
Exploring Edge Disentanglement for Node Classification
Tianxiang Zhao, Xiang Zhang, Suhang Wang

College of Information Sciences and Technology, The Pennsylvania State University
State College, PA, USA

{tkz5084,xzz89,szw494}@psu.edu

ABSTRACT
Edges in real-world graphs are typically formed by a variety of fac-
tors and carry diverse relation semantics. For example, connections
in a social network could indicate friendship, being colleagues,
or living in the same neighborhood. However, these latent fac-
tors are usually concealed behind mere edge existence due to the
data collection and graph formation processes. Despite rapid devel-
opments in graph learning over these years, most models take a
holistic approach and treat all edges as equal. One major difficulty
in disentangling edges is the lack of explicit supervisions. In this
work, with close examination of edge patterns, we propose three
heuristics and design three corresponding pretext tasks to guide the
automatic edge disentanglement. Concretely, these self-supervision
tasks are enforced on a designed edge disentanglement module
to be trained jointly with the downstream node classification task
to encourage automatic edge disentanglement. Channels of the
disentanglement module are expected to capture distinguishable
relations and neighborhood interactions, and outputs from them
are aggregated as node representations. The proposed DisGNN is
easy to be incorporated with various neural architectures, and we
conduct experiments on 6 real-world datasets. Empirical results
show that it can achieve significant performance gains.
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1 INTRODUCTION
In recent years, learning from graph-structured data is receiving
a growing amount of attention due to the ubiquity of this data
form in the world. For example, social networks [9, 39], molecular
structures [5, 22] and knowledge graphs [27] all require utilizing the
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Figure 1: An example on Facebook. There are multiple pos-
sible relations behind edge existence, but such information
is usually latent and unavailable during graph formation.

rich connection information among nodes. Graph neural networks
(GNNs) [31] provide a general and effective framework for mining
from graphs, and is developing rapidly among the years.

GNNs can be viewed as a message-passing network [10], which
conduct node representation updating and neighborhood interac-
tion modeling iteratively. Variants of GNNs [11, 17, 34] mainly
differ in the proposed mechanism of aggregating messages from
node neighborhoods. However, despite improved representation
power from architecture designs, most of them adopt a uniform
processing on edges in the input graph. Their model is designed
under the assumption that all edges are generated under the same
latent distribution and indicate the same relationship, hence those
edges are taken as equal. Yet real-world graphs are usually formed
via a complex and heterogeneous process, with multiple possible
causes behind existence of edges. For example, as shown in Figure 1,
connection in a social network could be resulted from similarity in
interest, colleague relationship, or living in the same neighborhood,
etc. Neglect of semantic differences carried by edges would harm
the modeling of neighborhood interactions and the quality of ob-
tained node embeddings. This observation motivates us to utilize
each edge with considerations on its carried semantic relationship.

However, incorporating edge disentanglement into graph learn-
ing is a difficult task. The major problem is the lack of supervision
signals to guide the learning process. Due to limitations in data
collection and graph formation procedures, most graph datasets
have plain edges without attributes, making it difficult to obtain
disentangled edge set. There are few pioneering works [21, 35]
in automatic disentanglement of graphs. However, Ma et al. [21]
focuses on obtaining node-level representations w.r.t disentangled
latent factors and pays little attention to latent multi-relations of
edges, while Yang et al. [35] mainly focuses on graph-level tasks and
proposes to disentangle the input graph into multiple factorized sub-
graphs. Furthermore, none of these methods consider the problem
of providing extra supervision signals for edge disentanglement,
and rely upon the holistic learning process instead.
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Targeting at this problem, in this work, we focus on facilitating
graph learning, particularly the node classification task, with auto-
matic edge disentanglement. We propose an edge disentanglement
module, and make the first attempt in designing a set of pretext
tasks to guide the edge disentanglement. It is a difficult task, be-
cause the latent multi-relations behind edge existence are usually
hidden and unavailable in real-world datasets. With a close exami-
nation of heuristics, we propose three self-supervision signals: (1)
The union of disentangled edges should recover the original input
edge set, (2) Edges carrying homophily information (homo-edges)
models intra-class interactions while edges carrying heterophily
property (hetero-edges) models inter-class interactions, hence they
usually carry different semantics, (3) The edge patterns and inter-
actions captured by different channels of DisGNN (each represents
a disentangled relation group) should be discrepant, with a clear
difference in distribution.

Concretely, the designed edge disentanglement module is in-
corporated into existing GNN layers, and three self-supervision
tasks corresponding to aforementioned heuristics are implemented
and applied to them. This approach, DisGNN, enables separate
processing of disentangled edges during learning towards node
classification via optimizing the disentanglement-eliciting pretext
tasks jointly. The proposed method is evaluated on six real-world
graphs, and we further conduct ablation studies to analyze its be-
haviors. Experimental results show that the proposed approach is
effective and promising, achieving improvements on all datasets.

To summarize, in this work, we studies node classification with
automatic edge disentanglement and make following contributions:

• Node classification in the edge-disentanglement-aware
manner. Usually there are multiple latent factors behind the
existence of edges between node pairs, and utilizing them
could improve node embedding quality and help the node
classification task. In this work, we study this problem by
designing and applying an edge disentanglement module in
together with GNN layers.

• Automatic edge disentanglement with pretext tasks.
Although edges in real-world graphs usually contain a vari-
ety of different relations in nature, lack of supervision limits
the discovering of them. In this work, we propose three self-
supervision signals, which could encourage our designed
module to automatically disentangling edges.

• Evaluation on real-world graph sets. We evaluate the
proposed approach on six real-world datasets, and results
show the improvement brought by the proposed approach.

2 RELATEDWORK
2.1 Graph Neural Network
Graph neural networks (GNNs) are developing rapidly in recent
years, with the increasing needs of learning on relational data
structures [7, 9, 37, 38]. Generally, existing GNNs can be catego-
rized into two categorizes, i.e., spectral-based approaches [4, 17, 28]
based on graph signal processing theory, and spatial-based ap-
proaches [2, 8, 32] relying upon neighborhood aggregation. Despite
their differences, most GNN variants can be summarized with the
message-passing framework, which is composed of pattern extrac-
tion and interaction modeling within each layer [10].

Dedications have been made towards mining richer informa-
tion from the provided relation topology. For example, Velickovic
et al. [29] extends self-attention mechanism to enable learning the
weights for nodes inside the neighborhood. Xu et al. [34] extends
expressive power of GNNs to the same order of WL test by de-
signing an injective neighborhood aggregator. Abu-El-Haija et al.
[1] extracts multi-hop neighborhoods and learns to mix them for
improving center node representations. Dai et al. [6] studies noisy
information propagating along given edges and proposes to update
network structure to improve robustness. However, all these meth-
ods are holistic approaches and neglect the latent factors behind
edge existence. In real world cases, connections among entities are
usually multi-relational in nature. Although they are given in the
form of plain edges, different edges could be caused by different
factors and represent different semantics. Disentangling these fac-
tors could enable us to utilize given edges with the awareness of
their carried latent relations, and model richer node interactions.

Discovering latent factors behind graphs and utilizing them to im-
prove graph learning is an important but under-exploited problem.
Currently, works in this direction are rather limited. One major diffi-
culty of this task is the lack of explicit supervisions on ground-truth
disentanglement. For example, graph attention network (GAT) [29]
offers a mechanism of specifying different weights to nodes in the
neighborhood, and has the potential of disentangling relation types
with multiple attention heads. However, analysis find that GAT
tends to learn a restricted “static” form of attention and the patterns
captured by different heads are limited [3, 16]. A pretext task with
self-supervision on attention heads is designed in [16], but it only
encourages recovering ground-truth edges as a whole and provides
no signals on relation disentanglement. DisenGCN [21] makes the
first attempt by learning node embeddings with respect to different
factors with a neighborhood routing mechanism. IPGDN [20] fur-
ther improves on that by utilizing Hilbert-Schmidt Independence
Criterion to promote independence among disentangled embed-
dings. FactorGCN [35] studies the disentanglement of graphs into
multiple sub-graphs mainly for graph-level tasks. Different from
these methods, this work focuses on automatic disentanglement at
the edge level, and designs three pretext tasks providing heuristics
to guide the training process.

2.2 Self-supervision in Graph
Self-supervised learning targets at extracting informative knowl-
edge through well-designed pretext tasks without relying on man-
ual labels, and is able to utilize large amount of available unlabeled
data samples. This framework has been shown to be promising
in eliminating heavy label reliance and poor generalization per-
formance of modern deep models. Besides its success in computer
vision [14] and natural language processing [18], there is a trend
of developing this idea in the graph learning domain [12, 19].

Rich node and edge features encoded in the graph are promising
in providing self-supervision training signals to guide the graph
learning process. Pretext tasks exploiting multiple different levels
of graph topology have been designed to boost the performance of
graph learning models. Existing approaches can be categorized
into three types based on the designed pretext signals, includ-
ing node-level signals [12], edge-level signals [16] and graph-level
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signals [36]. Hu et al. [12] captures local node similarity via ran-
domly masking nodes and learning to recover them from neigh-
bors. [13] predicts pairwise node distance on graphs to encode
global-structure information. Qiu et al. [25] uses contrastive learn-
ing on randomly sampled sub-graphs to highlight local-neighborhood
similarities. In the classical semi-supervised setting on graphs,
which contains a vast number of unlabeled nodes, these auxiliary
tasks help to make learned representations more general, robust
to noises, and more transferable [36]. A more complete survey of
existing self-supervised learning on graphs can be found in [19, 33]

Unlike the aforementioned approaches, we target at design-
ing pretext signals to guide the learning of attention distributions
within the neighborhood. Kim and Oh [16] propose to supervise
graph attention heads with real input edges, encouraging higher at-
tention score between connected nodes while lower score between
unconnected pairs. However, they aim to remove noises in edges
and apply the same signal to all attention heads in the same manner.
In contrast, we focus on disentangling relations and encouraging
different attention heads to capture different semantics.

3 PROBLEM FORMULATION
We use G = {V,A, F} to denote an attributed network, whereV =
{v1, . . . ,vn } is a set ofn nodes.A ∈ Rn×n is the adjacencymatrix of
G. F ∈ Rn×d denotes the node attributematrix, where F[j, :] ∈ R1×d
is the d-dimensional node attributes of node vj . In real-world, each
edge is formed due to various reasons and carries rich semantic
meanings. For example, in Facebook, vi and vj are linked because
they are “collegaes”; vi and vk are connected because they are
both interested in “Football”. Hence, in learning the features of vi ,
the utilization of vj and vk should be different in a relation-aware
manner. However, for many real-world graphs such as Facebook,
we only know that there exists such factors but the factors of each
edge is not explicitly known. Thus, in this paper, we assume that
we are only given G = {V,A, F} without edge attributes and aims
to disentangle the graph to facilitate node classification.

As shown in [10], most existing GNN layers can be summarized
in the following equations:

ml+1
v =

∑
u ∈N(v)

Ml (h
l
v , h

l
u ,Av,u )

hl+1v = Ul (h
l
v ,m

l+1
v )

(1)

where N(v) is the set of neighbor of v in G and hlv denotes repre-
sentation of v in the l-th layer. Av,u represents the edge between
v and u. Ml , Ul are the message function and update function re-
spectively at layer l . However, this framework neglects diverse
relations behind edges. With a disentangled adjacency matrix set
Adis = {A0,A1, ...Am }, in which Ai ∈ Rn×n and Ai ⊂ A, we can
obtain edge sets representing different relation semantics. Then,
the GNN layer could be be changed into:

ml+1,i
v =

∑
u ∈Ni (v)

Mi
l (h

l
v , h

l
u ,A

i
v,u )

hl+1v = Ul (h
l+1
v ,m

l+1,0
v , . . . ,ml+1,m

v )

(2)

where Ni (v) is the set of neighbors of v in adjacency matrix Ai .
This disentangled GNN enables heterogeneous processing of given

Figure 2: Overview of the DisGNN layer.

edges, and may produce more discriminant node embeddings for
downstream tasks.

In this work, we focus on semi-supervised node classification
task.Y ∈ Rn is the class information for nodes inG. During training,
only a subset of Y is available, and the task is to train a classifier
for unlabeled nodes. We use VL and YL to represent the set of
supervised nodes and their corresponding labels respectively.
Given G = {V,A, F}, and labels YL for a subset of nodesVL , we aim
to learn a node classifier f . f should learn to disentangle relations be-
hind edge existence as Adis and model node interactions accordingly
during the label prediction process:

f (V,A, F) → Y (3)

4 METHODOLOGY
In this work, we implement the model as composing of two parts:
a GNN-based feature extractor for obtaining node representations
and a MLP-based classifier for node classification. θ , ξ are used to
represent parameters of these two components respectively. The
details of them will be introduced below.

4.1 Model Architecture
4.1.1 Feature Extractor. The feature extractor is adopted to encode
graph structures and obtain node embeddings for classification. Fol-
lowing existing works [38, 40], it can be implemented by stacking
two GNN layers. In this work, we design and utilize two DisGNN
layers. Each DisGNN layer is implemented with the edge disen-
tanglement module and GNN variants following Equation 2, upon
which we apply our proposed self-supervision tasks. An overview
of the proposed DisGNN layer is shown in Figure 2. The feature
extractor is optimized with gradients from both node classification
and self-supervision tasks, and its details will be presented in the
next section. The parameter set of this extractor is denoted as θ .

4.1.2 Classifier. Based on the extracted node representation hv
for node v by feature extractor, a classifier is trained to perform
node classification. Specifically, we use a 2-layer MLP:

Pv = so f tmax
(
Wcls

2 · σ (Wcls
1 · hv )

)
, (4)
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whereWcls
1 ,W

cls
2 are the parameter matrices of this classifier head.

And the training objective Lnode on this task would be:

min
θ,ξ

−
∑

v ∈Vsup

∑
c ∈ |Y |

Y cv · loд(Pcv ). (5)

ξ denotes parameters in this classification head, containingWcls
1

andWcls
2 .Vsup represents supervised nodes during training, Y cv

indicates whether node v belongs to class c , |Y | represents the set
of node classes, and Pcv is the predicted probability of v in class c .

4.2 DisGNN Layer
4.2.1 Edge Disentanglement Module. With the input of graph G,
this module is designed to obtain a set of disentangled edge dis-
tributions, Adis . As edges are unattributed and binary in most
graphs, we analyze the edge property through comparing the node
pair connected by it. One module withm + 1 channels can be con-
structed, with each channel capturing the dynamics reflecting one
different group of relations. Each relation-modeling channel can
be constructed in various ways, like dot-production, linear layer,
neural network, etc.

In this work, to keep both simplicity and representation ability,
we implement each relation-modeling channel as aMLP. Concretely,
inside the l-th DisGNN layer, predicted edge between node pair v
and u generated by the i-th channel can be written as:

êl,iv,u = siдmoid
(
Wl,i

2 LeakyReLU
(
Wl,i

1 · [hlv , h
l
u ]
) )

Al,i
v,u =

exp(êl,iv,u )∑
w ∈V exp(êl,iv,w )

(6)

In this equation, hlu corresponds to the extracted embedding of
node u as input to layer l , and hlu , hlv are concatenated as input.
Wl,i

1 ,W
l,i
2 are the parameter matrices, and êl,iv,u is the edge exis-

tence probability between v and u modeled by channel i in the l-th
layer. ê is only calculated for connected node pairs to reduce com-
putation complexity and avoid introducing noises. Following the
pre-processing strategy in [17], edge weights inAl,i are normalized
before using as input into GNN layers.

4.2.2 Incorporating into GNN Layer. The edge disentanglement
module is easy to be incorporated into various modern GNN layers
through taking each disentangled edge group as a channel for
modeling neighborhood interactions following Equation 2. In this
subsection, we take the GNN layer proposed in [29] as an example.
The process of update node representations on each channel can
be written as:

hl+1,iv =
∑
u ∈V

Al,i
u,v ·Wl,i

f eath
l
u , (7)

in which Wl,i
f eat is the parameter matrix for learning embedding

features of i-th channel in the l-th layer.
Then, we aggregate representation learned on each channel via

concatenation and a 1-layer neural network:

hl+1v = σ
(
Wl

aдд([h
l+1,0
v , hl+1,1v , . . . , hl+1,mv ])

)
. (8)

σ represents nonlinear activation function, and we implement it as
LeakyRelu.Wl

aдд is a weight matrix used to fuse representations
learned by each channel. Note that it is not limited to using this

specific GNN variant, and we further test it on other typical GNN
layers in the experiments.

4.3 Self-supervision for Disentanglement
One major difficulty in disentangling factors behind edges is the
lack of supervision signals. Although it is often the case that edges
contain multiple different relations and carry different semantics in
a graph, it is difficult to collect ground-truth edge disentanglement
as the supervision, as the example in Figure 1. Hence, in this part,
we introduce how we manage to discover them automatically with
carefully-designed self-supervisions, which also makes up the main
contribution of this work. An overview is provided in Figure 2.

4.3.1 Signal 1: Edge Recovery. One most direct way of providing
prior knowledge to guide the learning of relation distribution is
utilizing the input edges. If nodeu andv are linked, then certain rela-
tionship exists between them, and such relation should be captured
by the edge disentanglement module. Note that channels of it are
expected to capture different relations, hence we require the union
of them to successfully recover given edges. Specifically, based on
the nonlinear property of sigmoid activation function, we propose
to implement this pretext task on disentanglement channels via:

ēlv,u = siдmoid
( m∑
i=0

Wl,i
2 LeakyReLU

(
Wl,i

1 · [hlv , h
l
u ]
) )

(9)

ēlv,u represents the union of predicted edges between u and v at
layer l , and supervision can be applied on top of it. Usually, the
number of nodes is large with high sparsity degrees, hence it is
not efficient to use positive and negative node pairs all at once.
Addressing it, we sample a batch of positive node pairs Ep ∈ {(v,u) |
Av,u , 0} and negative node pairs En ∈ {(v,u) | Av,u = 0} each
time as the supervision. The size of Ep is set as pe · |A+ |, with pe
and A+ being the sampling ratio and the set of connected node
pairs respectively. The size of En is set as min(pe · |A− |, 3 · |Ep |),
and A− represents the set of unconnected node pairs. By default,
pe is set as 1.0.

Specifically, the self-supervision loss Ledдe is implemented as:

min
θ

Ledдe = −
1

|Ep ∪ En |

∑
l

( ∑
(v,u)∈Ep

log ē lv,u +
∑

(v,u)∈En

log(1 − ē lv,u )
)

(10)

4.3.2 Signal 2: Label Conformity. Another heuristics we propose is
analyzing the conformity of labels between two nodes connected by
edges. Due to the lack of explicit information, it is not straightfor-
ward to design direct supervisions on edge disentanglement. How-
ever, following observations in [40], we notice that given edges can
be split into two groups: homo-edges modeling intra-class interac-
tions and hetero-edges modeling inter-class interactions. These two
groups usually carry different relations and can serve as a heuristic
for automatic disentanglement. Basing on this observation, we can
obtain two pseudo edge sets:

Ehomo = {Av,u | Av,u , 0,Yu = Yv }

Ehetero = {Av,u | Av,u , 0,Yu , Yv }
(11)

As it is difficult to explicitly define the correspondence between edge
sets and each disentanglement channel, we adopt a soft assignment,
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assuming that the union of half channels capture an edge set:

ēl,homo
v,u = siдmoid

(m/2∑
i=0

Wl,i
2 LeakyReLU

(
Wl,i

1 · [hlv | |h
l
u ]
) ) (12)

ēl,heterov,u = siдmoid
( m∑
i=m/2+1

Wl,i
2 LeakyReLU

(
Wl,i

1 · [hlv | |h
l
u ]
) )
(13)

ēl,homo
v,u , ēl,heterov,u are expected to capture homo-edges and heter-

edges respectively at layer l , and we supervise them in the same
manner as Equation 14. With sampled positive set Ehomo

p ∈ Ehomo

and negative set Ehomo
n ∈ A \ Ehomo , Lhomo is implemented as:

min
θ

−
1

|Ehomo
p ∪ Ehomo

n |

∑
(v,u)∈Ehomo

p ∪Ehomo
n

∑
l

(1((v,u) ∈ Ehomo
p )

·loдēl,homo
v,u + 1((v,u) ∈ Ehomo

n ) · loд(1 − ēl,homo
v,u )),

(14)
similarly is Lhetero . The label conformity loss Lconf orm is imple-
mented as:

Lconf orm = Lhomo + Lhetero (15)
In experiments, we found that the amount of homo-edges and

hetero-edges identified with given supervisions are sufficient for
training. In cases when supervision is limited and cannot obtain
a sufficient large set of labeled edges, a classifier can be trained to
give them pseudo labels.

4.3.3 Signal 3: Channel Difference. The last signal we designed
is to promote the difference in captured patterns across channels
in edge disentanglement module, as relations embedded in well-
disentangled edges should be distinguishable from each other. How-
ever, directly maximizing the difference of learned knowledge by
each channel is a non-trivial task. Consider that as channels are
expected to model different types of relations, the semantic informa-
tion learned by them would also be different, which can be reflected
by comparing node embedding changes produced by them. With
this observation, we first obtain channel-wise node representations:

h̃lv,i = Concat(h
l−1
v , h

l,i
v ) (16)

In the following part, we will omit layer number l and replace h̃lv,i
with h̃v,i for simplicity. h̃v,i contains the semantics modeled by
channel i . Then, we encourage distinguishability of these channel-
wise representations by giving them pseudo labels w.r.t the channel.

Concretely, a label Ỹv,i is given to each h̃v,i , which is set as
the index of channel Ỹv,i = i . Then, a channel discriminator д is
adopted to optimize this classification task. д is parameterized with
ϕ:

P̃v,i = so f tmax
(
дϕ (h̃v,i )

)
, (17)

min
θ,ϕ

Lchannel = −
∑
v ∈V

m∑
i=0

m∑
c=0

1(Ỹv,i = c) log(P̃v,i [Ỹv,i ]). (18)

P̃v,i ∈ Rm+1 denotes the predicted class distribution for embed-
ding h̃v,i , and Lchannel is a cross entropy loss for embedding
classification. д is implemented as a 2-layer MLP, and we train it
end-to-end with feature extractor parameterized by θ . This task

Algorithm 1 Full Training Algorithm
Input: G = {V,A, F}, node labels Y, self-supervision weights

λ1, λ2, λ3, initial model parameter θ , ξ ,ϕ, alternating step
n_step

1: while Not Converged do
2: for step in n_step do
3: Update θ , ξ with gradients to minimize Loss Lnode ;
4: end for
5: Input G to the feature extractor and classifier;
6: Use sampling to get training instances for self-supervision

tasks;
7: Calculating Ledдe ,Lconf orm on feature extractor;
8: Calculating Lchannel with discriminator fϕ following Equa-

tion 18;
9: Calculating Lnode following Equation 5;
10: Update θ , ξ ,ϕ with gradients to minimize Loss Lf ull
11: end while
12: return Learned model parameters θ , ξ

requires each channel to encode distinguishable semantics as well
as being discriminative, hence is helpful for disentanglement.

4.4 Optimization
In experiments, these self-supervisions are applied to all layers
in feature extractor, and are trained in together with the node
classification task. Putting everything together, the full training
objective is implemented as follows:

Lf ull = Lnode + λ1Ledдe + λ2Lconf orm + λ3Lchannel , (19)

in which λ1, λ2, λ3 are weight of each pretext task respectively.
During training, we find that it would be more stable to alterna-

tively optimize on this augmented objective and the vanilla node
classification task. It can be seen as asynchronously adapt classi-
fier to changes in edge disentanglement. We set the number of
alternating steps as n_step and the full optimization algorithm is
summarized in Algorithm 1. From line 2 to line 4, we perform con-
ventional node classification to fine-tune the model. From line 5
to line 6 we process input for conducting pretext tasks. And the
full loss is calculated and optimized from line 7 to line 10. In exper-
iments, n_step is fixed as 5.

5 EXPERIMENT
In this section, we conduct a set of experiments to evaluate the ben-
efits of proposed disentanglement-eliciting self-supervision signals.
We apply them to the model introduced in Section 4, and test it
on 6 real-world graph datasets. To evaluate its flexibility, we also
incorporate the designed edge disentanglement module with other
typical GNN layers to report the improvements. A set of sensitivity
analysis is conducted on weight of self-supervision signals, and a
case study on learned edge distribution is also provided. Particularly,
we want to answer the following questions:
• RQ1 Can the proposed edge disentanglement module with
self-supervision signals improve the downstream task of node
classification?
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• RQ2 Are the designed approach flexible to be applied in to-
gether with different GNN layer variants?

• RQ3 Can the designed self-supervision tasks encourage edge
disentanglement module to capture different relation patterns?

5.1 Experiment Settings
5.1.1 Dataset. We conduct experiments on 6 publicly-available
graph datasets, and their details are given below:
• Cora: Cora is a citation network dataset for transductive learning
setting. It contains one single large graph with 2, 708 papers from
7 areas. Each node has a 1433-dim attribution vector, and a total
number of 13, 264 citation links exist in that graph.

• BlogCatalog: This is a social network dataset crawled from Blog-
Catalog1, with 8, 652 bloggers from 38 classes and 501, 446 friend-
ship edges. The dataset doesn’t contain node attributes. Follow-
ing [24], we attribute each node with a 64-dim embedding vector
obtained from Deepwalk.

• Cora_full: A more complete version of Cora dataset. We filter out
classes with less than 25 instances, and obtain a citation network
of 70 classes with 19, 793 nodes and 146, 635 edges.

• Squirrel and Chameleon: These two datasets [23] are subgraphs
containing web pages in Wikipedia discussing specific topics,
and are typically used as graphs with certain degrees of het-
erophily [40]. Nodes represent web pages and edges are mutual
links between pages. Nodes are categorized into 5 classes based
on the amount of their average monthly traffic. Squirrel contains
5, 201 nodes and 401, 907 edges, while Chameleon contains 2, 277
nodes and 65, 019 edges.

• IMDB: A movie dataset collected by [30]. It contains 4, 780 nodes
each representing a movie, and are divided into three classes
(Action, Comedy, Drama) according to their genre. In total we
have 21, 018 edges.

5.1.2 Baseline. First, we include representative models for node
classification as baselines, which include:
• MLP. AMLPwith one hidden layer is applied as the feature extrac-
tor. This baseline is implemented to show the node classification
accuracy when relation information is not utilized;

• GCN. TwoGCN layers is stacked as the feature extractor. GCN [17]
is a popular spectral GNN variant based on graph Laplacian, and
has been shown to perform well in graphs with high degree of
homophily;

• GraphSage. Two GraphSage layers with mean aggregator are
used as feature extractor. GraphSage is a spatial GNN variant
introduced in [11];

• GIN [34]. It adopts an injective multiset function as the neighbor-
hood aggregator, and is shown to have stronger representation
ability than classical GNN layers. We stack two such layers as
the feature extractor;

• FactorGCN [35] Similar with our motivation, FactorGCN also
targets at disentangling graphs with repsect to latent factors.
However, it is mainly designed for graph-level tasks, and has no
self-supervisions to encourage edge disentanglement. We include
it as a baseline by using it as the feature extractor.

1http://www.blogcatalog.com

We also select two GNN variants from heterophily graph domain,
which are designed to model both inter-class and intra-class edges.
These models may be better in capturing rich relation information,
hence are also included as baselines:
• MixHop. MixHop [1] layer explicitly learns to mix feature repre-
sentations of neighbors at various distances, and uses sparsity
regularization to increase interpretability.

• H2GCN. A specially designed GNN layer proposed in [40] to
work on graphs with high heterophily degrees. It enables more
flexible feature aggregation from neighborhood.

To evaluate the effectiveness of proposed self-supervision signals,
we also comparewith the base architecturewithout self-supervisions,
and denote it as DisGNN_Base.

5.1.3 Configurations. All experiments are conducted on a 64-bit
machine with Nvidia GPU (Tesla V100, 1246MHz , 16 GB memory),
and ADAM optimization algorithm is used to train the models. For
all methods, the learning rate is initialized to 0.001, with weight
decay being 5e-4. Besides, all models are trained until converging,
with the maximum training epoch being 1000.

Alternating step n_step is fixed as 5, and {λ1, λ2, λ3} are set by
grid search in {1e−4, 1e−2, 1, 10, 1e2} for each dataset. Train:eval:test
splits are set to 2:3:5. Unless specified otherwise, such configura-
tions is adopted on all datasets throughout experiments.

5.1.4 Evaluation Metrics. Following existing works in evaluating
node classification [15, 26], we adopt two criteria: classification
accuracy(ACC), and macro-F score. ACC is computed on all testing
examples at once, and F measure gives the harmonic mean of preci-
sion and recall for each class. We calculate F-measure separately
for each class and then report their non-weighted average.

5.2 Node Classification Performance
To answer RQ1, in this section, we compare the performance on
node classification between proposed DisGNN and all aforemen-
tioned baselines. Models are tested on 6 real-world datasets, and
each experiment is conducted 3 times to alleviate the randomness.
The average results with standard deviation are reported in Table 1
and Table 2. From the tables, we make the following observations:

• Our proposed DisGNN consistently outperforms baselines
on all datasets with a clear margin. For example, DisGNN
shows an improvement of 1.71 point in accuracy on Blog-
Catalog, and 1.41 point in accuracy on IMDB compared to
the best-performed baseline respectively.

• Comparing with DisGNN_Base in which self-supervisions
are not adopted, DisGNN also shows a consistent improve-
ment. For example, in terms of accuracy, it improves for 3.67
point on BlogCatalog and 1.72 point on Chameleon.

To summarize, these results show the advantages of introduced
edge disentanglement module and self-supervision signals in terms
of node classification performance. It indicates that through au-
tomatic disentanglement and utilization of multi-relations behind
edges, our approach is better at learning representations on graphs.

5.3 Combination with Different GNN Layers
To answer RQ2, we modify the architecture of DisGNN by re-
placing the message aggregation and node update mechanism in
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Table 1: Comparison of different approaches on downstream task: node classification.

Cora BlogCatalog Cora_full IMDB
Methods ACC F Score ACC F Score ACC F Score ACC F Score
MLP 62.39±0.54 59.24±0.40 28.93±0.14 20.48±0.19 43.26±0.12 32.86±0.05 50.68±0.40 41.72±0.31
GCN 82.25±0.19 80.57±0.26 28.61±0.28 20.35±0.49 53.84±0.18 46.08±0.31 52.26±0.08 47.16±0.36
GraphSage 80.27±0.52 79.11±0.48 29.01±0.21 20.41±0.06 49.06±0.08 39.47±0.32 53.31±0.06 43.38±0.14
GIN 80.39±0.08 78.77±0.13 26.71±1.13 17.75±0.48 45.99±0.10 38.21±0.42 52.47±0.35 45.38±0.46
FactorGCN 82.14±0.18 80.39±0.11 25.35±0.08 17.40±0.10 44.08±0.32 36.60±0.56 54.52±0.11 47.16±0.36
MixHop 82.07±0.17 81.07±0.56 26.18±0.69 17.68±0.94 49.19±0.16 40.66±0.27 54.16±0.20 44.62±0.25
H2GCN 79.58±0.23 78.50±0.14 34.11±0.25 23.21±0.80 55.70±0.03 48.60±0.07 54.72±0.23 44.48±0.57
DisGNN_Base 81.81±0.42 80.47±0.33 32.15±0.26 23.22±0.38 57.20±0.04 50.23±0.14 54.98±0.47 47.02±0.32
DisGNN 83.16±0.48 81.99±0.71 35.82±0.19 23.94±1.04 58.83±0.17 51.13±0.34 56.39±0.14 47.73±0.34

Table 2: Comparison of different approaches ondownstream
task: node classification on two heterophily graphs.

Chameleon Squirrel
Methods ACC F Score ACC F Score
MLP 35.71±0.85 34.59±1.16 25.16±0.51 25.17±0.50
GCN 63.17±0.54 63.04±0.54 51.69±0.18 51.50±0.05
GraphSage 46.45±0.69 46.33±0.41 32.34±0.35 32.53±0.78
GIN 41.50±0.38 41.21±0.34 33.20±0.50 31.67±0.41
FactorGCN 61.56±0.21 61.36±0.20 47.07±0.50 46.80±0.56
MixHop 53.63±0.65 53.40±0.64 39.72±0.54 39.63±0.48
H2GCN 63.48±0.20 63.37±0.14 49.81±0.39 49.90±0.43
DisGNN_Base 62.73±1.15 62.83±0.60 51.48±0.40 51.59±0.43
DisGNN 64.45±0.16 64.39±0.16 52.51±0.24 52.35±0.26

Equation 7 with other GNN variants. Specifially, we test on GCN
and GraphSage layers due to their popularity. Experiments are
randomly conducted for 3 times on Cora, BlogCatalog, IMDB, and
Squirrel. Results w/o SSL signals are both reported in Table 3.

From the result, a consistent improvement can be observed on
these four dataset with both GCN and GraphSage layers. It is shown
that the proposed approach is effective when incorporated into
other GNN variants, validating the generality and advantage of
proposed edge disentanglement.

Table 3: Node classification accuracy when incorporating
proposed edge disentanglement with different GNNs.

Cora BlogCatalog IMDB Squirrel
GCN_Base 82.21±0.36 33.74±0.21 55.23±0.48 51.42±0.32

DisGNN-GCN 83.89±0.62 35.09±0.57 57.06±0.67 52.62±0.29
Sage_Base 79.61±0.06 33.16±0.35 54.21±0.19 32.67±0.36

DisGNN-Sage 81.17±0.18 34.61±0.44 55.63±0.27 34.49±0.27

5.4 Comparison with Different SSL Signals
To further evaluate the effectiveness of our proposed SSL signals, we
compare it with three other typical self-supervision tasks: Masked
attribute prediction [12], PairwiseDistance [13], and Context pre-
diction [12]. These tasks are implemented on the DisGNN_Base,
with the same optimization and configuration as DisGNN. Their
weights are found via grid search in {1e − 4, 1e − 2, 1, 10, 1e2, 1e3}.

Comparisons are summarized in Table 4. We can observe that
DisGNN is the most effective approach across these settings. This

Chame.

Squirrel

Cora
BlogC.

Cora_full

IMDB
0

20

40

60

80

Ac
cu

ra
cy

Accuracy on datasets with different module design
MLP
GO
DP

Figure 3: Influence of edge disentanglement module design.

result validates our proposal of utilizing latent relations behind
edges to improve the learning on graphs. Note that DisGNN can
also be utilized in together with these SSL tasks, but we leave that
for the future as it is not the focus of this work.

5.5 Ablation Study
In this section, we conduct a series of ablation studies and sensitivity
analysis to evaluate the influence of each component in DisGNN.

5.5.1 Edge Disentanglement Module Design. Different choices of
edge-modeling mechanism could influence the representation abil-
ity of it in capturing relations [16]. To evaluate its significance, we
tested two other widely-used designs in replace of the MLP-based
disentanglement module used in Equation 6:
• Single-layer neural network (GO): uses a linear layer on the
concatenation of node pair representations:

êl,iv,u = siдmoid
(
(al,i )T

(
[Wl,i

1 hlv | |W
l,i
1 hlu ]

) )
(20)

• Dot-product (DP): uses inner-production on node embeddings to
obtain pair-wise similarity:

êl,iv,u = siдmoid
( (
Wl,i

1 hlv
)T

·Wl,i
1 hlv

) )
(21)

Experiments are randomly conducted for 3 times, and all other
configurations remained unchanged. The results are summarized
in Figure 3. From the result, we can observe that in most cases,
MLP-based disentanglement performs best while DP-based dis-
entanglement performs worst. Generally, the performance gap is
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Table 4: Comparison with different SSL signals.

Cora BlogCatalog IMDB Chameleon
Methods ACC F Score ACC F Score ACC F Score ACC F Score
DisGNN_Base 81.81±0.42 80.47±0.33 32.15±0.26 23.22±0.38 54.98±0.47 47.02±0.32 62.73±1.15 62.83±0.60
+MaskedAttr 82.70±0.45 81.41±0.25 34.47±0.21 23.52±0.69 53.54±0.24 47.27±0.40 64.23±0.53 64.20±0.54
+DistancePred 82.74±0.36 81.37±0.28 34.72±0.16 23.53±0.51 56.07±0.24 47.03±0.59 63.87±0.25 63.63±0.29
+ContextPred 82.81±0.57 81.52±0.57 35.13±0.19 23.43±0.31 55.21±0.51 46.43±0.50 62.05±0.36 61.83±0.53
DisGNN 83.16±0.48 81.99±0.71 35.82±0.19 23.94±1.04 56.39±0.14 47.73±0.34 64.45±0.16 64.39±0.16

clearer on large graphs like Cora_full, and smaller on small gr-
pahs like Chameleon. We attribute this phenomenon to the greater
expressive capacity of MLP over GO and DP.
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Figure 4: Parameter Sensitivity on Cora. λ1, λ2, λ3 control the
weight of each SSL signal respectively.

5.5.2 SSL Signal Weight. In this part, we vary the hyper-parameter
λ1, λ2, λ3 to test DisGNN’s sensitivity towards them. These three
values control the weights of each proposed SSL signal respectively.
To keep simplicity, we keep all other configurations unchanged,
and adopt only one SSL task at a time. Its corresponding λ varies in
{1e − 6, 1e − 4, 1e − 2, 1, 10, 1e2, 1e3}, and experiments are randomly
conducted for 3 times on Cora.

From the result shown in Figure 4, we can observe that on Cora,
increasing weight of Edge Recovery or Channel Difference is ben-
eficial within the range [0, 1], and further increasing that would
result in performance drop. While for Label Conformity, its benefits
is clear with a larger weight like with the range [1e2, 1e3].

5.6 Case Study
In most cases, there is no ground-truth for disentangled factors
behind edges in real-world graphs, making the direct evaluation of
edge disentanglement difficult. To provide insights into the behav-
ior of DisGNN and partly answer RQ3, we conduct a case study
and compare the distribution of disentangled edges w/o proposed
self-supervision tasks. Concretely, Pearson correlation coefficients
among edges captured by each channel are shown in Figure 5.

(a) DisGNN_Base (b) DisGNN

Figure 5: Correlation coefficient among edges captured by
different channels on Cora, obtained from the first layer.

Through comparing with DisGNN_base, we can see that when
proposed SSL tasks are used, a clear grid-like structure can be
observed from correlation among channels. In Figure 5(b), the top
four channels and the bottom four channels have little correlation
as they focus on homo-edges and hetero-edges respectively. Within
these two groups, we can further observe that channel 1, 2 hold a
higher correlation with each other, similar is the case of channels
4, 6, and 7. While channel 5 has a low correlation towards other
channels within the same group. This result shows that although
they all model hetero-edges, they still capture distinct patterns.

6 CONCLUSION
In this work, we studies the discovering and utilizing of latent re-
lations behind edges to facilitate node classification, one typical
task on learning from graphs. An edge disentanglement module
is designed and incorporated into modern GNN layers, and three
disentanglement-eliciting SSL signals are proposed to optimize
jointly with node classification task. Experiments validate the ad-
vantage of the proposed DisGNN, showing the benefits of exploiting
latent multi-relation nature of edges.

In the future, works can be done to discover more heuristics
promoting the automatic edge disentanglement. Due to the lack of
explicit supervision, it is remains an open problem. Furthermore,
the benefits of disentanglement towards other graph learning tasks,
like edge-level or graph-level tasks, is also a promising direction.
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