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ABSTRACT Logged Feedback
The logged feedback for training recommender systems is usually o Es 5
subject to selection bias, which could not reflect real user preference. cotlon V = \é%?mg
Thus, many efforts have been made to learn the de-biased recom- Y
mender system from biased feedback. However, existing methods ~J
for dealing with selection bias are usually affected by the error S ——

of propensity weight estimation, have high variance, or assume
access to uniform data, which is expensive to be collected in prac-
tice. In this work, we address these issues by proposing Learning
De-biased Representations (LDR), a framework derived from the
representation learning perspective. LDR bridges the gap between
propensity weight estimation (WE) and unbiased weighted learning
(WL) and provides an end-to-end solution that iteratively conducts
WE and WL. We show LDR can effectively alleviate selection bias
with bounded variance. We also perform theoretical analysis on the
statistical properties of LDR, such as its bias, variance, and general-
ization performance. Extensive experiments on both semi-synthetic
and real-world datasets demonstrate the effectiveness of LDR.
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1 INTRODUCTION

Recommender systems (RS) aim to infer user preferences from
logged feedback and recommend items that users might like. The
ideal logged feedback should be collected by randomly and uni-
formly exposing items to users [6, 36, 37, 50]. However, due to
the feedback loop in RS, the exposures are affected by some un-
derlying mechanisms, such as the past recommendation policy
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Figure 1: The closed feedback lotl)ap__i_:l RS. Model Selection Bias: The
exposure of items in the serving stage is not uniform but is affected
by the previous systems, which control what items to show. User
Selection Bias: users may click some items more than others (even
with a bias-free random recommender), which means that a few
items receive more feedback while the majority have fewer ones.

and user-selection. Thus, the feedback is missing-not-at-random
(MNAR) [36, 37]. As shown in Figure 1, if the observed feedback is
collected under the most popular policy, i.e., a policy that always
recommends popular items to all users, the probability of exposure
for popular items may be large. Thus, selection bias can exacerbate
popularity bias, causing not relevant but popular items to be shown.
In addition, due to user self-selection, users tend to give feedback
to items they like [34, 37]. Thus, the observed logged feedback
can be substantially higher than those not observed [37]. Previ-
ous studies [34, 37] also have shown that directly learning from
biased feedback will lead to a biased estimation of users’ true pref-
erences. To address the selection bias issue, many efforts have been
taken [4-6, 36, 37]. Among them, causal inference methods such as
inverse propensity score (IPS) [36, 37] and doubly robust (DR) meth-
ods [35, 43] come with strong theoretical insights. Nevertheless,
we find these methods have several limitations. First, accurately
estimating the propensity score is critical for these methods; while
correctly estimating propensity score is typically very difficult as
model misspecification often occurs in real-world settings [34].
Second, those methods essentially follow a pipelined two-step para-
digm as shown in Figure 2 (a): (1) conducting the weight estimation
(WE); (2) using the estimated weights to do the unbiased weighted
learning (WL). However, the WE process completely disregards the
need to improve the performance of unbiased WL. Thus they may
not give the optimal solution since the unbiased WL performance
is sensitive to the pre-estimated weight and there is a gap between
WE and WL due to the divergence of optimization objectives in the
two separated stages. Third, it is shown that IPS-based methods
have large variance [36, 37], especially when there exists severe
selection bias with the large item space.

More recently, several works try to address selection bias with
various machine learning methods such as meta-learning [5, 44],
domain adaptation [4], knowledge distillation [24], information
bottleneck [25, 45]. Despite their promising performance, in ad-
dition to MNAR feedbacks, most of them [4, 5, 23, 24, 44] need


https://doi.org/10.1145/3511808.3557431
https://doi.org/10.1145/3511808.3557431

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

unbiased uniform feedback, i.e., feedbacks collected by randomly
displaying items to users; while collecting uniform feedback is
expensive and impractical in real-world as it hurts users’ experi-
ences and might cause significantly loss for domains like RS in
healthcare. In addition, these methods [4, 24, 25, 45] do not have
strong theoretical justification for their unbiasedness and estima-
tion variance compared to causal inference-based methods, e.g.,
IPS and DR. Motivated by the discussion above, in this paper, we
investigate whether one can effectively address the selection bias
issue without any unbiased uniform feedback while still theoret-
ically quantifying the trade-off between the estimation bias and
variance. Our key idea is to alleviate the divergence between WE
and unbiased WL in the causal inference methods. However, alle-
viating this divergence is non-trivial, and we are faced with two
main challenges: (i) How to bridge the gap caused by different
optimization objectives? Existing causal inference strategies for
unbiased learning fall into a two-stage paradigm. The optimiza-
tion gap between the two steps significantly limits their ability to
generalize to downstream unbiased performance; and (ii) How to
achieve a good bias-variance trade-off and theoretically guarantee
the generalization performance when we alleviate the divergence
between WE and unbiased WL steps?

To address these challenges, we propose an effective framework
named Learning De-biased Representations (LDR). Specifically, for
the first challenge, LDR learns de-biased representations of user-
item pairs by simultaneously conducting WE and WL in an end-to-
end process as shown in Figure 2 (b). For the second challenge, an
adversarial discriminator is trained with representation learning
to effectively bound the estimation variance. We also note that the
adversarial representation learning has been applied broadly in
fairness [13], causal inference [20] and domain adaptation [15]. In
contrast, in this paper, we adopt adversarial representation learn-
ing on the unbiased recommendation, demonstrating that mini-
max representation learning is effective for reducing estimation
variance. Technically, the key differences of our framework from
them [13, 15, 20, 26] are that they do not weight/reweight source
risk and do not consider the bias and variance. LDR joints strength
from representation learning, weight estimation and representa-
tion adaptation, resulting in a principled framework that better
addresses the challenges for unbiased recommendation. We provide
theoretical guarantees for LDR and quantify the trade-off between
the bias and variance. The main contributions of this research are:
e We propose a principled learning framework (LDR), which can

alleviate the divergence between WE and unbiased WL objec-

tives and shed a new representation learning perspective on the
unbiased recommendation for the first time;

o We theoretically analyze the statistical properties and show that
our LDR framework can achieve the unbiased estimation with
bounded variance and have better generalization performance;

o Extensive experiments on both semi-synthetic and real-world
datasets show that our LDR can outperform existing unbiased
algorithms in the presence of selection bias for recommendation.

2 RELATED WORK

Selection Bias Correction. Selection bias occurs when a data
sample is not representative of the underlying data distribution. To

Teng Xiao, Zhengyu Chen, and Suhang Wang

alleviate the selection bias in recommendation, inverse propensity
score (IPS)-based methods [36, 37, 54] from causal inference [10, 40,
51] are adopted. The doubly robust (DR) methods [43, 44] further
combine the propensity score estimation and the error imputation
model to reduce the variance of IPS. Although these IPS and DR
methods can in theory get an unbiased model by reweighting each
sample, they heavily rely on the quality of the data imputation
model or the propensity estimation model; while it is impossible to
know the true propensity score or imputation model. In addition,
previous works [12, 41] have shown that the propensity-based
estimators suffer from very large variance issue [33, 41].

To avoid estimating the propensity score, some recent meth-
ods have been proposed and they are inspired by various machine
learning techniques such as meta learning [5, 44], domain adap-
tation [4], knowledge distillation [24], and transfer learning [23].
The high-level idea for these methods is utilizing uniform data to
guide the learning of debiasing parameters. Although these meth-
ods achieve promising performance, collecting the uniform data is
extraordinarily expensive in practice. While some debiasing meth-
ods [25, 45, 50] do not assume access to uniform data, they lack
theoretical unbiasedness and variance guarantees. In this paper, we
focus on developing a theoretically unbiased learning framework
to deal with selection bias in recommendation without any uniform
data. Our insight that iteratively conducting WE and unbiased WL
without any uniform data is different from the above methods.

The selection bias issue also comes up in other areas, such as

off-policy learning [46, 49] and counterfactual learning [17, 20, 21,
48, 52]. However, off-policy learning operates on interactive logs
and focuses on maximizing the reward and counterfactual learning
focus on the causal effect estimation, which are different from the
unbiased ranking task that we consider.
Adversarial Representation Learning. Our work is also related
to but different from current adversarial representation learning
methods. The adversarial formulation has been applied broadly
in fairness [13], unsupervised domain adaptation [15], and causal
inference [8, 20]. We formulate this on unbiased recommendation,
and to demonstrate that minimax optimization is effective for solv-
ing the selection bias, both theoretically and empirically. Among
the methods mentioned above, the unsupervised domain adaptation
(UDA) methods called domain-invariant feature learning [1, 27] are
most similar to ours. Our approach further develops this approach
to avoid the high estimation variance. The main difference between
UDA from ours is that UDA methods do not deal with missing data
and associated challenges and do not consider the technique of
re-weighting, while we are interested in re-weighting the objective
function to alleviate selection bias with lower variance.

3 PRELIMINARIES

Let U be a set of users, and I be a set of items. X}, and X; are
two feature spaces of dimensions d;, and d;, respectively. We use
xy € Xy and x; € Xj to denote the features of a user u and an item
i, respectively. Typically, x,, and x; are the one-hot encodings of
user and item IDs, respectively. The objective for recommendation
is to estimate a parametric function h, (xy, %) : Xy X Xj = Y
that maps the user and item features to a feedback y € Y, where ©
denotes the learning parameters of h. Generally, we are given an
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Figure 2: (a) The pipelined and static process in IPS and DR, which firstly conducts weight estimation (WE) and then plugs it into the weighted
learning (WL). (b) The circle and iterative process in our LDR (c) Proposed LDR for unbiased learning under selection bias. RA denotes proposed
representation adaptation, and dashed lines are not back-propagated through.
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Figure 3: Rating distributions of factual (training) p(y) and coun-
terfactual (testing) g(y) on Yahoo! R3 and Coat datasets.

observational dataset Dy of N triples of user, item, and feedback,

ie, Dy = {x,&"), xl.("), y(”)}ﬁjzl, and our task is to learn h,, with
Dy. For brevity, we drop the superscript n in what follows.

3.1 Unbiased Recommendation

Generally, the observational samples in D, suffer from selection
bias due to various issues, e.g., the set of items exposed to users is
affected by the past recommendation policy and users tend to give
feedback to items they like. Thus, we can treat (xy,%;,y) € D
as sampled from a generative process that depends on user self-
selection and past recommendation policy [37], i.e., p(xXy, Xi, y) =
P (%) p(Xi|xu) p(y|xu, Xi), where p(xy) is the uniform distribution
of users. p(x;|x,) depends on user self-selection along with the
underlying past recommendation policy, which is also called the
exposure probability p(Oy;) in [36, 37, 43] and is unknown ahead
of time. Ideally, we are interested in learning unbiased h,, with
ideal risk function under uniform exposure distributions as follows:

Ligear(®) = IEq(xu,xi,y) [€(he (Xus Xi), y)]’ (1)

where q(xy, Xi, y) = p(xu)p(%i)p(y|xu, X;) is the counterfactual dis-
tribution and #(.) is the loss associated with each sample pair. Note
that the ideal loss function is independent of the conditional distri-
bution p(x;|xy). That is, we calculate the sample-wise loss over the
marginal uniform distributions of users and items, p(xy) = ﬁ

and p(x;) = ﬁ and feedbacks, rather than their joint distribu-
tion p(xy, x;) = p(xyu)p(Xi|xy). This is because de-biasing recom-
mender aims to predict feedback under alternative matches different
from the ones observed in the MNAR data. In other words, we want
our estimated h, to generalize well for all possible pairs of users and
items, not just the pairs that are frequently matched in the observa-
tional data. However, the empirical estimate of true risk in Eq. (1) is
inaccessible as we only can use the MNAR data D, for the empirical
estimation. Directly learning h,, with standard supervised loss on
Dy could suffer from selection bias due to the discrepancy between
the factual distribution p(xy, Xi,y) = p(Xu)p(Xi|xu)p(y|xu, x;i) in
the training MNAR data, and the counterfactual testing distribu-
tion q(xy, Xi,y) = p(xu)p(xi)p(y|xu, x;i) to which the model will
be practically applied. To verify it, we plot the marginal distribu-
tions of p(y) and ¢q(y) on two datasets for unbiased recommenda-
tion [28, 37] in Figure 3, which shows significant difference between
p(y) and g(y). Mathematically, under this distribution discrepancy,

standard empirical risk minimization Lg; over data D, is not an
unbiased estimate of the true risk L;g¢q;(w) [37]:

-ﬁsl (w) = [Ep(xu,x,-,y) [£(he (Xu, Xi), y)] # Lideal (®),
A 1
where Li(0) = 537 cp o (xuxi), 9). @

Problem Definition: With the definitions above, the studied prob-
lem can be defined as: Given only MNAR dataset Dy, build an unbi-
ased estimator for the ideal loss and learn the parameterized function
he (Xu, X;i) to improve unbiased recommendation performance.

4 LEARNING DE-BIASED REPRESENTATION

As discussed in § 3, directly learning h, (Xy, X;) via the empirical
risk minimization is infeasible as the empirical risk in Eq. (1) is
inaccessible. To address this challenge, we propose a new learning
framework. The key idea of our framework is iteratively conducting
WE and unbiased WL in a seamless manner (see Fig. 2 (b)), and
alleviating the variance induced in the latent representation space.

An illustration of our LDR is shown in Figure 2 (c), which is
composed of an embedding function fy(xy, X;) = zyi, a weighted
learning (WL) component, a representation adaptation (RA) com-
ponent and a weight estimation (WE) component. The embedding
function fy maps samples into a latent representation space. WE
takes the representation as input to estimate the sample weights,
which is treated as density ratio to alleviate selection bias. RA adapts
the indistinguishable representations to alleviate the learning vari-
ance. WL is for the final unbiased prediction of recommendation.
Next, we give the details of LDR and theoretically show that it can
conduct unbiased estimation without knowing propensity scores
and has low variance dynamically.

4.1 De-biased Weighted Learning
As mentioned above, the main challenge for unbiased recommenda-
tion with selection bias is that the ideal risk function £;geq;(w) =
Eg(xpxiy) [£(ho (Xu, Xi), y)] is defined over the target distribution
q(Xu, Xi, y) where the counterfactual feedback y is not observed.
Even through Monte Carlo sampling, we cannot directly estimate
Ligeai (o) via the empirical risk under q(xy, X;, y). Thus, MF-IPS [37]
adopts inverse propensity weighting:

Lidear(®) = [Eq(xu,xi,y) [€(he (Xus Xi), y)] (3)

_ q(Xu, Xi, y) . X i

= / w1, 4) y)t’(hw(xu,x,),y)p(xu,xu y)dxudx;dy
y4 (Xus Xi)
where Ljps(w) is an unbiased estimator of the ideal risk .L;geq1 ().

Note that DR [43] is also built on inverse propensity weighting
but has an additional imputation model. Without loss of generality,

= Ep(xuaiy) [ t(he (xi,%1), y) ] = Lips (o),
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q(Xu,Xi) 4
P (Xu:Xi)
w(Xy,X;), an unbiased estimator of L;ps(h) can be obtained by re-
weighting the empirical risk under MNAR dataset D, as follows:

Lp@ =5

(xu.xi,y) €Dp
This idea has been applied to many algorithms [36, 37, 43, 44, 48, 54].
However, there are two limitations: (1) they all follow a two-step
pipe-lined process (see Figure 2 (a)), which firstly estimates propen-
sity weights and then plugs them into the model learning. In this
two-step paradigm, the WE step is decoupled from the WL step. In
particular, w(xy, x;) is estimated without accommodating any form
of adaptation that is potentially useful for future unbiased learning
on the recommendation task. The apparent divergence between the
two steps would result in sub-optimal unbiased learning (2) The
estimated importance weight w(xy, ;) can be very large, resulting
in a large variance and sub-optimal estimation [41, 43, 47].

we focus on IPS in this paper. Then, along with weight

W(Xu:xi)[(hm (Xu,Xi), y) (4)

4.2 Representation Learning

To address the limitations mentioned above, we firstly propose to
leverage an embedding function to project the high-dimensional
input (xy,x;) into a lower-dimensional representation space Z.
Our key insights are: (1) Dynamically embedding unbiased learning
into the end-to-end process of representation learning can make the
final representations both discriminative and unbiased. As a conse-
quence, this more advanced the end-to-end solution can gradually
improve weight estimation and reduce the bias of model learning
in a seamless manner; (2) By mapping regions of low density in
(Xy, X;) into regions of higher density in Z, the representations
are made more compact, and we expect that the weight estimation
will be much easier; and (3) it paves us a way to further reduce the
estimation variance via the representation adaptation in § 4.3.

Specifically, we apply a transformation of data rather than di-
rectly model w(xy, x;) like IPS. Let fy : Xy X X; —» Z € R4 be the
transformation function, where d, is the reduced dimension with
d; < dy, and d;. Then z,; = fp(xy, x;) is the transformed random
variable, whose randomness comes from (xy, x;) exclusively. Given
this transformation, we can estimate the weight w(xy, x;) on the la-
tent space. Specifically, the feasibility of applying the latent weight
estimation can be proved by the following theory:

Theorem 4.1. Given an invertible and deterministic mapping fy :
(Xu, Xi) V> zyi, let p(zy;) and q(zy;) be the probability density
functions induced by p(xy, Xi), ¢(Xy, Xi), and fy. Then we have

ey < L) _ a5 x0)) _ () _
o p(xu.xi)  p(fo(xuw.xi))  p(Zui)

w(zyui).  (5)

We provide the proof in Appendix A.1. Theorem 4.1 contains our
preliminary study of when and why the representation learning
is expected to work. This theorem shows that, for any determin-
istic and invertible mapping fp(xy, X;), we can utilize the latent
representation z,; to conduct the weight estimation step. Note that
invertible and deterministic are common and widely used assump-
tions in the literature [38, 39, 42] as a basic condition for analysis.
Importantly, ensuring deterministic and invertibility is feasible for
many recommendation backbones such as the matrix factorization
collaborative filtering (MCF) [7, 9, 22, 31] and neural collaborative
filtering (NCF) [18] with user and item one-hot embeddings. We
empirically demonstrate that representation learning governs the
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success of our methods on MCF and NCF in § 5. Given the repre-
sentation learning, the unbiased estimator in Eq. (4) now can be
learned on the latent representation space Z as follows:

Ly(w,0) = [Ep(xu,xi,y), zui=fo (Xu.X;) [w(zui)t(he (zui), y) ] (6)

S D W) e (o)) v) = Lu(,0),
(xu-xi,y)€Dp

where W(zyi) = W(f3(xu,%;)) is the empirical estimated weight.
Thus, different from IPS and DR [36, 37, 43], optimizing this ob-
jective enables us to conduct the unbiased weighted learning in
a dynamic and seamless way: at the t-th iteration. after w(z,;) =
w( fét (xy, x;)) is estimated, 6; will be updated to 6;4+; by optimiz-
ing Eq. (6), and the current 0; will move to the next 0;41; then,
we estimate a new set of weights W(zy;) = »T/(fém (xu,Xi)). A key
contribution of our work is exactly this dynamic interaction in the
training processes of weighted learning and weight estimation.

4.3 Weight Estimation

In the last subsection, we have demonstrated the importance of rep-
resentation learning. Thus, with the optimization problem of Eq. (6),
we expect the interaction in the training can boost the performance
of both weighted learning and weight estimation. However, we do
not know the optimal weight W(zy;) on the latent space. Therefore,
another challenge for weight estimation is how to design an practi-
cal algorithm. We address this by first giving the following theory
of the weight estimation on the latent representation space.

Theorem 4.2. Given fg : (Xy,X;i) V> zy;. Let p(zy;) and q(zy;)
be the densities induced by p(xu,X;), q(Xu,Xi), and fg. Let Dgq be n
i.i.d pairs from q(xy,X;) = # . A—I,I If W(xu, x;) = WE(Dp, Dg)
is an empirical unbiased estimator for w(xy,x;), then W(zy;) =
WE(fo(Dp), fo(Dq)) is also an unbiased estimator for w(xy, X;).

We provide the proof in Appendix A.2. This theorem shows that
we can estimate optimal weight w(zy;) in Eq. (6) by using the finite
sample D), drawn from p(xy, x;) and Dy randomly drawn from
q(xy, x;) which is the known uniform distribution with p(x,) =

ﬁ and p(x;) = \17| Note that we do not require the unbiased

uniform feedback y in Dg and only need random unlabeled user-
item pairs (xy, x;). In the following, we introduce the details of
the weight estimation strategies. We adopt a discriminative weight
estimation method [3], also known as the likelihood ratio trick, that
has been applied across generative models [2] and reinforcement
learning [14]. However, different from them, we provide theoretical
analysis and analyze how estimated weights impact the bias and
generalization performance. To get the empirical weight w(zy;),
we use a learned binary classifier, which infers whether user-item
pairs came from the factual distribution p(x,, x;) or counterfactual
q(xu,x;). Specifically, we set the label of the data in Dy to be 0 and
the label of the data in D), to be 1, and fit a classifier c4(zui) by
solving the following objective:

Lc(¢) = [Ezm-:fg(xu,xi),(xu,x,-)~p(xu,x,~) [log O-(Cqﬁ (zui)) 1+

[Ezui:fa(Xu»xi)»(xu»xi)’“q(xu,xi) [log J(—c¢ (zui)) 1 (7)
1 1

=3 2, logolepzuil+ ;D logol-cp(zu)l.
(xu.xi,Y) €Dp (xu.x;) €Dg

where o(x) = 1/(1 + exp(—x)) and w(zy;) = w(fz(Xu, x;)). Given
the optimized cy(zyi), we can use Bayes’ rule to get the empirical
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weight estimation w(z,;). The key idea is that probabilities q(zy;)
and p(zy;) are related to the classifier probabilities via Bayes’ rule:

q(zui) _ r(zuild=0) _ r(d=1)7(d = 0|zui)

W) = )~ Fawld=1)  Fd= 0)F(d = 1[zar)’

®

where r is a distribution over (zyj,d) € Z X {0, 1} and d denotes

which world z,; belongs. Given Eq. (8), the weight w(z,;) can

be decomposed into two parts. The former r(dfl) is a constant
r(d=0)

and can be estimated with the sample sizes of factual and counter-
7(d=0|zui)
r(d=1|zui)
of counterfactual to factual that can be directly estimated with
the probabilistic predictions of the logistic regression classifier:
F(d=0lze) _ 1-0(cg(2ui))
r(d=1lzui) ~  o(cg(zui))

we can conduct unbiased weighted learning in Eq. (6), and the bias
of applying a classifier for empirical weight learning can be proved:

N . .
factual worlds as T The second part is the ratio

. With the weights estimated in this way,

Theorem 4.3. Let wy, > 0 be the maximum weight W(zy;) of any
representation zy;. Then for any zy,; s.t. P(d = 1 | zy;) # 0, the bias
of the unbiased weighted learning is bounded by:

| Lidear (@) = Luw(@,0)] < 5 Epis [ (o (i), 9)°]
+ Bt [ (m + 1D 7(d = 1) =7(d =1z )

We provide the proof in Appendix A.3. Since the first term is not
related to the classifier, we can focus on the second term. From this
upper bound, we have two observations: (1) finding a good estimate
7(d = 1|zy;) for r(d = 1|zy;) can effectively reduce the bias; (2) A
smaller wy, leads to a smaller bias of the estimated unbiased loss.

4.4 Representation Adaptation

Through representation learning and weight estimation, we can
make unbiased weighted learning more tractable. However, as men-
tioned earlier, the importance weights are not explicitly bounded,
which might result in large variance [36, 37]. In addition, as shown
in Theorem 4.3, bounded w(zy;), i.e., smaller wy,, can also lead
to smaller bias. Thus, we first give the following upper bound for
the variance of the learning in Eq. (6), which paves us a way to
minimize the learning variance and bound the w(zy;).

Theorem 4.4. Let dg(qllp) = 20(@IP) = ([ P‘ii’;?ffl )@ be the
Rényi divergence [32] between p and q. Then, the variance of the
unbiased weighted learning objective L., (w, 0) is bounded by:

Var[ L] = [Ep(xu,xi,y) [(-CW)Z] - ([Ep(xu,xi,y)[Lw])z < (10)
Ao+1(q(zui) 1P (20i)) (Ep (xy %) [Lu])E - (Ep(xuniy) [ Lw])?

Ya > 0, where we denote L1, (w, 0) by L., for brevity.

We provide the proof in Appendix A.4. Apparently, the variance of
the weighted estimator is bounded by Renyi divergence. However,
it is challenging to reduce the Renyi divergence between q(z;) and
p(zyi) since we do not know the explicit density functions of them.
To address this challenge, we propose to utilize the adversarial
learning to reduce the divergence dy+1(q(zui)||p(zui)). Since this
upper bound holds for any @ > 0, without loss of generality, we
focus on reducing dg+1(q(zui)||p(zui)) with « = 1. With some
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calculations, we have the following equation:

p(z)) = q(zui)? -
Gla@ullpu) = [T e (1)
[ Pl EED ) 411 = Dela (o)) ) 41,

where D is the f-divergence [11] with s(t) = t? — 1 being a convex
function in the domain {¢ : ¢ > 0} and s(1) = 0. Given the equation
above, we can focus on reducing Ds(q(zy;i))||p(zyi)). Inspired by
the variational characterization of f-divergences [30], we estimate
f-divergences from samples with variational optimization:

Dl llp() = [ plau)s(L 2 dn (12

= Sl;p{[Ezupq(zu,-) [T(zui)] - [Ezu,wp(zui) [s"(T(zui))])}
> sup {Epy g ze) [T (Zui) ] = Bgppyop ) [8"(T(zui)) 1},
TeT

where the second equality holds since s is a convex function and
applying Fenchel convex duality (s*(y) = Supyeg, {xy —s(x)} =
y?/4 + 1) gives the dual formulation. The third inequality holds
since we restrict T to a family of functions instead of all measurable
functions. Fortunately, if we utilize the neural networks as the
the family of T, the condition of this inequality can be satisfied
due to the universal approximation theorem [19]. Specifically, we
represent T as a discriminator d¢(zui). We then view our feature
extractor fy(xy, X;) as another generator neural network mapping
(xy, X;) to the probability of sampling z,;. Then, minimizing the
f-divergence in Eq. (12) results in a min-max objective:

L4(0,¢y) = mgin max Erpi=fp (xaurxi ), (eaenxi) ~q (i) [y (Zuai) ]

~ Baimfiy eui). (o) ~p (xxi) 187 (dy (20i)) ] (13)
1 1

smnmax D)yl gy ), 5 ()],
(Xu,Xi,y)EDp (Xusxi)EDq

Intuitively, the objective of adversarial training makes the distribu-
tion counterfactual g(z,;) be closed to factual p(zy;), which results

W) = GG
resentation learning are two-folds: (i) It can reduce the bias since
we have smaller wy, as shown by Theorem 4.3; (ii) It can reduce
the variance since we bound Renyi divergence between g(z,;) and
p(zyi) as shown in Theorem 4.4. To give more insights into why
reducing Renyi divergence improves unbiased learning, we further

provide the following generalization learning bound:

— 1. The advantages of using this adversarial rep-

Theorem 4.5. Let wy, > 0 be the maximum weight w(zy;) and
I > 0 be the maximum value of per-sample loss ¢ (typically, I, = 1
if we use log-loss). If w(zy;) is an unbiased estimation of w(zy;), then
the following upper bound holds with probability at least 1 — §:

| Lideat (@) = Ly (w,0)]

< Wmlmlog1/s \/Zdz(q(zui)llp(zui))log1/5
S ————+1y .
3N N

(14)

We provide the proof in Appendix A.5. Different from other gen-
eralization bounds [5, 34, 37, 43] in the unbiased recommendation,
which is based on observation space and Hoeffding’s inequality,
our bound is based on the latent space and Bernstein inequality.
This bound shows that, although the estimated weight is unbiased,
the learning performance will still be bad if the divergence between
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q(zyi) and p(zy;) is large. Theorem 4.3 and Theorem 4.5 both sug-
gest that making a trade-off between the variance and bias can
make L, (w, 0) be a more accurate estimation for £;j,4(®).

4.5 Final Objective Function

Based on the analysis above, we have h, for recommendation score
prediction, classifier ¢4 for weight estimation, dy, with adversarial
learning to force the representations extracted by fp are bounded.
Combining all these together, our final objective is:

L= mqlsr}’ mlle/ix Ly(w,0) +aLc(P) +yLy(6,9), (15)

where a and y are hyper-parameters to balance the contributions
of classification loss and adversarial loss. An training algorithm
is presented in Alg. 1 in Appendix. As shown in Figure 2 (c), we
reuse the representation obtained from the backbone fy and just
model our components (hy, ¢y and dy) using three heads. Hence,
compared with vanilla RS algorithms, the proposed LDR introduces
few additional parameters and is efficient.

5 EXPERIMENT

In this section, we empirically evaluate the effectiveness of our LDR.
Specifically, we answer the following questions.

(RQ1) How does the LDR perform compared with baselines?
(RQ2) How do different components affect the performance?
(RQ3) Can LDR leverage uniform data to tackle selection bias?
(RQ4) Do the proposed representation learning and adaptation
work as designed and give some useful insights?

5.1 Experimental Setup

Dataset. To evaluate unbiased performance, we need biased and
unbiased testing data collected by uniformly displaying items to
users. We use two widely used real-world datasets which satisfy
this requirement: Yahoo!R3 [28] and Coat [37]. In addition, we
also utilize a relatively large semi-synthetic dataset based on the
Amazon-Electronics dataset [29]. Following previous works [6,
24, 45], we treat items rated greater than or equal to 3 as 1, and the
others are considered as 0 for all datasets. Since Electronics does
not contain an unbiased test set, following previous works [4, 34,
53], we simulate an unbiased test set where testing data are sampled
by a uniform distribution over items with a skewed splitting. The
details of datasets and the skewed splitting are given in Appendix B.
Model Architecture. For fair evaluation, we use NCF [18] as model
architecture for all methods. The formulation of NCF is:

ANF (u, 1) = NN(@; [2u, 2:]), (16)

where NN(w;x) = W15 (W2x), W1 € R¥4 W, e R91%2dz with
&(+) being the ReLU activation. z,, and z; are the user and item em-
beddings generated by fy(xu, x;). For classifier ¢4 and discriminator
d‘ﬁ’ we use two networks with [z, z;] as the input.

Metrics. Following previous works [4, 5, 45], we use Normalized
Discounted Cumulative Gain@10 (NDCG@10), Area under the
ROC Curve (AUC) and Negative Log-Likelihood (NLL) loss under
the unbiased uniform test set as our evaluation metrics.

Settings. We select the best configuration of hyper-parameters for
all baselines based on NLL on the validation set. For all methods, the
hyper-parameter search spaces are: dropout {0.2, 0.4, 0.6}, learning
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rate {0.001, 0.005, 0.01}, L2 weight-decay {le-3, le-4, le-5, le-6},
embedding dimension {16, 32, 64, 128, 256}. For LDR, we search «
from {0.2, 0.4, 0.6, 0.8} and y from {0.1, 1.0, 10, 100}.

5.2 (RQ1) Debiasing Performance Comparison

Baselines. In this section, we evaluate the debiasing performance
under the scenario that we do not have unbiased uniform data in
training. We compare with the following baselines: Vanilla (trained
without any debiasing procedure), Inverse Propensity Score (IPS)
with the normalization trick [37], Doubly Robust (DR) [43], Counter-
factual Variational Information Bottleneck (CVIB) [45], Adversarial
Counterfactual Learning (ACL) [50] and Asymmetric Tri-training
IPS (AT-IPS) [34]. Note that we also compare with other debiasing
methods such as knowledge distillation counterfactual learning [24],
Causal Embedding [4], AutoDebias [5]. We discuss them in § 5.4
as they all require unbiased uniform data during training, which
makes splitting datasets different.

Evaluation Protocol. For Coat and Yahoo, similar to previous
works [34, 45], we use the original training set of the dataset as the
training set and the unbiased uniform set as the test set. Note that
feedbacks of the training set are MANR. We randomly selected 5%
of the original training set as the validation set and adopted the
unbiased evaluation method [37] to conduct the model section pro-
cess on the validation set. For Electronics, we randomly sample
70% of user purchases as training data, 10% as validation, and the
remaining 20% with the skewed sampling as held-out test data.
Overall Results. Table 1 shows the performance of LDR and base-
lines with NCF as the backbone. From this table, we have the follow-
ing observations: (i) Overall, our LDR outperforms almost all base-
lines on all datasets, showing that our methods can effectively ad-
dress the selection bias problem and achieve a better bias-variance
trade-off. (ii) LDR can generally perform better than the baselines,
which demonstrates the effectiveness and flexibility of LDR in facil-
itating various backbones. (iii) Our LDR significantly outperforms
causal inference-based methods such as IPS, DR and AT-IPS. This
can be explained by our iterative weighted learning: by using repre-
sentation learning, our end-to-end solution can gradually improve
weight estimation and reduce the bias of learning. (iv) Though both
CVIB and ACL are not causal inference-based algorithms, our LDR
outperforms them, which is because we can effectively estimate
the importance weight and theoretically bound the variance.

5.3 (RQ2) Ablation and Sensitivity

Setup. To understand how different components affect the perfor-
mance of LDR, we conduct an ablation study and hyper-parameter
analysis. We follow the same experimental setting as RQ1. Specifi-
cally, we build the following variants: (1) LDR without the weight
estimated by classifier c¢; (LDR w/0 C); (2) LDR without represen-
tation adaptation by dy (LDR w/o D). (3) LDR-Static: This is a
static version of LDR that first pre-trains a representation with
unweighted learning and representation adaptation. WE is con-
ducted on the pre-trained representation, and then we conduct the
unbiased WL.

Results. The results are reported in Table 2. From Table 2, we can
find that both ¢4 and dy, contribute to the performance gain, and
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Table 1: Unbiased learning performance (%): NLL (]), AUC (1) and NDCG@10 (]) using NCF of different methods.
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Coat Yahoo Electronics
Methods
NLL | AUC T NDCG@10 T NLL | AUCT NDCG@10 T NLL | AUC T NDCG@10 T
Vanilla 53.24+0.56  74.29+0.07 69.12+0.13 55.27+1.05  66.85+0.12 75.20+0.26 65.63+0.13  58.11+0.19 37.82+0.36
IPS 52.08+2.39  75.09+1.32 70.13+0.87 53.39+3.56  67.22+1.53 76.21+1.98 63.11+2.08  59.23+1.58 38.97+2.33
DR 51.19+1.75  75.85+0.87 70.82+0.45 52.18+2.83  67.79+1.11 76.67+1.55 62.79+1.76  60.11+1.05 39.28+1.51
CVIB 49.55+0.77  78.98+0.22 71.89+0.19 47.36+1.01  69.03+0.52 77.35+0.75 60.37+£0.31  62.04+0.71 41.25+0.75
ACL 50.43+1.51  76.11+0.47 71.22+0.23 49.33+1.81  68.43+1.27 76.82+0.96 61.65+0.98  61.97+0.83 39.81+1.11
AT-IPS 50.09+0.86  75.29+0.66 70.59+0.33 49.25+1.14  68.03+0.77 77.15+0.59 62.22+0.52  61.37+0.55 39.52+0.70
LDR 48.81+0.72  78.45+0.18 72.82+0.19 45.25+0.75 70.22+0.23 78.94+0.41 59.01+0.26  63.33+0.39 42.38+0.59

Table 2: Ablation study results with NCF as the backbone.

Yahoo Electronics
AUC NDCG@10 AUC NDCG@10
LDR 70.22+0.23 78.94+0.41 63.33+0.39 42.38+0.59
LDR w/o C 68.59+0.21 77.79+0.33 61.69+0.20 40.99+0.42
LDR w/o D 69.65+0.77 78.43+0.85 62.85+0.77 42.02+0.91
LDR-Static 68.32+0.35 77.37+0.41 61.77+0.28 41.58+0.52
Vanilla 66.85+0.12 75.20£0.26 58.11+0.19 37.82+0.36
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Figure 4: Parameter sensitivity analysis with NDCG@ 10.

their contributions are complementary to each other. Represen-
tation adaptation via D essentially boosts the performance and
reduces the variance, while the de-biased weight component via C
can further improve the performance. These results prove the effec-
tiveness of employing both C and D in the proposed LDR. We also
can observe that LDR can outperform LDR-Static, demonstrat-
ing that iteratively updating model parameters based on iterative
reweighting of the training samples can improve performance.

To investigate hyper-parameter sensitivity, we vary the values
of a and y and report the NDCG@10 on Coat and Yahoo in Fig. 4.
From the figure, we can find (i) Generally, with the increase of y, the
performance tends to first increase and then decrease. A too small y
would lead to a large variance and wrong weight estimation, while
alarge y may dominate the whole loss of LDR. (ii) The performance
is generally better and stable when « is between 0.6 and 0.8, which
eases the parameter selection for LDR. (iii) We can balance the bias
(weighted learning) and variance (representation adaptation) by
varying « and y, leading to better performance.

5.4 (RQ3) Debiasing with Partial Uniform Data

Setup. Recently, many works [4, 6, 24] show that incorporating
uniform data in training can improve debiasing performance. Thus,
we examine if LDR can also effectively utilize uniform data.

Baselines. We compare three representative baselines: Causal Em-
bedding (CausE) [4], knowledge distillation counterfactual learning
(KDCL) [24] (since there are several variants of KDCL, we choose
the best result for comparison in each scenario) and AutoDebias [6].
We also compare IPS and DR since the uniform data can also im-
prove their performance [24]. The way of using uniform data for

Table 3: Unbiased learning performance (%) using uniform
data with NCF of different methods on unbiased test sets.

Yahoo Electronics
Methods
AUC NDCG@10 AUC NDCG@10
Vanilla 76.19+0.11 76.28+0.18 60.28+0.13  40.98+0.17
1PS 77.22+1.21 76.55+0.99 62.36+2.57 41.55+2.89
DR 77.89+0.66 77.44+0.82 63.49+1.55 42.61+1.87
CausE 78.33+0.43 77.89+0.39 65.21+0.57 43.89+0.71
KDCL 78.99+0.35 78.57+0.19 66.80+0.49 45.21+0.52
AutoDebias 79.52+0.68  79.33+0.59 65.89+0.68  45.77+0.89
LDR 80.58+0.18  80.31+0.34 68.53+0.40 46.88+0.51
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— toss Lc
—— Loss
@ Rl S Q
8128 L 0.68 0758
| |
z
—— Loss £y
—— NDCG@10
1205 100 200 0-60 100 200 070
Steps Steps

Figure 5: Curves of the weighted training losses and testing
NDCG. The shaded area represents half a standard deviation.

our LDR is two folds: (i) adding uniform data into loss £, (but no
weight for uniform data); and (ii) utilizing the observed uniform
data as Dy to conduct representation adaptation.

Evaluation Protocol. Since we assume access to uniform data,
the splitting is totally different from RQ1. We use all biased data
as training data and randomly split the unbiased random subset
into three subsets: 10% as the additional training data, 10% as the
validation set, and the rest 80% as the test data.

Overall Results. Table 3 shows the results. It is shown that LDR
can outperform all the other methods. These results validate the ef-
fectiveness of LDR for utilizing uniform data. Specifically, LDR can
still outperform IPS and DR, which once again shows that narrow-
ing the gap between WE and WL can improve unbiased learning
performance. Our LDR outperforms KDCL and AutoDebias, which
validates that our LDR with theoretical unbiasedness and variance
guarantee can provide improvements in the recommendation qual-
ity on biased datasets.

5.5 (RQ4) Model Analysis

Setup. We take a deeper examination on the proposed LDR to un-
derstand how it works. We follow the same setting as RQ1.

Convergence. The instability [16] in min-max training is well
known. Thus, we investigate the training process of LDR. Fig. 5
shows the curves of the training losses and the testing NDCG. Re-
sults on other datasets also share a similar tendency. From the figure,



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

3 Coat 9 Yahoo
@ LDR w/o D @ LDR w/o D
== DR == DR
:‘?2 0.09 .4?6 0.09
2 o0.06} 2 o.os‘
g, O_Ozzhnl 8, o)
T 6 10
11\’ /‘zoom in /ZOom in
O0 2 4 6 OO 1 2 3
Weight Weight

Figure 6: The densities of weight distributions.

we can find: (1) LDR is training-stable and can consistently improve
performance as training steps increase. (2) Generally, LDR has a
small variance in adversarial and classification losses throughout
the whole training. (3) The results show that NDCG can converge
within a few hundred steps, which is efficient.

Bounded Weight and Variance. We investigate whether the repre-
sentation adaptation can bound the weight and variance. Following
the same settings as § 5.3, we consider the ablation LDR w/o D. The
learned weights are given in Fig. 6. We find that the weights learned
by LDR generally have lower variance than that learned by LDR
w/0 D. This shows that our proposed representation adaptation
is effective for bounding the variance. It also reduce the largest
weight, i.e., w, in § 4.3, which leads to a smaller bias in Eq. (9).
The Bias and Variance Reduction. To better understand how
LDR contributes to learning an unbiased and low variance ranking
model, we take a deeper examination on the weight distribution
grouped by the interacted frequency of items (item popularity).
From Fig. 7, we can observe: (1) As the item interacted frequency
increases, the mean weight generally decreases. Thus, LDR can
successfully identify unpopular/popular items and automatically
up-/down-weight them. This confirms that LDR can improve weight
learning and thus reduce selection bias. (2) Generally, the variance
of the weights for the items is small, although the variance of the
weights of the popular items is larger than unpopular. Meanwhile,
as shown in Table 2 and Fig. 6, our LDR not only achieves better
performance but also attains lower estimation variance than other
ablation variants such as LDR w/o D and LDR w/o C.

6 CONCLUSION

In this paper, we study the problem of handling the selection bias
from MNAR feedback. We propose Learning De-biased Representa-
tions (LDR), a general framework to address this problem. Specifi-
cally, LDR embeds learned representations into the dynamic and
iterative procedure to yield a more reliable weight estimate and
leverages the representation adaptation to reduce the variance.
Theoretical analysis proves its unbiasedness and desired statistical
properties. Empirical experiments on several datasets show that
LDR achieves better performance under selection bias.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation
(NSF) under grants number IIS-1909702 and 11S1955851, and Army
Research Office (ARO) under grant number W911NF-21-1-0198.

Teng Xiao, Zhengyu Chen, and Suhang Wang

1.8 Coat 9 Yahoo
e [5,11) 4w [14,93)
> (3338) (128.348)
) > ).

2 1.2 . (36,88] .*56 ‘ . [248,5543]
S &
Q0.6 o3

8% 15 30 45 B85 1.0 15 2.0

Weight
Figure 7: The weight distributions with the item popularity.

Weight

A PROOFS

A.1 Proofs of Theorem 4.1

PRrOOF. By the definition of probability density functions (PDFs)
and the fundamental theorem of calculus, we have:

oy (y)
q(Xu, X;) q(xu,xi)l[eT]y=fe(xu,xi)|
w(Xy, X;) = = wr}
P (Xu, Xi) g " (y)

P (s xi) [ ay ]y:fg(xu,xi)l

_ q(fo (xu;xi)) _ q(zui) _
p(fo(xu,xi))  p(zui)
which completes the proof. O

w(zui), (17)

A.2 Proofs of Theorem 4.2

Proor. For brevity, we define that WE(Dp, Dg) = W(Dp, Dg)
and WE(fo(Dp). fo(Dq)) = wW(fa(Dp), fo(Dyq)). We also define
that W(Dp, Dg) (Xu,Xi) = W(xy,X;) is the empirical weight of

the sample pair w(xy, X;), and W(fg(Dp), fo(Dq)) (fo (Xu. %i)) =
W(fp(xu, Xi)) = W(zy;) is the empirical weight of the transformed
zyi = fo(Xu, X;). Given the definitions, we can obtain:

Ep (fo (xuxi))a(fo (xuxi)) [ W(fo (x> %)) ]
=/P(fe(xu,xz'))q(fe(xu,xz‘))[@(fe(xu,Xi))]dfe(xu,Xi)

= [ btk x0) [5Gt 500) 3 0)

= Ep (xuxi),q (xuxi) L W (fo (Xus X)) ]

_ q(fo (xu,xi)) _ q(Xu, Xi) _
p(fo(xu.xi))  p(Xu,Xi)

where we use Theorem 4.1 in the last equation. This completes

the proof that W(fp(Dp), fo(Dg)) (fo(xu. xi)) = W(fy(xu,x:)) =
w(zy;i) is an unbiased empirical estimation of ideal w(xy,x;). O

[Ep(xu,xi),q(xu,xi) [W(Xu,xi)]; (18)

A.3 Proofs of Theorem 4.3

Proor. With the estimated weight W(zy;), the bias of weighted
learning £, (w, 0) can be derived as follows:

| Lideat (@) = Luw(@,0)| = Ep[(W(zui) = (zui) ) (heo (zui), Y) ]| <
\/[Ep(xu,xi,y) [(W(Zui) - ‘;(Zui))zl [Ep(xu,xi,y) [(¢(hew (zui), y))z] (19)

< %([Ep(xu,xi,y)[(w(xui) = W(2ui))* ] + Ep i) [ (€ (hoo (% %2), ) 1)

where the second line holds due to the Cachy-Schwarz inequality
and the third line holds due to the inequality of arithmetic and geo-
metric means (AM-GM inequality). As mentioned in the main body
of the paper, the optimal weight can be estimated via a classifier:

7(d=0]z;) _ 1

k(=

) =R G ) = F T 1)

1), (20)
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where k = ;Egzé; is a constant and we set it as 1 in what follows
without loss of generality. Since W(zy;) < wp,, we have W’i o <

7(d = 1| x) < 1. Given this, we have:

[Ep(xu,xi,y) [(w(zui) - W(Zui))z] (21)

[(r(d =1|zy;) —7(d = l|zui))z]
POwX¥) 7 (d = 12y 7(d = 1]zai)

< (Wi + 1D *Ep(eyxsy) [(1(d = 1zui) = 7(d = 1]z41))?] .

Plugging this into Eq. (19) completes the proof. O

A.4 Proofs of Theorem 4.4
Proor. We first rewrite the estimation variance as follows (Note
that we define w(zy;) L(w,0)) £ Ly(w,0) = L,,):
Var[ L] = Ep(xu,xi,y) [(fw)z] - (Ep(xu,xi,y) [[W])Z (22)
= Ep(xu.xi,y) [W(zui)z(f)z] - (Ep(xu,xi,y) [[W])Z

= [ ol Ez“‘b (021 = Bpiryepn [ (xuxi)dy

: q( ui> y)
- [ 4tz )’ oty

where the last line holds since we change variables and p(y|z,;) =
q(y|zyi). By using Holder’s inequality, we can bound the it as:

a-1
42t )T (02 = EBpirsy [w]) dzuidy,

Zui, a-1
[ a6 0% L ) T (0 = @ ] sy <
uis

9 Y) 20
([ atuus ) L7 & ([ gaun o)

doer (q(zat) 1 (zaat) ) € / (2uts ) 005

at
-1

1) = (Bpary [w])? (23)

< dzx+l(q(zui)”p(zui))(Ep(zui,y) HW)J(%1 (/ f)Hé - (Ep(zui,y) U)WJ)Z

< dars @) 1)) (Bptanpan (601) T = (Bptannay Lew]) =

a—1
[Ep(xu,xi,y) |:-£W])T - ([Ep(xu,xi,y) [Lw])z)

Va > 0, where we use Holder’s inequality in the first inequality

da1(q(zui) 12 (2ui)) (

and the second inequality holds since ( / {’)Hé > 1. Plugging this
inequality into Eq. (22) completes the proof. O

A.5 Proofs of Theorem 4.5
Proor. By using Theorem 4.4 with « = 1, we have:
Var[ Ly] < d2(q(zui) |p(zui))- (29)
Since we have W (z,;) = w(zy;), we only use w (zy;) for the sake
of simplicity. By using Bernstein inequality, we have

P(| Lideat (@) = Loy(@,0)] > €) = P(| L1y(@,0) = Lyy(0,0)] > €)

PULu(@.0) = D w(u) € (ho (b)), y) | > €)
(xu-xi,y)€Dp

1
P(ILw(@.0) - < )
(xu-xi,y) €Dp
-Ne?/2
Var[ L]+ ewmlm/3) "

W (zui) £ (he (fo(xu.%i)), y) | > €)

< exp ( (25)

—Ne?/2

m) and solving € yields:

Setting § to exp (

P(| Ligeat (@) = Ly(0,0)| <B) < 1-0, (26)

= Eplaiy W] =
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Algorithm 1: The Training Algorithm for LDR

1 Input: Factual observation dataset
DP {x;, (") (") y(n)}N

Dy ; sampled from uniform distribution
q(xy, xj) = q(xu)q(x,) Hyper-parameters « and y.
Learning rate 1, 79, 14, and 1.

Il

counterfactual dataset

13

{x<m>, <m>}

2 Initialize: h,,, fj, ¢y and d¢.

3 fort =1, ---, num iterations do

4 Sample mini-batches of (xy, x;,y) € Dp and
(xy, xi) € Dy

5 @ — 01— NwVoLw(w, 0) » Unbiased Weighted
loss

6 ¢r— dr-1—ngpaVyLc(¢) » Classification loss

7 Op — 011 —ngVoy(Ly(0,¢2-1)) + Liv(w1,0)) »
Min-step

8 Yr — Y1 +nyVyyLy(0.¥)) » Max-step

9 Return w, ¢, 0, and . » Optimized parameters

_ Wmlnlog1/8 | wh log”1/5
where B = AN +\/ N

ging Eq. (24) into B and using Va + b < va + Vb, we have:

212, Var(L,,) log1/8
N

.Plug-

 tnlogife PRGN
3N N
Plugging this into Eq. (26) completes the proof. O

B DATASET DETAILS

Yahoo!R3!: It contains five-star ratings. The biased training set
contains 311,704 MNAR five-star ratings of 1,000 songs from 15,400
users, and the unbiased test set contains ratings collected by asking
5,400 users to rate ten randomly selected songs. Coat?: It contains
five-star ratings from 290 users and 300 items. The training set
contains 6,960 MNAR ratings collected via user self-selections, and
the test set is collected by asking users to rate 16 uniformly se-
lected items. Amazon-Electronics® dataset: It contains 7,824,482
five-star rating from 33,602 users and 16,448 items. To create the
unbiased test set from Electronics, we conduct a skewed splitting
strategy following [4, 34], which exposes each user as uniformly as
possible to each item in the testing set. Specifically, we sample a
test set from the original dataset, then re-sample data from the test
set based on the inverse of the probabilities as:

Zue‘L{ Ou,i

_— (28)
maX;es Yyeqs Oui

pi=
where O,,; indicts if the feedback is observed or not: [Ou,i = l] =3

[yu,i is observed ] This skewed splitting strategy creates a syn-
thetic test set that each item has a uniform observed probability.

Lhttps://webscope.sandbox.yahoo.com/
Zhttps://www.cs.cornell.edu/~schnabts/mnar/
3https://nijianmo.github.io/amazon/index.html
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