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ABSTRACT

Socialbots are software-driven user accounts on social platforms,
acting autonomously (mimicking human behavior), with the aims
to influence the opinions of other users or spread targeted misinfor-
mation for particular goals. As socialbots undermine the ecosystem
of social platforms, they are often considered harmful. As such,
there have been several computational efforts to auto-detect the
socialbots. However, to our best knowledge, the adversarial nature
of these socialbots has not yet been studied. This begs a question
“can adversaries, controlling socialbots, exploit Al techniques to
their advantage?" To this question, we successfully demonstrate
that indeed it is possible for adversaries to exploit computational
learning mechanism such as reinforcement learning (RL) to maxi-
mize the influence of socialbots while avoiding being detected. We
first formulate the adversarial socialbot learning as a cooperative
game between two functional hierarchical RL agents. While one
agent curates a sequence of activities that can avoid the detection,
the other agent aims to maximize network influence by selectively
connecting with right users. Our proposed policy networks train
with a vast amount of synthetic graphs and generalize better than
baselines on unseen real-life graphs both in terms of maximizing
network influence (up to +18%) and sustainable stealthiness (up to
+40% undetectability) under a strong bot detector (90% detection
accuracy). During inference, the complexity of our approach scales
linearly, independent of a network’s structure and the virality of
news. This makes our attack very practical in a real-life setting.
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1 INTRODUCTION

Socialbots refer to automated user accounts on social platforms
that attempt to behave like real human accounts, often controlled
by either automatic software, human, or a combination of both-i.e.,
cyborgs [4]. Different from traditional spambots, which may not
have proper profiles or can be easily differentiated from regular ac-
counts, socialbots often mimic the profiles and behaviors of real-life
users by using a stolen profile picture or biography, building legiti-
mate followships, replying to others, etc. [4]. Socialbots are often
blamed for spreading divisive messages—e.g., hate speech, disinfor-
mation, and other low-credibility contents that have been shown to
widen political divides and distrust among both online and offline
communities [4, 20, 30]. To mitigate such harmful proliferation of
socialbots, therefore, there has been extensive research, most of
which focus on how to effectively detect them [10, 37, 54]. How-
ever, these works usually follow the cat-and-mouse game where
they passively wait for socialbot evasion to happen before they can
react and develop a suitable detector [8]. Instead of following such
a reactive scheme, however, proactively modeling socialbots and
their adversarial behaviors on social platforms can better advance
the next bot detection research.

In particular, we pose a question “Can socialbots exploit compu-

tational learning mechanism such as reinforcement learning to their
advantage?" To our best knowledge, adversarial nature of socialbots
has not yet been fully explored and studied. However, it is plau-
sible that adversaries who own a farm of socialbots operate their
socialbots according to certain strategies (or algorithms). Therefore,
proactively simulating such a computational learning mechanism
and understanding adversarial aspect of socialbots better would
greatly benefit future research on socialbot detection.

In general, a socialbot has two main objectives that are adversar-
ial in nature: (i) to facilitate mass propaganda propagation through
social networks and (ii) to evade and survive under socialbot detec-
tors. The first goal can be modeled as an NP-Hard influence maxi-
mization (IM) problem [25] where the bot needs to build up its net-
work of followers—i.e., seed users, overtime such that any new mes-
sages propagated from the bot through these users can effectively
spread out and influence many other people. Simultaneously, it also
needs to systematically constrain its online behaviors such that it
will not easily expose itself to socialbot detectors. Although the IM
problem has been widely studied by several works [3, 24, 25, 27],
they only focus on maximizing the network influence given a fixed
and static budget # of seed nodes (that is relatively small) and they
assume that every node is equally acquirable. However, these as-
sumptions are not practical in our context. Not only a socialbot
needs to continuously select the next best seed node or follower
over a long temporal horizon-i.e., potentially large budget of seed
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nodes, it also needs to consider that gaining the followship from
a very influential actor—e.g., Elon Musk, is practically much more
challenging than from a normal user. At the same time, a social-
bot that optimizes its network of followers must also refrain from
making suspicious behaviors—e.g., constantly following others, that
can trigger the attention of bot detectors. Thus, learning how to
navigate a socialbot is a very practical yet challenging task with
two intertwined goals that cannot be separately optimized. Toward
this challenge, in this paper, we formulate the Adversarial Social-
bot Learning (ASL) problem and design a multi-agent hierarchical
reinforcement learning (HRL) framework to tackle it.
30ur main contributions are as follows.

o First, we formulate a novel ASL problem as an optimization
problem with constraints.
e Second, we propose a solution to the ASL problem by framing
it as a cooperative game of two HRL agents that represent two
distinctive functions of a socialbot, namely (i) selecting the
next best activity—-e.g., tweet, retweet, reply, mention, and (ii)
selecting the next best follower. We carefully design the RL
agents and exploit unsupervised graph representation learning
to minimize the potential computational cost resulted from a
long time horizon and a large graph structure.
Third, we demonstrate that such RL agents can learn from syn-
thetic graphs yet generalize well on real unseen graphs. Specif-
ically, our experiments on a real-life dataset show that the
learned socialbot outperforms baselines in terms of influence
maximization while sustaining its longevity by continuously
evading a strong black-box socialbot detector of 90% detection
accuracy. During inference, in addition, the complexity of our
approach scales linearly and is independent of a network’s struc-
ture and the virality of news.
Four, we release an environment under the Open AI's gym [1]
library. This enables researchers to simulate various adversarial
behaviors of socialbots and develop novel bot detectors in a
proactive manner.

2 RELATED WORK
2.1 Socialbots Detection

The majority of previous computational works on socialbots within
the last decade [2, 10, 37, 39, 42, 52, 54] primarily focus on devel-
oping computer models to effectively detect bots on social net-
works [4, 8]. These models are usually trained on a ground truth
dataset using supervised learning algorithms—e.g., Random Forest,
Decision Tree, SVM, to classify an individual social media account
into a binary label-i.e., bot or legitimate [4]. Moreover, these learn-
ing algorithms usually depend on either a set of statistical engi-
neered predictive features such as the number of followers, tweeting
frequency, etc. [5, 42, 54], or a deep learning network where the
features are automatically learned from unstructured data such as
an account’s description text. Even though there are many possible
features that can be used to detect socialbots, statistical features
that can be directly extracted from user metadata provided by offi-
cial APIs-e.g., Twitter API, are more practical due to their favorable
computational speed in practice [54]. In fact, many of the features
that are utilized by the popular socialbot detection API botometer
fall into this category. Moreover, we later also show that using
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simple statistical features derived from user metadata can help
train a socialbot detector with around 90% prediction accuracy on
a hold-out test set (Sec. 3.1). Regardless of how a socialbot detector
extracts its predictive features, they are mainly designed following
a reactive schema where they learn how to detect socialbots after
they appear (thus a training dataset can be collected).

2.2 Adversarial Socialbot Learning

While previous works help us to understand better the detection
aspect of socialbots, the learning aspect of them has not been widely
studied [8]. Distinguished from learning how to detect socialbots
using a stationary snapshot of their features, ASL computationally
models the adversarial learning behaviors of socialbots over time.
To the best of our knowledge, relevant works on this task are lim-
ited to [7]. This work adopts an evolution optimization algorithm
to find different adversarial permutations from a fixed socialbot’
encoded activity sequence—e.g., “tweet—tweet—retweet—reply,...",
and examine if such permutations can help improve the detec-
tion accuracy of a bot detector. However, such permutations, even
though adversarial in nature, are just static snapshots of a socialbot
and do not tell a whole story on how the bot evolves. In other
words, we are still lacking a general computation framework that
models the temporal dynamics of socialbots and their adversarial
behaviors. Therefore, this paper aims to formally formulate their
behaviors as a Markov Decision Process (MDP) [21] and designs an
RL framework to train socialbots that can optimize their adversarial
goals on real-life networks.

We investigate two adversarial objectives of a socialbot: influenc-
ing people while evading socialbot detection. While the first one
can be modeled as an IM task on graph networks, traditional IM
algorithms—e.g.,[3, 25, 27], assume that the number of seed nodes
is relatively small and all nodes are equally acquirable, all of which
are not applicable in the socialbot context as previously described.
There have been also a few works—e.g., [33, 49], that utilizes RL to
IM task. Yet their scope is still limited to a single constraint on the
budget number of seeds. Influence maximization under a temporal
constraint—i.e., not to be detected lead to early termination in this
case, is a non-trivial problem.

3 PROBLEM FORMULATION

3.1 Social Network Environment

Network Representation and Influence Diffusion Model A
social network includes users, their interactions and how they
influence each other. We model this network as a directed graph
G=(V,E). An edge between two users u, veV, denoted as (u, v)€E,
means u can have influence on v. (4, v) also illustrates a piece of
news can spread from u to v-i.e, v follows u (thus u influences v).

As there is no influence model that can perfectly reflect real-
world behaviors, to model the influence flow through G, we adopt
Independence Cascade Model (ICM) [16, 17], which is the most com-
monly used in the context of a social network [22, 26, 34]. ICM
was originally proposed to model the “word-of-mouth” behaviors,
which resemble the information sharing phenomena online well. In
ICM, a node is either active or inactive. Once a node u is activated,
it has a single opportunity to activate or influence its inactive neigh-
bors N (u) with an uniform activation probability p. At first, every
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Table 1: Predictive features of the socialbot detector .

Feature Description
#tweets # of tweets posted by the user
#replies # of replies posted by the user
#retweets # of retweets posted by the user

#avg.tweets
#avg.replies
#avg.retweets

average # tweets posted per timestep
average # replies posted per timestep
average # retweets posted per timestep

#retweet.ratio #retweets/#tweets
#replies.ratio #replies/#tweets
#retweet.replies.ratio #retweets/#replies

#mentions.ratio # unique mentions posted per tweet

node is inactive except a set of seed nodes S. After that, as the
environment rolls out throughout a sequence of discrete timesteps,
the influence will propagate from S through the network by ac-
tivating different nodes in G following E and p. The process ends
when there is no additional activated nodes being activated [24, 32].
Hence p is also the virality of news—-i.e., how fast a piece of news
can travel through G. We then use G=(V, E, p) to denote the social
network G.

Let denote by a(S, G) the spread function that measures how
many nodes in G a piece of information-e.g., fake news, can spread
from S via the ICM model. Given a fixed network structure (V, E)
and the news virality p, different S will result in different values
of (S, G). Hence, selecting a good S is decisive in optimizing the
spread of influence on G. However, choosing S to maximize (S, G)
has already been proven to be an NP-Hard problem [25].

Socialbots. A socialbot is then a vertex in G that attempts to mimic
human behaviors for various aims-e.g., spreading propaganda or
low-credible contents through G, [4, 44, 46]. It carries out a sequence
of activities A to simultaneously achieve two main objectives:

Obj. 1: Optimizing its influence over G by selectively collecting good
seed nodes—i.e., followers, SEV, over time
Obj. 2: Evading bots detectors—i.e., not to be detected and removed

These two goals are often in tension in that improving Obj 1
typically hurts Obj 2 and vice versa. That is while having a good
network of followers S enables a socialbot to spread disinformation
to a large number of users at any time, having a high undetectability
helps it to sustain this advantage over a long period. As socialbots
are usually deployed in groups, and later coming socialbots can also
easily inherit a previously established network of followers S of a
current one. If a bot is detected and removed from G, not only it can
lose its followers S and expose itself to be used to develop stronger
detectors, it can also risk revealing the identity of other bots-e.g.,
by way of guilt-by-association [50]. This makes the sustainability
achieved through Obj 2 distinguishably important from previous
literature—e.g., [24, 25, 51], where the optimization of S plays a
more central role.

Relationship between A and S. A denotes the activity sequence-
i.e., the DNA of the bot [6]. A includes four possible types of actions
to be made at every timestep t, namely tweet, retweet, reply or men-
tion, and only the last three of which can directly interact with
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others to expand S. Despite these actions are in the Twitter context,
other platforms also provide similar functions—e.g., tweet->post,
retweet->share, reply->comment, mention->tag on Facebook. In
practice, not every node requires an equal effort to convert to a
follower. For example, a bot needs to accumulate its reputability
over time and interact more frequently to have an influencer-e.g.,
Elon Musk, rather than a normal user to become its follower. Since
a real model underlining such observation is unknown, we model
it using a simple heuristic:

go(u,t) = max(1,Qf(u,t)) where
1+ S| 1)

f(u, t) ~ Bernoulli(l - m),

where go(u, t) with hyper-parameter Q>1, is the number of
times the socialbot is required by the environment to continuously
interact with an influencer u-i.e., high N(u), for it to become a
follower at t. Intuitively, a bot with a good reputation overtime-i.e.,
a high number of followers at the timestep t-i.e., |S;|, can influ-
ence others to follow itself more effortlessly than a newly created
bot. Overall, A encodes when and what type of interaction-i.e.,
retweet, reply or mention, to use to acquire a new follower s€S, s
then decides the frequency of such interaction in A. Thus, A and
S is temporally co-dependent.

Socialbot Detection Model. Bot detectors are responsible for de-
tecting and removing socialbots from G. Let F(A;)€{0, 1} denote
amodel that predicts whether or not an account is a socialbot based
on its activity sequence up to the timestep t (A;). This sequence
of ordered activity is then usually represented as an unordered list
of statistical features such as number of replies, tweets per day,
by socialbot detectors [10, 37, 54]. In this paper, ¥ extracts and
adopts several features (Table 1) from previous works for detection.
Most of the features are utilized by the popular bot detection API
Botometer [9]. We train # using the Random Forest [47] algorithm
with supervised learning on a publicly available dataset [36, 53] of
nearly 15K Twitter accounts, half of which is labelled as socialbots.
This dataset is not exposed to the socialbots. Here we also assume
that () is a black-box model-i.e., we do not have access to its
parameters. ¥ achieves nearly 90% in F1 score on an unseen test
set following the standard 5-fold cross validation (train and test
with 80%/20% data). Since A and S are co-dependent, we can easily
see that S also has effects on the detectability of a socialbot. Note
that to focus on the study of the adversarial aspect of socialbots,
we had to resort to a certain combination of account features and
the socialbot detection model. 90% in F1 score is also in line with
SOTA detectors on a similar set of features [37].

3.2 The ASL Problem and Objective Function

From the above analysis, this paper proposes to study the Adver-
sarial Socialbot Learning (ASL) problem to achieve both Obj 1 and
Obj 2. In other words, we aim to solve the following problem.

PRrROBLEM: Adversarial Socialbot Learning (ASL) aims to develop an
automatic socialbot that can exercise adversarial behaviors against
a black-box bot detector ¥ while at the same time maximizing its
influence on G through a set of selective followers S.
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Figure 1: An example of ACORN HRL framework. As the environment rolls out, AGENTI (ir1) decides which type of activity
(T, R, A or M) to perform. Whenever an interactive action (R, A, M) is selected, AGENTII (r2) then selects a new follower. Since
the selected user u4 at t4 is an influencer, 7; needs perform not once but Q=3 times of action “A" to acquire uy (blue arrow).
Whenever | A| reaches an interval of K=7, the bot detector 7 (A;) is triggered (red arrow).

Specifically, we formulate this task as an optimization problem
with the objective function as follows.

OBJECTIVE FUuncTION: Given a black-box bot detection model
¥ and a social network environment what is characterized by
G=(V,E,p), K, Q, we want to optimize the objective function:

max R* = 6(S7+,G)(1+T*) subject to (2a)
St’ﬂt

T = rr%i* F(A)=1AF(A) =0 (2b)

Y 1<t<T*, |As|modK=|Ar+|modK=0 (2¢)

go(u,t) = max(1,Qf (u,t)) V 1<t<T" (2d)

Socialbot detector # can run prediction on the socialbot every time
it performs a new activity. However, A, and |V| can potentially
be very large. Thus, we assume that ¥ only runs detection every
time K new activities is added to A (Eqn. 2b). This makes T* the
earliest interval timestep at which a socialbot is detected and re-
moved by F (Eqn. 2b,c). Since R* is monotonically increasing on both
V>0(Sp,G)>0 and T*>1, to maximize R*, a socialbot cannot focus
only either on Obj 1 or Obj 2. In other words, Eqn. (2d) encourages
the socialbot to simultaneously optimize both objectives.

4 THE PROPOSED METHOD: ACORN

4.1 Markov Decision Process Formulation

The ASL problem can be formulated as an MDP process which
consists of a state set S, an action set A, a transition function %,
a reward function R, a discount factor y € [0, 1] and the horizon
T. Since the space requirement for A can be very large-i.e., 4|V|
for 4 possible activities and |V| possible seed nodes, especially on
a large network, this can make the task much more challenging
to optimize due to potential sparse reward problem. To overcome
this, we transformed this into a HRL framework of two functional
agents, AGENTI and AGENTII, with a global reward (Figure 1). We
call this ACORN (Adversarial soCialbOts leaRniNg) framework.
While AGeNTI is responsible for deciding which type of activity
among {tweet, retweet, reply, mention} to perform at each timestep
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t, AGeNTII is mainly responsible for S—i.e., to select which follower
to accumulate, only when AGENTI chooses to do so-i.e., retweet,
reply, mention. This reduces the overall space of A to only |V|+4.
Since A and S are co-dependent (Sec. 3.1), the two agents need to
continuously cooperate to optimize both influence maximization
and undetectability. It is noted that the Markov assumption behind
this MDP is not violated because both influence function () and
detection probability # at time t only depends on statistical snap-
shot of the two agents at t—1. This HRL task is then described in
detail as follows.

State. Following [12, 29, 35], we assume that the state space S can
be factorized into bot-specific Spna and network-specific Spny, and
sleSpna, s eSeny, where s!, s is the state space of AGeNTI and
AGENTIL, respectively. Specifically, s{ encodes (i) the number of fol-
lowers |S| of the bot and (ii) a snapshot of A; at timestep ¢. While s{
can directly store the actual A; sequence, this potentially induces a
computational and space overhead especially when t becomes very
large. Instead, we compact A; into a fixed vector summarizing the
frequency of each tweet, retweet, reply, and mention action up to ¢.
This effectively limits the space complexity of s'eR to O(1). Sim-
ilarly, s/ e RIVIK+D) comprises of (i) node2vec(G) [19] which
encodes the structure of G to |V| vectors of size k, (ii) a statistical
snapshot of A; and (iii) information regarding S;, encoded as:

1+ S

V] V]
T NG =0 <% ®

u=0

(L (ugS:t)

Previous works have often encoded the network structures ([15,
55]) via a parameterized Graph Neural Network (GCN) [28] as part
of the policy network. As this approach requires frequent parameter
updates during training, instead, we adopt node2vec(G) as an alterna-
tive unsupervised method which requires the calculation only once.

While S; can be encoded as a one-hot vector (]l(uéSt))IV‘

u=0’
rich it by multiplying it with the binary f(u, t) condition %
(Sec. 3.1), which then results in Eq. (3). This enables AGeNTII to

select nodes accordingly with the current reputation of the bot |S;|.

we en-
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(For testing)

(For training) [N
Figure 2: Examples of a real (Left) and synthetic (Right) news

propagation networks on Twitter with a similar star-like
shape structure.

Action and Policy. Similarly, we factor A into two different ac-
tion spaces a’, a!l for AGENTI and AGENTII, respectively. al eR%,
a’ RV are both encoded as one-hot vectors, representing one of
four available activities and one of potential followers, respectively.
We then have two policies 1 =(a’|s!), mo=(a'!|s!!, al) that control
AGENTI and AGENTIL, respectively.

Reward. Even though we can directly reward the RL agents with
0(St,G)>1.0 at every timestep t<T¥, this calculation will incur
large computational cost, especially when T* becomes large. In-
stead, therefore, we design an accumulative reward function R that
consists of a step reward and a delayed reward to incentivize RL
agents to maximize R* (Eqn. 2) as follows.

Rstep(t) =06(St \ 8t-1,G)
Rdelayed(T*) =06(S7+,G)

where T*<T is the interval timestep at which the bot is detected
and the episode is terminated. The step reward Rstep, Which can be
efficiently computed, is the marginal gain on the network influence
given a new follower selected at ¢. Using the step reward with a
discount factor, ystep<1.0, helps avoid the sparse reward problem
and encourages good follower selection early during an episode.
Since Rgtep > 1.0, it also encourages the bot to survive against
bot detection longer—i.e., to maximize T*. In other words, as long
as the socialbot survives—i.e., T* increases, in other to make new
friendship, it will be able to influence more people. However, since
o(-) is subadditive-i.e.,6({u}, G)+o({v}, G)>o({u, v}, G) VY u,veV,
we then introduce the delayed reward Ryelayeqd at the end of each
episode with a discounted factor ygejayeq<1.0 as a reward adjust-
ments for each node selection step.

©

4.2 Parameterization

A policy network 7 is a Multi-Layer Perceptron (MLP) followed by
a softmax function that projects s! to a probability distribution of 4
possible activities. We can then sample a! from such a distribution.
A policy network 7 utilizes Convolutional Neural Network [23]
(CNN) to efficiently extract useful spatial features from the stack of
representation vectors of all vertex u€V calculated by node2vec(G)
(Sec. 4.1), and MLP to extract features from the rest of the com-
ponents of s/I. The resulted vectors are then concatenated as the
final feature vector. Instead of directly projecting this feature on the
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T Extract statistics
Real Generate on the fly | Networks

Real
Networks

Figure 3: We generate synthetic networks that ensemble real
networks’ structures on the fly to train ACORN and test it
with real networks.

original action space of a!! using an MLP, we adopt the parametric-
action technique [14, 38] with invalid actions at each timestep t-i.e.,
already chosen node, being masked.

4.3 Learning Paradigm

Learning algorithm. We train 71, 72 using the actor-critic Prox-
imal Policy Optimization (PPO) algorithm [43]. It has a theoret-
ical guarantee and is known to be versatile in various scenar-
ios [15, 43, 45, 55]. The actor refers to 1 and mp, as described
above. Their critics share the same network structure but output a
single scalar value as the estimated accumulated reward at ¢.

Learning on synthetic and evaluating on real networks. We
evaluate our method on real world data. To make our RL model
generalize well on unseen real networks (Figure 2, Left) with dif-
ferent possible configurations of G=(V, E), it is important to train
our model on a sufficient number of diverse scenarios—i.e., train-
ing graphs. However, collecting such a train dataset often requires
much time and efforts. Hence, we propose to train our model on
synthetic graphs, which can be efficiently generated on the fly dur-
ing the training [24]. To avoid distribution shifts between train and
test graphs, we first collect a seed dataset of several news propaga-
tion networks and use their statistical properties (pintra,Pinter) to
spontaneously generate a synthetic graph (Figure 2, Right) for each
training iteration. We describe this in detail in Section 5.

5 EXPERIMENT

5.1 Set-Up

Datasets. We collected a total of top-100 trending articles on Twit-
ter from January 2021 to April 2021 and their corresponding propa-
gation networks with a maximum of 1.5K nodes using the public
Hoaxy API!. All the downloaded data is free from user-identifiable
information. The majority of these articles are relevant to the events
surrounding the 2020 U.S. presidential election and the COVID-19
pandemic. We also share the same observation with previous lit-
erature [24, 41] such that retweet networks tend to have star-like
shapes. These networks have a high pin;rq and a low pjnzer value,
suggesting multiple separate star-shape communities with few con-
nections among them. Therefore, viral news usually originates from
a few very influential actors in social networks and quickly propa-
gates to their followers.

Training and Testing Set. Figure 3 illustrates how to utilize syn-
thetic data during training. Since we observe that our framework

Uhttps://rapidapi.com/truthy/api/hoaxy
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Figure 4: Performance comparison of a single socialbot under bot detection constraint.

generalizes better when trained with more complex graphs-i.e.,
more edges with high intra-community (pj,+rq) and inter-community
(pinter) edge probabilities, We first selected 10% of the collected real
networks with the highest pintrq and pinter as initial seed graphs—
e.g., Figure 2, Left, to generate the training set and use the rest as
the test set. Then, during training, we used the average statistics
(Pintra,Pinter, # of communities and their sizes) of the seed graphs
to generate a stochastic, synthetic graph for each training episode of
a maximum T timesteps—e.g., Figure 2, Right. These two statistics
are selected because they well capture the star-like shapes of a typ-
ical retweet network. Since the real activation probabilities p of the
collected networks are unknown, we found that using a fixed high
p value during training achieves the best results. We then reported
the averaged results across 5 different random seeds on the remain-
ing 90 real test networks with varied p values and on a much longer
horizon than T. Note that this number of testing networks is much
larger and more extensive than those of previous studies [24, 25, 51].

Baselines. Since there are no previous works that address the
ASL problem, we combined different approximation and heuristic
approaches for the IM task with the socialbot detector evasion
feature that is provided by learned AGENTI as baselines:

o AGENTI+C. This baseline extends the Cost Effective Lazy For-
ward (CELF) [31] and exploits the submodularity of the spread
function o(-) to become the first substantial improvement over
the traditional GREEDY method [25] in terms of computational
complexity. IM is a standard baseline in influence maximization
literature.

AGENTI+H. Since G consists of several star-like communities,
we also used a heuristic approach DEGREE [3, 25] that always
selects the node with the largest out-degree that is available-i.e.,
user with the largest # of followers.

AGENTI*+C and AGENTI"+H train the first-level agent inde-
pendently from the second-level agent and combined it with
CELF or the heuristic approach DEGREE, respectively. These
are introduced to examine the dependency between the trained
AGeNTI and AGENTII

Since the GREEDY approach does not scale well with a large number
of seeds, however, we excluded it from our experiments.
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Models and Configurations. We used a fixed hyper-parameter
setting. During training, we set K«20, Q«3, T«60, p<—0.8, and
Ysteps Ydelayed <—0-99. We refer the readers to the appendix for de-
tailed configurations for RL agents. We ran all experiments on the
machines with Ubuntu OS (v18.04), 20-Core Intel(R) Xeon(R) Silver
4114 CPU @ 2.20GHz, 93GB of RAM and a Titan Xp GPU 16GB. All
implementations are written in Python (v3.8) with Pytorch (v1.5.1).

5.2 Main Results

Network Influence Ratio. Figure 4 shows the network influence
ratio-i.e., network influence over total number of users, under a
bot detection environment given different number of budget seeds
|S| and p values:
o(S,G)/|VI<1.0 (5)
A high network influence ratio requires both (i) efficient follow-
ship selection and (ii) efficient detection evasion strategy. Overall,
ACORN outperforms all baselines with different news virality (p
values). However, ACORN underperforms when [S| is low-e.g.,
|S|=50 in Figure 4. This is because AGENTII learns not to connect
with the most influential nodes early in the process. This can help
prevent disrupting the sequence A and lead to early detection,
especially when it gets closer to the next prediction interval of ¥
The larger the p value, the further—i.e., more hoops, a news can
propagate through G. Hence, as p increases—i.e., the more viral a
piece of news, utilizing the network structure to make new con-
nections is crucial and more effective than simply selecting the
most influential users. This is reflected in the inferior performance
of AGenTI+H when compared with AGENTI+C, ACORN in Figure
4, p=0.75. This means that ACORN is able to utilize the network
structured capture by node2vec and postpone short-term incentives—
i.e., makes friends with influential users, for the sake of long-term
rewards. Overall, AcorN also behaves more predictably than base-
lines in terms of the influence ratio’s deviation across several runs.

Survival Timesteps. We then evaluated if a trained socialbot can
survive even after collecting all followers. Table 2 shows that while
we train a socialbot with a finite horizon T=60, it can live on the
network for a much longer period during testing. However, other
baselines were detected very early. Since only three out of four
activities—i.e., tweet, retweet, reply, and mention, allow to collect
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Figure 6: Insights on the learned policies.

Table 2: Total survival timesteps v.s. network influence ratio
after reaching |S|=|V|

p=0.25 P =0.50 p=0.75

%7 StepsT %7 StepsT %1 StepsT
AGENTI+H 0.63 £ 043 1.2K+ 1K 068 +0.36 12K+ 1K 0.73+0.31 12K+ 1K
AGENTI+C 0.73+0.41 1.5K+968 0.71+0.36 1.3K+1K  0.77+0.30 1.3K+1.1K

ACORN  0.99 +0.10 2.1K + 254 0.99 + 0.10 2.0K + 276 0.99 + 0.10 2.0K =+ 305

new followers, it is natural that socialbots need to survive much
longer than |V| steps—e.g., around 2.0K in Table 2, to accumulate
all followers. This corresponds to 98%, 64%, and 56% of social-
bots surviving—-i.e., not detected, after reaching |S|=V for Acorn,
AGENTI+C and AGENTI+H, respectively. Our trained socialbot can
also sustain much longer if we keep it going during testing, even
with different detection intervals K>20. This implies that AGENTI
can generalize its adversarial activities against # toward unseen
real-life scenarios.

Dependency between RL Agents. The above results also demon-
strate the effects of co-training AGENTI and AGEeNTIL First, the
heuristic and CELF method when paired with the learned AGENTI
(blue & green lines, Figure 4) performs much better than when
paired with an independently trained (without AGENTII) AGENTI
(yellow & black lines, Figure 4). This shows that AGENTI, when
trained with AGENTII, becomes more versatile and can help a social-
bot survive a much longer period of time, especially even when the
socialbot only uses a heuristic node selection. However, AGENTI
performs the best when paired with AGENTIL This shows that two
RL agents successfully learn to collaborate, not only to evade the
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socialbot detection but also to effectively maximize its network in-
fluence. This further reflects the co-dependency between the roles
of A and S as analyzed in Sec. 3.1.

Computational Analysis. We compared the computational com-
plexity of AGENTII specifically with the CELF algorithm during
inference. Even though CELF significantly improves from the tradi-
tional GREEDY [25] IM algorithm with the computational complexity
of O(|S||V|m) [48] (assuming each call of o takes O(m) and only
one round of Monte Carlo simulation is needed), its computation
greatly depends on o(-), the size of the graph and becomes only
computationally practical when |S| is small. This is also similar to
other traditional IM algorithms such as CELF++ [18], TIM [48], and
ASIM [13]. To illustrate, CELF takes much more time to compute
as |S| increases especially with large p-i.e., more nodes need to be
reached when computing o(-) (Figure 5). However, with the O(1)
complexity of the forward pass through 73, AGENTII is able to scale
linearly O(|S|) regardless of the network structure and the virality
of the news during inference. Even though our framework requires
to calculate the graph representation using node2vec, it is specifi-
cally designed to be scalable to be able to process large graphs [40]
and we only need to run it once.

Insights on the Learned Policies. We summarized the node se-
lection strategies of all methods in Figure 6. We observed that both
heuristic and CELF selects very influential nodes with many follow-
ers (high out-degrees) very early. Alternatively, AGENTII acquires
an array of normal users (low out-degrees) before connecting with
influential ones. This results in early detection and removal of the
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Figure 7: Performance of multiple socialbots under bot detection constraint on a large network.

baselines and sustainable survival of our approach. This shows that
AGENTII can learn to cope with the relationship constraint (Eqn.
(1)) between A and S imposed by the environment. Moreover, the
degrees of selected users by ACORN has a right long-tail distribu-
tion, which means that ACORN overall still tries to maximize its
network influence early in the process.

5.3 Multiple Socialbots Results

We have evaluated our approach on different real-life news propa-
gation graphs. These networks can be considered as sub-graphs of
a much larger social network. In practice, different sub-graphs can
represent different communities of special interests—e.g., politics,
COVID-19 news, or different characteristics—e.g., political orienta-
tion. Since socialbots usually target to influence a specific group of
users—e.g., anti-vaxxer, it is practical to deploy several bots work-
ing in tandem on different sub-graphs. To evaluate this scenario,
we aggregated all 90 test sub-graphs into a large network of 135K
nodes and used each learned socialbot for each sub-graph. Figure
7 shows that ACORN still outperforms other baselines especially
later in the time horizon. Moreover, ACORN can efficiently scale
to a real-life setting thanks to its linear running time and highly
parallel architecture.

6 DISCUSSION AND LIMITATION

Our contribution goes beyond our demonstration such that one can
train adversarial socialbots to effectively navigate real-life networks
using an HRL framework. We will also publish a multi-agent RL en-
vironment for the ASL task under the gym library [1]. This environ-
ment will facilitate researchers to test different RL agents, examine
and evaluate assumptions regarding the behaviors of socialbots, bot
detection models, and the underlying influence diffusion models
on synthetic and real-life news propagation networks. It remains
a possibility that our proposed framework could be deliberately
exploited to train and deploy socialbots to spread low-credibility
content on social networks without being detected. To reduce any
potential misuse of our work, we have also refrained from evalu-
ating our framework with an actual socialbot detector API such
as Botometer 2. However, ultimately, such misuse can occur (as
much as the misuse of the latest Al techniques such as GAN or
GPT is unavoidable). Yet, we firmly believe that the benefits of our

Zhttps://botometer.osome.iu.edu/
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framework in demonstrating the possibility of adversarial nature
of socialbots, and enabling researchers to understand and develop
better socialbot detection models far outweigh the possibility of
misuse for developing “smarter” socialbots. In fact, by learning and
simulating various adversarial behaviors of socialbots, we can now
analyze the weakness of the current detectors. Moreover, we can
also incorporate these adversarial behaviors to advance the devel-
opment of novel bot detection models in a proactive manner [4].
Time-wise, this gives us a great advantage over the traditional reac-
tive flow of developing socialbot detectors where researchers and
network administrators are always one step behind the malicious
bots developers [4].

One limitation of our current approach is that we only consid-
ered statistical features of a bot detector that are relevant to four
activities—i.e., tweet, retweet, reply, and mention (Table 1). While
these features help achieve 90% of detection accuracy in F1 score
on a real-life dataset, we hope to lay the foundation for further
works to consider more complex network and content-based fea-
tures [11, 36, 37, 54].

7 CONCLUSION AND FUTURE WORK

This paper proposes a novel adversarial socialbot learning (ASL)
problem where a socialbot needs to simultaneously maximize its
influence on social networks and minimize the detectability of a
strong black-box bot detector. We carefully designed and formulated
this task as a cooperative game between two functional hierarchical
reinforcement learning agents with a global reward. We demon-
strated that the learned socialbots can sustain their presence on
unseen real-life networks over a long period while outperforming
other baselines in terms of network influence. During inference, the
complexity of our approach also scales linearly with the number
of followers and is independent of a network’s structures and the
virality of the news. Our research is also the first step towards
developing more complex adversarial socialbot learning settings
where multiple socialbots can work together to obtain a common
goal [4]. By simulating the learning of these socialbots under vari-
ous realistic assumptions, we also hope to analyze their adversarial
behaviors to develop effective detection models against more ad-

vanced socialbots in the future. 3

3The work was in part supported by NSF awards #1820609, #1940076, and #1909702
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