean space. To this end, we utilize a GNN-based encoding
scheme. We adopt GraphSAGE [16] as our GNN model because of its
scalability in industrial scenarios [57]. In particular, a GraphSAGE
layer is defined as follows:

bl =o(W-ace({h u{hl L voe N(u)})), 1)

where hL is the node representation for user u from the I-th Graph-
SAGE layer (h), = X), and o(-) represents a non-linear activation
function, and W denotes neural network parameters (in our case, a
single feedforward layer). AGG(-) is an aggregation function which
pools information from u and u’s neighbors to update the representa-
tion of u in the next layer. We choose the mean aggregator for AGG(-)
because ofits efficiency without sacrificing much performance. How-
ever, the original design of the mean aggregator is unable to handle
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edge features. Edge features characterize user interactions, and their
utility has been shown in accurately predicting link-based affinity
scores in deployed ML models internally. Therefore, it is imperative
to preserve such information when learning representations using
GNN . Inspired by [13, 14], we adapt the aggregation function of
GraphSAGE as follows:

bl =o(W[h 'eMEAN({[h) " @eu] Voe N D), (2)

where @ stands for vector concatenation. Specifically, we first con-
catenate node representation hé’l with the corresponding user-to-
user features (i.e., edge feature e,,), as shown in Figure 2. We call this
custom layer Edge-GNN. The concatenated vector is then passed to
the mean aggregator for the center node. We then combine the node
representation of the center node and the mean aggregated vector to
construct the node representation hfl. Advantageously, Edge-GNN is
able to well-capture historical activities, user interactions and topo-
logical friendship structures in the representation learning process.

4.1.2  User Representation. We can generally capture multiple or-
ders of graph proximity using multiple Edge-GNN layers. In practice,
we use two Edge-GNN layers on the edge-contextual graph input to
ensure that both first-order and second-order proximity are consid-
ered. The output node representations, denoted by {hZ}, are treated
as the representation of users in the edge-contextual graph. To sim-
plify the manuscript, we omit the superscript 2 and use h;, to denote
the representation for user u.

4.1.3 Link Representation. Given a link (u,v), we use the corre-
sponding pairwise edge features e, and the associated user repre-
sentations from the edge-contextual graph, h,, and h, to characterize
the link between users. In particular, the direction sensitive link rep-
resentation for (u,0) is constructed as follows:

fuv=¢([hu ©h,®eyy)), 3

where ¢ (-) is a mapping function (e.g., neural network layers), and
eyp represents the directional edge feature for u — v. We empirically
find that reusing edge features for link representation directly can
improve the overall performance. One likely reason is that edge
features are highly correlated to the affinity score s,,. Thus, adding
edge features after Edge-GNN could re-emphasize individual user
interactions after smoothing via the mean aggregator.

Given user representations and link representations for the edge-
contextual graph, ELR next aims to categorize various types of friend-
ship relations, and learn their representations separately to capture
the influence of different facets of the edge-contextual graph.

4.2 Friendship Categorization

To predict the Friend Story affinity score, we capture the similar-
ity of Friend Story affinities between different pair of users in the
edge-contextual graph. Our assumption is that the Friend Story affin-
ity score sy, is correlated to (1) the pairwise relation between u
and v. Frequent historical engagement between u and v indicates
u’s likeliness to watch v’s stories; (2) the intra-ego relations: u
shares similar affinity to ©’s stories as his/her first-order friends;
(3) the inter-ego relations: the level of interest from u’s friends
towards stories of v’s friends can imply u’s interest in v’s stories, due
to properties of homophily and shared preferences between friends.
Compared to state-of-the-art models in industry that mainly uti-
lize two users’ historical activities and interactions, ELR especially
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Figure 2: Overall framework of ELR: ELR considers an edge-contextual graph for each (u,0) of interest, and learns embeddings
for each edge in the graph using an edge-attribute aware module, Edge-GNN. A friendship categorization module differentiates
various relation types in the graph, and learns relation-specific embeddings for each: the target pairwise relation on (u,0) (ryy),
intra-ego relations between u and u’s friends (r,+) and v and ¢’s friends (r,+), and inter-ego relations across u’s friends and v’s
friends (ryy+), leveraging learned neighbor attention (grey) to counter inherent sparsity in social interactions. Finally, the
affinity score prediction module jointly utilizes the relation-specific embeddings to predict the FSR affinity score, s,;.

—> Pairwise relation — u’s intra-ego relation
— Inter-ego relation —»V’s intra-ego relation

Figure 3: Examples of pairwise, inter-ego, and intra-ego re-
lations in a edge-contextual graph. All relations are directed
and aligned with respect to the pairwise relation, u —v.

priorities local community information via edge-contextual graph
signals, capturing transitive properties which help serve to regular-
ize inferences via social structure. Figure 3 illustrates relations in
a toy edge-contextual graph. Next, we discuss the detailed designs
and intuitions for the above three category of relations.

4.2.1  Pairwise Relation. The pairwise relation of u and v charac-
terizes the direct Friend Story engagement on u — v. It consists of
users’ activities and user-to-user interactions. We leverage the user
representations and the friendship representation from the encoded
edge-contextual graph. As shown in Figure 2, we concatenate user
representations hy,, h, and friendship representation f,, and learn
the pairwise relation from the link as:

Typ= l//uv(hu @hu ®fu0),

where 1/, (+) is a fully-connected neural network layer.

Incorporating pairwise relations has been explored in state-of-
the-art approaches. Predicting Friend Story affinity score based on
pairwise relation is similar to feature-based link prediction [61].
However, in previous cases, the pairwise relation view is limited,
and does not carefully consider the relationships between users and
their ego network/local community.

©

4.2.2 Intra-Ego Relation. In addition to the “target” pairwise re-
lation for (u,v), we also look at u’s friendships and v’s friendships.
Intuitively, user behavior and interests are influenced by their friends
because of their shared communications, and natural properties of
homophily. Looking at immediate friends is beneficial and provide
additional contextual information. For example, a user u may share
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similar affinity as his/her close friends to v’s Stories. Therefore, we
explicitly model interactions within each egonet. Specifically, the
intra-ego relations consists of edges from u to w’s friends (u — N (u)),
and from o’s friends to v (N (v) — v)), aligning directions with the
target edge for inference (u,0). We then aim to define the intra-ego
relation representation of u by aggregating edges betweenu — N (u).
A simple approach would be to apply mean aggregation on the cor-
responding link representations as follows:

1
ru+:¢u+( NG| Z fui),

ieN(u)

®)

where 1,1 (+) is a feedforward layer. However, this treats all of u’s
friends equally, and ignores the diversity of communication fre-
quency and the closeness of friendships.

Despite having many friends, most users only interact frequently
with several close friends and families. Figure 4 validates this claim:
We randomly select ~ 100K users from Snapchat, and analyze the
percentage of interacted-with (via Chat) friends in past 3-day, 7-day,
14-day and 28-day time periods. If a user and their friend Chatted at
least once during the time period, the friend is marked as “interacted”.
Evidently, most users only communicate with less than 20% of their
on-platform friends in a two-week time period, and few users inter-
act with more than 40% of their friends in a month (28 days), creating
an interaction sparsity scenario. Therefore, simply averaging link
representations of all friends could lead to noisy representations by
considering many inactive friendships. Even though user-user in-
teraction can be reflected by edge features, explicitly penalizing less
communicated friends when aggregating has still been shown as ben-
eficial [32, 49]. To appropriately characterize important friends by pe-
nalizing selected link representations when learning representations
for intra-ego relations, we use a self-attention mechanism [51, 52]
to assign friends among intra-ego relations different importance.
Specifically, we compute the importance of friend i to u (and v to j) as:

exp(h/h;) exp(h;h])
= = )
Zi’eN(u)eXP(hZhi’) e Zj/eN(v)eXp(hjrh;r)

where exp(-) denotes the exponential function. The importance
scores are further incorporated into the intra-ego relations for both

u and v as:
Z txui'fui), ru+:'//v+( Z “jv'fjv)’

ieN(u) JEN (v)

(6)

Qui

Ty+ = ¢u+ ( (7)
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Figure 4: Percentage of interacted-with friends in the past
3,7, 14 and 28 days. Most users only communicate with less
than 20% of friends in the past 14 days. Few users interact
with more than 40% of friends over the past 28 days.

where 4 (+), 0+ () are feedforward layers. As shown in Figure
2, two intra-ego relation representations highlight the immediate
interactions along the direction of link (u,v), and are part of the
input to the Friend Story engagement prediction module. Note that
by considering directions of ry4 and ry+ asymmetrically, we are able
to capture and attenuate information along the pathu — f — .

4.2.3 Inter-Ego Relations. Lastly, we model the friendships between
friends of u and friends of v (N (u) — N (v)), i.e., inter-ego network
relations. The inter-ego aim to describe the engagement and interest
of u’s friends in v’s friends. As friends share similarities, inter-ego
relations are particularly helpful to discover underlying affinity. For
example, if v is a less-active user whom neither u, u’s friend nor v’s
friend have much interaction with recently, it may be challenging
to predict the affinity score (u,0). However, if historical behaviors
show strong engagements between u’s friends and v’s friends, our
estimation of u’s affinity to v would likely increase. More generally,
we hypothesize that inter-ego friendships carry useful information
of baseline engagement propensity between users in the two groups
of u’s friends and v’s friends

Figure 5 bolsters our intuition between inter-ego relations and
their association with (u,0): We randomly select 1 million edge-
contextual graphs, and analyze the activeness of inter-ego relations
for (u,v) with different Friend Story CTR as the measurement of
engagement. We first compute the averaged Friend Story CTR value
for all possible links/relations. If a friendship from inter-ego rela-
tions shows higher Friend Story CTR than average, we consider it
an “active link”, otherwise we consider it an “inactive link”. The left
plot shows that for (u,0) with low engagement (blue), the ratio of
inactive inter-ego relations is markedly higher than (u,0) with high
engagement, while the right plot shows clearly that high engage-
ment (u,0) have considerably more active inter-ego relations. The
active inter-ego relations, which frequently co-occur with high CTR
for (u,v), is a valuable signal in solving the FSR problem.

Motivated by the above analysis, we construct inter-ego relation
representations for all friendships between the alters of u and the
alters of v (N (u) — N(v)) as follows:

ruu+=¢uu+(zaui 'ajv'fij),

X
8uv

®
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Figure 5: Percentage of active/inactive inter-ego relations
according to the Friend Story engagement of (u,0). “engaged”
means (u,v) with high engagement and “not engaged” de-
notes a low engagement for (u,v). We observe more active
inter-ego relations for “engaged” (u, v); and more inactive

inter-ego relations if (u,0) are “not engaged”.

where 1,5+ (+) is a feedforward layer, and &), = {(i,j) € Euoli €
N(u) A je N(v) Ai# j} denotes those cross-egonet edges in the
edge-contextual graph which are between u’s friends and v’s friends.
We reuse the importance of friends as introduced for intra-ego rela-
tions because of a similar intuition: when modeling friend-to-friend
relations, the closeness of friends should be considered. Since the
friendship representation f;; is weighted by both users, the closeness
of i to u and the closeness of v to j are incorporated. Specifically,
f;; is more reliable if i is a close friend to u, and also if j is a close
friend to v. Using attention scores ay; and «j, to weight the link
representation can reduce noise and learn a concentrated inter-ego
representation for Friend Story affinity prediction.

4.3 Affinity Score Prediction

Lastly, we predict the Friend Story affinity score by jointly modeling
the pairwise relation, intra-ego relations and inter-ego relations. To
construct a complete view of the edge-contextual graph, We first
concatenate the three types of representations, then use a neural
network ¢(-) to generate the predicted score:

$u0 =@ (Tyuo®Ty+ OTys OTypt). ©)
We use mean square error as the loss function:
1
L= > |lsuo—suoll® (10)
ts]

(u,0)
In practice, we utilize minibatching and stochastic gradient descent
to train the model efficiently on large-scale graph data.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the
following experimental questions (EQs):
e EQ1: Can ELR accurately predict affinity scores for FSR, out-
performing alternatives?
e EQ2: How do different components of ELR contribute to the
resulting predictive performance?
e EQ3: Are ELRlearned attention weights intuitive assessments
of friend importance?
e EQ4: How does ELR perform with limited training data?

5.1 Setup

We construct two large-scale datasets from Snapchat, each spanning
one country (i.e., Region 1and Region 2). For each dataset, we take
a snapshot of the social network structure on a specific date, and
select all recently users active in each country. Detailed construction
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of datasets are introduced in supplementary materials. We collect
historical user activities and user-user interactions in the past four
weeks from the specified date. Frequencies of each type of activity
and interaction type are aggregated with the past 3/7/14/28 day inter-
vals as node features and edge features. In all, we have d;, =376 (node
features) and d. =188 (edge features). Feature examples are further
provided in supplementary materials. We then preprocess our data
with feature-wise log-normalization and z-score normalization.
We primarily define the target Friend Story affinity score s, using
click-throughrate (CTR) on (u,0). CTRis formulated as the number of
times u view v’s stories divided by the total number of times v’s stories
were shown to u, where CTR € [0,1]. In addition, to demonstrate the
generality of ELR, we consider a second prediction task, where s, is
defined using the total Friend Story view time (TVT). We also apply
log-normalization and z-score normalization on TVT for preprocess-
ing. We discuss further data statistics, data pre-processing, model im-
plementation details and model training in supplementary materials.

5.2 Baselines

We compare ELR with the following baselines to validate its perfor-
mance. In particular, we choose three pairwise feature based methods
and two GNN methods.

o Linear Regression (LR): since the linear regression model can-
not handle graph-structured data, we concatenate original node
features xy,%, and edge features e, as input to the model.
XGBoost (XGB): We construct input similarly to LR, using a
boosted trees model instead.

Multi-Layer Perceptron (MLP): we build a two-layer MLP model,
using the same input features to LR and XGB models.
GraphSAGE (GS): we train a two-layer GraphSAGE model with
mean aggregation on the entire network G to predict s, using
an inner product decoder on final node embeddings. We only use
node features with graph structure since [16] does not use them.
Edge-GraphSAGE (E-GS): The same as GS, but we replace the
message-passing in the original GraphSAGE with Equation 2 so
that edge features are incorporated explicitly in the aggregation.

We note that the above GNN approaches treat FSR akin to link pre-
diction. As discussed in Sections 1-2, our task involves link ranking,
which is different in its focus on inference for existing links and not
missing ones. However, we train the baseline approaches using ideas
posited for link prediction for best comparison. Comparing ELR and
these GNN approaches inherently shows differences in the inherent
problem settings, and their design considerations.

We use mean square error (MSE) and mean absolute error (MAE)
as the evaluation metrics for all compared methods. We treat the rank-
ing task as a pointwise prediction one. In general, lower MSE/MAE
also strongly correlate with traditional ranking metrics given our ob-
servations. We note that we could also adapt our task to a listwise or
pairwise ranking setting, but do not discuss these aspects in our work
for simplicity. Note that we do not directly predict/optimize mean
reciprocal rank (MRR) and/or normalized discounted cumulative
gain (NDCG) of the ranked friend stories. The production ranking
model utilizes a multi-task setting where a value model is applied
to combine different predictions like CTR and TVT to generate final
ranking to satisfy business goals. As a result, we focus on the pre-
diction accuracy of each individual task instead of overall ranking
metrics. The accuracy improvement of each individual prediction
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Table 1: Dataset summmary statistics.

Name | Region 1 Region 2
# of users (|V]) ~1.2M ~3.3M
# of friendships (|€]) | #20.4M  ~25.0M
Node ftr dim (dy) 376 376
Edge ftr dim (d¢) 188 188

Table 2: ELR outperforms baselines on the Friend Story CTR
prediction task across datasets and metrics.

Region 1 Region 2
MSE MAE MSE MAE

LR .1510+.0140 .4078+.0101 .1411+.0095 .3832+.0079

XGBoost .0991+.0032 .2747+.0035 .0908+.0018 .2611+.0020

MLP  .1014+.0015 .2595+.0077 .0986+.0037 .2541+.0040

GS .1115+.0027 .3038+.0043 .0965+.0033 .2866=+.0032

E-GS  .09144.0009 .2511+.0021 .0823+.0012 .2474+.0011
ELR .0865+.0011".2389+.0019*.0773+.0020" .2404+.0032*

* significant with Student’s T-test p <0.001 compared with E-GS

Table 3: ELR is general, showing similar outperformance for
an alternate Friend Story TVT prediction task.

Region 1 Region 2
MSE MAE MSE MAE

LR .0730+.0060 .2492+.0032 .0683+.0044 .2357+.0050

XGBoost .0434+.0014 .1830+.0010 .0496+.0025 .1943+.0022

MLP  .0414+.0008 .1852+.0009 .0435+.0012 .1823+.0015

GS .0405+.0003 .1755+.0013 .0443+.0011 .1840+.0015

E-GS  .0396+.0004 .1707+.0017 .0428+.0009 .1817+.0006
ELR .0383+.0003".1680+.0010".0410+.0011%.1789+.0012*

* significant with Student’s T-test p <0.001 compared with E-GS

task naturally results in improvement of the final recommendation
quality (e.g., MRR, NDCG).

5.3 Prediction Performance

We study EQ1 by comparing ELR against all baselines on predict-
ing Friend Story CTR. The results are reported in Table 2, mea-
sured by mean square error (MSE) and mean absolute error (MAE).
Clearly, ELR achieves the best performance, with both MSE and
MAE markedly lower than baseline methods on both datasets. ELR
significantly outperforms traditional tabular methods like LR, XGB
and MLP on both datasets. Primarily because tabular methods fail
to model the rich social network information outside of pairwise
features. Although GS and E-GS are trained on the entire social net-
work and provide more information than pairwise feature based
approaches, their errors are still considerably higher than ELR. In
particular, both E-GS and ELR leverage edge features to model user
interactions for friend story ranking. However, ELR surpasses E-
GS by almost 8%, suggesting that modeling intra-ego and inter-ego
relations explicitly is key in an accurate prediction.

To validate the generality of the ideas adopted by ELR, we extend
the task to TVT prediction on both datasets. The results are shown in
Table 3, where ELR achieves the best performance against other base-
lines. In particular, ELR improves over E-GS by around ~ 5% error
reduction. The extended experiment further confirms our intuition
that our edge-focused design choices can benefit other link-based
inference tasks than our original CTR target metric.
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Table 4: An ablation study reveals that the neighbor atten-
tion, inter-ego relation and intra-ego relation components
of ELR all contribute to predictive power.

Region 1 Region 2
MSE MAE MSE MAE
ELRmean 0871 2441 .0794  .2425
ELRno inter 0894 2482 0819  .2435
no_intra -0908 2505 .0810  .2460
.0865 .2389 .0773 .2404

5.4 Ablation Study

We next aim to answer EQ2 by conducting an ablation study to eval-
uate the relative impact of attention-based friendship importance,
incorporating intra-ego relations, and inter-ego relations to ELR.
We consider several variations of ELR including (i) ELReqn, which
drops the friendship importance and uses mean pooling over link
representations for both intra-ego relations and inter-ego relations;
(ii) ELRy0_inter, which removes the inter-ego relation representation
Tuo+ in the affinity score prediction module, and (iii) ELRyo_intras
which excludes the intra-ego relations (ry+,ry+ from ELR). Table 4
shows the performance of predicting friend story CTR using these ab-
lation variants. From the results we conclude that (i) the performance
of ELRyean is worse than ELR, showing that the friendship impor-
tance filters unrelated links and reduces noise in ELR; (2) ELR has
lower error than ELRpo_inter on both datasets because ELRyo_inter
drops the inter-ego relations and fails to model the dependencies
between u’s friends and o’s friends; (3) ELR;0_intrq has higher error
than both ELR and ELR0_inter, suggesting that intra-ego relations
(which were dropped) are especially important in achieving good
performance, by encouraging a smoothed representation over u and
u’s friends, and v and 0’s friends respectively. In summary, all compo-
nents contribute to ELR’s improved performance. All cases suggest
inherent advantages of our incorporation of edge features.

5.5 Friend Importance Analysis

We next evaluate how the learned friendship importances (a,; from
Eq.6) are correlated to raw, exhibited edge features e,; to answer
EQ3. We randomly select = 100K users from the testing samples
in Region 1. For each user, we compute the Pearson’s correlation
coefficient between the importance scores and four representative in-
teraction signals: number of sent/received Chats, number of viewed
Snaps, number of Friend Story views, and total Friend Story view
time. We plot the cumulative distribution function (CDF) across the
correlation statistics for the 100K users in Figure 6. We observe that
the majority of users show positive correlations between friendship
importance scores and each representative interaction signals; more
than 60% of users report positive Pearson’s correlation coefficient in
each interaction signal. Importantly, this shows that a,; well-aligns
learned attention across multiple raw signals, only one or few of
which may be relevant for any given user pair (e.g. some user pairs
may Snap a lot, while others only Chat, etc.) Together with our ab-
lation experiment ELR;eqn, this builds confidence that the learned
scores well-characterize close friendships and reduce noise from
sparsity in representation learning.

5.6 DataEfficiency

One may think that given ELR’s modeling choices, that it may require
massive amounts of user data to generalize well. We thus analyze
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Figure 6: Learned friend attentions are strongly correlated
to raw edge features. From CDFs of Pearson’s correlation
coeflicients across users, we observe that representative
user interaction signals are positively correlated to friend
attention scores for the majority of users.

Table 5: Training on small datasets: ELR;;;, achieves compet-
itive performance with much fewer (~1%) training samples.

Region 1 Region 2
MSE MAE MSE MAE
ELR;;e 0880 .2408 .0791 .2422
ELR .0865 .2389 .0773 .2404

ELR’s efficiency with respect to the number of training samples
to answer EQ4. We compile two small datasets from Region 1 and
Region 2. Specifically, we select ~ 1% of training links (u,v) for each
region. We train ELRy;; on the two small datasets, and report the CTR
task performance as shown in Table 5. We can observe that even with
a comparatively small amount of training samples, ELR;;;.) achieves
comparable performance to ELR. Moreover, this performance is still
improved over baselines using the whole datasets (ref. Table 2), Thisis
highly advantageous for recurrent training, as per industry use cases.

6 CONCLUSION

In this work, we study the problem of Friend Story Ranking (FSR).
FSRisaninstantiation of a more general link ranking problem, tasked
with inference over existing network links, rather than inferring
over missing or future ones. We tackle the problem from a graph
representation learning perspective, building upon recent advances
in GNNss in the ELR model. We incorporate socially-motivated in-
tuitions into our model design, focusing our inference to a localized
edge-contextual graph for each target link for inference, emphasizing
importance of edge attributes in user-user relationships in message
passing, while also learning distinguished representations across
different types of pairwise, intra-ego, and inter-ego relations in local
graph structure, and carefully attending over nodes in deriving these
representations to overcome social interaction sparsity. Through
extensive experiments, we show ELR outperforms baselines with an
impressive 8% error reduction in Friend Story CTR prediction. We
further show ELR’s generality, the relative importance of modeling
components, and qualitative findings.
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