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ABSTRACT
The logged feedback for training recommender systems is usually

subject to selection bias, which could not reflect real user preference.

Thus, many efforts have been made to learn the de-biased recom-

mender system from biased feedback. However, existing methods

for dealing with selection bias are usually affected by the error

of propensity weight estimation, have high variance, or assume

access to uniform data, which is expensive to be collected in prac-

tice. In this work, we address these issues by proposing Learning

De-biased Representations (LDR), a framework derived from the

representation learning perspective. LDR bridges the gap between

propensity weight estimation (WE) and unbiased weighted learning

(WL) and provides an end-to-end solution that iteratively conducts

WE and WL. We show LDR can effectively alleviate selection bias

with bounded variance. We also perform theoretical analysis on the

statistical properties of LDR, such as its bias, variance, and general-

ization performance. Extensive experiments on both semi-synthetic

and real-world datasets demonstrate the effectiveness of LDR.
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1 INTRODUCTION
Recommender systems (RS) aim to infer user preferences from

logged feedback and recommend items that users might like. The

ideal logged feedback should be collected by randomly and uni-

formly exposing items to users [6, 36, 37, 50]. However, due to

the feedback loop in RS, the exposures are affected by some un-

derlying mechanisms, such as the past recommendation policy
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Figure 1: The closed feedback loop in RS. Model Selection Bias: The
exposure of items in the serving stage is not uniform but is affected
by the previous systems, which control what items to show. User
Selection Bias: users may click some items more than others (even
with a bias-free random recommender), which means that a few
items receive more feedback while the majority have fewer ones.

and user-selection. Thus, the feedback is missing-not-at-random

(MNAR) [36, 37]. As shown in Figure 1, if the observed feedback is

collected under the most popular policy, i.e., a policy that always

recommends popular items to all users, the probability of exposure

for popular items may be large. Thus, selection bias can exacerbate

popularity bias, causing not relevant but popular items to be shown.

In addition, due to user self-selection, users tend to give feedback

to items they like [34, 37]. Thus, the observed logged feedback

can be substantially higher than those not observed [37]. Previ-

ous studies [34, 37] also have shown that directly learning from

biased feedback will lead to a biased estimation of users’ true pref-

erences. To address the selection bias issue, many efforts have been

taken [4–6, 36, 37]. Among them, causal inference methods such as

inverse propensity score (IPS) [36, 37] and doubly robust (DR) meth-

ods [35, 43] come with strong theoretical insights. Nevertheless,

we find these methods have several limitations. First, accurately

estimating the propensity score is critical for these methods; while

correctly estimating propensity score is typically very difficult as

model misspecification often occurs in real-world settings [34].

Second, those methods essentially follow a pipelined two-step para-

digm as shown in Figure 2 (a): (1) conducting the weight estimation

(WE); (2) using the estimated weights to do the unbiased weighted

learning (WL). However, the WE process completely disregards the

need to improve the performance of unbiased WL. Thus they may

not give the optimal solution since the unbiased WL performance

is sensitive to the pre-estimated weight and there is a gap between

WE and WL due to the divergence of optimization objectives in the

two separated stages. Third, it is shown that IPS-based methods

have large variance [36, 37], especially when there exists severe

selection bias with the large item space.

More recently, several works try to address selection bias with

various machine learning methods such as meta-learning [5, 44],

domain adaptation [4], knowledge distillation [24], information

bottleneck [25, 45]. Despite their promising performance, in ad-

dition to MNAR feedbacks, most of them [4, 5, 23, 24, 44] need
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unbiased uniform feedback, i.e., feedbacks collected by randomly

displaying items to users; while collecting uniform feedback is

expensive and impractical in real-world as it hurts users’ experi-

ences and might cause significantly loss for domains like RS in

healthcare. In addition, these methods [4, 24, 25, 45] do not have

strong theoretical justification for their unbiasedness and estima-

tion variance compared to causal inference-based methods, e.g.,

IPS and DR. Motivated by the discussion above, in this paper, we

investigate whether one can effectively address the selection bias

issue without any unbiased uniform feedback while still theoret-

ically quantifying the trade-off between the estimation bias and

variance. Our key idea is to alleviate the divergence between WE

and unbiased WL in the causal inference methods. However, alle-

viating this divergence is non-trivial, and we are faced with two

main challenges: (i) How to bridge the gap caused by different

optimization objectives? Existing causal inference strategies for

unbiased learning fall into a two-stage paradigm. The optimiza-

tion gap between the two steps significantly limits their ability to

generalize to downstream unbiased performance; and (ii) How to

achieve a good bias-variance trade-off and theoretically guarantee

the generalization performance when we alleviate the divergence

between WE and unbiased WL steps?

To address these challenges, we propose an effective framework

named Learning De-biased Representations (LDR). Specifically, for

the first challenge, LDR learns de-biased representations of user-

item pairs by simultaneously conducting WE and WL in an end-to-

end process as shown in Figure 2 (b). For the second challenge, an

adversarial discriminator is trained with representation learning

to effectively bound the estimation variance. We also note that the

adversarial representation learning has been applied broadly in

fairness [13], causal inference [20] and domain adaptation [15]. In

contrast, in this paper, we adopt adversarial representation learn-

ing on the unbiased recommendation, demonstrating that mini-

max representation learning is effective for reducing estimation

variance. Technically, the key differences of our framework from

them [13, 15, 20, 26] are that they do not weight/reweight source

risk and do not consider the bias and variance. LDR joints strength

from representation learning, weight estimation and representa-

tion adaptation, resulting in a principled framework that better

addresses the challenges for unbiased recommendation. We provide

theoretical guarantees for LDR and quantify the trade-off between

the bias and variance. The main contributions of this research are:

• We propose a principled learning framework (LDR), which can

alleviate the divergence between WE and unbiased WL objec-

tives and shed a new representation learning perspective on the

unbiased recommendation for the first time;

• We theoretically analyze the statistical properties and show that

our LDR framework can achieve the unbiased estimation with

bounded variance and have better generalization performance;

• Extensive experiments on both semi-synthetic and real-world

datasets show that our LDR can outperform existing unbiased

algorithms in the presence of selection bias for recommendation.

2 RELATED WORK
Selection Bias Correction. Selection bias occurs when a data

sample is not representative of the underlying data distribution. To

alleviate the selection bias in recommendation, inverse propensity

score (IPS)-based methods [36, 37, 54] from causal inference [10, 40,

51] are adopted. The doubly robust (DR) methods [43, 44] further

combine the propensity score estimation and the error imputation

model to reduce the variance of IPS. Although these IPS and DR

methods can in theory get an unbiased model by reweighting each

sample, they heavily rely on the quality of the data imputation

model or the propensity estimation model; while it is impossible to

know the true propensity score or imputation model. In addition,

previous works [12, 41] have shown that the propensity-based

estimators suffer from very large variance issue [33, 41].

To avoid estimating the propensity score, some recent meth-

ods have been proposed and they are inspired by various machine

learning techniques such as meta learning [5, 44], domain adap-

tation [4], knowledge distillation [24], and transfer learning [23].

The high-level idea for these methods is utilizing uniform data to

guide the learning of debiasing parameters. Although these meth-

ods achieve promising performance, collecting the uniform data is

extraordinarily expensive in practice. While some debiasing meth-

ods [25, 45, 50] do not assume access to uniform data, they lack

theoretical unbiasedness and variance guarantees. In this paper, we

focus on developing a theoretically unbiased learning framework

to deal with selection bias in recommendation without any uniform

data. Our insight that iteratively conducting WE and unbiased WL

without any uniform data is different from the above methods.

The selection bias issue also comes up in other areas, such as

off-policy learning [46, 49] and counterfactual learning [17, 20, 21,

48, 52]. However, off-policy learning operates on interactive logs

and focuses on maximizing the reward and counterfactual learning

focus on the causal effect estimation, which are different from the

unbiased ranking task that we consider.

Adversarial Representation Learning. Our work is also related

to but different from current adversarial representation learning

methods. The adversarial formulation has been applied broadly

in fairness [13], unsupervised domain adaptation [15], and causal

inference [8, 20]. We formulate this on unbiased recommendation,

and to demonstrate that minimax optimization is effective for solv-

ing the selection bias, both theoretically and empirically. Among

the methods mentioned above, the unsupervised domain adaptation

(UDA) methods called domain-invariant feature learning [1, 27] are

most similar to ours. Our approach further develops this approach

to avoid the high estimation variance. The main difference between

UDA from ours is that UDA methods do not deal with missing data

and associated challenges and do not consider the technique of

re-weighting, while we are interested in re-weighting the objective

function to alleviate selection bias with lower variance.

3 PRELIMINARIES
Let U be a set of users, and I be a set of items. X𝑢 and X𝑖 are
two feature spaces of dimensions 𝑑𝑢 and 𝑑𝑖 , respectively. We use

x𝑢 ∈ X𝑢 and x𝑖 ∈ X𝑖 to denote the features of a user 𝑢 and an item

𝑖 , respectively. Typically, x𝑢 and x𝑖 are the one-hot encodings of
user and item IDs, respectively. The objective for recommendation

is to estimate a parametric function ℎ𝜔 (x𝑢 , x𝑖 ) : X𝑢 × X𝑖 → Y
that maps the user and item features to a feedback 𝑦 ∈ Y, where 𝜔
denotes the learning parameters of ℎ. Generally, we are given an
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Figure 2: (a) The pipelined and static process in IPS and DR, which firstly conducts weight estimation (WE) and then plugs it into the weighted
learning (WL). (b) The circle and iterative process in our LDR (c) Proposed LDR for unbiased learning under selection bias. RA denotes proposed
representation adaptation, and dashed lines are not back-propagated through.

Figure 3: Rating distributions of factual (training) 𝑝 (𝑦) and coun-
terfactual (testing) 𝑞 (𝑦) on Yahoo! R3 and Coat datasets.

observational dataset D𝑝 of 𝑁 triples of user, item, and feedback,

i.e., D𝑝 ≜ {𝑥 (𝑛)𝑢 , 𝑥
(𝑛)
𝑖

, 𝑦 (𝑛) }𝑁
𝑛=1

, and our task is to learn ℎ𝜔 with

D𝑝 . For brevity, we drop the superscript 𝑛 in what follows.

3.1 Unbiased Recommendation
Generally, the observational samples in D𝑝 suffer from selection

bias due to various issues, e.g., the set of items exposed to users is

affected by the past recommendation policy and users tend to give

feedback to items they like. Thus, we can treat (x𝑢 , x𝑖 , 𝑦) ∈ D𝑝

as sampled from a generative process that depends on user self-

selection and past recommendation policy [37], i.e., 𝑝 (x𝑢 , x𝑖 , 𝑦) =
𝑝 (x𝑢 )𝑝 (x𝑖 |x𝑢 )𝑝 (𝑦 |x𝑢 , x𝑖 ), where 𝑝 (x𝑢 ) is the uniform distribution

of users. 𝑝 (x𝑖 |x𝑢 ) depends on user self-selection along with the

underlying past recommendation policy, which is also called the

exposure probability 𝑝 (𝑂𝑢𝑖 ) in [36, 37, 43] and is unknown ahead

of time. Ideally, we are interested in learning unbiased ℎ𝜔 with

ideal risk function under uniform exposure distributions as follows:

L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) = E𝑞 (x𝑢 ,x𝑖 ,𝑦) [ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) ], (1)

where𝑞(x𝑢 , x𝑖 , 𝑦) = 𝑝 (x𝑢 )𝑝 (x𝑖 )𝑝 (𝑦 |x𝑢 , x𝑖 ) is the counterfactual dis-
tribution and ℓ (.) is the loss associated with each sample pair. Note

that the ideal loss function is independent of the conditional distri-

bution 𝑝 (x𝑖 |x𝑢 ). That is, we calculate the sample-wise loss over the

marginal uniform distributions of users and items, 𝑝 (x𝑢 ) = 1

|U |
and 𝑝 (x𝑖 ) = 1

| I | and feedbacks, rather than their joint distribu-

tion 𝑝 (x𝑢 , x𝑖 ) = 𝑝 (x𝑢 )𝑝 (x𝑖 |x𝑢 ). This is because de-biasing recom-

mender aims to predict feedback under alternativematches different

from the ones observed in the MNAR data. In other words, we want
our estimated ℎ𝜔 to generalize well for all possible pairs of users and
items, not just the pairs that are frequently matched in the observa-
tional data. However, the empirical estimate of true risk in Eq. (1) is

inaccessible as we only can use theMNAR dataD𝑝 for the empirical

estimation. Directly learning ℎ𝜔 with standard supervised loss on

D𝑝 could suffer from selection bias due to the discrepancy between

the factual distribution 𝑝 (x𝑢 , x𝑖 , 𝑦) = 𝑝 (x𝑢 )𝑝 (x𝑖 |x𝑢 )𝑝 (𝑦 |x𝑢 , x𝑖 ) in
the training MNAR data, and the counterfactual testing distribu-

tion 𝑞(x𝑢 , x𝑖 , 𝑦) = 𝑝 (x𝑢 )𝑝 (x𝑖 )𝑝 (𝑦 |x𝑢 , x𝑖 ) to which the model will

be practically applied. To verify it, we plot the marginal distribu-

tions of 𝑝 (𝑦) and 𝑞(𝑦) on two datasets for unbiased recommenda-

tion [28, 37] in Figure 3, which shows significant difference between

𝑝 (𝑦) and 𝑞(𝑦). Mathematically, under this distribution discrepancy,

standard empirical risk minimization L𝑠𝑙 over data D𝑝 is not an

unbiased estimate of the true risk L𝑖𝑑𝑒𝑎𝑙 (𝜔) [37]:
ˆL𝑠𝑙 (𝜔 ) ≃ E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) ] ≠ L𝑖𝑑𝑒𝑎𝑙 (𝜔 ),

where
ˆL𝑠𝑙 (𝜔 ) =

1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) . (2)

Problem Definition: With the definitions above, the studied prob-

lem can be defined as: Given only MNAR dataset D𝑝 , build an unbi-
ased estimator for the ideal loss and learn the parameterized function
ℎ𝜔 (x𝑢 , x𝑖 ) to improve unbiased recommendation performance.

4 LEARNING DE-BIASED REPRESENTATION
As discussed in § 3, directly learning ℎ𝜔 (x𝑢 , x𝑖 ) via the empirical

risk minimization is infeasible as the empirical risk in Eq. (1) is

inaccessible. To address this challenge, we propose a new learning

framework. The key idea of our framework is iteratively conducting

WE and unbiased WL in a seamless manner (see Fig. 2 (b)), and

alleviating the variance induced in the latent representation space.

An illustration of our LDR is shown in Figure 2 (c), which is

composed of an embedding function 𝑓𝜃 (x𝑢 , x𝑖 ) = z𝑢𝑖 , a weighted
learning (WL) component, a representation adaptation (RA) com-

ponent and a weight estimation (WE) component. The embedding

function 𝑓𝜃 maps samples into a latent representation space. WE

takes the representation as input to estimate the sample weights,

which is treated as density ratio to alleviate selection bias. RA adapts

the indistinguishable representations to alleviate the learning vari-

ance. WL is for the final unbiased prediction of recommendation.

Next, we give the details of LDR and theoretically show that it can

conduct unbiased estimation without knowing propensity scores

and has low variance dynamically.

4.1 De-biased Weighted Learning
As mentioned above, the main challenge for unbiased recommenda-

tion with selection bias is that the ideal risk function L𝑖𝑑𝑒𝑎𝑙 (𝜔) =
E𝑞 (x𝑢 ,x𝑖 ,𝑦) [ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦)] is defined over the target distribution

𝑞(x𝑢 , x𝑖 , 𝑦) where the counterfactual feedback 𝑦 is not observed.

Even through Monte Carlo sampling, we cannot directly estimate

L𝑖𝑑𝑒𝑎𝑙 (𝜔) via the empirical risk under𝑞(x𝑢 , x𝑖 , 𝑦). Thus,MF-IPS [37]

adopts inverse propensity weighting:

L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) = E𝑞 (x𝑢 ,x𝑖 ,𝑦) [ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) ] (3)

=

∫
𝑞 (x𝑢 , x𝑖 , 𝑦)
𝑝 (x𝑢 , x𝑖 , 𝑦)

ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦)𝑝 (x𝑢 , x𝑖 , 𝑦)𝑑x𝑢𝑑x𝑖𝑑𝑦

= E𝑝 (x𝑢 ,x𝑖 ,𝑦) [
𝑞 (x𝑢 , x𝑖 )
𝑝 (x𝑢 , x𝑖 )

ℓ (ℎ𝜔 (x𝑖 , x𝑖 ), 𝑦) ] = L𝑖𝑝𝑠 (𝜔 ),

where L𝑖𝑝𝑠 (𝜔) is an unbiased estimator of the ideal risk L𝑖𝑑𝑒𝑎𝑙 (𝜔).
Note that DR [43] is also built on inverse propensity weighting

but has an additional imputation model. Without loss of generality,



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Teng Xiao, Zhengyu Chen, and Suhang Wang

we focus on IPS in this paper. Then, along with weight
𝑞 (x𝑢 ,x𝑖 )
𝑝 (x𝑢 ,x𝑖 ) ≜

𝑤 (x𝑢 , x𝑖 ), an unbiased estimator of L𝑖𝑝𝑠 (ℎ) can be obtained by re-

weighting the empirical risk under MNAR dataset D𝑝 as follows:

ˆL𝑖𝑝𝑠 (𝜔 ) =
1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

𝑤 (x𝑢 , x𝑖 )ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) . (4)

This idea has been applied to many algorithms [36, 37, 43, 44, 48, 54].

However, there are two limitations: (1) they all follow a two-step

pipe-lined process (see Figure 2 (a)), which firstly estimates propen-

sity weights and then plugs them into the model learning. In this

two-step paradigm, the WE step is decoupled from the WL step. In

particular,𝑤 (x𝑢 , 𝑥𝑖 ) is estimated without accommodating any form

of adaptation that is potentially useful for future unbiased learning

on the recommendation task. The apparent divergence between the

two steps would result in sub-optimal unbiased learning (2) The

estimated importance weight𝑤 (x𝑢 , x𝑖 ) can be very large, resulting

in a large variance and sub-optimal estimation [41, 43, 47].

4.2 Representation Learning
To address the limitations mentioned above, we firstly propose to

leverage an embedding function to project the high-dimensional

input (x𝑢 , x𝑖 ) into a lower-dimensional representation space Z.

Our key insights are: (1) Dynamically embedding unbiased learning

into the end-to-end process of representation learning can make the

final representations both discriminative and unbiased. As a conse-

quence, this more advanced the end-to-end solution can gradually

improve weight estimation and reduce the bias of model learning

in a seamless manner; (2) By mapping regions of low density in

(X𝑢 ,X𝑖 ) into regions of higher density in Z, the representations

are made more compact, and we expect that the weight estimation

will be much easier; and (3) it paves us a way to further reduce the

estimation variance via the representation adaptation in § 4.3.

Specifically, we apply a transformation of data rather than di-

rectly model𝑤 (x𝑢 , x𝑖 ) like IPS. Let 𝑓𝜃 : X𝑢 ×X𝑖 →Z ∈ R𝑑𝑧
be the

transformation function, where 𝑑𝑧 is the reduced dimension with

𝑑𝑧 ≪ 𝑑𝑢 and 𝑑𝑖 . Then z𝑢𝑖 = 𝑓𝜃 (x𝑢 , x𝑖 ) is the transformed random

variable, whose randomness comes from (x𝑢 , x𝑖 ) exclusively. Given
this transformation, we can estimate the weight𝑤 (x𝑢 , x𝑖 ) on the la-

tent space. Specifically, the feasibility of applying the latent weight

estimation can be proved by the following theory:

Theorem 4.1. Given an invertible and deterministic mapping 𝑓𝜃 :

(x𝑢 , x𝑖 ) ↦→ z𝑢𝑖 , let 𝑝 (z𝑢𝑖 ) and 𝑞(z𝑢𝑖 ) be the probability density
functions induced by 𝑝 (x𝑢 , x𝑖 ), 𝑞(x𝑢 , x𝑖 ), and 𝑓𝜃 . Then we have

𝑤 (x𝑢 , x𝑖 ) =
𝑞 (x𝑢 , x𝑖 )
𝑝 (x𝑢 , x𝑖 )

=
𝑞 (𝑓𝜃 (x𝑢 , x𝑖 ) )
𝑝 (𝑓𝜃 (x𝑢 , x𝑖 ) )

=
𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

= 𝑤 (z𝑢𝑖 ) . (5)

We provide the proof in Appendix A.1. Theorem 4.1 contains our

preliminary study of when and why the representation learning

is expected to work. This theorem shows that, for any determin-

istic and invertible mapping 𝑓𝜃 (x𝑢 , x𝑖 ), we can utilize the latent

representation z𝑢𝑖 to conduct the weight estimation step. Note that

invertible and deterministic are common and widely used assump-

tions in the literature [38, 39, 42] as a basic condition for analysis.

Importantly, ensuring deterministic and invertibility is feasible for

many recommendation backbones such as the matrix factorization

collaborative filtering (MCF) [7, 9, 22, 31] and neural collaborative

filtering (NCF) [18] with user and item one-hot embeddings. We

empirically demonstrate that representation learning governs the

success of our methods on MCF and NCF in § 5. Given the repre-

sentation learning, the unbiased estimator in Eq. (4) now can be

learned on the latent representation spaceZ as follows:

L𝑤 (𝜔,𝜃 ) = E𝑝 (x𝑢 ,x𝑖 ,𝑦), z𝑢𝑖=𝑓𝜃 (x𝑢 ,x𝑖 ) [𝑤 (z𝑢𝑖 )ℓ (ℎ𝜔 (z𝑢𝑖 ), 𝑦) ] (6)

≃ 1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

𝑤 (z𝑢𝑖 ) ℓ (ℎ𝜔 (𝑓𝜃 (x𝑢 , x𝑖 ) ) , 𝑦) = L̂𝑤 (𝜔,𝜃 ),

where 𝑤 (z𝑢𝑖 ) = 𝑤 (𝑓 ¯𝜃 (x𝑢 , x𝑖 )) is the empirical estimated weight.

Thus, different from IPS and DR [36, 37, 43], optimizing this ob-

jective enables us to conduct the unbiased weighted learning in

a dynamic and seamless way: at the 𝑡-th iteration. after𝑤 (z𝑢𝑖 ) =
𝑤 (𝑓 ¯𝜃𝑡 (x𝑢 , x𝑖 )) is estimated, 𝜃𝑡 will be updated to 𝜃𝑡+1 by optimiz-

ing Eq. (6), and the current
¯𝜃𝑡 will move to the next

¯𝜃𝑡+1; then,
we estimate a new set of weights𝑤 (z𝑢𝑖 ) = 𝑤 (𝑓 ¯𝜃𝑡+1 (x𝑢 , x𝑖 )). A key

contribution of our work is exactly this dynamic interaction in the

training processes of weighted learning and weight estimation.

4.3 Weight Estimation
In the last subsection, we have demonstrated the importance of rep-

resentation learning. Thus, with the optimization problem of Eq. (6),

we expect the interaction in the training can boost the performance

of both weighted learning and weight estimation. However, we do

not know the optimal weight𝑤 (z𝑢𝑖 ) on the latent space. Therefore,

another challenge for weight estimation is how to design an practi-

cal algorithm. We address this by first giving the following theory

of the weight estimation on the latent representation space.

Theorem 4.2. Given 𝑓𝜽 : (x𝑢 , x𝑖 ) ↦→ z𝑢𝑖 . Let 𝑝 (z𝑢𝑖 ) and 𝑞(z𝑢𝑖 )
be the densities induced by 𝑝 (x𝑢 , x𝑖 ), 𝑞(x𝑢 , x𝑖 ), and 𝑓𝜽 . Let D𝑞 be n
i.i.d pairs from 𝑞(x𝑢 , x𝑖 ) = 1

𝑁
· 1

𝑀
. If 𝑤 (x𝑢 , x𝑖 ) = 𝑊𝐸 (D𝑝 ,D𝑞)

is an empirical unbiased estimator for 𝑤 (x𝑢 , x𝑖 ), then 𝑤 (z𝑢𝑖 ) =

𝑊𝐸 (𝑓𝜽 (D𝑝 ), 𝑓𝜽 (D𝑞)) is also an unbiased estimator for𝑤 (x𝑢 , x𝑖 ).

We provide the proof in Appendix A.2. This theorem shows that

we can estimate optimal weight𝑤 (z𝑢𝑖 ) in Eq. (6) by using the finite

sample D𝑝 drawn from 𝑝 (x𝑢 , x𝑖 ) and D𝑞 randomly drawn from

𝑞(x𝑢 , x𝑖 ) which is the known uniform distribution with 𝑝 (x𝑢 ) =
1

|U | and 𝑝 (x𝑖 ) = 1

| I | . Note that we do not require the unbiased

uniform feedback 𝑦 in 𝐷𝑞 and only need random unlabeled user-

item pairs (𝑥𝑢 , 𝑥𝑖 ). In the following, we introduce the details of

the weight estimation strategies. We adopt a discriminative weight

estimation method [3], also known as the likelihood ratio trick, that

has been applied across generative models [2] and reinforcement

learning [14]. However, different from them, we provide theoretical

analysis and analyze how estimated weights impact the bias and

generalization performance. To get the empirical weight 𝑤 (z𝑢𝑖 ),
we use a learned binary classifier, which infers whether user-item

pairs came from the factual distribution 𝑝 (x𝑢 , x𝑖 ) or counterfactual
𝑞(x𝑢 , x𝑖 ). Specifically, we set the label of the data inD𝑞 to be 0 and

the label of the data in D𝑝 to be 1, and fit a classifier 𝑐𝜙 (z𝑢𝑖 ) by
solving the following objective:

L𝑐 (𝜙 ) = Ez𝑢𝑖=𝑓𝜃 (x𝑢 ,x𝑖 ),(x𝑢 ,x𝑖 )∼𝑝 (x𝑢 ,x𝑖 ) [log𝜎 (𝑐𝜙 (z𝑢𝑖 ) ) ]+
Ez𝑢𝑖=𝑓𝜃 (x𝑢 ,x𝑖 ),(x𝑢 ,x𝑖 )∼𝑞 (x𝑢 ,x𝑖 ) [log𝜎 (−𝑐𝜙 (z𝑢𝑖 ) ) ] (7)

≃ 1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

[log𝜎 (𝑐𝜙 (z𝑢𝑖 ) ) ] +
1

𝑁 ′

∑︁
(x𝑢 ,x𝑖 ) ∈D𝑞

[log𝜎 (−𝑐𝜙 (z𝑢𝑖 ) ) ],

where 𝜎 (𝑥) = 1/(1 + exp(−𝑥)) and𝑤 (z𝑢𝑖 ) = 𝑤 (𝑓 ¯𝜃 (x𝑢 , x𝑖 )). Given
the optimized 𝑐𝜙 (z𝑢𝑖 ), we can use Bayes’ rule to get the empirical
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weight estimation𝑤 (z𝑢𝑖 ). The key idea is that probabilities 𝑞(z𝑢𝑖 )
and 𝑝 (z𝑢𝑖 ) are related to the classifier probabilities via Bayes’ rule:

𝑤 (z𝑢𝑖 ) =
𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

=
𝑟 (z𝑢𝑖 |𝑑 = 0)
𝑟 (z𝑢𝑖 |𝑑 = 1) =

𝑟 (𝑑 = 1)𝑟̂ (𝑑 = 0 |z𝑢𝑖 )
𝑟 (𝑑 = 0)𝑟̂ (𝑑 = 1 |z𝑢𝑖 )

, (8)

where 𝑟 is a distribution over (z𝑢𝑖 , 𝑑) ∈ Z × {0, 1} and 𝑑 denotes

which world z𝑢𝑖 belongs. Given Eq. (8), the weight 𝑤 (z𝑢𝑖 ) can
be decomposed into two parts. The former

𝑟 (𝑑=1)
𝑟 (𝑑=0) is a constant

and can be estimated with the sample sizes of factual and counter-

factual worlds as
𝑁

|U |× |I | . The second part
𝑟̂ (𝑑=0 |z𝑢𝑖 )
𝑟̂ (𝑑=1 |z𝑢𝑖 ) is the ratio

of counterfactual to factual that can be directly estimated with

the probabilistic predictions of the logistic regression classifier:

𝑟̂ (𝑑=0 |z𝑢𝑖 )
𝑟̂ (𝑑=1 |z𝑢𝑖 ) =

1−𝜎 (𝑐𝜙 (z𝑢𝑖 ) )
𝜎 (𝑐𝜙 (z𝑢𝑖 ) ) . With the weights estimated in this way,

we can conduct unbiased weighted learning in Eq. (6), and the bias

of applying a classifier for empirical weight learning can be proved:

Theorem 4.3. Let𝑤𝑚 ≥ 0 be the maximum weight𝑤 (z𝑢𝑖 ) of any
representation z𝑢𝑖 . Then for any z𝑢𝑖 s.t. 𝑃 (𝑑 = 1 | z𝑢𝑖 ) ≠ 0, the bias
of the unbiased weighted learning is bounded by:

| L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) − L̂𝑤 (𝜔,𝜃 ) | ≤
1

2

E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (ℓ (ℎ𝜔 (z𝑢𝑖 ), 𝑦)
2 ]

+ 1

2

E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (𝑤𝑚 + 1)4 (𝑟 (𝑑 = 1 |z𝑢𝑖 ) − 𝑟̂ (𝑑 = 1 |z𝑢𝑖 ) )2 ] . (9)

We provide the proof in Appendix A.3. Since the first term is not

related to the classifier, we can focus on the second term. From this

upper bound, we have two observations: (1) finding a good estimate

𝑟̂ (𝑑 = 1|z𝑢𝑖 ) for 𝑟 (𝑑 = 1|z𝑢𝑖 ) can effectively reduce the bias; (2) A

smaller𝑤𝑚 leads to a smaller bias of the estimated unbiased loss.

4.4 Representation Adaptation
Through representation learning and weight estimation, we can

make unbiased weighted learning more tractable. However, as men-

tioned earlier, the importance weights are not explicitly bounded,

which might result in large variance [36, 37]. In addition, as shown

in Theorem 4.3, bounded 𝑤 (z𝑢𝑖 ), i.e., smaller 𝑤𝑚 , can also lead

to smaller bias. Thus, we first give the following upper bound for

the variance of the learning in Eq. (6), which paves us a way to

minimize the learning variance and bound the𝑤 (z𝑢𝑖 ).

Theorem 4.4. Let 𝑑𝛼 (𝑞∥𝑝) = 2
𝐷𝛼 (𝑞 ∥𝑝 ) = (

∫
𝑥

𝑞 (𝑥 )𝛼
𝑝 (𝑥 )𝛼−1 )

1

𝛼−1 be the
Rényi divergence [32] between 𝑝 and 𝑞. Then, the variance of the
unbiased weighted learning objective L𝑤 (𝜔, 𝜃 ) is bounded by:

Var[L𝑤 ] = E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (L𝑤 )2 ] − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [L𝑤 ] )2 ≤ (10)

𝑑𝛼+1 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [L𝑤 ] )
𝛼−1
𝛼 − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [L𝑤 ] )2

∀𝛼 > 0, where we denote L𝑤 (𝜔, 𝜃 ) by L𝑤 for brevity.

We provide the proof in Appendix A.4. Apparently, the variance of

the weighted estimator is bounded by Renyi divergence. However,

it is challenging to reduce the Renyi divergence between 𝑞(z𝑢𝑖 ) and
𝑝 (z𝑢𝑖 ) since we do not know the explicit density functions of them.

To address this challenge, we propose to utilize the adversarial

learning to reduce the divergence 𝑑𝛼+1 (𝑞(z𝑢𝑖 )∥𝑝 (z𝑢𝑖 )). Since this
upper bound holds for any 𝛼 > 0, without loss of generality, we

focus on reducing 𝑑𝛼+1 (𝑞(z𝑢𝑖 )∥𝑝 (z𝑢𝑖 )) with 𝛼 = 1. With some

calculations, we have the following equation:

𝑑2 (𝑞 (z)𝑢𝑖 ∥𝑝 (z𝑢𝑖 ) ) =
∫
z𝑢𝑖

𝑞 (z𝑢𝑖 )2
𝑝 (z𝑢𝑖 )

𝑑z𝑢𝑖 (11)

=

∫
z𝑢𝑖

𝑝 (z𝑢𝑖 ) [ (
𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

)2 − 1 + 1]𝑑z𝑢𝑖 = 𝐷𝑠 (𝑞 (z𝑢𝑖 ) ) ∥𝑝 (z𝑢𝑖 ) ) + 1,

where 𝐷𝑠 is the f-divergence [11] with 𝑠 (𝑡) = 𝑡2 − 1 being a convex
function in the domain {𝑡 : 𝑡 ≥ 0} and 𝑠 (1) = 0. Given the equation

above, we can focus on reducing 𝐷𝑠 (𝑞(z𝑢𝑖 ))∥𝑝 (z𝑢𝑖 )). Inspired by

the variational characterization of f-divergences [30], we estimate

f-divergences from samples with variational optimization:

𝐷𝑠 (𝑞 (z𝑢𝑖 ) | |𝑝 (z𝑢𝑖 ) ) =
∫
z𝑢𝑖

𝑝 (z𝑢𝑖 )𝑠 (
𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

)𝑑z𝑢𝑖 (12)

= sup

𝑇

{Ez𝑢𝑖∼𝑞 (z𝑢𝑖 ) [𝑇 (z𝑢𝑖 ) ] − Ez𝑢𝑖∼𝑝 (z𝑢𝑖 ) [𝑠
∗ (𝑇 (z𝑢𝑖 ) ) ] ) }

≥ sup

𝑇 ∈T
{Ez𝑢𝑖∼𝑞 (z𝑢𝑖 ) [𝑇 (z𝑢𝑖 ) ] − Ez𝑢𝑖∼𝑝 (z𝑢𝑖 ) [𝑠

∗ (𝑇 (z𝑢𝑖 ) ) ] },

where the second equality holds since 𝑠 is a convex function and

applying Fenchel convex duality (𝑠∗ (𝑦) := sup𝑥∈R+ {𝑥𝑦 − 𝑠 (𝑥)} =
𝑦2/4 + 1) gives the dual formulation. The third inequality holds

since we restrict𝑇 to a family of functions instead of all measurable

functions. Fortunately, if we utilize the neural networks as the

the family of 𝑇 , the condition of this inequality can be satisfied

due to the universal approximation theorem [19]. Specifically, we

represent 𝑇 as a discriminator 𝑑𝜓 (z𝑢𝑖 ). We then view our feature

extractor 𝑓𝜃 (x𝑢 , x𝑖 ) as another generator neural network mapping

(x𝑢 , x𝑖 ) to the probability of sampling z𝑢𝑖 . Then, minimizing the

f-divergence in Eq. (12) results in a min-max objective:

L𝑑 (𝜃,𝜓 ) = min

𝜃
max

𝜓
Ez𝑢𝑖=𝑓𝜃 (x𝑢 ,x𝑖 ),(x𝑢 ,x𝑖 )∼𝑞 (x𝑢 ,x𝑖 ) [𝑑𝜓 (z𝑢𝑖 ) ]

− Ez𝑢𝑖=𝑓𝜃 (x𝑢 ,x𝑖 ),(x𝑢 ,x𝑖 )∼𝑝 (x𝑢 ,x𝑖 ) [𝑠
∗ (𝑑𝜓 (z𝑢𝑖 ) ) ] (13)

≃ min

𝜃
max

𝜓

1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

[𝑑𝜓 (z𝑢𝑖 ) ] +
1

𝑁 ′

∑︁
(x𝑢 ,x𝑖 ) ∈D𝑞

[𝑠∗ (𝑑𝜓 (z𝑢𝑖 ) ) ] .

Intuitively, the objective of adversarial training makes the distribu-

tion counterfactual 𝑞(z𝑢𝑖 ) be closed to factual 𝑝 (z𝑢𝑖 ), which results

𝑤 (z𝑢𝑖 ) = 𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 ) → 1. The advantages of using this adversarial rep-

resentation learning are two-folds: (i) It can reduce the bias since

we have smaller 𝑤𝑚 as shown by Theorem 4.3; (ii) It can reduce

the variance since we bound Renyi divergence between 𝑞(z𝑢𝑖 ) and
𝑝 (z𝑢𝑖 ) as shown in Theorem 4.4. To give more insights into why

reducing Renyi divergence improves unbiased learning, we further

provide the following generalization learning bound:

Theorem 4.5. Let 𝑤𝑚 ≥ 0 be the maximum weight 𝑤 (z𝑢𝑖 ) and
𝑙𝑚 ≥ 0 be the maximum value of per-sample loss ℓ (typically, 𝑙𝑚 = 1

if we use log-loss). If𝑤 (z𝑢𝑖 ) is an unbiased estimation of𝑤 (z𝑢𝑖 ), then
the following upper bound holds with probability at least 1 − 𝛿 :

| L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) − L̂𝑤 (𝜔,𝜃 ) |

≤ 𝑤𝑚𝑙𝑚 log 1/𝛿
3𝑁

+ 𝑙𝑚

√︂
2𝑑2 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) log 1/𝛿

𝑁
. (14)

We provide the proof in Appendix A.5. Different from other gen-

eralization bounds [5, 34, 37, 43] in the unbiased recommendation,

which is based on observation space and Hoeffding’s inequality,

our bound is based on the latent space and Bernstein inequality.

This bound shows that, although the estimated weight is unbiased,

the learning performance will still be bad if the divergence between
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𝑞(z𝑢𝑖 ) and 𝑝 (z𝑢𝑖 ) is large. Theorem 4.3 and Theorem 4.5 both sug-

gest that making a trade-off between the variance and bias can

make L̂𝑤 (𝜔, 𝜃 ) be a more accurate estimation for L𝑖𝑑𝑒𝑎𝑙 (𝜔).

4.5 Final Objective Function
Based on the analysis above, we have ℎ𝜔 for recommendation score

prediction, classifier 𝑐𝜙 for weight estimation, 𝑑𝜓 with adversarial

learning to force the representations extracted by 𝑓𝜃 are bounded.

Combining all these together, our final objective is:

L = min

𝜔,𝜙,𝜃
max

𝜓
L𝑤 (𝜔, 𝜃 ) + 𝛼L𝑐 (𝜙) + 𝛾L𝑑 (𝜃,𝜓 ), (15)

where 𝛼 and 𝛾 are hyper-parameters to balance the contributions

of classification loss and adversarial loss. An training algorithm

is presented in Alg. 1 in Appendix. As shown in Figure 2 (c), we

reuse the representation obtained from the backbone 𝑓𝜃 and just

model our components (ℎ𝜔 , 𝑐𝜙 and 𝑑𝜓 ) using three heads. Hence,

compared with vanilla RS algorithms, the proposed LDR introduces

few additional parameters and is efficient.

5 EXPERIMENT
In this section, we empirically evaluate the effectiveness of our LDR.

Specifically, we answer the following questions.

(RQ1) How does the LDR perform compared with baselines?

(RQ2) How do different components affect the performance?

(RQ3) Can LDR leverage uniform data to tackle selection bias?

(RQ4) Do the proposed representation learning and adaptation

work as designed and give some useful insights?

5.1 Experimental Setup
Dataset. To evaluate unbiased performance, we need biased and

unbiased testing data collected by uniformly displaying items to

users. We use two widely used real-world datasets which satisfy

this requirement: Yahoo!R3 [28] and Coat [37]. In addition, we

also utilize a relatively large semi-synthetic dataset based on the

Amazon-Electronics dataset [29]. Following previous works [6,
24, 45], we treat items rated greater than or equal to 3 as 1, and the

others are considered as 0 for all datasets. Since Electronics does

not contain an unbiased test set, following previous works [4, 34,

53], we simulate an unbiased test set where testing data are sampled

by a uniform distribution over items with a skewed splitting. The

details of datasets and the skewed splitting are given in Appendix B.

Model Architecture. For fair evaluation, we use NCF [18] as model

architecture for all methods. The formulation of NCF is:

ℎNCF𝜔 (𝑢, 𝑖 ) := NN(𝜔 ; [z𝑢 , z𝑖 ] ), (16)

where NN(𝜔 ; x) = W1𝜎̃ (W2x) ,W1 ∈ R1×𝑑1 ,W2 ∈ R𝑑1×2𝑑𝑧
with

𝜎̃ (·) being the ReLU activation. z𝑢 and z𝑖 are the user and item em-

beddings generated by 𝑓𝜃 (x𝑢 , x𝑖 ). For classifier 𝑐𝜙 and discriminator

𝑑𝜓 , we use two networks with [z𝑢 , z𝑖 ] as the input.
Metrics. Following previous works [4, 5, 45], we use Normalized

Discounted Cumulative Gain@10 (NDCG@10), Area under the

ROC Curve (AUC) and Negative Log-Likelihood (NLL) loss under

the unbiased uniform test set as our evaluation metrics.

Settings. We select the best configuration of hyper-parameters for

all baselines based on NLL on the validation set. For all methods, the

hyper-parameter search spaces are: dropout {0.2, 0.4, 0.6}, learning

rate {0.001, 0.005, 0.01}, L2 weight-decay {1e-3, 1e-4, 1e-5, 1e-6},

embedding dimension {16, 32, 64, 128, 256}. For LDR, we search 𝛼

from {0.2, 0.4, 0.6, 0.8} and 𝛾 from {0.1, 1.0, 10, 100}.

5.2 (RQ1) Debiasing Performance Comparison
Baselines. In this section, we evaluate the debiasing performance

under the scenario that we do not have unbiased uniform data in

training. We compare with the following baselines: Vanilla (trained

without any debiasing procedure), Inverse Propensity Score (IPS)

with the normalization trick [37], Doubly Robust (DR) [43], Counter-

factual Variational Information Bottleneck (CVIB) [45], Adversarial

Counterfactual Learning (ACL) [50] and Asymmetric Tri-training

IPS (AT-IPS) [34]. Note that we also compare with other debiasing

methods such as knowledge distillation counterfactual learning [24],

Causal Embedding [4], AutoDebias [5]. We discuss them in § 5.4

as they all require unbiased uniform data during training, which

makes splitting datasets different.

Evaluation Protocol. For Coat and Yahoo, similar to previous

works [34, 45], we use the original training set of the dataset as the

training set and the unbiased uniform set as the test set. Note that

feedbacks of the training set are MANR. We randomly selected 5%

of the original training set as the validation set and adopted the

unbiased evaluation method [37] to conduct the model section pro-

cess on the validation set. For Electronics, we randomly sample

70% of user purchases as training data, 10% as validation, and the

remaining 20% with the skewed sampling as held-out test data.

Overall Results. Table 1 shows the performance of LDR and base-

lines with NCF as the backbone. From this table, we have the follow-

ing observations: (i) Overall, our LDR outperforms almost all base-

lines on all datasets, showing that our methods can effectively ad-

dress the selection bias problem and achieve a better bias-variance

trade-off. (ii) LDR can generally perform better than the baselines,

which demonstrates the effectiveness and flexibility of LDR in facil-

itating various backbones. (iii) Our LDR significantly outperforms

causal inference-based methods such as IPS, DR and AT-IPS. This

can be explained by our iterative weighted learning: by using repre-

sentation learning, our end-to-end solution can gradually improve

weight estimation and reduce the bias of learning. (iv) Though both

CVIB and ACL are not causal inference-based algorithms, our LDR

outperforms them, which is because we can effectively estimate

the importance weight and theoretically bound the variance.

5.3 (RQ2) Ablation and Sensitivity
Setup. To understand how different components affect the perfor-

mance of LDR, we conduct an ablation study and hyper-parameter

analysis. We follow the same experimental setting as RQ1. Specifi-

cally, we build the following variants: (1) LDR without the weight

estimated by classifier 𝑐𝜙 (LDR w/o C); (2) LDR without represen-

tation adaptation by 𝑑𝜓 (LDR w/o D). (3) LDR-Static: This is a
static version of LDR that first pre-trains a representation with

unweighted learning and representation adaptation. WE is con-

ducted on the pre-trained representation, and then we conduct the

unbiased WL.

Results. The results are reported in Table 2. From Table 2, we can

find that both 𝑐𝜙 and 𝑑𝜓 contribute to the performance gain, and
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Table 1: Unbiased learning performance (%): NLL (↓), AUC (↑) and NDCG@10 (↑) using NCF of different methods.

Methods

Coat Yahoo Electronics

NLL ↓ AUC ↑ NDCG@10 ↑ NLL ↓ AUC ↑ NDCG@10 ↑ NLL ↓ AUC ↑ NDCG@10 ↑
Vanilla 53.24±0.56 74.29±0.07 69.12±0.13 55.27±1.05 66.85±0.12 75.20±0.26 65.63±0.13 58.11±0.19 37.82±0.36

IPS 52.08±2.39 75.09±1.32 70.13±0.87 53.39±3.56 67.22±1.53 76.21±1.98 63.11±2.08 59.23±1.58 38.97±2.33
DR 51.19±1.75 75.85±0.87 70.82±0.45 52.18±2.83 67.79±1.11 76.67±1.55 62.79±1.76 60.11±1.05 39.28±1.51

CVIB 49.55±0.77 78.98±0.22 71.89±0.19 47.36±1.01 69.03±0.52 77.35±0.75 60.37±0.31 62.04±0.71 41.25±0.75
ACL 50.43±1.51 76.11±0.47 71.22±0.23 49.33±1.81 68.43±1.27 76.82±0.96 61.65±0.98 61.97±0.83 39.81±1.11
AT-IPS 50.09±0.86 75.29±0.66 70.59±0.33 49.25±1.14 68.03±0.77 77.15±0.59 62.22±0.52 61.37±0.55 39.52±0.70

LDR 48.81±0.72 78.45±0.18 72.82±0.19 45.25±0.75 70.22±0.23 78.94±0.41 59.01±0.26 63.33±0.39 42.38±0.59

Table 2: Ablation study results with NCF as the backbone.
Yahoo Electronics

AUC NDCG@10 AUC NDCG@10

LDR 70.22±0.23 78.94±0.41 63.33±0.39 42.38±0.59
LDR w/o C 68.59±0.21 77.79±0.33 61.69±0.20 40.99±0.42
LDR w/o D 69.65±0.77 78.43±0.85 62.85±0.77 42.02±0.91
LDR-Static 68.32±0.35 77.37±0.41 61.77±0.28 41.58±0.52

Vanilla 66.85±0.12 75.20±0.26 58.11±0.19 37.82±0.36
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Figure 4: Parameter sensitivity analysis with NDCG@10.

their contributions are complementary to each other. Represen-

tation adaptation via 𝐷 essentially boosts the performance and

reduces the variance, while the de-biased weight component via 𝐶

can further improve the performance. These results prove the effec-

tiveness of employing both 𝐶 and 𝐷 in the proposed LDR. We also

can observe that LDR can outperform LDR-Static, demonstrat-

ing that iteratively updating model parameters based on iterative

reweighting of the training samples can improve performance.

To investigate hyper-parameter sensitivity, we vary the values

of 𝛼 and 𝛾 and report the NDCG@10 on Coat and Yahoo in Fig. 4.

From the figure, we can find (i) Generally, with the increase of𝛾 , the
performance tends to first increase and then decrease. A too small 𝛾

would lead to a large variance and wrong weight estimation, while

a large 𝛾 may dominate the whole loss of LDR. (ii) The performance

is generally better and stable when 𝛼 is between 0.6 and 0.8, which

eases the parameter selection for LDR. (iii) We can balance the bias

(weighted learning) and variance (representation adaptation) by

varying 𝛼 and 𝛾 , leading to better performance.

5.4 (RQ3) Debiasing with Partial Uniform Data
Setup. Recently, many works [4, 6, 24] show that incorporating

uniform data in training can improve debiasing performance. Thus,

we examine if LDR can also effectively utilize uniform data.

Baselines. We compare three representative baselines: Causal Em-

bedding (CausE) [4], knowledge distillation counterfactual learning

(KDCL) [24] (since there are several variants of KDCL, we choose

the best result for comparison in each scenario) and AutoDebias [6].

We also compare IPS and DR since the uniform data can also im-

prove their performance [24]. The way of using uniform data for

Table 3: Unbiased learning performance (%) using uniform
data with NCF of different methods on unbiased test sets.

Methods

Yahoo Electronics

AUC NDCG@10 AUC NDCG@10

Vanilla 76.19±0.11 76.28±0.18 60.28±0.13 40.98±0.17

IPS 77.22±1.21 76.55±0.99 62.36±2.57 41.55±2.89
DR 77.89±0.66 77.44±0.82 63.49±1.55 42.61±1.87

CausE 78.33±0.43 77.89±0.39 65.21±0.57 43.89±0.71
KDCL 78.99±0.35 78.57±0.19 66.80±0.49 45.21±0.52

AutoDebias 79.52±0.68 79.33±0.59 65.89±0.68 45.77±0.89

LDR 80.58±0.18 80.31±0.34 68.53±0.40 46.88±0.51
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Figure 5: Curves of the weighted training losses and testing
NDCG. The shaded area represents half a standard deviation.

our LDR is two folds: (i) adding uniform data into loss L𝜔 (but no

weight for uniform data); and (ii) utilizing the observed uniform

data as D𝑞 to conduct representation adaptation.

Evaluation Protocol. Since we assume access to uniform data,

the splitting is totally different from RQ1. We use all biased data

as training data and randomly split the unbiased random subset

into three subsets: 10% as the additional training data, 10% as the

validation set, and the rest 80% as the test data.

Overall Results. Table 3 shows the results. It is shown that LDR

can outperform all the other methods. These results validate the ef-

fectiveness of LDR for utilizing uniform data. Specifically, LDR can

still outperform IPS and DR, which once again shows that narrow-

ing the gap between WE and WL can improve unbiased learning

performance. Our LDR outperforms KDCL and AutoDebias, which

validates that our LDR with theoretical unbiasedness and variance

guarantee can provide improvements in the recommendation qual-

ity on biased datasets.

5.5 (RQ4) Model Analysis
Setup. We take a deeper examination on the proposed LDR to un-

derstand how it works. We follow the same setting as RQ1.

Convergence. The instability [16] in min-max training is well

known. Thus, we investigate the training process of LDR. Fig. 5

shows the curves of the training losses and the testing NDCG. Re-

sults on other datasets also share a similar tendency. From the figure,
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we can find: (1) LDR is training-stable and can consistently improve

performance as training steps increase. (2) Generally, LDR has a

small variance in adversarial and classification losses throughout

the whole training. (3) The results show that NDCG can converge

within a few hundred steps, which is efficient.

BoundedWeight andVariance.We investigate whether the repre-

sentation adaptation can bound the weight and variance. Following

the same settings as § 5.3, we consider the ablation LDR w/o D. The
learned weights are given in Fig. 6. We find that the weights learned

by LDR generally have lower variance than that learned by LDR
w/o D. This shows that our proposed representation adaptation

is effective for bounding the variance. It also reduce the largest

weight, i.e.,𝑤𝑚 in § 4.3, which leads to a smaller bias in Eq. (9).

The Bias and Variance Reduction. To better understand how

LDR contributes to learning an unbiased and low variance ranking

model, we take a deeper examination on the weight distribution

grouped by the interacted frequency of items (item popularity).

From Fig. 7, we can observe: (1) As the item interacted frequency

increases, the mean weight generally decreases. Thus, LDR can

successfully identify unpopular/popular items and automatically

up-/down-weight them. This confirms that LDR can improveweight

learning and thus reduce selection bias. (2) Generally, the variance

of the weights for the items is small, although the variance of the

weights of the popular items is larger than unpopular. Meanwhile,

as shown in Table 2 and Fig. 6, our LDR not only achieves better

performance but also attains lower estimation variance than other

ablation variants such as LDR w/o D and LDR w/o C.

6 CONCLUSION
In this paper, we study the problem of handling the selection bias

from MNAR feedback. We propose Learning De-biased Representa-

tions (LDR), a general framework to address this problem. Specifi-

cally, LDR embeds learned representations into the dynamic and

iterative procedure to yield a more reliable weight estimate and

leverages the representation adaptation to reduce the variance.

Theoretical analysis proves its unbiasedness and desired statistical

properties. Empirical experiments on several datasets show that

LDR achieves better performance under selection bias.
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A PROOFS
A.1 Proofs of Theorem 4.1

Proof. By the definition of probability density functions (PDFs)

and the fundamental theorem of calculus, we have:

𝑤 (x𝑢 , x𝑖 ) =
𝑞 (x𝑢 , x𝑖 )
𝑝 (x𝑢 , x𝑖 )

=
𝑞 (x𝑢 , x𝑖 ) | [

𝜕𝑓 −1
𝜽
(y)

𝜕y ]y=𝑓𝜽 (x𝑢 ,x𝑖 ) |

𝑝 (x𝑢 , x𝑖 ) | [
𝜕𝑓 −1

𝜽
(y)

𝜕y ]y=𝑓𝜽 (x𝑢 ,x𝑖 ) |

=
𝑞 (𝑓𝜽 (x𝑢 , x𝑖 ) )
𝑝 (𝑓𝜽 (x𝑢 , x𝑖 ) )

=
𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

= 𝑤 (z𝑢𝑖 ), (17)

which completes the proof. □

A.2 Proofs of Theorem 4.2
Proof. For brevity, we define that𝑊𝐸 (D𝑝 ,D𝑞) = 𝑤 (D𝑝 ,D𝑞)

and𝑊𝐸 (𝑓𝜽 (D𝑝 ), 𝑓𝜽 (D𝑞)) = 𝑤 (𝑓𝜽 (D𝑝 ), 𝑓𝜽 (D𝑞)). We also define

that 𝑤 (D𝑝 ,D𝑞) (x𝑢 , x𝑖 ) = 𝑤 (x𝑢 , x𝑖 ) is the empirical weight of

the sample pair 𝑤 (x𝑢 , x𝑖 ), and 𝑤 (𝑓𝜽 (D𝑝 ), 𝑓𝜽 (D𝑞)) (𝑓𝜃 (x𝑢 , x𝑖 )) =
𝑤 (𝑓𝜃 (x𝑢 , x𝑖 )) = 𝑤 (z𝑢𝑖 ) is the empirical weight of the transformed

z𝑢𝑖 = 𝑓𝜃 (x𝑢 , x𝑖 ). Given the definitions, we can obtain:

E𝑝 (𝑓𝜽 (x𝑢 ,x𝑖 ) ),𝑞 (𝑓𝜽 (x𝑢 ,x𝑖 ) ) [𝑤 (𝑓𝜽 (x𝑢 , x𝑖 ) ) ]

=

∫
𝑝 (𝑓𝜽 (x𝑢 , x𝑖 ) )𝑞 (𝑓𝜽 (x𝑢 , x𝑖 ) ) [𝑤 (𝑓𝜽 (x𝑢 , x𝑖 ) ) ]𝑑𝑓𝜽 (x𝑢 , x𝑖 )

=

∫
𝑝 (x𝑢 , x𝑖 )𝑞 (x𝑢 , x𝑖 ) [𝑤 (𝑓𝜽 (x𝑢 , x𝑖 ) ) ]𝑑 (x𝑢 , x𝑖 )

= E𝑝 (x𝑢 ,x𝑖 ),𝑞 (x𝑢 ,x𝑖 ) [𝑤 (𝑓𝜽 (x𝑢 , x𝑖 ) ) ]

=
𝑞 (𝑓𝜽 (x𝑢 , x𝑖 ) )
𝑝 (𝑓𝜽 (x𝑢 , x𝑖 ) )

=
𝑞 (x𝑢 , x𝑖 )
𝑝 (x𝑢 , x𝑖 )

= E𝑝 (x𝑢 ,x𝑖 ),𝑞 (x𝑢 ,x𝑖 ) [𝑤 (x𝑢 , x𝑖 ) ], (18)

where we use Theorem 4.1 in the last equation. This completes

the proof that 𝑤 (𝑓𝜽 (D𝑝 ), 𝑓𝜽 (D𝑞)) (𝑓𝜃 (x𝑢 , x𝑖 )) = 𝑤 (𝑓𝜃 (x𝑢 , x𝑖 )) =
𝑤̂ (z𝑢𝑖 ) is an unbiased empirical estimation of ideal𝑤 (x𝑢 , x𝑖 ). □

A.3 Proofs of Theorem 4.3
Proof. With the estimated weight𝑤 (z𝑢𝑖 ), the bias of weighted

learning L𝑤 (𝜔, 𝜃 ) can be derived as follows:

| L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) − L̂𝑤 (𝜔,𝜃 ) | = |E𝑝 [ (𝑤 (z𝑢𝑖 ) − 𝑤 (z𝑢𝑖 ) )ℓ (ℎ𝜔 (z𝑢𝑖 ), 𝑦) ] | ≤√︃
E𝑝 (x𝑢 ,x𝑖 ,𝑦)

[
(𝑤 (z𝑢𝑖 ) − 𝑤 (z𝑢𝑖 ) )2

]
E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (ℓ (ℎ𝜔 (z𝑢𝑖 ), 𝑦) )2 ] (19)

≤ 1

2

(E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (𝑤 (x𝑢𝑖 ) − 𝑤 (z𝑢𝑖 ) )2 ] + E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (ℓ (ℎ𝜔 (x𝑢 , x𝑖 ), 𝑦) )
2 ] )

where the second line holds due to the Cachy-Schwarz inequality

and the third line holds due to the inequality of arithmetic and geo-

metric means (AM–GM inequality). As mentioned in the main body

of the paper, the optimal weight can be estimated via a classifier:

𝑤 (z𝑢𝑖 ) = 𝑘
𝑟̂ (𝑑 = 0 |z𝑢𝑖 )
𝑟̂ (𝑑 = 1 |z𝑢𝑖 )

= 𝑘 ( 1

𝑟̂ (𝑑 = 1 |z𝑢𝑖 )
− 1), (20)
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where 𝑘 =
𝑟 (𝑑=1)
𝑟 (𝑑=0) is a constant and we set it as 1 in what follows

without loss of generality. Since 𝑤 (z𝑢𝑖 ) ≤ 𝑤𝑚 , we have
1

𝑤𝑚+1 ≤
𝑟̂ (𝑑 = 1 | x) ≤ 1. Given this, we have:

E𝑝 (x𝑢 ,x𝑖 ,𝑦) [(𝑤 (z𝑢𝑖 ) −𝑤 (z𝑢𝑖 ))
2] (21)

= E𝑝 (x𝑢 ,x𝑖 ,𝑦) [(
𝑟 (𝑑 = 1|z𝑢𝑖 ) − 𝑟̂ (𝑑 = 1|z𝑢𝑖 )
𝑟 (𝑑 = 1|z𝑢𝑖 )𝑟̂ (𝑑 = 1|z𝑢𝑖 )

)2]

≤ (𝑤𝑚 + 1)4E𝑝 (x𝑢 ,x𝑖 ,𝑦)
[
(𝑟 (𝑑 = 1|z𝑢𝑖 ) − 𝑟̂ (𝑑 = 1|z𝑢𝑖 ))2

]
.

Plugging this into Eq. (19) completes the proof. □

A.4 Proofs of Theorem 4.4
Proof. We first rewrite the estimation variance as follows (Note

that we define𝑤 (z𝑢𝑖 )L(𝜔, 𝜃 )) ≜ L𝑤 (𝜔, 𝜃 ) ≜ L𝑤 ):

Var[L𝑤 ] = E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ (ℓ𝑤 )
2 ] − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ℓ𝑤 ] )

2
(22)

= E𝑝 (x𝑢 ,x𝑖 ,𝑦) [𝑤 (z𝑢𝑖 )
2 (ℓ )2 ] − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ℓ𝑤 ] )

2

=

∫
𝑝 (x𝑢 , x𝑖 , 𝑦) [ (

𝑞 (z𝑢𝑖 )
𝑝 (z𝑢𝑖 )

)2 (ℓ )2 ] − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [ℓ𝑤 ] )
2𝑑 (x𝑢x𝑖 )𝑑𝑦

=

∫
𝑞 (z𝑢𝑖 , 𝑦)

1

𝛼
𝑞 (z𝑢𝑖 , 𝑦)
𝑝 (z𝑢𝑖 , 𝑦)

𝑞 (z𝑢𝑖 , 𝑦)
𝛼−1
𝛼 (ℓ )2 − (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ] )

2𝑑z𝑢𝑖𝑑𝑦,

where the last line holds since we change variables and 𝑝 (𝑦 |z𝑢𝑖 ) =
𝑞(𝑦 |z𝑢𝑖 ). By using Hölder’s inequality, we can bound the it as:∫

𝑞 (z𝑢𝑖 , 𝑦)
1

𝛼
𝑞 (z𝑢𝑖 , 𝑦)
𝑝 (z𝑢𝑖 , 𝑦)

𝑞 (z𝑢𝑖 , 𝑦)
𝛼−1
𝛼 (ℓ )2 − (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ] )

2𝑑z𝑢𝑖𝑑𝑦 ≤

(
∫

𝑞 (z𝑢𝑖 , 𝑦) (
𝑞 (z𝑢𝑖 , 𝑦)
𝑝 (z𝑢𝑖 , 𝑦)

)𝛼 )
1

𝛼 (
∫

𝑞 (z𝑢𝑖 , 𝑦)ℓ
2𝛼
𝛼−1 )

𝛼−1
𝛼 − (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ] )

2 =

𝑑𝛼+1 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) (
∫

𝑞 (z𝑢𝑖 , 𝑦)ℓℓ
𝛼+1
𝛼−1 )

𝛼−1
𝛼 − (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ] )

2
(23)

≤ 𝑑𝛼+1 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ) ]
𝛼−1
𝛼 (

∫
ℓ )1+

1

𝛼 − (E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ] )
2

≤ 𝑑𝛼+1 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) )
(
E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ]

) 𝛼−1
𝛼 −

(
E𝑝 (z𝑢𝑖 ,𝑦) [ℓ𝑤 ]

)
2

=

𝑑𝛼+1 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [L𝑤 ] )
𝛼−1
𝛼 − (E𝑝 (x𝑢 ,x𝑖 ,𝑦) [L𝑤 ] )2,

∀𝛼 > 0, where we use Hölder’s inequality in the first inequality

and the second inequality holds since (
∫
ℓ)1+

1

𝛼 > 1. Plugging this

inequality into Eq. (22) completes the proof. □

A.5 Proofs of Theorem 4.5
Proof. By using Theorem 4.4 with 𝛼 = 1, we have:

Var[L𝑤 ] ≤ 𝑑2 (𝑞 (z𝑢𝑖 ) ∥𝑝 (z𝑢𝑖 ) ) . (24)

Since we have𝑤 (z𝑢𝑖 ) = 𝑤 (z𝑢𝑖 ), we only use𝑤 (z𝑢𝑖 ) for the sake
of simplicity. By using Bernstein inequality, we have

𝑃 ( |L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) − L̂𝑤 (𝜔,𝜃 ) | > 𝜖 ) = 𝑃 ( |L𝑤 (𝜔,𝜃 ) − L̂𝑤 (𝜔,𝜃 ) | > 𝜖 )

𝑃 ( |L𝑤 (𝜔,𝜃 ) −
1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

𝑤 (z𝑢𝑖 ) ℓ (ℎ𝜔 (𝑓𝜃 (x𝑢 , x𝑖 ) ) , 𝑦) | > 𝜖 )

𝑃 ( |L𝑤 (𝜔,𝜃 ) −
1

𝑁

∑︁
(x𝑢 ,x𝑖 ,𝑦) ∈D𝑝

𝑤 (z𝑢𝑖 ) ℓ (ℎ𝜔 (𝑓𝜃 (x𝑢 , x𝑖 ) ) , 𝑦) | > 𝜖 )

≤ exp

(
−𝑁𝜖2/2

Var[L𝑤 ] + 𝜖𝑤𝑚𝑙𝑚/3

)
. (25)

Setting 𝛿 to exp

(
−𝑁𝜖2/2

Var[L𝑤 ]+𝜖𝑤𝑚𝑙𝑚/3

)
and solving 𝜖 yields:

𝑃 ( |L𝑖𝑑𝑒𝑎𝑙 (𝜔 ) − L̂𝑤 (𝜔,𝜃 ) | < 𝐵) ≤ 1 − 𝜎, (26)

Algorithm 1: The Training Algorithm for LDR

1 Input: Factual observation dataset

D𝑝 ≜ {𝑥 (𝑛)𝑢 , 𝑥
(𝑛)
𝑖

, 𝑦 (𝑛) }𝑁
𝑛=1

, counterfactual dataset

D𝑞 ≜ {𝑥 (𝑚)𝑢 , 𝑥
(𝑚)
𝑖
}𝑀
𝑚=1

sampled from uniform distribution

𝑞(x𝑢 , x𝑖 ) = 𝑞(x𝑢 )𝑞(x𝑖 ). Hyper-parameters 𝛼 and 𝛾 .

Learning rate 𝜂𝜔 , 𝜂𝜃 , 𝜂𝜙 , and 𝜂𝜓 .

2 Initialize: ℎ𝜔 , 𝑓𝜃 , 𝑐𝜙 and 𝑑𝜓 .

3 for 𝑡 = 1, · · · , num iterations do
4 Sample mini-batches of (𝑥𝑢 , 𝑥𝑖 , 𝑦) ∈ D𝑝 and

(𝑥𝑢 , 𝑥𝑖 ) ∈ D𝑞

5 𝜔𝑡 ← 𝜔𝑡−1 − 𝜂𝜔∇𝜔L𝑤 (𝜔, 𝜃 ) ▶ Unbiased Weighted
loss

6 𝜙𝑡 ← 𝜙𝑡−1 − 𝜂𝜙𝛼∇𝜙L𝑐 (𝜙) ▶ Classification loss

7 𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝜃∇𝜃𝛾 (L𝑑 (𝜃,𝜓𝑡−1)) + L𝑤 (𝜔𝑡 , 𝜃 )) ▶
Min-step

8 𝜓𝑡 ← 𝜓𝑡−1 + 𝜂𝜓∇𝜓𝛾L𝑑 (𝜃𝑡 ,𝜓 )) ▶ Max-step

9 Return 𝜔 , 𝜙 , 𝜃 , and𝜓 . ▶ Optimized parameters

where 𝐵 =
𝑤𝑚𝑙𝑚 log 1/𝛿

3𝑁
+
√︂

𝑙2𝑚𝑤2

𝑚 log
2
1/𝛿

9𝑁 2
+ 2𝑙2𝑚 Var(L𝑤 ) log 1/𝛿

𝑁
. Plug-

ging Eq. (24) into 𝐵 and using

√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏, we have:

𝐵 ≤ 2𝑙𝑚𝑤𝑚 log 1/𝜎
3𝑁

+ 𝑙𝑚

√︂
2𝑑2 (𝑞(z𝑢𝑖 )∥𝑝 (z𝑢𝑖 )) log 1/𝜎

𝑁
. (27)

Plugging this into Eq. (26) completes the proof. □

B DATASET DETAILS
Yahoo!R31: It contains five-star ratings. The biased training set

contains 311,704 MNAR five-star ratings of 1,000 songs from 15,400

users, and the unbiased test set contains ratings collected by asking

5,400 users to rate ten randomly selected songs. Coat2: It contains
five-star ratings from 290 users and 300 items. The training set

contains 6,960 MNAR ratings collected via user self-selections, and

the test set is collected by asking users to rate 16 uniformly se-

lected items. Amazon-Electronics3 dataset: It contains 7,824,482
five-star rating from 33,602 users and 16,448 items. To create the

unbiased test set from Electronics, we conduct a skewed splitting
strategy following [4, 34], which exposes each user as uniformly as

possible to each item in the testing set. Specifically, we sample a

test set from the original dataset, then re-sample data from the test

set based on the inverse of the probabilities as:

𝑝𝑖 =

∑
𝑢∈U 𝑂𝑢,𝑖

max𝑖∈𝐼
∑
𝑢∈U 𝑂𝑢,𝑖

, (28)

where 𝑂𝑢,𝑖 indicts if the feedback is observed or not:

[
𝑂𝑢,𝑖 = 1

]
⇔[

𝑦𝑢,𝑖 is observed
]
. This skewed splitting strategy creates a syn-

thetic test set that each item has a uniform observed probability.

1
https://webscope.sandbox.yahoo.com/

2
https://www.cs.cornell.edu/~schnabts/mnar/

3
https://nijianmo.github.io/amazon/index.html

https://webscope.sandbox.yahoo.com/
https://www.cs.cornell.edu/~schnabts/mnar/
https://nijianmo.github.io/amazon/index.html
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