
Towards Off-Policy Learning for Ranking Policies with Logged Feedback

Teng Xiao, Suhang Wang
The Pennsylvania State University
{tengxiao, szw494}@psu.edu

Abstract

Probabilistic learning to rank (LTR) has been the dominating
approach for optimizing the ranking metric, but cannot maxi-
mize long-term rewards. Reinforcement learning models have
been proposed to maximize user long-term rewards by formu-
lating the recommendation as a sequential decision-making
problem, but could only achieve inferior accuracy compared
to LTR counterparts, primarily due to the lack of online in-
teractions and the characteristics of ranking. In this paper, we
propose a new off-policy value ranking (VR) algorithm that
can simultaneously maximize user long-term rewards and op-
timize the ranking metric offline for improved sample effi-
ciency in a unified Expectation-Maximization (EM) frame-
work. We theoretically and empirically show that the EM
process guides the leaned policy to enjoy the benefit of in-
tegration of the future reward and ranking metric, and learn
without any online interactions. Extensive offline and online
experiments demonstrate the effectiveness of our methods.

1 Introduction
With the advances of deep learning, various deep learning
based recommender systems (RS) have been proposed to
capture the dynamics of user preferences. However, they are
mainly based on the probability ranking principle (Robert-
son 1977) that the optimal ranking should rank items in
terms of probability of relevance to a user. Typically, these
methods are trained based on Maximum Likelihood Estima-
tion (MLE) on the past logged feedbacks with supervised
pointwise (Hu, Koren, and Volinsky 2008), pairwise (Ren-
dle et al. 2012), or listwise (Cao et al. 2007) loss functions.
Probability learning to rank (LTR) is one of the guiding tech-
nical principles behind the optimization of ranking mod-
els in information retrieval. Recently, reinforcement learn-
ing (RL) is gaining a lot of attraction in recommender sys-
tem (Chen et al. 2019; Zhao et al. 2018b; Zou et al. 2020;
Xiao and Wang 2021; Xin et al. 2020). Different from prob-
ability LTR which focuses on picking a model under the
immediate feedback distribution, RL in general focuses on
learning policy that takes actions in a dynamic environment
so as to maximize the long-term reward.

Despite its attraction, optimizing the RL objective under
the real recommendation scenario has the following chal-

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lenges. (1) Missing online interactions. In contrast to prob-
ability ranking methods, training an optimal RL algorithm
requires a large number of online interactions with the envi-
ronments (real users) (Fujimoto, Meger, and Precup 2019),
which is impractical as it could hurt user experiences when
the RL agent is not well-trained, especially at the begin-
ning of training. Without online interactions, RL algorithms
such as the Q-learning (Haarnoja et al. 2017) and Actor-
Critic (Haarnoja et al. 2018; Lillicrap et al. 2015) suffer
from the overestimation issue (Fujimoto, Meger, and Pre-
cup 2019; Kumar et al. 2020), a phenomenon that unseen
state-action pairs are erroneously estimated to have unreal-
istic values if there is no online interaction with real users,
which is also verified by our preliminary analysis in § 2.2.
(2) Lack of characteristics of ranking. Off-policy RL meth-
ods, such as one-step Q-learning (Watkins and Dayan 1992)
and variants of deep Q networks (DQN) (Schaul et al. 2016),
enjoy the advantage of learning from any samples from the
same environment (i.e., off-policy learning). However, as
shown in our analysis § 2.2, these methods can be seen as a
regression problem that focuses on directly estimating opti-
mal state-action value. However, in recommendation, we are
more interested in the relative ranking of the actions (items)
given user states and optimizing the ranking metric instead
of the absolute values of actions, which is the main dif-
ference between recommendation and the robotics domain
where only one optimal action is needed at each time step.
(3) Partial and sparse feedback. In RS, click data, which is
called implicit data, are easy to collect because they repre-
sent the behavior logs of the users. As the implicit data is
not the explicit feedback of the users’ preferences, one can-
not know whether unclicked feedback is negative feedback
or unlabeled positive feedback. Directly considering the re-
ward of unclicked feedback as negative would lead to a sub-
optimal ranking algorithm. As shown in (Chen et al. 2019),
standard off-policy learning methods do not take into ac-
count unobserved feedbacks. Motivated by the discussions
above, in this paper, we investigate the problem of learn-
ing a ranking algorithm that can simultaneously maximize
the future reward and optimize the ranking metric based on
logged feedbacks. It is a challenging problem as: (i) There
is a huge optimization gap between MLE and RL since they
are totally different learning paradigms for ranking as we
discussed above; (ii) In practice, there is no access to the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8700

reward for every state-action pair. In other words, we only
observe partial and sparse reward on the logged feedbacks;
and (iii) RL is prone to be overestimated (Levine et al. 2020),
i.e., they will overestimate the values of the actions, result-
ing in bad performance. The overestimation is much more
severe without online interactions (Kumar et al. 2020).

To address these challenges, we propose a novel learn-
ing framework to conduct ranking with rewards based on
the Expectation-Maximization (EM) principle. Our frame-
work can unify the MLE and RL, where both the RL teacher
and the MLE student help each other in a closed-loop and
gives extra power for knowledge distillation between reward
and feedbacks. To solve the problem of partial and sparse
rewards, we propose reward extrapolation and ranking reg-
ularization to improve our EM framework. We extend the
EM framework to sequential settings and propose a novel
algorithm named off-policy value ranking (VR), for maxi-
mizing long-term rewards. VR optimizes the ranking metric
by learning the relative ranking of value function instead of
estimating the absolute values. The main contributions are:
(1) We propose an EM framework that can learn from the
sparse and partial reward signal through unifying the proba-
bility and reinforcement ranking principles.
(2) We extend our framework to sequential settings and pro-
pose an off-policy ranking algorithm that maximizes long-
term rewards without online interactions and achieves better
ranking performance both empirically and theoretically.
(3) Experiments on two datasets with three state-of-the-art
backbones and the simulated online experiments on the Rec-
Sim environment show the effectiveness of our framework.

2 Preliminaries
2.1 Notations and Problem Definition
Assume we have a set of users u ∈ U , a set of items i ∈ I.
Following previous work (Chen et al. 2019; Zhou et al.
2020), we can translate the task of recommendation into a
markov decision process (MDP): (S,A, P,R, ρ, γ) where
•S: a space describing user states: st = (i1, i2, · · · , it),
where it denotes the item interacted (clicked) by users;
•A : a discrete action space which are recommending items;
•P : S ×A× S → R is the state transition probability.
•R: S ×A → R denotes the reward, where r(st, at) = rt is
the received reward by performing action at at user state st;
•ρ(s1) is the initial distribution and γ is the discount factor;
Formally, we seek a policy pθ(·|st) which translates the user
state s ∈ S into a distribution of the action space, so as to
maximize expected cumulative rewards as follows:

max
θ
J (θ) = Eτ∼pθ(τ)[R(τ)], R(τ) =

∑T

t=1
γtr (st, at) , (1)

where the expectation is taken over the trajectory τ =
(s1, a1, · · · sT) obtained by acting policy step by step: s1 ∼
ρ(s1), at ∼ pθ (at|st) and st+1 ∼ p (st+1|st, at). Gener-
ally, the agent cannot interact with the user as we are only
provided with a logged dataset, where the action at is cho-
sen by a historical logging (behavior) policy pb = pb(at|st).
The past implicit feedbacks (only positive feedbacks) can be
represented as D = {{sit, ait, rit, sit+1}t}Ni=1, where N is the
total number of data. For brevity, we omit superscript i in

what follows. With the definition above, our studied prob-
lem is formally defined as: Given past interactions D, our
goal is to learn the recommendation policy pθ(a|s) which
can maximize cumulative future reward, i.e., Eq. (1) for RS.

2.2 Explorations on MLE- & RL-based RS
MLE: Typically, current sequential recommendation mod-
els (Tang and Wang 2018; Kang and McAuley 2018; Xiao,
Liang, and Meng 2019) rely on the probability ranking
principle and are trained to approximate the ranking met-
ric based on MLE. Specifically, MLE maximizes the log-
likelihood of logged feedbacks as follows:

LMLE(ψ) = Epb(at|st) [log pψ(at|st)] . (2)

Note that the actions are clicked or purchased items since we
only observe positive feedbacks. Although we do not know
pb (at|st), we can get its samples from logged feedbacks.
For listwise models (Cao et al. 2007), pψ(at|st) is parame-
terized neural networks (Kang and McAuley 2018) with the
last softmax layer. Besides the listwise loss, pairwise loss
such as Bayesian personalized ranking (Rendle et al. 2012)
also have shown to be effective in ranking. Although MLE
can naturally approximate the ranking metric (Xia et al.
2008), it cannot maximize the long-term reward of users.
RL: Various RL-based recommendation algorithms have
been proposed (Zheng et al. 2018; Zou et al. 2020; Zhao
et al. 2018a). Generally, these algorithms try to minimize
the following temporal difference (TD) error as:

LTD(φ) =
(
Qφ (st, at)− rt − γQφ̄ (st+1, π (st+1))

)2
, (3)

where Qφ (st, at) is a learning state-action value function
and π (st+1) = arg maxaQφ̄ (st+1, a). The φ̄ corresponds
to the frozen weights in the target network, and is updated
at fixed intervals (Lillicrap et al. 2015). While Q-learning is
an effective off-policy algorithm in robotics, we argue that it
is not suitable for the ranking problem in RS as: Q-learning
can essentially be viewed as a supervised regression model
for predicting the true value; while the relative ranking of
value is more important in recommendation. Suppose the
discount factor γ = 0, then the TD error in Eq. (3) becomes:

L̂TD(φ) = E(st,at,rt,st+1)∼D (Qφ (st, at)− rt)2 , (4)

which is exactly the mean squared error (MSE) that esti-
mates reward value. However, as shown by (Liang et al.
2018), MSE is not a good proxy for the top-N ranking met-
ric. Besides, when γ 6= 0, since the TD loss in Eq. (3) se-
lects next actions via maxaQφ̄ (st+1, a), it suffers from the
overestimation (Levine et al. 2020): maxaQφ̄ (st+1, a) of
out-of-distribution actions is too big to be correct.
Empirical analysis. To verify our discussion above, we con-
duct preliminary analysis to understand the ranking, partial
feedbacks and overestimation issues of Q-learning in RS.
We compare the Q-learning (DQN) and supervised MLE
(list-wise) with our proposed VR on YooChoose (see § 5.1
for settings). We also consider two variants of DQN, i.e.,
DQN-NS and DQN-ONE. DQN-NS uniformly samples un-
seen items to provide negative (-1) rewards. DQN-ONE, i.e.,
Eq. (4) is the one-step DQN which sets the discount fac-
tor γ in DQN to zero. We also compute the overestimation
bias over the test setDt as: 1

|Dt|
∑

(s,a)∈Dt(max(Qφ(s, a)−

8701

DQN DQN-N
S VR

DQN-O
NEMLE

100

101

102

103

104

Bi
as

Figure 1: Training curves and overestimation bias of MLE, our VR, DQN, and two variants of DQN.

V (s), 0))2, where V (s) denotes the discounted sum of re-
wards. From Fig. 1, we have some important findings.
(1) We can find the ranking performance of DQN and DQN-
NS is extremely bad, which empirically verifies our discus-
sion in § 2.2 that the TD-based DQN is not suitable for learn-
ing ranking policy offline due to the large overestimation
bias and lack of ranking characteristics. (2) DQN-ONE out-
performs DQN and DQN-NS, which shows that DQN and
DQN-NS can not benefit from future rewards at all due to the
overestimation bias. (3) DQN-NS reduces this bias to some
extent but still suffer it severely, which demonstrates that
incorporating negative evidence is important when training
the RL algorithm for the partial feedbacks in RS, and this is
exactly one of our motivations for adding ranking regular-
ization in our VR. Besides the Q-learning based RL, (Chen
et al. 2019) applies off-policy policy gradient to learn from
logged feedbacks for RS. Specifically, they utilize the impor-
tance sampling technique (Munos et al. 2016) to conduct off-
policy estimation. While this method can learn from logged
feedback as an off-policy way, it is still biased and has too
large variance to be effective (Levine et al. 2020).

3 Learning to Rank with Rewards
We summarize the limitations of current RS algorithms:
(1) The probability ranking methods based on MLE can-
not directly optimize the future reward nor conduct multi-
objective optimization. (2) Q-learning has low variance and
is off-policy, but it is inherently not suitable for ranking and
suffers from the overestimation issue. To address these is-
sues, we propose a novel off-policy value ranking algorithm.

3.1 The One-step EM framework
In this section, we first present the EM framework which
can unify the MLE and RL models to learn from both the re-
ward and ranking signal on the single-step RL environments
(bandit setting). This bandit setting provides the reader with
a simplified version of our main contribution in this paper,
i.e., the off-policy value ranking algorithm.

To this end, we adopt the principle of probabilistic gen-
erative model and introduce a binary variable R which is
related to the reward by p (Rt = 1|st, at) = exp(r(st,at)α)
where α is the temperature parameter, to denote whether the
action at taken at state st is optimal. A larger reward means
that conducting action at at state st is more likely to be opti-
mal. We useRt to representRt = 1 for brevity. Without loss
of generality, we assume the rewards are nonpositive as the
rewards can always be scaled and centered to be no greater
than 0, which guarantees that exp(r(st,at)α) ≤ 1. To connect
MLE with RL optimization, we further consider the model

pθ(at|st) as a policy that takes action at given the state st.
Given the definitions above, we consider the following prob-
abilistic generative process of rewards and feedbacks:

at ∼ pθ(at|st), Rt ∼ p (Rt|st, at) . (5)
For a given state st, the recommendation system selects
an action at based on the optimizing policy and the opti-
mal variableRt is generated by the probability p (Rt|st, at)
based on the received reward r(st, at). This generative
model can be represented as a joint probability:

p(at, Rt|st) = pθ(at|st)p (Rt|st, at) . (6)
Note that we let the probability conditioned on st since
p(st) is the empirical state distribution which is known given
logged feedbacks. To learn this generative model, we are in-
terested in estimating θ and we can directly maximize the
log-marginal likelihood log pθ(at|st) to learn the θ based on
the observed feedbacks (st, at), resulting in the probability
supervised ranking method with MLE. However, instead of
conducting MLE, we want to learn the optimal policy di-
rectly from user rewards. Thus, we consider maximizing the
log-marginal likelihood log pθ(Rt|st) of observed optimal
variable Rt and treat the action at as the latent variable:

log pθ(Rt|st) = log

∫
pθ (at|st, Rt) pθ(Rt|st)dat

=

∫
pθ (at|st, Rt) log

pθ (at, Rt|st)
pθ (at|st, Rt)

dat (7)

=Epθ(at|st,Rt)[
r(at, st)

α
+ log pθ(at|st)− log pθ (at|st, Rt)].

Eq. (7) shows that maximizing the log-marginal likeli-
hood log pθ(Rt|st) is equivalent to maximizing the reward
at time t with the posterior policy pθ (at|st, Rt), while
minimizing the Kullback-Leibler (KL) divergence between
pθ (at|st, Rt) and pθ (at|st). α serves as a trade-off param-
eter here. When α → 0, this objective is equivalent to only
maximizing the reward at time t. The posterior pθ (at|st, Rt)
is closely related to the notion of the optimal policy and this
can be intuitively understood as: “What is the probability of
action given my current state if we want to be optimal?”

To answer this question, for each state, we need to learn
the posterior distribution p(at|st, Rt). We resort to the EM
algorithm (Neal and Hinton 1998) that iterates two coor-
dinate ascent optimization steps. We assume a variational
distribution q(at|st). Given this, we could derive the sur-
rogate function to lower-bound the log-marginal likelihood
log pθ(Rt|st) of observed optimal variable Rt as follows:

log pθ(Rt|st) = log

∫
pθ(at, Rt|st)dat =

∫
q(at|st)

log
pθ (at, Rt|st)
q(at|st)

dat +KL (q (at|st) ||pθ (at|st, Rt))

≥
∫
q(at|st) log

pθ (at, Rt|st)
q(at|st)

dat , L(q, θ), (8)

8702

where the inequality holds since the KL divergence is always
non-negative. L(q, θ) is known as Evidence Lower BOund
(ELBO) (Blei, Kucukelbir, and McAuliffe 2017; Xiao et al.
2021). Instead of maximizing the log-likelihood, EM algo-
rithm maximizes ELBO via an alternative procedure:
E-step. At n-th iteration, given the current θn, the E-step
that maximizes L(q, θ) w.r.t q has a closed-form solution:

qn+1(at|st) = pθn(at|st, Rt) ∝ pθn(at|st) exp(
r(st, at)

α
).

(9)

M-step. Given qn+1(at|st) at last E-step, we maximize
L(q, θ) w.r.t θ, resulting in the following objective:

θn+1 = argmaxθ Eqn+1(at|st) [log pθ(at|st)] . (10)

Since there is no analytical solution for θ which is typically a
neural network, we update θ via stochastic gradient descent
with samples from qn+1(at|st) at the M-step in general.

In E-step, q(at|st) is constructed by projecting p(at|st)
into a subspace constrained by the rewards with trade-off α
in Eq. (9), and thus has desirable properties in learning re-
wards. In M-step, q(at|st) serves as a teacher to transfer this
reward knowledge into the student policy p(at|st). This for-
mulation can be understood as a type of supervised knowl-
edge distillation (Hinton, Vinyals, and Dean 2015) and un-
supervised posterior regularization (Ganchev et al. 2010).

However, fundamentally different from supervised and
unsupervised learning, it is non-trivial to conduct the
EM algorithm in the recommendation setting. (1) Partial
and sparse rewards. There is no way to directly access the
reward for every state-action pair. In other words, we only
observe reward rt from logged feedbacksD, but not the oth-
ers. This limits us to conduct the E-step since it requires the
reward r(at, st) for every state-action pairs. In addition, the
reward is relatively sparse and lacks a negative signal. (2)
Future rewards. Although this formulation can maximize the
reward at the time t, it can not maximize long-term rewards.
Before we discuss how to maximize long-term rewards, we
first propose reward extrapolation and ranking regularization
to solve the challenge of partial and sparse rewards.

3.2 Extrapolation and Regularization
Extrapolation for partial rewards in the E-step. At each
iteration n, we propose to extrapolate the reward from the
logged feedbacks. Instead of extrapolating with worst-case
rewards, i.e., setting the reward to zero for every unseen
state-action pair, we can use a reward regressor to reduce
the estimation bias. In particular, we extrapolate reward us-
ing the following regression estimator over mini-batches of
tuples (st, at, rt, st+1) ∈ D with the MSE loss:

LQ(φ) = (Qφ (st, at)− rt)2, (11)

where the reward estimator Qφ (st, at) can be arbitrary
models such as neural networks. Generally, it can extrap-
olate well since the error is relatively low due to the ex-
pressivity of the function approximator. However, if the log-
ging policy is poor and differs from the optimizing policy
pθ(at|st), minimizing Eq.(11) would make the regression
model fits well for items that are far from optimal, resulting

in biased model. To alleviate this, we adopt importance sam-
pling to shift the regression model to the optimizing policy:

LQ(φ) =
qn(at|st)
pψ(at|st)

(Qφ (st, at)− rt)2, (12)

where pψ (at|st) is the estimated logging policy from logged
feedbacks via simple MLE estimation in Eq. (2). This ob-
jective corrects the selection bias induced by the logging
policy so that it becomes in expectation equivalent to train-
ing the estimator with on-policy data from qn(at|st). Al-
though the huge action space could lead to very small im-
portance weights for some items, and consequently greater
variance (Levine et al. 2020), in § 4, we theoretically show
that our EM framework can naturally reduce the variance of
this estimator. GivenQφ (st, at) and Eq. (9), the posterior in
the E-step can be derived as follows:

qn+1(at|st) ∝ pθn(at|st) exp
(
Qφ (st, at)

α

)
. (13)

Regularization for sparse rewards in the M-step. The M-
step, i.e., Eq. (10), is for optimizing the policy parameter
θ. Although the teacher qn+1(at|st) can transfer the reward
knowledge into pθ(at|st), the reward is relative sparse and
lacks negative signal. To make the policy pθ(at|st) be able to
take into account negative evidence, we modify the M-step
in Eq. (10) by adding a ranking regularization term as:

LP(θ) = βEq[log pθ(at|st)]︸ ︷︷ ︸
Reward

+(1− β)Epψ [log pθ(at|st)]︸ ︷︷ ︸
Ranking

, (14)

where q , qn+1(at|st) and β is the trade-off parameter
calibrating the relative importance of the two objectives.
pψ , pψ (at|st) is the estimated ranking policy from logged
feedbacks via simple MLE estimation (list-wise) and serves
as regularization for RL policy pθ(at|st). The key difference
between reward regression q and ranking regularization pψ
is that ranking regularization must produce a normalized dis-
tribution over actions which does constrain the probability of
non-clicked recommendations (unobserved actions). In con-
trast, reward regression needs to estimate the future rewards
of each state-action pair which can not be normalized. By
alternately conducting the modified E-step in Eq. (12) and
M-step in Eq. (14), α and β provide trading-off between the
reward and signal of the ranking metric in the optimizing
process of the teacher q(at|st) and student pθ(at|st).

3.3 The Sequential EM Framework
In the last section, we have introduced how to learn a rank-
ing algorithm from both rewards and ranking signals. How-
ever, the bandit setting does not incorporate any information
about the dynamics, so it learns to greedily assign high val-
ues to actions and can not maximize future rewards, with-
out considering the state transitions that occur as a conse-
quence of actions. In other words, in the full RL setting,
the state distribution p(st) is not independent and identi-
cally distributed (i.i.d) now but depends on the action caused
by the policy in the last step, i.e., the transition probabil-
ity. We extended the one-step EM framework for the ban-
dit setting in § 3.1 into the sequential setting. Similar to
what we did in § 3.1, we introduce a binary variable Rt:

8703

p (Rt = 1|st, at) = exp(r(st,at)α) to denote whether the ac-
tion at taken at state st is optimal. With the definition of
MDP, we have the following generative model with the tra-
jectory τ = {s1, a1, · · · , sT } and optimal variables R1:T :

pθ(τ,R1:T) = ρ(s1)

T∏
t=1

p(st+1|st, at)p(Rt|st, at)pθ(at|st).

(15)
Compared to the bandit setting in Eq. (6), the distribution
of state is non-i.i.d now but depends on the last step action.
Given this generative model, we can also conduct the MLE
estimation over the logged trajectory, resulting in Eq. (2).
However, MLE can not learn from rewards. In addition, the
MLE separates the logged feedbacks in the trajectory which
makes it unable to maximize the long-term reward. Thus,
like the bandit setting in Eq. (6), we are interested in max-
imizing the log-marginal likelihood log pθ(R1:T |τ) the in-
ferring the posterior p(τ |R1:T). In particular, the posterior
p(τ |R1:T) can be factorized as follows due to the conditional
dependency underlaying the generative model in Eq. (15).

p(τ |R1:T) =

T∏
t=1

p(st|st−1, at−1, Rt:T)p(at|st, Rt:T), (16)

where p(s1|s0, a0, R1:T) = p(s1|R1:T). Following the
derivation of Eq. (7), one can easily verify that maximiz-
ing the log-marginal likelihood log pθ(R1:T |τ) is equiva-
lent to maximizing our RL goal Eq. (1) with optimal pol-
icy p(at|st, Rt:T). Thus, the probability of action given op-
timality of the current until end of the episode and cur-
rent state, i.e., the posterior of action p(at|st, Rt:T) is of
high interest. Unfortunately, It is difficult to get the poste-
rior p(at|st, Rt:T) since the distribution of state is non-i.i.d.

3.4 Off-Policy Value Ranking
In this section, we propose an EM-style algorithm to ap-
proximate the posterior, which results in our off-policy value
ranking algorithm. Recall that our goal is to infer the pos-
terior p(at|st, Rt:T). We consider inferring the posterior
through the message passing algorithm (Heskes and Zoeter
2002). Thus, we first define the backward messages as:

m (st, at) , p (Rt:T |st, at) m (st) , p (Rt:T |st) . (17)

Then our interested posterior p(at|st, Rt:T) is:

p(at|st, Rt:T) =
p(st, at|Rt:T)
p(st|Rt:T)

=
p(Rt:T |st, at)pθ(at|st)p(st)

p(Rt:T |st)p(st)

=
m(st, at)

m(st)
pθ(at|st) , q(at|st). (18)

With Eq. (15), reward extrapolation, and ranking regulariza-
tion proposed in § 3.2, we can obtain the following E and
M-steps (see appendix in SM for detailed derivations):
E-step. At the n-th iteration, we minimize the loss w.r.t φ:

LQ(φ) =
qn(at|st)
pψ(at|st)

(
Qφ
(
st, at

)
− rt − γ

(
Qφ̄ (st+1, at+1)

+α log pθn(at+1|st+1)− α log qn (at+1|st+1)
))2

, (19)

where the φ̄ indicates parameters of the target network the
same as vanilla Q-learning in Eq. (3) and at+1 is sampled

from the policy qn (at+1|st+1). We add the importance sam-
pling as same as we did in the bandit setting in Eq. (12).
We can find the reward extrapolation Eq. (12) in the batch
setting becomes the Q value estimation for estimating fu-
ture rewards. Given Eq. (18), we can get the followings non-
parametric optimal policy p(at|st, Rt:T):

qn+1(at|st) ∝ pθn(at|st) exp
(
Qφ (st, at)

α

)
. (20)

Comparing with the E-step (Eq. (11)), the reward estimator
Qφ(st, at) becomes the value function approximating future
rewards. When discount factor γ = 0, the objective Eq. (19)
is analogous to the Eq. (11) in the bandit setting.
M-step with ranking regularization. The M-step is analo-
gous to Eq. (14) in the bandit setting, and we also consider
the following loss with the ranking regularization term:

LP(θ) = βEq [log pθ(at|st)] + (1− β)Epψ [log pθ(at|st)], (21)

where q , qn+1(at|st). By alternately conducting the E-
step in Eq. (20) and M-step in Eq. (21), we get our full
VR algorithm which can simultaneously maximize the fu-
ture long-term rewards and learn from the ranking signal.

4 Theoretical Analysis
Overestimation Bias: In this section, we show that our
VR can effectively reduce the overestimation bias compared
with Q-learning. Recall that the overestimation bias occurs
due to the max operator maxaQφ̄ (st+1, a) in the TD loss
of Q-learning. Specifically, the overestimation bias at state s
can be represented as: maxaQφ̄(s, a) − maxaQ(s, a) =
maxa(Qφ̄(s, a) − V (s)) = maxa (εa), where V (s) and
Q(s, a) are the true state and state-action value functions,
respectively. Since our TD loss in Eq. (19) selects the action
from the policy q(a|s) in the E-step, the overestimation bias
can be proved to be no greater than that in Q-learning:

∑
a

q(a|s)Qφ̄(s, a)− V (s) =
∑
a

pθ(a′|s) exp(
Q
φ̄

(s,a′)
α)∑

a′ pθ(a′|s) exp(
Qφ̄(s,a′)

α)

Qφ̄(s, a)

− V (s) =
∑
a

pθ(a′|s) exp(
V (s)+ε

a′
α)∑

a′ pθ(a′|s) exp(
V (s)+ε

a′
α)

(V (s) + εa)− V (s)

=
∑
a

pθ(a′|s) exp
[
ε
a′
α

]
∑
a′ pθ(a′|s) exp

[
ε
a′
α

] εa ≤ max
a

(εa) . (22)

Estimation Variance: We theoretically show that our M-
step can bound the variance induced by the importance sam-
pling in the unbiased reward extrapolation. For notation
brevity, we denote unbiased reward estimators (Eqs. (12)
and (19)) as w(at)LQ , LwQ in which w(at) = qn(at|st)

pψ(at|st) ,
q
p . we can conclude that the variance can be bounded as:

Varat∼p[L
w
Q] = Eat∼p[(L

w
Q)2]− (Eat∼p[L

w
Q])2 ≤ (23)

dλ+1(q‖p)(Eat∼pL
w
Q)1−

1
λ (
∑
at

LQ)
1+ 1

λ − (Eat∼p[L
w
Q])2

∀λ ≥ 0 where dλ(q‖p) = 2Dλ(q‖p) and Dλ(q‖p)
is the Rényi divergence (Rényi et al. 1961). Since
limλ→0Dλ+1(q‖p) = KL(q‖p) and our M-step can reg-
ularize the policy q towards the logging policy pψ , our VR
can reduce the variance.

8704

Backbones Methods YooChoose RetailRocket
HR@5 NDCG@5 HR@20 NDCG@20 HR@5 NDCG@5 HR@20 NDCG@20

SASRec
MLE 0.2811 0.1857 0.4323 0.2389 0.2109 0.1512 0.3136 0.1918
PG 0.2968 0.1901 0.4417 0.2511 0.2235 0.1638 0.3211 0.2102
VR 0.3187 0.2033 0.4618 0.2635 0.2326 0.1729 0.3429 0.2336

GRU4Rec
MLE 0.2614 0.1599 0.4238 0.2117 0.1947 0.1431 0.2987 0.1856
PG 0.2773 0.1726 0.4391 0.2236 0.2068 0.1543 0.3152 0.1991
VR 0.2905 0.1887 0.4501 0.2457 0.2188 0.1657 0.3372 0.2208

Caser
MLE 0.2521 0.1585 0.4171 0.2016 0.1776 0.1255 0.2845 0.1739
PG 0.2655 0.1677 0.4283 0.2132 0.1901 0.1387 0.2989 0.1822
VR 0.2809 0.1759 0.4426 0.2371 0.2075 0.1451 0.3205 0.2119

Table 1: Overall performance comparison. The percentage in brackets denote the relative performance improvement over MLE.

5 Empirical Evaluation
5.1 Offline Ranking Experiment
Datasets. We use two large-scale datasets. (1) YooChoose1:
It contains sequences of user purchases and clicks. We re-
move the sessions whose length is smaller than 3. (2) Retail-
Rocket2: This dataset also contains sequences of user pur-
chases and clicks. We remove items which are interacted
less than 3 times. We randomly sample 80% sequences as
the training set, 10% as validation, and 10% as the test set.
Settings. Our VR is a generic learning algorithm and can
be utilized to improve any recommendation backbones. To
evaluate the effectiveness of VR, we consider three repre-
sentative recommendation backbones, i.e., GRU4Rec (Hi-
dasi et al. 2016), Caser (Tang and Wang 2018) and SAS-
Rec (Kang and McAuley 2018). Following (Chen et al.
2019), we reuse the user state representation generated from
the backbones, and model SL policy pψ , Q functionQφ, and
RL policy pθ with different heads. We compare with two
baselines: the supervised learning with MLE, and the off-
policy policy gradient (PG) with the weight capping (Chen
et al. 2019). Since we have compared with Q-learning in
§ 2.2, we omit it in this section due to space limitations.
We use top-k Hit Ratio (HR@k) and Normalized Discounted
Cumulative Gain (NDCG@k) to evaluate the performance.
Results. Table 1 summarizes the ranking performance of
different learning algorithms with three backbones. From
Table 1, we have the following findings: (1) Our VR consis-
tently and significantly outperforms the PG. This is because
our framework has the advantage of simultaneously maxi-
mizing future rewards and leveraging the signal of ranking
metric from logged feedbacks. This validates the effective-
ness of VR and our motivation that feedback information is
important for better ranking. (2) VR outperforms MLE in all
settings, which shows that our VR as an off-policy RL algo-
rithm can outperform supervised MLE via maximizing the
future reward although there is no online interaction. (3) VR
significantly outperforms the MLE and PG with all back-
bones on two datasets, which demonstrates the effectiveness
of VR and also shows that our VR is robust to different back-
bones and datasets. (4) We observe that our VR achieves bet-
ter performance on sizes 5 and 20 of ranking list k, which
suggests that our VR is agnostic to the size of top-k list.

1https://recsys.acm.org/recsys15/challenge/.
2https://www.kaggle.com/retailrocket/ecommerce-dataset.

Figure 2: Training curves on the multi-objective setting.

5.2 Multi-objective Optimization
One advantage of directly optimizing the reward via RL is
that it allows designing different rewards for better optimiz-
ing the multi-objectives. In this section, we study how the
proposed VR performs in the multi-objective setting.
Settings. We follow the same setting in RQ1. However, be-
sides the click, we also consider another feedback, the pur-
chase here. YooChoose contains 43,946 purchases of users.
RetailRocket contains 57,269 purchase feedbacks. For VR
and off-policy PG, we define the rewards of purchase and
click as five and one, respectively. To better show the advan-
tage of VR in the multi-objective setting, we add a variant
of our VR called VR-V, which treats the purchase and click
the same and assign the same rewards (one) to them.
Results. Fig. 2 shows the curves of the testing performance
of purchases and clicks on YooChoose. The results on Caser
are similar, so we omit it. According to Fig. 2, we find that:
(1) Our VR and VR-V outperform MLE and off-policy PG
in all settings, which shows the effectiveness of our method
in the multi-objective setting. (2) The phenomenon that VR
outperforms VR-V shows that we can achieve better per-
formance by assigning different rewards to different feed-
backs. (3) VR is training-stable and converges faster than
MLE which needs more epochs to achieve stable perfor-
mance. One possible reason could be that the ranking reg-
ularization can reduce the instability in the TD updates.

8705

DQN DQN-NS VR0

2000

4000

6000

8000

10000
Ov

er
es

tim
at

io
n

Bi
as YooChoose

DQN DQN-NS VR0

2000

4000

6000

8000

10000

Ov
er

es
tim

at
io

n
Bi

as RetailRocket

Figure 3: The overestimation bias on two datasets.

Ablation β=0.2 β=0.4 β=0.6 β=0.8
VR-NW 19.21±0.6 19.52±0.7 18.02±0.5 17.67±0.6
VR 19.92± 0.9 20.43±1.1 19.56±1.5 18.92±1.8

Table 2: Ablation study results (% NDCG@5) varying β.

0 0.2 0.4 0.8 1.0
discount factor γ

0.180
0.185
0.190
0.195
0.200
0.205
0.210

ND
CG

@
5

YooChoose
VR
PG
MLE

0 0.2 0.4 0.8 1.0
discount factor γ

0.145
0.150
0.155
0.160
0.165
0.170
0.175

ND
CG

@
5

RetailRocket

VR
PG
MLE

Figure 4: Performance with various discount factor γ.

5.3 Further Analysis
We take an examination on VR to understand how each com-
ponent affects its performance.
Future rewards. We investigate whether maximizing future
rewards improves the ranking metric. In VR, the discount
factor γ controls the contribution of future rewards. For ex-
ample, if γ = 0, VR is the bandit setting proposed in 3.1
and does not consider future rewards. Fig. 4 shows the per-
formance varying γ. We can find that (1) appropriate values
of γ (maximizing future rewards) can boost the performance
but large values hurt the performance, and (2) VR consis-
tently performs better than baselines with every different γ.
Knowledge transfer. One of the most important properties
of VR is transferring the knowledge between teacher and
student. This transferring knowledge is controlled by two
key parameters α and β. To understand their effects, we train
VR with various α and β. From Fig. 5, we can find smaller β
generally leads better performance. This is because neglect-
ing the ranking regularization term will result in the overes-
timation issue and lack of ranking signal. This is also con-
sistent with our motivation. The performance can be boosted
by choosing appropriate values for α and β.
Overestimation bias and variance. As shown in theoreti-
cal analysis in § 4, the estimation variance of the weighted
TD loss in Eq. (19) via the importance sampling (IS) can
be reduced since our M-step Eq. (21) regularizes RL policy
to the logged data via β. Table 2 shows the results of VR
trained via TD loss and non-weighted TD loss. As shown
in Table 2, although IS introduces some variance, VR can
achieve a better bias-variance trade-off via adjusting β. As
shown in § 2.2, our VR can effectively reduce the overesti-
mation bias. Fig. 3 shows the overestimation bias on Yoo-

Figure 5: Performance (NDCG@5) with various α and β.

Random Maximum
CTR C@3 CTR C@3

Pop 39.5 30.0 41.8 30.0
MLE 63.5 ± 1.7 75.0 ± 1.8 72.1 ± 2.3 74.8 ± 2.1
DQN 50.7 ± 4.0 66.2 ± 2.3 54.3 ± 2.1 68.4 ± 3.7
PG 72.5 ± 4.6 76.0 ± 2.9 75.2 ± 3.8 76.5 ± 3.6

VR-NW 80.2 ± 1.2 78.5 ± 1.9 78.9 ± 1.7 79.7 ± 0.9
VR 84.3 ± 2.3 82.2 ± 2.7 84.7 ± 3.3 85.6 ± 2.1

Behavior 63.1 97.0 75.2 74.5

Table 3: Online evaluation of CTR and coverage (C)@3.
Note that coverage just indicates higher diversity and we list
behavior policy just for reference, not for comparison.

Choose and RetailRocket. From Figs. 1 and 3, we can find
our VR achieves the best performance and can significantly
reduce the overestimation bias compared with Q-learning,
which empirically verifies our theoretic analysis in § 4.

5.4 Online Performance Comparison
In this section, we conduct the online evaluation. We adopt
RecSim (Ie et al. 2019) which is a simulation environment
for testing RL for RS. We consider the default settings of
RecSim with the number of categories as 20. We also con-
sider logged data obtained from two behavioral policies:
random (exploration) policy and maximum reward policy
which recommends the top k items with the highest ground-
truth reward. From Table 3, we can find: (1) DQN can not
beat the behavior policy even the supervised MLE meth-
ods, which is consistent with our observations in the offline
test. This is because that DQN suffers from overestimation
bias. (2) More importantly, our proposed VR significantly
improves upon the behavior policy in CTR, which confirms
that our methods can also perform well on online test in
which there is an explicit distribution shift. (3) Our VR sig-
nificantly outperforms VR-NW, which shows the effective-
ness of the importance sampling in the online testing.

6 Conclusion
In this paper, we investigated offline learning of ranking
policies for the sequential recommendation. We have pre-
sented a general EM framework, which can effectively learn
from both rewards and ranking signals. To maximize long-
term rewards, we extended the EM framework into sequen-
tial settings and proposed an off-policy VR algorithm. We
show empirically that for the task of sequential recommen-
dation, backbones learned by our VR outperform the same
models that are optimized by other criteria such as MLE,
off-policy PG, and DQN.

8706

Acknowledgments
This research is supported by, or in part by, the National Sci-
ence Foundation under grant IIS-1909702 and IIS-1955851,
and Army Research Office under grant W911NF21-1-0198.

References
Blei, D. M.; Kucukelbir, A.; and McAuliffe, J. D. 2017. Vari-
ational inference: A review for statisticians. JASA.
Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007.
Learning to rank: from pairwise approach to listwise ap-
proach. In ICML.
Chen, M.; Beutel, A.; Covington, P.; Jain, S.; Belletti, F.;
and Chi, E. H. 2019. Top-K Off-Policy Correction for a
REINFORCE Recommender System. In WSDM, 456–464.
Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. In ICML.
Ganchev, K.; Graça, J.; Gillenwater, J.; and Taskar, B. 2010.
Posterior regularization for structured latent variable mod-
els. JMLR.
Haarnoja, T.; Tang, H.; Abbeel, P.; and Levine, S. 2017. Re-
inforcement learning with deep energy-based policies. In
ICML.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In ICML.
Heskes, T.; and Zoeter, O. 2002. Expectation propagation
for approximate inference in. In UAI.
Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2016. Session-based recommendations with recurrent neural
networks. In ICLR.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. stat, 1050: 9.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative fil-
tering for implicit feedback datasets. In ICDM.
Ie, E.; Hsu, C.-w.; Mladenov, M.; Jain, V.; Narvekar, S.;
Wang, J.; Wu, R.; and Boutilier, C. 2019. Recsim: A con-
figurable simulation platform for recommender systems. In
arXiv preprint arXiv:1909.04847.
Kang, W.-C.; and McAuley, J. 2018. Self-attentive sequen-
tial recommendation. In ICDM, 197–206. IEEE.
Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020.
Conservative q-learning for offline reinforcement learning.
arXiv preprint arXiv:2006.04779.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643.
Liang, D.; Krishnan, R. G.; Hoffman, M. D.; and Jebara, T.
2018. Variational autoencoders for collaborative filtering. In
WWW, 689–698.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:2006.04779.

Munos, R.; Stepleton, T.; Harutyunyan, A.; and Bellemare,
M. G. 2016. Safe and efficient off-policy reinforcement
learning. In NIPS, 1054–1062.
Neal, R. M.; and Hinton, G. E. 1998. A view of the EM al-
gorithm that justifies incremental, sparse, and other variants.
In Learning in graphical models, 355–368. Springer.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2012. BPR: Bayesian personalized ranking from
implicit feedback. arXiv preprint arXiv:1205.2618.
Rényi, A.; et al. 1961. On measures of entropy and informa-
tion. In Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability.
Robertson, S. E. 1977. The probability ranking principle in
IR. Journal of documentation.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016.
Prioritized Experience Replay. In ICLR.
Tang, J.; and Wang, K. 2018. Personalized top-n sequential
recommendation via convolutional sequence embedding. In
WSDM, 565–573.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning.
Xia, F.; Liu, T.-Y.; Wang, J.; Zhang, W.; and Li, H. 2008.
Listwise approach to learning to rank: theory and algorithm.
In ICML.
Xiao, T.; Chen, Z.; Wang, D.; and Wang, S. 2021. Learning
How to Propagate Messages in Graph Neural Networks. In
KDD, 1894–1903.
Xiao, T.; Liang, S.; and Meng, Z. 2019. Hierarchical neural
variational model for personalized sequential recommenda-
tion. In WWW, 3377–3383.
Xiao, T.; and Wang, D. 2021. A General Offline Reinforce-
ment Learning Framework for Interactive Recommendation.
In AAAI, 4512–4520.
Xin, X.; Karatzoglou, A.; Arapakis, I.; and Jose, J. M.
2020. Self-supervised reinforcement learning for recom-
mender systems. In SIGIR, 931–940.
Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; and Tang, J.
2018a. Deep reinforcement learning for page-wise recom-
mendations. In RecSys, 95–103.
Zhao, X.; Zhang, L.; Ding, Z.; Xia, L.; Tang, J.; and Yin, D.
2018b. Recommendations with Negative Feedback via Pair-
wise Deep Reinforcement Learning. In KDD, 1040–1048.
Zheng, G.; Zhang, F.; Zheng, Z.; Xiang, Y.; Yuan, N. J.; Xie,
X.; and Li, Z. 2018. DRN: A Deep Reinforcement Learning
Framework for News Recommendation. In WWW, 167–176.
Zhou, S.; Dai, X.; Chen, H.; Zhang, W.; Ren, K.; Tang, R.;
He, X.; and Yu, Y. 2020. Interactive Recommender Sys-
tem via Knowledge Graph-enhanced Reinforcement Learn-
ing. In SIGIR, 179–188.
Zou, L.; Xia, L.; Du, P.; Zhang, Z.; Bai, T.; Liu, W.; Nie,
J.; and Yin, D. 2020. Pseudo Dyna-Q: A Reinforcement
Learning Framework for Interactive Recommendation. In
WSDM, 816–824.

8707

