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ABSTRACT
Persistent Memory (PM) is increasingly supplementing or substitut-
ing DRAM as main memory. Prior work have focused on reusability
and memory leaks of persistent memory but have not addressed
a problem ampli�ed by persistence, persistent memory fragmenta-
tion, which refers to the continuous worsening of fragmentation
of persistent memory throughout its usage. This paper reveals
the challenges and proposes the �rst systematic crash-consistent
solution, Fence-Free Crash-consistent Concurrent Defragmenta-
tion (FFCCD). FFCCD resues persistent pointer format, root nodes
and typed allocation provided by persistent memory programming
model to enable concurrent defragmentation on PM. FFCCD in-
troduces architecture support for concurrent defragmentation that
enables a fence-free design and fast read barrier, reducing twomajor
overheads of defragmenting persistent memory. The techniques is
e�ective (28–73% fragmentation reduction) and fast (4.1% execution
time overhead).

CCS CONCEPTS
• Hardware ! Non-volatile memory; • Software and its engi-
neering ! Garbage collection.
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1 INTRODUCTION
Persistent memory (PM) is emerging as a promising supplement
or substitute of DRAM as the main memory, o�ering higher den-
sity, better scaling potential, lower idle power, and non-volatility,
while retaining byte addressability [1, 45, 49, 51]. Prior studies [12,
15, 18, 33, 79] have focused on reusability and memory leaks of
PM but have not addressed a problem ampli�ed by persistence,
persistent fragmentation, which is a situation when much of the
memory is allocated in a large number of non-contiguous blocks,
leaving a good portion of the memory unallocated, but unusable
for most typical scenarios. Persistent fragmentation is distinct from
memory leak, which arises due to unclaimed dead objects. Memory
leaks can worsen fragmentation, but solving memory leaks does
not necessarily remove fragmentation. PM fragmentation leads to
unsustainable PM uses (i.e., deteriorating performance throughout
the PM lifetime). The main cause of fragmentation is the memory
allocator’s assumption that objects have a short lifetime, and that
fragmentation is a temporary problem that disappears when the
program terminates, which is the case in DRAM, but not in PM.
Unlike in DRAM, temporal memory fragmentation becomes perma-
nent in PM as the PMOP heap persists across runs andmay even live
for years with di�erent versions of applications. Without proper
treatment, fragmentation in PM keeps deteriorating throughout its
lifetime. The issue worsens as the large capacity provided by PM
necessitates the use of huge pages [29, 50, 66].

(a) First run (b) Second run

(c) Third run

1st 2nd 3rdRun
1.36 1.77 2.23fragR 4KB

100.0 89.7 78.1Throughput 4KB ���

fragR=
Mem footprint

Actual data size

100.0 92.2 81.5Throughput 2MB ���

1.44 2.42 3.24fragR 2MB

Figure 1: PM fragmentation worsens across runs of Echo, a
key-value store.
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Figure 1 shows an example with a growing memory footprint
on subsequent uses of a PMOP. The �gure plots the actual data size
(i.e., total allocated memory from the application) versus PMDK
memory footprint (i.e., total memory pages allocated to applica-
tion data by the OS) of Echo, a key-value store application from
WHISPER benchmark suite [59]. Each subsequent run inherits the
persistent fragmentation from the previous run and increases it. By
the third run, the footprint doubles or triples the actual data size (a
fragmentation ratio of 2.27 and 3.24 on 4KB and 2MB settings), and
the throughput also declines by nearly 20% compared to the �rst
run.

Idle-time defragmentation in disks and SSDs is less attractive for
PM for several reasons. First, the higher PM throughput means that
fragmentation will grow much more quickly in PM. There are also
smaller idle windows to perform defragmentation in PM; scheduling
defragmentation at a wrong time may result in an unexpected long
latency of PMOP open(), the waiting for ongoing defragmentation
to �nish [43, 44, 75].

Programming language defragmentation solutions fall into two
classes. The �rst is through ad-hoc treatments [55, 71], which use
memory management customized to a particular application to per-
form stop-the-word defragmentation. They do not o�er a general
solution to PM fragmentation. The second is through Garbage Col-
lection (GC). The primary task of GC is to reclaim reusable memory
space automatically. Most GCs would compact useful data objects
together into a consecutive space, naturally reducing fragmentation.
So memory leak prevention and defragmentation in modern GCs
for managed languages prompt a question of how they should be
used for memory defragmentation in PM.

There have been e�orts to adopt GC for PM, C/C++, and man-
aged languages (e.g., Java). They, however, did not o�er e�cient
solutions to PM defragmentation and did not address crash consis-
tency. The work on C/C++ [12, 15, 18, 33] uses stripped GC (called
conservative GC), which reclaims data objects but without com-
pacting objects, and hence does not defragment PM. The work
on managed languages [2, 30, 47, 74] simply assumes the use of
standard GCs with defragmentation. Espresso [84] is so far the
�rst and only work proposing GC on JAVA for PM by addressing
the need for PM crash consistency. Espresso’s approach of directly
adding several cache writebacks (clwb) and a store fence (sfence)
instruction after each GC-caused PM write leads to high overheads
as it makes every GC-caused PM write subject to a full PM access
latency. So no prior work achieves the two important PM-speci�c
goals at the same time, crash consistency and e�ciency:

• Crash consistency. Because PM keeps persistent data for reuse
across runs, crash consistency requires that PM data remain
consistent across system crashes or program failures. Since
GC with defragmentation moves data objects in memory,
they present special hazards for crash consistency. Without
proper treatments, partially moved objects and partially up-
dated references may cause inconsistency and permanent
corruption of PM data.

• E�ciency.GCwith defragmentation adds substantial runtime
overheads. While it may be tolerable for managed languages
on a volatile memory, it is not tolerable for PM due to three
reasons: (i) Demands: PM has been used so far primarily

for system-level tasks (e.g., database, key-value store) with
stringent latency and throughput requirements, and C and
C++ rather than management languages are popular choices
for them. (ii) Hardware: PM write latency is several times
larger than that of DRAM, worsening the GC overheads. (iii)
Operations: Many operations must happen at each write on
PM to maintain crash consistency. By default, each object
movement, each reference update, and metadata update need
to be followed by several clwb instructions and an sfence
instruction to guarantee that the writes reach PM and that
the PM is consistent after these writes. As a result, direct
integration of the standard GC on PM while keeping crash
consistency adds signi�cant overheads to typical programs
(Section 3.2).

In this work, we propose a Fence-Free Crash-consistent Con-
current Defragmentation (FFCCD), the �rst concurrent defragmen-
tation that reduces persistent fragmentation for PM and removes
persistent memory leaks while achieving both crash consistency
and high e�ciency. FFCCD comes in two �avors; software-only and
hardware-supported. FFCCD leverages careful analysis of idempo-
tent operations and post-crash states, allowing us to eliminate all
GC-caused clwb and sfence instructions, keeping normal opera-
tions and data compaction fast, at the expense of more post-crash
recovery work. This design is applicable to applications in both
managed and unmanaged languages without any architecture sup-
port. In addition, we also propose architecture support that further
accelerates FFCCD.With FFCCD, memory fragmentation is reduced
by 39.3% on concurrent PM data structures and two key-value store
applications and 42.7% on some benchmarks. As memory frag-
mentation decreases, application execution time decreases as well.
Consequently, with FFCCD, the improvement in application perfor-
mance o�sets defragmentation overheads substantially, resulting
in only a small increase in the total execution time (4.1%).

Overall, in this work, we make the following contributions:

• We analyze the challenges and present the �rst systematic
e�ort to address PM fragmentation.

• We propose FFCCD and its architecture support to serve for
fence-free crash-consistent concurrent fragmentation on PM
to achieve both crash consistency and e�ciency.

• We evaluate the e�cacy of FFCCD, showing 28–73% reduc-
tion in memory fragmentation with a 4.1% execution time
overhead.

2 BACKGROUND
2.1 Persistent Fragmentation

(a) Status before a new allocation
Page 1

Page 1 Page 2

new allocation

(a) Status after a new allocation of 3 blocks

Figure 2: Example of memory fragmentation
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Fragmentation is an inherent limitation of memory allocators
without compaction[40, 41]. Figure 2 shows an example of memory
fragmentation. Each solid box represents an allocated memory
block (16 bytes), and each empty box is a free block. At the moment,
shown in Figure 2 (a), even though there are enough free blocks on
page 1 to meet the new request, the consecutive free space is not
su�cient. Consequently, the memory allocator has to allocate a new
page for the new request. Fragmentation causes ine�cient memory
usage. It also degrades program performance as it unnecessarily
increases the memory footprint and TLB entries. Unlike in DRAM,
fragmentation in PM persists after a run.

2.2 Persistent Memory Programming Support
2.2.1 PMOP. There are at least two paradigms for using PM. One
may use it as storage to host a �le system; the other uses it via
a new abstraction where a data structure is wrapped into a per-
sistent memory object pool (PMOP), allowing data structures to be
hosted persistently in physical memory without �le backing [88].
PMOPsmay combine some features of a �le system (naming, permis-
sion, durability, and sharing) and some features of data structures
(pointer-rich, address space mapping, purely load/store access. In
this paper, we assume the latter.

A PMOPmay be a container for a data structure that lives beyond
process termination and system reboots. A PMOP requires several
properties to be supported: crash consistency allows a PMOP to re-
main in a consistent state across software crashes or power failures,
and relocatability where a PMOP can be relocated to di�erent VA
ranges in di�erent runs [18, 33, 81, 92] of an application.

To support relocatability, each pointer (64-bit) used in a data
structure consists of a PMOP ID and an o�set within this PMOP.
PMDK libpmemobj [33] have described interfaces for manipulating
pools and objects, which we adopt. Every PMOP has at least one
entry point called a root, which stores the start address of a set of
connected persistent objects [15, 18].

1  struct node{int data; POBJ_ENTRY(node)* next;}; 

2  void insert_head(int value) {

3  PMEMobjpool * pop = pmemobj_create (path, layout(node),size,0666); 

4    TOID(struct node) root = POBJ_ROOT(pop, struct node);

5    TX_BEGIN(pop) {           

6      TOID(struct node) newnode = TX_NEW(struct node);

7      D_RW(newnode)->data = value;

8      if (TOID_IS_NULL(root)) {…}

9      else {TX_ADD_DIRECT (newnode); D_RW(newnode)->next=&D_RW(root); 

10       TX_ADD_DIRECT (node); D_RW(root) = &D_RW(node);

11    }TX_END

12 }

Figure 3: List Insertion Example of PMDK libpmemobj.

2.2.2 Example. To illustrate PM programming model, Figure 3
shows a node insertion for a singly linked list (omitting some
checks) with PMDK libpemeobj. In the structure de�nition, a per-
sistent pointer is used by invoking POBJ_ENTRY (Line 1). In the inser-
tion function, the code creates a PMOP by invoking pmemobj_create
if it is the �rst use (Line 3). This function speci�es a piece of
space for allocating node objects. A root node is created through

POBJ_ROOT() and the return value is assigned to typed node object
root that is created in TOID() (Line 4).

Then an insertion transaction is de�ned for this PMOP. It uses
TX_NEW to allocate a node object newnode(Line 6). After that, the in-
put value is written to this object through D_RW(). D_RW() converts
a persistent pointer into a readable and writable normal pointer by
adding the base address of this PMOP and the o�set (Line 7). If the
root is not NULL (Line 8), the program inserts this newnode to the
head. This branch �rst annotates the logging of the entire newnode
through TX_ADD_DIRECT(), then it assigns the persistent pointer
of root to the next �eld in newnode.

2.3 Garbage Collection
2.3.1 Mark-and-Compact Garbage Collection (MCGC). MCGC [41]
can �x both memory leaks and memory fragmentation. An MCGC
involves three steps, marking, summary, and compacting, as illus-
trated in Figure 4. Initially, the program has some roots, and suppose
that allocated objects occupy two memory pages. In the marking
phase, GC traverses all objects from roots to identify all reachable
objects. In the summary phase, GC summarizes the fragmentation
state and identi�es relocation pages (i.e., pages that need to be com-
pacted) and destination pages where objects in relocation pages
will move to. The data structure storing destination information
is called the forwarding table. Unreachable objects on other pages
are returned to free lists. After that, the compacting phase moves
all reachable objects in relocation to destination pages and updates
references to them. Then the second page is released.

Free blocks Reachable blocks One Page

Root
nodes

Root
nodes

(a) Intial (b) Marking
Allocated blocks

Root
nodes

(d) After compaction

Root
nodes

(c) Summary & Sweep

Figure 4: Illustration of mark-and-compact garbage collec-
tion.

2.3.2 Concurrent Garbage Collection. Based on whether the appli-
cation pauses from GCs, GCs can either be stop-the-world (stalling
all application threads while the collection is performed) or concur-
rent (without stalling the application).

Stop-the-world (STW) GCs are popular as they are easy to im-
plement. They, however, cause high tail latency for real-world ap-
plications. For example, for a 16GB heap, the concurrent ZGC only
incurs at most 1ms application pause while stop-the-world G1 GC
incurs an average 250ms pause [64]. Growing heap size can even
lead to pauses of over a minute [42]. In comparison, data centers
often have deadlines of around one ms [11, 26, 57].

Concurrent GCs hence receive more interest [22, 63]. However,
to ensure a consistent view of memory, concurrent GCs rely on
barriers, which are small pieces of code that are added to every
reference/pointer operation by the compiler in managed languages.
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GC barriers are di�erent from synchronization barriers in parallel
programs, or memory barriers in memory consistency models.

In concurrent GCs, barriers address two inconsistent conditions.
First, the application may modify references after the GC mark-
ing step has already visited them, thereby hiding references and
freeing reachable objects. The solution is to add a write barrier on
all reference write that will add the new value into the marking
queue. Second, the application may access a moved object using
an old reference. This problem is avoided by using read barriers:
When reading a reference, the barrier code checks whether the
object pointed by this reference has moved or not, and if it has,
the barrier code looks up the destination address and updates this
reference. If it has not, this object will then be moved (i.e., copied
to the destination), and this reference is updated.

The marking and summary steps are idempotent, i.e., repeated
invocations yield the same output and do not cause high over-
heads. However, the compacting step is not idempotent and incurs
overhead on PM (See Section 3.2).

2.4 Prior PM libraries with GC
Prior work in PM for C/C++ explored potential methods to solve
the persistent leak problem, but none of them addressed the persis-
tent fragmentation problem. PMDK [33] requires programmers to
manually implement memory leak detection and repair programs
for each type to �x persistent memory leaks. NV-heap [18] and
Corundum [30]a proposed reference counting to �x memory leaks,
while naive reference counting cannot handle leaks with circu-
lar references and incurs large overhead to maintain all reference
counters. Atlas [15] and Makalu [12] propose a lock-based memory
allocator with post-crash garbage collection to reclaim memory
leaks. The GCs in all of these works are conservative GC, �xing
some leaks but not defragmenting.

There is some work in PM on managed languages that is rele-
vant to GC, but none of them provide crash-consistent GC. Write-
Rational GC [2] and Panthera [80] propose to use GC to move
frequently written objects to DRAM and infrequently written ob-
jects to PM to save PM lifetime and DRAM energy. Auto-persist [74]
and P-inspect [47] move data from DRAM to PM to automatically
persistify objects in JAVA. They do not focus on the special chal-
lenges of crash-consistent GC. Yang et. al. propose to improve PM
bandwidth utilization to improve GC e�ciency [91].

3 APPROACH AND SOLUTION
In discussing our approach, we start with discussing the rationale
for building our fragmentation management over a GC (Section 3.1)
and the e�ciency in crash consistency GC on PM (Section 3.2). Then
we discuss our FFCCD design, highlighting its key features (Sec-
tion 3.3). We provide the details to achieve the design: architecture
support for acceleration (Section 4) and software implementation
(Section 5).

3.1 Basis for Building Fragmentation
Management over GC

Building our fragmentation reduction over a compacting GC in
unmanaged languages seems contrary to the conventional wisdom
that GC is possible only for managed languages. The fundamental

problem of using a GC in C language is that C programs may expose
raw memory addresses to programmers, who may access objects
in ways that prevent the runtime from distinguishing integers and
pointers and hence updating all references correctly. We made
several observations that the challenge is circumventable for PM.
First, thanks to the need for PM to support future data reuse, object
creators in PM need to specify the roots of main data structures (DS)
for reusing, as required by existing PM programming models [15,
18]; the roots provide the starting point for the GC marking step.
Second, for the same reason, in PM programming models [15, 18],
the object creators record type information of all objects for future
references, allowing us to distinguish data and references [33].
Third, the use of o�set-based persistent pointers in PMOP [18,
33, 79, 81] requires the program to use special APIs to convert
persistent pointers into virtual addresses on every read/write. This
creates an opportunity to repurpose the APIs as read barriers to
support concurrent GC in C/C++ programs. These observations
and properties lay the basis for GC to work in PM with C/C++: it
can detect all reachable objects, distinguish pointers from integers,
reclaim leaks, and update all references if objects are moved. This
work is based on the programming models like libpmemobj and
libpmemobj++, which employ typed allocation, typed persistent
pointers, and root nodes. Some libraries in PMDK [33] do not follow
the above programming model, like libpmem. They do not even
support the manual �x of persistent memory leaks.

3.2 Crash Consistency and Performance
Bottlenecks

Recall that our fragmentation reduction approach requirements in-
clude crash consistency and low-performance overheads. Figure 5(a)
shows the overheads of the basic GC from Espresso [84] design,
originally proposed for JAVA, when we adapted it for C/C++, with
crash consistency and concurrent GC. To adapt Espresso design for
C/C++, the PMDK D_RW and D_RO functions (only D_RW is shown
in the �gure), required for dereferencing a persistent pointer, have
read barrier code inserted to support the compacting phase of GC.

�D��%DVLF�*&�SKDVH�EUHDNGRZQV

�E��%DVLF�*&�EUHDNGRZQV

Figure 5: Baseline GC overhead breakdown.

The �gure shows that Espresso slows down PM programs sub-
stantially, by 16.5% on average, representing 22.1% overheads over
the application alone. Furthermore, the compacting phase occupies
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most of the GC time (See Section 6 for more details). Figure 5(b)
shows the GC time breakdowns. The source of the overheads is pri-
marily the crash-consistent memcpy() of data from the relocation
page to the destination page, followed by the read barrier check and
lookup. The former includes additional persist barrier instructions,
stalls due to persist barriers on each GC-caused PM write, high PM
write latency, and write ampli�cation that pressures the PM per-
formance given that PM has a signi�cantly lower write bandwidth
than DRAM (20% of DRAM write).

3.3 FFCCD Overview
We propose a fence-free crash-consistent concurrent defragmen-
tation (FFCCD) to address the challenges of introducing crash-
consistent defragmentation on PM with low overhead. FFCCD is
built on a standardMark-and-Compact Garbage Collection (MCGC).
We review MCGC steps to enhance it with crash consistency. By an-
alyzing Espresso [84], a crash-consistent GC on JAVA, we propose
a fence-free design.

3.3.1 Review MCGC. MCGC has three phases: marking, summary,
and compacting. In the marking phase, MCGC maintains a bitmap
to mark all objects reachable from roots. The summary phase sum-
marizes the fragmentation state and selects relocation pages and
destination pages for all reachable objects in the relocation pages.
The destination information is stored in the forwarding table. An-
alyzing them, we note that both marking and summary phases
are idempotent, as these two phases only collect information from
application memory and do not modify it. The �nal phase, com-
pacting, copies objects from the relocation pages to destinations
looked up from the forwarding table. Afterward, as a reference to a
moved object is read, a read barrier will be triggered, updating the
reference with the new destination address.

The default compacting phase may lead to several inconsistent
application states for PM: (1) Inconsistent forwarding table. The for-
warding table stores object virtual destination addresses. However,
cross-run a PMOP may be mapped to a di�erent virtual address
range; hence the destination addresses are invalid, and compacting
cannot safely resume. (2) A partially moved object. At a read bar-
rier, PM copies an object, updates the object movement state, and
updates a reference to the object. These stores may reach PM in an
order di�erent from the program order. Partially or out-of-order
updates may lead to application data inconsistency or data loss.

3.3.2 State-of-the-art Crash-consistent GC Design. Espresso [84]
proposes a crash-consistent CG design in JAVA. Figure 6 (a) shows
an adaptation of their design if they had been implemented in
C/C++. The PMDK D_RW and D_RO functions (only D_RW is shown
in the �gure), required for dereferencing a persistent pointer, has
read barrier code inserted to support the compacting phase of GC.
It includes distinguishing normal references and references to re-
location pages (line 3), �nding the destination address from the
forwarding table (line 4), checking the movement state of the object
pointed by this reference (line 5), memcpy() this object to the desti-
nation address (lines 7-9), updating movement state (lines 10-11),
and updating the reference (line 13). Even though Espresso uses a
per-object timestamp to indicate whether an object is relocated or
not, this design is conceptionally the same as that in Figure 6 (a).

D_RW (persistent_ptr p) {

  x=persistent_ptr2normal_ptr(p);

  if (is_frag_page(x)) {

    y=find_newaddr(x);

    if (moved[x]==0) { 

      len=find_object_size(*x);

      memcpy(y,x,len);

      clwb(y) on each cacheline;

      sfence();

      moved[x]=1;

      clwb(moved[x]); sfence();  

    }x=y;

  }return x;

}

(a) Espresso crash-consistent GC

1  D_RW (persistent_ptr p) {

2   x=persistent_ptr2normal_ptr(p);

3   if (is_frag_page(x)) {

4    y=find_newaddr(x);

5    if (moved[x]==0) { 

6      len=find_object_size(*x);

7      memcpy(y,x,len);

8      clwb(y) on each cacheline;

9      sfence();

10     moved[x]=1;

11     clwb(moved[x]); sfence();  

12   }x=y;

13  }return x;

14} 

(b) FFCCD

1
Fence-free 

design

2
Minimize 

check & lookup

Shared Cache

Persistent memory

GC:

mov
clwb
sfence
st
clwb
sfence
mov

Application:

st
clwb
sfence

2

1

3

4

5

6

Private Cache

Shared Cache

Persistent memory

FFCCD:

mov
st
mov

Application:

st
clwb
sfence

2

1

3

4

Private Cache

Figure 6: Espresso [84] GC Design (a) and FFCCD Design (b).

To provide crash-consistent GC, Espresso proposes adding sev-
eral clwbs and two sfences into the read barrier. The inserted clwbs
and a sfence are necessary between memcpy() and the movement
state update (lines 7-10) to ensure the object move has persisted
prior to updating its movement state. Suppose the movement state
update is persisted before the entire object was copied, and a crash
happens. During recovery, GC will �nd that the movement state
has been updated, incorrectly assume that the object has �nished
moving, and terminate recovery of this object, leading to appli-
cation data inconsistency. The clwb and sfence are also necessary
between the movement state update and reference update (lines
10-13). Suppose the reference is persisted before the movement
state update is persisted. In that case, the application may already
use the new reference to write new content in this object at the
destination address when a crash occurs. During recovery, GC may
�nd a stale movement state and incorrectly assume that the object
was not copied. Hence, it may recover by copying the old value
at the old address to the destination address, overwriting the new
data, leading to inconsistent application data. The reference update
is idempotent as long as this object’s memcpy() and the state update
are persistent. The reference will always be redirected to the latest
value address with the read barrier and crash-consistent forwarding
table.

3.3.3 Single-fence and Fence-free Crash-consistent Concurrent De-
fragmentation. In the Espresso design, there are several perfor-
mance problems in its read barrier. (i) There is an explicit check
on whether a pointer is to an object on a relocation page. (ii) If so,
its new address needs to be attained by checking a large table in
memory, with poor locality. (iii) Two writes that are critical to the
crash consistency requirement (the memcpy() and the movement
state update) both incur a round trip to load data from PM and store
data to PM. (iv) The two writes require two persist barriers (i.e.,
two pairs of clwb and sfence instructions) and their latency.
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To reduce the overheads stated above, we propose two solutions.
In the �rst solution, we propose to reduce the fourth overhead
source by removing one (i.e., 50%) of the persist barriers. This
can be achieved at the cost of slight complexity increase in the
crash recovery protocol. We refer to this as single fence crash-
consistent concurrent defragmentation (SFCCD). SFCCD does not
require hardware support. However, with hardware support, we
can remove or reduce all four sources of overheads. We refer to
the latter as fence-free crash-consistent (FFCCD). FFCCD removes
all persist barriers (Figure 6(b)), o�oads the object movement to a
copying functional unit, and provides hardware caching for looking
up the forwarding table. We create two designs for FFCCD. In both,
we make the forwarding table produced by the summary phase
persistent before the compaction phase continues its execution.
During compaction, we insert a read barrier into PMDK D_RW and
D_RO. We have the following observations that lead to our two
designs.

Observation 1: Memcpy() for an object is idempotent as long as the
object is clean. For an object that has not been modi�ed, its value in
the original location is clean and consistent with that in PM. Hence,
upon a crash, the data in the original location enables the GC to
redo memcpy() for the object after a crash.

Removing the sfence from line 9 of Figure 6(a) means that it
is possible for the movement state update to persist prior to the
copied object being persisted. Espresso’s approach uses a sfence
to avoid that. However, we make the following observation that
inconsistency that arises from the lack of sfence is something that
crash recovery can handle.

Observation 2: During recovery after a crash, inconsistency in any
copied objects due to the un�ushed copies can be �xed by inspecting
the destination value. During recovery, we can inspect the move-
ment state and object values in the destination address. (1) For
objects whose movement state is “moved”, we inspect this object’s
content in the destination address. If the content is di�erent from
the relocation address value, it means this object’s memcpy() did
not persist (fully). Then, SFCCD will repeat memcpy() for cache-
lines belonging to this object and persist them. For objects whose
movement state is “not moved”, the memcpy() can be redone after
SFCCD resumes execution.

Recovery () {

  for each object A in relocation page

    if(moved[&A]==1) {

      y=find_newaddr(&A);

        if (A!=*y) {

          len=find_object_size(*x);

          memcpy(y,x,len);

        }

    }

}

1  D_RW (persistent_ptr p) {

2   x=persistent_ptr2normal_ptr(p);

3   if (is_frag_page(x)) {

4    y=find_newaddr(x);

5    if (moved[x]==0) { 

6      len=find_object_size(*x);

7      memcpy(y,x,len);

8      clwb(y) on each cacheline;

9      moved[x]=1;

10     clwb(moved[x]); sfence();  

11   } x=y;

12  }return x;

13} 

(a) Single-fence CCD read barrier (b) Single-fence CCD recovery

Figure 7: SFCCD read barrier (a) and recovery code (b).

Based on the above observations, Figure 7 shows the SFCCD
read barrier and recovery pseudo code. This design only needs

one sfence (a 50% reduction) to improve the GC read barrier at the
expense of a little more work at the recovery. The remaining sfence
ensures that when execution exits from the read barrier, an object
that has moved have also updated its movement state. This is a
justi�ed trade-o� because crashes are rare in many systems.

Now we analyze the possibility that we go further by removing
all sfences and clwbs from the read barrier.

Observation 3: The reference update is idempotent, and it can be
repeated if memcpy() data persisted or be undone if memcpy() data
did not persist. The key insight here is that post-crash recovery
can establish consistency between the reference update and object
movement via alternative mechanisms. The reference update can
be undone depending on whether memcpy() data persisted at the
destination address or not. (1) If the memcpy data persisted, it
means the reference update was correct, and the FFCCD recovery
function does not need to take special action. If, for some reason, the
reference update did not persist, then the reference update is lost.
However, this is not a problem because the next time the reference
is accessed again, the reference will then be updated when the read
barrier is invoked, and the crash-consistent forwarding table will
provide the destination address for the update. (2) If the memcpy
data is not persisted at all, FFCCD recovery can undo the reference
update by looking up the forwarding table. This ensures consistency
between the object at the new location and the reference will be
eventually consistent (in the former case) or undone to a consistent
state (in the latter case).

Our last observation concerns a larger object spanning more
than one cacheline, for which memcpy() partially persisted, i.e.,
some cachelines persisted, but others did not.

Observation 4: If at least one cacheline of a memcpy() object per-
sisted, we need to create a consistent state by �nishing this object
movement and movement state update. When we remove all sfences
and clwbs, if one cacheline of a memcpy() object persisted, it could
contain the old value in relocation pages or the new value overwrit-
ten by the application. During recovery, FFCCD cannot distinguish
these cases. Therefore, we need to resume �nishing the object’s
memcpy() for other cachelines that did not persist, and update its
movement state. Otherwise, FFCCD may use the old value to over-
write the application’s new value, leading to an inconsistent state.
Meanwhile, if the application writes to an object that is all lost, the
application has the mechanism to redo it, and GC does not need to
handle it.

Based on these observations, to provide FFCCD, we need a mech-
anism to know whether a cacheline has reached the persistence
domain by introducing architecture support (Section 4). With such
support, FFCCD can remove all clwbs and sfences in the read barrier
and provide crash consistency at recovery.We refer to a cacheline of
a moved object that has reached the persistent domain as reached.
During recovery, by inspecting reached cacheline of memcpy(),
FFCCD can discern two object states (not reached and partially
reached). For an object that is partially moved, FFCCD repeats
memcpy() for it and updates its movement state as “moved”. For a
not yet moved object, FFCCD undoes reference updates for it. Then,
FFCCD resumes application recovery. Finally, FFCCD resumes ap-
plication execution and FFCCD execution.

Our fence-free design has the following bene�ts: (1) The read
barrier does not need to execute any clwb or sfence instructions to
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support crash consistency. This completely avoids full PM latency
exposure that would have been there with sfence. (2) The memcpy()
is not followed by cacheline �ush/writeback; hence we incur fewer
PM writes (good for performance and write endurance) while the
cacheline remains available in the cache for future reuse (good for
cache locality). Objects at the new location and their movement
state reach the PM lazily, either from natural cache eviction, or if
the application itself (not GC) �ushes them to PM.

4 ARCHITECTURE DESIGN
4.1 Overview
This section gives an overview of the architecture supports. Fig. 8
summarizes the varying architecture supports needed by three
di�erent designs: SFCCD (no architecture support), FFCCD (light-
weight architecture support for relocate), and FFCCD with check-
lookup architecture support.

Instructions:

Core:

Memory
Controller:

clwb,
sfence

Volatile 
Cache

Write 
Pending 
Queue

SFCCD

Reached 
Bitmap 
Buffer

relocate

FFCCD

checklookup

Bloom 
Filter

PM Forwarding 
Table Look-
aside Buffer

FFCCD w/ checklookup

ADR

Figure 8: SFCCDneeds no architecture support other than the
currently existing one. FFCCD can be supported with only
lightweight architecture support for relocate (using RBB) or
full architecture support for checklookup (using bloom �lter
and lookaside bu�er).

The relocate instruction performs copying data from a source
address Rs with length speci�ed in Rl to a destination address Rd.
A similar instruction has been proposed in the literature for bulk
copying [38]. However, our instruction has a major di�erence in
that it not only performs copying, but it also tracks the persistence
status of each destination cachelines, which is important for crash
recovery. The instruction may be implemented by the addition of a
special functional unit that performs the actual copying with �nite
state machine tracking or is expanded into a loop of loads and stores
when it is decoded. Furthermore, for practical consideration, the
instruction may require at most one page involved in the source
and another in the destination. If an object spans multiple pages,
the copying may be broken into several relocate instructions. This
implementation is wrapped in a pmemcpy() API function.

The checklookup instruction checks whether a reference in regis-
ter Rs points to relocation object, and if so, looks up the forwarding
table to retrieve the new address it should move to and place this
address in register Rd.

With the architecture support, the read barrier and recovery of
FFCCD are shown in Figure 9. We replace memcpy() with pmem-
cpy(), where the relocate (y, x) instruction(s) replace the mov in-
struction(s) issued by memcpy() in the read barrier. The checklookup

Recovery () {

  reachability_analysis()

  for each object A in relocation page{

    len=find_object_size(&A);

    reached_state=reached(&A,len);

    if(partially_reached) finish(&A,len);

    else if (not_reached) undoref(&A, 

len, res);  

  }

}

1  D_RW (persistent_ptr p) {

2   x=persistent_ptr2normal_ptr(p);

3   if (checklookup(x,y)) {

4    if (moved[x]==0) { 

5      len=find_object_size(*x);

6      pmemcpy(y,x,len);

7      moved[x]=1;  

8    } x=y;

9  }return x;

10} 
(a) FFCCD read barrier (b) FFCCD recovery

Figure 9: FFCCD read barrier (a) and recovery code (b).

instruction replaces the check and forwarding table lookup. Dur-
ing recovery, the recovery function runs the reachability analysis
to support undoing reference updates. Then, the function checks
whether each object is partially reached or not reached. It �nishes
memcpy() and updates movement states of reached objects, and
undoes reference updates of not reached objects. The recovery func-
tion itself uses a more conservative approach, with persist barriers
and logging to ensure the recovery function itself is easy to recover.

4.2 Fence-Free Design
Figure 10 illustrates the design and mechanism of FFCCD. The
new instruction relocate (y, x) performs the same function as mov
(y,x) instruction except for setting a single-bit corresponding to a
destination cacheline. This bit is a part of the data structure called
reached bitmap kept in the main memory. The structure is created
at the beginning of the compacting phase of the GC cycle and is
deallocated at the end of the compacting phase. The reached bitmap
is used to aid crash recovery. In order to avoid reading and updating
the structure in memory too frequently, we add a hardware cache
called Reached Bitmap Bu�er (RBB) to the memory controller. Each
RBB entry corresponds to a single destination page (represented
by a 36-bit physical frame number (PFN)). Each entry contains a
64-bit bitmap representing 64 cachelines in the destination page; a
value of 1 indicates the cacheline has reached persistence.

Each cacheline and the Write Pending Queue (WPQ) are aug-
mented with one pending bit. This pending bit temporarily tracks a
cacheline involved as the destination of a relocate instruction while
the cacheline is in the cache hierarchy. Whenever the cacheline has
reached the persistence domain, which is the memory controller,
the pending bit is used to update the RBB.

Write Pending Queue

DataAddress Pending 
bit

2000x19f… 0
5000x54a… 1

Reached Bitmap Buffer

PFN
(36-bit)

Bitmap
(64-bit)

0x4…10f

7000x54a… 1

…01010
0x5…14b …01001
0x7…5ea …110112

relocate (y,x)
1

Tagged 
Cacheline 
writeback

3

Miss 4Fill
In-memory 

Reached bitmapPM

5

Persistent Domain

Tagged Normal Cache

DataAddress Pending 
bit

2000x18e… 1

Write

Figure 10: FFCCD design.

To illustrate the full �ow, suppose that the relocate (y, x) in-
struction moves an object that �ts a cacheline from address G to
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address ~. The instruction execution sets the pending bit of address
~ 1 1 . The pending bit value is carried into WPQ when a cacheline
is written back 2 . For the cacheline whose pending bit is 1, this
cacheline uses its address to compare against PFN in RBB and set
the corresponding cacheline bit in the matched RBB entry 3 as
1, indicating this cacheline has reached the persistence domain. A
miss in RBB will fetch the corresponding entry from memory 4 .
After setting the bit in the bitmap, this cacheline clears its pending
bit to 0. All cache lines whose pending bits are 0 perform normal
writes to PM 5 .

After power o�, the content in RBB will be �ushed into PM, and
the logic between WPQ and RBB will also be performed during
�ushing. At the recovery, FFCCD uses the reached bitmap to de-
termine whether an object is not moved or partially moved and
then performs recovery as described in Section 3.3.3. The detailed
algorithm is shown in Figure 9.

4.3 Hardware Checks and Lookup
This subsection introduces our PM-aware forwarding table design
and architecture support to minimize check and lookup overheads.

4.3.1 PM-aware Forwarding Table. We design the PM-aware for-
warding table (PMFT) to provide crash consistency and lookup
e�ciency. The forwarding table is used to record the destination
address of all reachable objects in relocation pages. Directly using
virtual addresses (VA) in the forwarding table fails to meet crash
consistency for PM because PMOP will be mapped to di�erent VA
ranges before and after a crash. In addition, if the forwarding ta-
ble includes object size and type to construct a more compact one
(hashed forwarding table), it saves some space, but it is not suitable
for hardware acceleration due to irregular access.

PMOP
Relocation

Page

Destination
Page

Major
Distance

Minor Distance

Major distance Minor 
distance bitmap

1st obj 2nd obj
3rd obj 4th obj

… …

PM-aware Forwarding Table

Figure 11: PM-aware forwarding table.

We design the PMFT by leveraging the fact that PM pointers
introduce another layer of redirection. PMFT is a software data
structure that incorporates this redirection to provide crash con-
sistency and space e�ciency. Figure 11 shows PMFT design. Each
PMFT entry contains a tag that indicates the relocation page, and
a part of the bits in the relocation page is used to index the PMFT.
For an object that needs to be relocated from a relocation page to a
destination page, each page start address has an o�set within this
PMOP. We regard the o�set of the target page as the major distance.
On the destination page, the start address that this cacheline should
be placed is an o�set between the start address of this page and
the start address of this object. We regard this as a minor distance.
The minor distance uses the alignment size (16-byte in the current
glibc [25]) as the minimal granularity. Each cacheline can obtain
its new o�set within this PMOP by adding the major distance of its
page and the minor distance of this cacheline. To locate the minor

distance in the target page of each cacheline, we use the relocation
page minor distance as the index and the minor distance of the
target page as the value to construct a Minor Distant Map. Each
minor distant entry is 1 byte for 256 16-byte possible addresses, and
there are at most 256 entries for one page. We assume the PMOP
size is up to 1 GB, then the size of the �rst two �elds in PMFT is
18-bit. Each 4-KB fragmented page needs 259 bytes to represent the
entire forwarding information.

To enable the GC to continue execution after crashes, PMFT
needs to calculate all object destinations before the compacting
phase to provide deterministic relocation. It means that whatever
an object relocation is performed by any component (the read
barrier or the recovery function), relocating an object will always
have the same outcome (destination) regardless of whether it is
performed before or after a crash. Compared to ZGC forwarding
table [63], which calculates all object destinations on the �y, its
forwarding table memory overhead percentage over the relocation
page size is 3.2%. However, ZGC cannot resume execution due to
non-deterministic relocation. Our PMFT provides deterministic
relocation with an acceptable 6.3% of the relocation page size.

We will still use 4KB as the granularity to store forwarding
information for space e�ciency for huge pages. For example, if we
use 2MB as the granularity, the major distance only needs 9 bits.
However, the minor distance needs 17 bits to represent 131, 072
possible destination addresses, incurring 13.3% of the relocation
page size.

4.3.2 Architecture Support. The check and lookup is the second-
largest bottleneck in the MCGC. In particular, indexing the PMFT,
and reading it from memory, incur signi�cant overheads. To mini-
mize check and lookup overhead, we propose to use a bloom �lter
and PM-aware forwarding bu�er to accelerate these two steps. A
new instruction, checklookup, is introduced to access these two
hardware components and replace two functions in lines 3-4 in
Figure 6.
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Bloom Filter Cache

VA Range

Bloom Filter
In-memory 

bloom filters
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miss
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0x010f…
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fillmiss
3

4
found (destination address)
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Figure 12: Checklookup design and logic.

Figure 10 illustrates the design and logic of checklookup instruc-
tion. A Bloom Filter Cache (BFC) is introduced to store relocation
pages’ Virtual Page Number and the virtual address (VA) range in
this bloom �lter. Several in-memory bloom �lters are constructed
to record all relocation pages during the summary phase. Further-
more, a PMFT look-aside bu�er (PMFTLB) is added to cache PMFT
information. Each entry has a 36-bit VPN, 18-bit major distance,
and a 256-byte minor distance bitmap.

The checklookup instruction takes the relocation object’s VA
(stored in '46_G), performs a check, and conditionally looks up
the destination address of this object and stores it in '46_~. The
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checklookup instruction �rst uses the object’s VA to check against
the VA range in the BFC. If an object’s VA does not belong to this VA
range, BFCwill fetch the corresponding bloom �lter into memory 1 .
Then, the object’s VA is checked against the bloom �lter. If BFC
returns a miss, the'46_~ becomes 0 and the checklookup instruction
�nishes 2 . If BFC returns a hit, the object’s VA is further be used
to lookup PMFTLB 3 . The destination address obtained from the
matched PMFTLB entry is stored in the '46_~. If it is not found in
PMFTLB and PMFT, 0 is returned to '46_~.

False positives of the bloom �lter will not in�uence the cor-
rectness. Because if a non-compacting page goes to our designed
scheme, it will encounter a not found through checklookup PMFT
entries. Then, no further action is needed. This store will proceed
as a normal PM store. The load request has a similar logic to handle
false positives.

4.4 Hardware cost
The hardware cost of our design is shown in Table 1. Our FFCCD
design adds cache and the write pending queue with a 1-bit tag.
We introduce a reached bitmap bu�er in the memory controller, a
bloom �lter, and a PMFTLB in the processor. PMFT and reached
bitmap and in-memory bloom �lter are in-memory software data
structures. We use Cacti [78] to evaluate the die area needs with the
45nm process Nehalem processor [82]. The total on-chip storage
introduced is 2256 bytes and consumes only 0.1% die area. The
in-memory space linearly grows with relocation page size. The
memory space overhead percentage over relocation page size is
only 6.52%.

Table 1: Hardware cost

New on-chip
Components

Entry size
(bytes) # of entries Size

(bytes)
Area
(<<2)

Reached bitmap bu�er 12.5 8 100 0.004
PMFTLB 70.75 16 1132 0.045
Bloom Filter Cache N/A N/A 1024 0.041
In-memory
persistent space (bytes)

Entry size per
4 KB page (bytes)

Memory overhead percentage
over the relocation page size (%)

PMFT 259 6.32
Reached bitmap 8 0.2

ADR requires WPQ logic, battery, failure mode, and the capabil-
ity to detect power loss signal [70]. WPQ logic has the Detecting
Platform Capabilities to detect power failure and trigger �ushing
WPQ content to memory. ADR provides su�cient power to the
WPQ, persistent memory, and the memory controller to �ush the
WPQ content. Adding RBB requires some increase to the battery
capacity or capacitor to support additional reads and writes, but
the WPQ logic, controller, and platform capabilities can be shared
and reused. Based on PM performance [35], eight 64-byte reads and
eight 64-byte writes conservatively need 0.3us. Assuming a Lithin
technique [67], with energy density of 10�2 Wh per mm3 [85], RBB
needs an additional 0.017mm3 volume. In contrast, eADR needs
300mm3 to �ush all level caches [3].

4.5 Soundness
Our designs only modify crash-consistency-related operations in
concurrent GC. Regardless of crash consistency, concurrent GCs
work correctly with read barriers in data-race-free programs. If two

threads are accessing the same object and at least one is write, the
programmer should put this access into a critical section. The GC-
caused relocation from D_RW() is within this critical section, and
hence only one thread can access this object and perform relocation.
Data relocation, new writes to relocated objects, and GC metadata
are all visible to other threads after the critical section.

We have demonstrated that our designs provide GC crash con-
sistency and recoverability for each thread. If the multi-threaded
program is data-race-free, crash consistency and recoverability are
guaranteed in multi-threaded programs. We evaluate the crash-
consistency correctness of GC and program data in single and
multi-threaded programs in Section 7.1.

5 SOFTWARE IMPLEMENTATION
We add three new interfaces and modify four existing interfaces
for applications to use Espresso, SFCCD, or FFCCD. We introduce
(1) init() to initialize fragmentation metadata and start monitor-
ing fragmentation state to trigger defragmentation. Users deliver
the defragmentation setting, including the fragmentation ratio to
trigger defragmentation and the fragmentation target ratio in the
summary phase. (2) exit() notify the defragmentation component
to �nish on-going defragmentation, release all related metadata and
terminate defragmentation; (3) recovery() to recover inconsistent
state of defragmentation, as described in Section 4.1 and Section 3.3.

We modify four existing interfaces: D_RW() and D_RO() modi�-
cations are shown in Section 4.1 and Section 3.3. We further modify
pmalloc() and pfree() to record fragmentation state (e.g., frag-
mentation ratio) and trigger defragmentation when the PMOP frag-
mentation ratio is high than the threshold. Meanwhile, pmalloc()
and pfree() periodically check reached bitmap in FFCCD and
moved bitmap in Espresso and SFCCD to release the that have
�nished relocation of all objects in this page. If there is no change
between two checks, defragmentation runs reachability again to
�nish all pending relocation and reference updates, and release
relocation pages.

User-space 
Library

Freelist
Allocated list

Crash-consistent
Metadata

Application        
init()

pmalloc()
pfree() exit()

Fragmentation 
Medatada

Fragmentation 
ratio is high

Defragmentation
marking()
summary()

D_RW()
D_RO()

Initialization() terminate()

Figure 13: The work�ow of FFCCD.

The defragmentation implementation mainly includes four func-
tions, marking(), summary(), terminate() and recovery(). (1)
The marking() runs the stop-the-world reachability analysis from
roots to mark reachable objects. (2) The summary() calculate frag-
mentation ratio of each page and sort them according to the frag-
mentation ratio. Then, according to the defragmentation target ra-
tio, this function selects : pages whose fragmentation is top : , such
that compacting these pages into new pages will reduce the overall
fragmentation ratio as the target ratio. After, this function calculates
the forwarding table and persists it. The unreachable objects are
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returned to the freelist. (3) The terminate() is issued by exit(). It
�nishes all pending relocation and reference updates, and releases
relocation pages. After that, it releases defragmentation-related
metadata and terminates defragmentation. (4) The recovery() im-
plementation is introduced in pmalloc() and pfree(). The work-
�ow of using defragmentation in the application and their interac-
tions are shown in Figure 13.

6 EVALUATION METHODOLOGY
SFCCD and FFCCD evaluation:We use a dynamic trace-driven
simulation to evaluate Espresso on C/C++, SFCCD, and FFCCD. We
�rst implement Espresso, SFCCD, and FFCCD with special instruc-
tions on C/C++. We execute programs with Espresso, SFCCD or
FFCCDwith 2MB huge pages on Sniper simulator [14], a cycle-level
x86 simulator. Programs with Espresso and SFCCD are executed
on top of the simulator without hardware changes. Programs with
FFCCD are executed on top of the simulator with our FFCCD hard-
ware design breakdowns. The extra memory accesses from the
proposed architecture are included in the FFCCD evaluation by
counting TLBs and memory/cache latencies. Table 2 shows our
simulation parameters.

Table 2: Simulation parameters.

Processor 2.6 GHz, 5-way issue Out-of-order pipeline, 352-entry ROB,
Intel x86-64 architecture

Cache L1D cache 8-ways 48KB, 4-cycle access time;
L2 cache: 16-ways 3MB, 25-cycle access time

Memory
DRAM latency: 120 cycles; PM latency: 360 cycles;
WPQ latency: 30 cycles; Bandwidth: 24GB/s DRAM;
12GB/s PM read; 4GB/s PM write

TLB

L1 data TLB: 4KB pages, 4-way, 64 entries;
L1 data TLB: 2MB pages, 4-way, 32 entries;
L2 4KB/2MB pages, 6-way, 1536 entries;
1 cycle L1 TLB access, 4 cycles L2 TLB access;
60 cycles 2MB TLB miss penalty

FFCCD

PFMTLB: 16 entries; RBB: 8 entries;
Bloom �lter size: 1024 bytes; In-memory bloom �lter: 8;
Bloom �lter miss: 120 cycles; Bloom �lter check: 2 cycles;
PFMTLB latency: 4 cycles; RBB latency: 30 cycles;

Workloads: We evaluate two PM key-value store applications,
Echo [59] and pmemkv [34]; two state-of-art concurrent data struc-
tures BzTree [5], and FPtree [65]; and �vemicrobenchmarks (Linked
List (LL), AVL Tree (AVL), String Swap (SS), B+tree (BT), Red-black
tree (RBT)). Furthermore, we conduct a case study on Redis [55].
Similar to other fragmentation studies [50, 69], we initialize each
benchmark (except Redis) with 5 million insertions with 128-byte
values. Each application executes 4 million delete operations and 4
million insert operations separately to represent application mem-
ory increasing and decreasing stages. Each program will execute
three phases: a deleting phase, an inserting phase, and another
deleting phase. After that, each program terminates. We report the
results of the above 3 phases.

Schemes: We execute the following four schemes. Baseline:
Programs use the original PMDK 1.11.1 libpmemobj library to exe-
cute the workloads without defragmentation. Espresso, SFCCD
and FFCCD: Programs use the modi�ed PMDK libpmemobj library
to execute the workloads.

Metrics:We report fragmentation reduction, which is calculated
through equation 1.

�A06<4=C0C8>=_A43D2C8>= =
"4<>A~_5 >>C?A8=C_A43D2C8>=

"4<>A~_5 >>C?A8=C � (8I4_> 5 _;8E8=6_30C0
(1)

Parameters of defragmentation:
We evaluate defragmentation with two sets of parameters: (1)

Normal defragmentation parameters in Redis [55], which trigger
defragmentation when the fragmentation ratio is above 1.5, and the
target one is 1.25. (2) Relaxed defragmentation parameters, which
trigger defragmentation when the fragmentation ratio is higher
than 1.7 and the target fragmentation ratio is 1.5.

7 EVALUATION
7.1 Correctness and Soundness
We use a fault-injection test used in previous PM crash-consistency
validation studies [13, 31, 96] to validate the correctness of crash-
consistency. We design the fault-injection test as follows. (1) We
added a region in the program to simulate RBB. Each relocate in-
struction adds an entry into this region, and each clwb and sfence
removes the corresponding entry if this region has. (2) We added
a fault handler to the program. When a fault signal is received,
the fault handler suspends program execution, �ushes remaining
entries in the region to the program PMOP, and terminates the
program. We execute the defragmentation recovery on top of the
intermediate program PMOP and the �ushed content from WPQ
and RBB.

We validate the consistency in two steps: program data and GC
consistency validations. (1) We wrote a checker program to inspect
whether the program data is consistent, including readability of all
objects, absence of dangling pointers, and data structure topology.
(2) The checker inspects the current relocation state of each object in
the program and validates whether the state is the same as indicated
in GC metadata. If an object was not moved, no reference should
point to the new location, and the content in the new location must
be the default value. The �rst consistency validation veri�es that
the program data is not corrupted by GC if there is a crash. The
second consistency validation veri�es that GC metadata matches
the memory state and GC does not lead to inconsistency; hence it
is safe to resume GC after restarting the program.

We execute the above fault-injection and post-crash validation
for SFCCD and FFCCD on all microbenchmarks with one thread
and concurrent PM data structure with 1, 2, 4, and 8 threads. We
execute one thousand fault-injection tests for various settings (26
settings). We found that both GC schemes passed all the tests.

7.2 Results on Benchmarks

Table 3: Fragmentation e�ectiveness for various benchmarks

Prog. Avg. Memory Usage on 2MB pages (MB) Fragmentation
Reduction (%)

PMDK Actual Ours (N) Ours (R) Ours (N) Ours (R)
LL 245.6 145.3 194.6 225.5 50.8 20.0
AVL 369.3 230.1 309.5 334.6 43.0 24.9
SS 493.5 311.9 435.7 469.2 31.8 13.4
BT 845.7 536.1 735.3 817.6 35.7 9.1
RB 488.2 302.1 391.1 443.1 52.2 24.3
Avg. 488.5 305.1 413.2 458.0 42.7 18.3
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The results of the benchmarks are shown in Table 3, where
columns 2 to 5 are the average memory footprint of PMDK, actual
live data, FFCCD with normal (N) defragmentation parameters,
and FFCCD with relaxed (R) defragmentation parameters. Columns
6 and 7 are the average fragmentation reduction of FFCCD with
two di�erent parameter sets. The table shows that the memory
footprint with PMDK is 60% larger than the live data size. FFCCD
reduces the fragmentation by 42.7% and 18.3% during the execution.
The fragmentation reduction of B+tree is small due to internal
fragmentation, where one node can store 4 values.
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Figure 14: (a) Defragmentation execution time breakdown
(b) Normalized execution time of microbenchmarks.

Figure 14 (a) shows the execution time breakdown of the de-
fragmentation only over the baseline where the application runs
without GC, comparing the Espresso, our SFCCD, FFCCD with
fence-free architecture, and FFCCD with all architecture support.
Espresso incurs large performance overheads due to its slow read
barriers and ine�cient crash consistency management involving
two pairs of clwbs and sfences per barrier. SFCCD removes half of
the persist barriers, reducing the overheads of data copy by 40%.
FFCCD removes all barriers using the fence-free architecture sup-
port, reducing the overhead of data copy by 66%. Our check and
lookup architecture support with bloom �lter and PMFTLB further
optimizes the read barrier, reducing the execution time of check
and lookup nearly 80%. Overall, defragmentation time in FFCCD is
reduced by 68% compared to that of Espresso.

Note that the above �gure does not account for the application
running faster due to less fragmentation. The fragmentation causes
more TLB entries and reduces cache locality, hence larger TLB
misses and cache misses. Defragmentation can improve throughput
by making data more compact. When the total execution time (ap-
plication plus defragmentation) is compared to the same baseline,
Figure 14 (b) shows that our best scheme, FFCCD, incurs a 3.5%
execution time overhead over the application without defragmenta-
tion. The normalized execution time of these schemes over baseline
(no defragmentation). This result indicates that with e�cient de-
fragmentation and FFCCD architecture support, defragmentation
comes at low-performance overheads.

7.3 Concurrent PM Data Structure and
Application Results

Table 4: Fragmentation e�ectiveness for various applications

DS & App.
Avg. Memory Usage
on 2MB pages (MB)

Fragmentation
Reduction (%)

PMDK Actual Ours Ours
BzTree 763.1 482.5 662.1 36.0
BzTree (4T) 785.6 495.2 679.5 36.5
FPTree 661.5 413.6 551.0 44.6
FPTree (4T) 675.4 422.7 564.3 44.0
Echo 711.7 450.5 638.1 28.2
pmemkv 653.2 399.1 535.3 46.4
Avg. 708.4 443.9 605.1 39.3

Table 4 shows the defragmentation e�ects on concurrent PM
data structures and applications. BzTree and FPTree run with 4
threads (4T). FFCCD reduces fragmentation by 28.2–46.4%. The
reduction on Echo is small because it uses a hash table and hence
allocates memory with an array. This array cannot be released until
all keys are removed. BzTree uses additional metadata to support
PMwCAS operations, occupying more memory and receiving fewer
bene�ts from defragmentation.
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Figure 15: (a) Defragmentation execution time breakdown
(b) Normalized execution time of applications.

Fig. 15 shows the overhead and normalized execution time on
these four applications. Overall, SFCCD and FFCCD reduce nearly
40% and 70% overheads of data copy, and FFCCD only incurs 4.4%
overhead over the application without defragmentation. BzTree
has a lower overhead than FPTree due to less fragmentation in its
implementation, as BzTree uses copy-on-write on internal nodes
and append on leaf nodes, creating less fragmentation. Echo has
fewer read barrier overhead due to a small number of references,
but it also receives data copy overhead reduction from our designs.

7.4 Case study: Redis
Redis [55] is a typical PM application. It is an open-source real-world
key-value store database. Redis is con�gured as an LRU cache with
a maximum 200 MB of not-expired (living) objects. It generates 1
million random keys and values, with value sizes ranging from 240
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bytes to 492 bytes. Then it performs queries on these keys. The
benchmark then inserts 500K random keys and values, followed
by queries until the end of execution. We use 4 KB pages in this
evaluation. Mesh [69] is a recent C/C++ defragmentation work,
which relocates one physical page’s objects to another physical
page if these two pages do not have page o�set overlapped objects.
After that, it changes the virtual page mapping of the �rst page to
the destination page. The defragmentation of these two pages is
�nished without requiring reference updates.

Live data size

Figure 16: Memory footprints of di�erent schemes.

Figure 16 shows Redis memory footprints for di�erent schemes
over time. Initially, the memory footprint for all schemes increases
with insertions of key-value pairs until 200MB. Then, Redis expires
key-value pairs with LRU policy by storing them into the disk to
maintain 200MB of live data. The fragmentation increases during
this process. With PMDK, fragmentation further increases after
more record insertions, increasing memory usage and decreasing
Redis throughput. STW defragmentation (jemalloc) will periodi-
cally introduce unacceptably long pauses.

FFCCD reduces fragmentation by 73.4% with only 4.6% overhead
and low tail latencies. In contrast, STW jemalloc defragmentation
only reduces fragmentation by 47.6%. Even worse are the 90th,
95th, and 99th tail latencies of STW jemalloc, which are 331ms,
442ms, and 563ms. They are more than one order of magnitude
larger than those of FFCCD, which are 11.2ms, 22.1ms, and 34.8ms,
respectively.

8 RELATEDWORK
Garbage Collections. Beyond related work discussed in Section 2,
other related work includes the following. Compacting GC has been
a feature of managed languages (e.g., JAVA [28]) for a long time. G1
GC [62] is a partial concurrent GC with STW compacting. Open-
JDK is developing ZGC [63], a fully concurrent GC using colored
pointers. The JAVA reachability framework [47, 74] simpli�es the
programming of PM in JAVA, which reuses GCs in JAVA without
considering crash-consistent GC. GCpersist [83] optimizes crash-
consistent STW GC for PM, while STW GC incurs large application
pauses and has fewer challenges in designing a crash-consistent
and e�cient one.

There has been work on hardware support for reference count-
ing [39], which accelerates reference counting by introducing in-
structions. Maas et al. propose using FPGAs to accelerate the mark-
ing [56] step on JAVA. Charon [36] proposes in-memory computing
to accelerate GC. Ye et al. work discusses how to preserve relo-
catability cross PMOPs in GC. In industry, commercial products
focus on read/write barrier acceleration, e.g. IBM’s Guarded Stor-
age Facility [32] and Azul Vega [17, 77]. SI-TM [52] and SSP [61]

explored how to use hardware to accelerate forwarding and address
remapping steps.

Persistent Memory. There is a rich set of papers in literature
supporting di�erent aspects of persistent memory, including but not
limited to, �le systems [19, 20, 86, 87], physical organization [6, 7],
persistency models [4, 19, 37, 48, 68, 73, 76, 95], logging [21, 46, 72],
persistent memory debugging [54, 60].

Persistent memory security received more attention recently,
as PM data is long-lived and corruption is also persistent. Several
studies proposed to maintain crash consistency and improve the
performance of encryption in PM [8, 9, 16, 53, 93, 94, 99]. Some
work proposed fasterMerkle treemechanisms to verify the integrity
of PM [10, 23, 24, 24, 27, 97, 98]. Another branch of work reduces
the exposure window of PM to reduce the attack surface of PM
corruptions [88–90], even more so as cross-process attacks are
feasible [58].

9 CONCLUSION
In this paper, we discussed the persistent fragmentation problem
in PM. We proposed to build defragmentation on top of GC to keep
the PM working set size low. With the proposed software and ar-
chitecture support, our PMGC o�ers the �rst-known PM solution
for C/C++ applications, providing fence-free crash-consistent, con-
current, and e�cient compacting GC. Results show that FFCCD
reduces PMOP fragmentation by 28.2-73.4% on microbenchmarks
and by 75.1% fragmentation on Redis, while incurring 4.1% execu-
tion time overhead on average.
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