
Soft Error Resilient Deep Learning Systems Using
Neuron Gradient Statistics

Chandramouli Amarnath, Mohamed Mejri, Kwondo Ma and Abhijit Chatterjee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: chandamarnath@gatech.edu, mmejri3@gatech.edu, kma64@gatech.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—Deep learning techniques have been widely adopted
in daily life with applications ranging from face recognition to
recommender systems. The substantial overhead of conventional
error tolerance techniques precludes their widespread use, while
approaches involving median filtering and invariant generation
rely on alterations to DNN training that may be difficult to
achieve for larger networks on larger datasets. To address this
issue, this paper presents a novel approach taking advantage of
the statistics of neuron output gradients to identify and suppress
erroneous neuron values. By using the statistics of neurons’
gradients with respect to their neighbors, tighter statistical
thresholds are obtained compared to the use of neuron output
values alone. This approach is modular and is combined with
accurate, low-overhead error detection methods to ensure it is
used only when needed, further reducing its cost. Deep learning
models can be trained using standard methods and our error
correction module is fit to a trained DNN, achieving comparable
or superior performance compared to baseline error correction
methods while incurring comparable hardware overhead without
needing to modify DNN training or utilize specialized hardware
architectures.

Index Terms—Neural Networks, Fault Tolerance, Resilience,
Soft Errors

I. INTRODUCTION AND PRIOR WORK

The increasing use of Deep Neural Networks (DNNs) in
safety critical applications such as autonomous driving [1] has
drawn attention to their vulnerability to soft errors. To achieve
high accuracy in these tasks, DNNs rely on a large number
of Multiply-Accumulate (MAC) and activation operations for
each input [2]. For safety critical systems such as autonomous
driving, these operations are required to be performed at a high
level of accuracy in the presence of computation (soft) errors
[3]. To achieve this, low-overhead, low-impact online methods
for error correction must be built to provide resilience against
errors that may impact DNN accuracy [4].

Soft error detection methods in the dot product ensemble
and activations of DNNs drawing on prior Algorithm-Based
Fault Tolerance (ABFT) [5] techniques were first explored
in [6], [7]. Related later work in [8] used a ‘sanity neuron’
to detect soft errors in the dot-product ensemble of DNNs.
This work has been extended in [9] to detect errors across
DNN layer computation units including activations. However,
network retraining with extra hyperparameters is needed in this

case. The use of predictor-based checks in DNNs for statistical
detection of errors and security threats was explored in [10].

Robustness to parameter variation in DNN execution has
been examined in [11], using dynamic fixed-point repre-
sentations and device variability aware training to enhance
DNN resilience. Hessian-based sensitivity metrics have been
formulated in prior work [12] to allow prioritization and
protection of sensitive DNN parameters and computations,
enhancing resilience to parameter variation. However, [11]
and [12] have not been tested for compute errors. There has
also been work on algorithmic noise tolerance (ANT) [13],
[14] for DNNs. Low precision redundant computations are
used to both detect and correct errors in a range of digital
signal processing algorithms. The focus of ANT is on errors
induced by voltage overscaling for ultra low power operation
as opposed to radiation or noise-induced soft errors. Faults
in DNN systolic array structures have been rapidly detected
using small test sets (∼0.1% of the test dataset) to verify the
functional safety of the neural network [15]. However, unlike
our proposed scheme, this approach is applicable only to DNN
faults rather than on-line soft error resilience. Ranger [16] uses
selective range restriction of DNN layer computations with
restriction ranges derived from DNN performance on training
data. This reduces the severity of critical faults that affect
high-order bits in DNNs with low overhead. However, Ranger
incurs a tradeoff between resilience and error-free accuracy
that systems involving error detection and correction (such as
our proposed approach) do not.

Soft error resilience in the activations of a DNN is addressed
in [17]; erroneous activations are identified using correlations
in activities of neighboring neurons and suppressed (by set-
ting to zero), requiring modification of the DNN training
process and specialized hardware for on-line error resilience.
Resilience-aware computation scheduling, exploiting fault-
tolerant device parts for sensitive computations has been ex-
plored in [18], allowing a flexible tradeoff between reliability
and efficiency. However, this assumes a subset of processing
units can be hardened against single-event upsets and may fail
under high error rates. The use of median filtering (median
feature selection), involving training with median filtering
layers after each DNN layer computation block has been
explored in [19]. This provides high resilience to soft errors
and incurs low computation overhead, but requires alteration of978-1-6654-7355-2/22/$31.00 ©2022 IEEE

Fig. 1: Proposed error resilience framework: Concurrent error detection is performed using encoded checks on DNN operation, and the
presence of an error triggers the suppression system. Neurons with anomalous gradients (determined by a statistical test based on trained
DNN outputs on training data) have their values set to zero before DNN computation continues.

DNN training to ensure that inferencing accuracy is unaffected
by the median filter layers. Recent work using an opportunistic
parity bit achieves high coverage detection and suppression of
bit errors in DNN weights with zero storage overhead, but can
be masked and does not cover activation errors [20].

In contrast to prior work, this paper presents a flexible
approach to DNN error resilience, using statistical analysis
of neuron outputs with respect to their neighbors (neuron
gradients with respect to their neighbors) to localize and sup-
press errors. The proposed approach achieves comparable or
superior performance to median filtering [19] on benchmark
DNNs with comparable hardware overhead. Unlike prior work
[17], [19], the proposed approach does not require modifi-
cation of DNN training or hardware and can be combined
with error detection mechanisms [10] to reduce the effective
computational overhead, invoking error correction only when a
soft error in DNN computation is detected. As with prior work,
we consider error resilience in image classification DNNs.

Section II presents an overview of the proposed approach,
and Section III presents the detailed error resilience flow
including implemented error detection methods. Section IV
discusses experimental results on benchmark DNNs and FPGA
hardware, and we conclude in Section V.

II. OVERVIEW

The presented error resilience framework (shown in Fig.
1) is composed of two steps: (1) Error detection, which
is used to trigger (2) Error Suppression when an error is
detected. This reduces the number of memory accesses and
the compute overhead compared with an ”always-on” error
resilience approach. This section begins with a brief overview
of the error detection setup followed by an overview of the
error suppression system that forms the main contribution of
this research. In Fig. 1, the DNN MAC operations (dense or
convolutional) produce an output f(X) from the layer input X
and the activations (assumed ReLU) produce a final output Y .
These are used for concurrent error detection and suppression.

Error detection in DNN layer computations is performed in

two phases, illustrated in Blocks 1 and 2 of Fig. 1. First, for the
MAC computations of a DNN layer (dense or convolutoinal),
encoding methods similar to [7] and [8] (Block 1 of Fig. 1)
are used for error detection in linear weight-bias computations.
These methods produce a checksum value (CR in Fig. 1) from
an encoding of the DNN weight matrix [7]. For convolutional
layers, an additional convolutional neuron is used to generate
CR as in [8], with kernel weights equal to the sum of the
weights of the convolutional layer kernels. This is compared
against the weighted sum of all DNN layer outputs (CL),
which by design is equal to CR under error-free operation.
If the absolute value of CL − CR is greater than a threshold,
an error is assumed to have occurred in DNN MAC com-
putations (weight-bias multiplication or convolution). These
self-checking codes allow rapid, low-overhead error detection.
The second step (Block-2) involves error detection in DNN
activations. In this work, error detection is presented for ReLU
activations. The ReLU formulation is y = max(0, x), so that
under ideal conditions the ReLU output y is perfectly divisible
by x. If y is not perfectly divisible by the activation input x
(leaves a remainder R ̸= 0 greater than a threshold) an error
is flagged in DNN activation, since the random nature of soft
errors makes then highly unlikely to produce such an outcome.

Error suppression is invoked if the error detection systems
flag an error present and forms the core contribution of this
work. In Fig. 1 this is the block where CL − CR and R are
compared with their respective thresholds to check for errors.
If no error is present, the DNN computations continue by
passing the layer output Y to the following layer (Block 6a). If
an error is present, error suppression begins by processing Y in
Block-3. Here the gradient of each neuron’s output value (each
value in the output Y) with respect to the corresponding value
of neighboring neurons is computed. Neighboring neurons of
a given neuron are defined as adjacent neurons in a circularly
ordered list of neurons in the same layer defined in the
model’s code. For dense layers, the gradient is the difference
between neighboring neuron outputs. For convolutional layers,
it is the difference between corresponding pixel values in the

convolutional kernel output. This gives a set of gradient values
of the same dimension as the DNN layer output, which are sent
to Block-4 for diagnosing which neuron output values exhibit
errors. The gradient values are compared with predetermined
thresholds for statistically determining (via Student’s t test
[21]) which of these gradients is anomalous (different from
expected, beyond statistical thresholds). Anomalous gradients
that are deemed to take place from compute errors in the
corresponding neuron are corrected by setting that neuron
value (or pixel value, for convolution outputs) to zero in Block-
5, producing a modified layer output Y2 that is sent on for
further DNN computations in the following layers in Block
6b. The statistical thresholds used here are determined from
the mean and standard deviation of the neuron gradients across
the training dataset. The statistical thresholding incurs memory
overhead for comparison with upper and lower thresholds
for each element in the layer output due to the need to
access the upper and lower threshold values, each of equal
size to the layer output for a single input. The above error
resilience technique can be applied to all but the last DNN
layer, similar to [19]. The use of gradient values allows more
flexible thresholds that accommodate a larger range of values
of neuron outputs than the use of just neuron values. This
approach is illustrated in further detail below, beginning with
an overview of the DNN computations involved.

III. APPROACH DETAILS

A. Deep Neural Network Layer Computations

We consider both dense and convolutional layers of DNNs.
The layer input is denoted by X , the output of its MAC
computations is denoted by f(X) and the final activation
output is denoted by Y . MAC computations in a dense layer
consist of weight-bias matrix multiplication and addition. The
weights W are multiplied with the input X and added to the
bias vector b such that f(X) = WX + b.

For a convolutional layer, each input and output in the batch
is in the form of a ‘stack’ of 2-D images (3-D image tensor).
The layer is assumed to consist of Cout neurons, the input X is
assumed to have a shape (Cin, Ih, Iw) and MAC computation
output f(X) has a shape (Cout, Oh, Ow), where Cin is the
number of input channels, Cout the number of output channels
(convolutional neurons), Ih and Iw the input image height
and width respectively, and Oh and Ow the output image
height and width respectively. Each convolutional neuron is
associated with one kernel W for each input channel and a
bias b. The output for the ith neuron MAC computation for a
single input is thus fi(X) = bi +

∑Cin−1
k=0 Wi,k ∗Xk where ∗

is the convolution operator, giving a 2-D output for the ‘stack’
of 2-D inputs to the neuron.

DNN activation follows the MAC computations and is
assumed to use the ReLU operation y = max(0, x), applied
elementwise to f(X) to give the layer output Y .

B. Error Detection Via Encoded Checksums

In a dense layer, the matrix multiplication MAC operation is
encoded by adding an extra row to the weight matrix [7]. The

Fig. 2: Overview of DNN neuron gradient driven error localization
and suppression applied to dense layers: Convolutional layers ne-
cessitate this operation for each pixel indice across all layer kernels
(along the channel-dimension).

additional row of the weight matrix is given by αW and the
additional bias element by βb with α and β called the encoding
weight vectors. For a layer with N neurons and M inputs, the
weight matrix is of dimension N ×M . The encoding is thus
generated as CL = αWX+βb. Here, α = β = [1, 1,, 1] ∈
R1×N , giving CL =

∑
fi(X), or the sum of all elements of

f(X). In the absence of an error, CL −CR ≈ 0 to within the
margin of error of digital quantization. CL−CR is thresholded
at an empirically determined value (here 0.5) to detect an error.

In the DNN convolutional layer, the output f(X) is a 3-D
image tensor of shape (Cout, Oh, Ow). Error detection is im-
plemented based on [8]. The encoding is calculated as a sum-
mation of all values in the 3-D tensor, with weights given to
each neuron, so that CR =

∑Cout

i=0 αi

∑Oh

j=0

∑Ow

k=0 fi,j,k(X),
where αi is a weight assigned to the ith neuron and fi,j,k(X)
denotes the indice (i, j, k) of the MAC output tensor, with
the MAC operation discussed for convolutional layers in
Section III-A. CR is thus the weighted summation of all
elements in the MAC output tensor f(X). This reduces to:
CR =

∑Oh

j=0

∑Ow

k=0((
∑Cout

i=0 αiW) ∗ X +
∑Cout

i=0 bi) which
under the condition αi = 1∀1 ≤ i ≤ Cout (used in this
work) is simply a convolutional neuron operation using a
kernel Wc =

∑Cout

i=0 Wi, whose kernel weight is the sum
of all other kernels’ weights and whose bias bc is the sum
of all other kernels’ biases, bc =

∑Cout

i=0 bi. This additional
convolution generates CL = Wc ∗X + bc. In the absence of
error CL − CR ≈ 0 to within a margin of error for digital
quantization. This CL − CR is thresholded at an empirically
determined value (in this work 0.5) to detect an error.

For activation errors we use the divisibility of the output
of ReLU activation for error detection. The ReLU operation
is applied elementwise to each element f(x) of the MAC
output f(X) to produce each element y = max(0, f(x))
of the output Y . Each y is thus divisible by f(x) so that
y%f(x) ≈ 0, where % denotes the modulo operation. An
error is detected if the summation

∑
(y%f(x)) exceeds a

predetermined threshold (here set as 0.5).

C. Neuron Gradient Driven Error Suppression

Error localization and suppression is performed upon error
detection in layer computations. Fig. 2 shows the proposed
error suppression framework applied to a dense layer, using the
layer outputs Y = {Yi}Mi=1 as inputs. First (in step (1) of Fig.

2), the system calculates the gradient of each value of Y with
respect to the corresponding value in one of the neighboring
neurons (the difference between the two values is taken as the
gradient). For a dense layer (output is a vector), the gradient
is calculated as the linear convolution ∆Y = [−1, 1, 0] ∗ Y ,
giving the gradient as the difference between the neuron
output value and the output value to its ‘left’ (left gradient).
This implicitly assumes that two adjacent neurons will not
show significant errors that do not significantly affect the
gradient between them. In Fig. 2 this is the gradient vector
[G1, G2, ..., GM] in Step 2. This gradient computation is
performed using circular padding (hence the length-3 kernel)
to ensure that ∆Y and Y have the same dimensions and also
to capture gradient information for neurons at the layer edges
with respect to one another rather than a constant (which
would remove the advantages of gradients as opposed to
absolute values). For a convolutional layer, the gradient is
given by ∆i,jY = [−1, 1, 0] ∗Y:,i,j , where 1-D convolution is
carried out between adjacent neuron values of the same pixel
indice for all pixel indices (i,j). The number of filter groups
is set to 1. This is equivalent to a Conv1d layer with number
of groups=1 applied to each Y [i, j, k] where (i, j) are image
pixel indices and k denotes the channel index. The vector of
gradients ∆Y is used to localize errors.

To do this (Step (2) of Fig. 2), each value of ∆Y is
thresholded using Student’s t test [21]. The thresholds are
determined using the mean and variance of ∆Y across clean
training data in the absence of errors, and are set as µ± k∆σ,
where µ is the mean of the relevant value in ∆Y and σ is
its standard deviation. k∆ is a user defined tuning parameter.
Values that breach the thresholds are deemed potentially erro-
neous. Due to the nature of the convolutional kernel [−1, 1, 0],
potentially erroneous values will occur in pairs for each error.
One element of the pair will be the gradient of the erroneous
value with respect to a clean neighbor. The other adjacent
element is the gradient of a clean neighbor with respect to the
erroneous neuron. The shape of the left gradient ensures that
the second (latter) element of every pair is not erroneous, and
the first element of each of these pairs is erroneous. This gives
a set of indices for erroneous values in Y that are then set to
zero (Step (3) of Fig. 2). This modified vector Y2 is sent on
to the next layer to continue DNN inference.

Fig. 3 shows an example of soft error injection into two
neurons in the final hidden layer of LeNet-5 [22] trained
on the MNIST [23] dataset. The 1st, 6th and 25th bits are
flipped in the 3rd and 20th neurons of the error free outputs
(top plot) of the final hidden layer prior to DNN activation,
causing misclassification to class ‘4’ (correct class ‘7’) due to
the resultant erroneous layer output (bottom plot). The plots
display neuron values (y-axis) for each neuron indice (x-axis),
showing the deviation caused by soft error injection.

Fig. 4 shows the effect of error suppression. Soft errors are
injected into nominal outputs (Plot (1)) identically to Fig. 3,
giving the plot (2) (errors highlighted in red). Neuron gradients
are found via convolution to get Plot (3) and compared against
the upper and lower statistical thresholds (dotted lines in mag-

Fig. 3: Sample error injection into LeNet-5 hidden layers, causing a
misclassification when the input is of class ‘7’, forcing the DNN to
classify to class ‘4’. Bits were flipped in the 3rd and 20th neuron out
of the 84 in LeNet-5’s final hidden layer.

Fig. 4: Sample error suppression in LeNet-5 hidden layers, applied
to the error injected in Fig. 3. The neuron gradients are potentially
erroneous at four locations, corresponding to the two errors in neurons
3 and 20. The neurons 3 and 20 are then set to zero, allowing correct
classification to class ‘7’.

nified inset) to flag potentially erroneous neurons. Erroneous
neurons are set to zero to get Plot (4) of error-suppressed
outputs, giving the correct classification (‘7’) (step (5)).

IV. EXPERIMENTAL RESULTS

The proposed error resilience framework has been tested
using error injection experiments in hidden layer operations for
PyTorch [24] operations in CUDA as well as error injection in
DNNs running on FPGA hardware. Testing used two DNNs:
LeNet-5 [22] trained on the MNIST dataset [23], and ResNet-
18 [25] trained on the CIFAR-10 dataset [26]. The proposed
framework is compared against median filtering approaches
[19] and a network with no error correction mechanisms.

Error resilience was measured using the test accuracy of the
DNN under soft errors. Each neuron in the DNN has a given
probability of error for each inference. This probability is
referred to as the error rate. Identical errors are injected using
median filtering, using the proposed framework and using
no error correction method. These soft errors are modeled
as bitflips in DNN computations. For PyTorch, this is 32-bit

floating point arithmetic. For hardware validation, soft errors
are injected into 16-bit fixed-point arithmetic. Soft errors are
injected as bit errors, where a single bit flips in a random
position, or as word errors, where a group of neighboring bits
centered around a random position flip together.

Error injection in PyTorch is performed using the PyTorchFI
tool for runtime error injection in DNN inference on CUDA
[27]. Bit and Word errors were injected into the output values
of neuron MAC computations with error probability for each
output value determined by the error rate. Word errors are
injected such that every bit adjacent to an erroneous bit has a
high probability (here 75%) to flip and thus be erroneous.

Hardware Validation: Hardware validation was performed
on a Xilinx Zynq UltraScale+ MPSoC ZCU104 FPGA , run-
ning a multilayer perceptron network across MNIST using gra-
dient based error suppression, median filtering (as a baseline)
and no correction method. The network has three hidden layers
with 64, 32, and 16 neurons respectively. All computations
were encoded in 16-bit fixed point (8 integer bits and 8 decimal
bits). Test accuracy under error was recorded running the
DNN on the FPGA. Overhead figures (resource utilization,
latency, power and energy) were recorded using Xilinx Vivado
simulation. For hardware validation, error detection was not
implemented. Hardware validation primarily evaluated the
performance and overhead of error resilience. Using error
detection would lower effective overhead by ensuring error
suppression was not invoked under nominal conditions.

A. Error Injection in LeNet-5

Fig. 5 shows results for bit error injection experiments on
LeNet-5 hidden layers. The DNN is trained on the MNIST
dataset and has a error-free test accuracy of 99.1% for the
error free and gradient based suppression cases. The gradient
based error suppression system is fit to the trained DNN with
k∆ = 4 for dense layers and k∆ = 6 for convolutional
layers. The median filtering enabled DNN [19] is presented for
comparison, with error-free test accuracy of 98.8%. Error rates
varied from 0.001% to 0.1%. The DNN showed significant loss
in accuracy for higher error rates such as 0.1%. Gradient error
suppression achieved comparable results to median filtering
(within 1-3%), without any modification to DNN training.

Fig. 6 shows results for word error injection experiments on
LeNet-5 hidden layers. Error rates again varied from 0.001%
to 0.1%. The DNN showed significant loss in accuracy earlier
than for bit errors, dropping as low as 72% under high error
rates like 0.1%. The use of gradient error suppression for DNN
resilience achieved comparable results to median filtering here
as well, staying within 1-2% of the DNN test accuracy using
median filtering. More severe error rates in both bit and word
error cases show a degradation in performance for gradient-
based error suppression due to the higher number of neurons
suppressed to zero, impacting inference.

B. Error Injection in ResNet-18

Fig. 7 shows results for bit error injection on ResNet-18.
The DNN is trained on CIFAR-10 and has an error-free test

Fig. 5: Bit error injection on LeNet-5 (MNIST): Bit errors were
injected at varying error rates (probabilities of neurons showing error)
on LeNet-5 hidden layer computations. The proposed approach was
tested against median filtering [19] as well as the baseline DNN (no
error correction). Comparable performance (within 1-3%) to median
filtering is achieved with no requirement to modify DNN training.

Fig. 6: Word error injection on LeNet-5 (MNIST): Word errors were
injected at varying error rates into LeNet-5 hidden layer computa-
tions. Comparable performance (within 1-3%) to median filtering [19]
is achieved with no requirement to modify DNN training.

accuracy of 85%. Here k∆ = 4. The gradient based error
suppression system is fit to this trained DNN and has identical
error-free accuracy. The median filtering enabled DNN [19] is
presented for comparison (error-free test accuracy of 85.4%).
For ResNet-18, the median filtering module was placed after
each residual block (consisting of two convolutional layers
and input addition), due to the module impacting error-free
accuracy if placed after each convolutional layer. Error rates
varied from 0.001% to 0.1%. The DNN showed high loss
in accuracy without correction, whereas gradient based error
suppression keeps DNN accuracy above 75% for all test cases.

Fig. 8 shows results for word error injection experiments on
ResNet-18 hidden layers. Error rates varied from 0.001% to
0.1%. The DNN showed more severe accuracy loss here than
for bit errors. Gradient error suppression achieved superior
results to median filtering and similar accuracy to the bit error
case. Under high error rates, test accuracy drops to just above
60% for gradient based error suppression, unlike the collapse
in accuracy for the network without error correction.

This superior performance to median filtering in comparison
to the case in Section IV-A is partly due to the placement of
filter modules after every pair of convolutional layers (each
residual block), and in part due to the greater number of neu-
rons in ResNet-18. Placement of median filter modules after

Fig. 7: Bit error injection into ResNet-18 (CIFAR-10): Bit errors
were injected at varying error rates (probabilities of neurons showing
bit error) on ResNet-18 hidden layer computations. The proposed
approach was tested against median filtering (implemented after each
residual block) [19] as well as the baseline (no correction method
used) network. Superior performance to median filtering is achieved
with no requirement to modify DNN training.

Fig. 8: Word error injection on ResNet-18 (CIFAR-10): Word errors
were injected at varying error rates into ResNet-18 hidden layer com-
putations. Superior performance to median filtering [19] is achieved
with no requirement to modify DNN training.

each layer of ResNet-18 led to a significant drop in accuracy
during training, thus leading to use of median filter modules
after each residual block. The greater number of neurons
allows suppression (zeroing) to be done more aggressively
under high error rates without high impact on accuracy.

Fig. 9: Neural network performance on FPGA when using gradient
based suppression, median filtering and no correction when varying
the percentage of adders in the 7th neuron of the second hidden
layer that show errors. The gradient approach achieves slightly better
performance over median filtering.

Method
Configurable
Logic Blocks
(CLB)

Latency
(ms)

Power
Consumption
(W)

Energy
(mJ)

Gradient-based
Approach 8511 5.869 4.219 24.761

Median Filtering 8501 5.866 4.277 25.089
No Correction 8379 5.865 4.198 24.621

TABLE I: Hardware overhead: Calculated for the FPGA implemen-
tations against the baseline (median filtering [19]).

C. Hardware-Based Error Injection

Fig. 9 shows the performance of the DNN on FPGA under
error injection using median filtering, using the proposed
approach (with k∆ = 4) and using no error correction. The
percentage of erroneous adders in a chosen neuron of the
second hidden layer was varied from 0 to 87.5%. Bit errors
were injected in these erroneous adders. The target neuron
was chosen randomly and fixed for the entire testing process
(Here that was the 7th neuron of the second hidden layer). The
faulty adders’ positions varied from 0 to 64 and are chosen
randomly each time. The 2nd MSB bit in the integer part was
chosen for flipping to insert the bit error. It is seen from Fig.
9 that the proposed gradient based approach performs slightly
better than median filtering as the number of faulty adders
increases. The proposed approach thus performs slightly better
than state of the art methods on hardware for small networks.
As seen in Section IV-B, larger networks can lead to superior
performance from the gradient based approach due to allowing
more aggressive zeroing of erroneous neuron values.

Table I shows the overhead (collected in Xilinx Vivado sim-
ulation) for the proposed resilience system measured against
the overhead of median filtering on FPGA. The overhead
for the network with no error correction is shown for ref-
erence. Resource utilization is calculated as the number of
configurable logic blocks (CLBs) used by the Xilinx Vivado
simulation. The gradient based approach shows lower energy
consumption, marginally higher CLB usage and lower power
consumption than median filtering. Latencies for all three
scenarios are almost identical. Table I shows that the proposed
approach has slightly lower overhead than median filtering
when operating in always-on mode. The use of error detection
systems in conjunction with this (as in Fig. 2) can further lower
effective overhead and memory access requirements.

V. CONCLUSION

This work presents a DNN error resilience approach that
achieves comparable or superior performance to state of the
art methods without requiring specialized hardware or modifi-
cation of DNN training. The method is validated on benchmark
DNNs using published error injection methods as well as on
FPGA hardware. Future work envisions testing this approach
against fault aware training [11] and permanent faults.

ACKNOWLEDGMENT

This research was supported by the Semiconductor Research
Corporation under Auto Task 2892.001 and in part by the U.S.
National Science Foundation under Grant No. 2128149 and
Grant S&AS:1723997.

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in The IEEE
International Conference on Computer Vision (ICCV), December 2015.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[3] ISO, “Road vehicles – Functional safety,” 2011.
[4] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-

holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[5] V. Nair and J. Abraham, “Real-number codes for fault-tolerant matrix
operations on processor arrays,” Computers, IEEE Transactions on,
vol. 39, no. 4, pp. 426–435, Apr 1990.

[6] S. Pandey, S. Banerjee, and A. Chatterjee, “Reinn: Efficient error re-
silience in artificial neural networks using encoded consistency checks,”
in 2018 IEEE 23rd European Test Symposium (ETS), 2018, pp. 1–2.

[7] ——, “Error resilient neuromorphic networks using checker neurons,”
in 2018 IEEE 24th International Symposium on On-Line Testing And
Robust System Design (IOLTS), 2018, pp. 135–138.

[8] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability
of safety-critical deep neural network applications,” in 28th IEEE
Asian Test Symposium, ATS 2019, Kolkata, India, December 10-
13, 2019. IEEE, 2019, pp. 7–12. [Online]. Available: https:
//doi.org/10.1109/ATS47505.2019.000-8

[9] ——, “Concurrent monitoring of operational health in neural networks
through balanced output partitions,” in 25th Asia and South Pacific
Design Automation Conference, ASP-DAC 2020, Beijing, China,
January 13-16, 2020. IEEE, 2020, pp. 169–174. [Online]. Available:
https://doi.org/10.1109/ASP-DAC47756.2020.9045662

[10] C. Amarnath, M. I. Momtaz, and A. Chatterjee, “Addressing soft error
and security threats in dnns using learning driven algorithmic checks,”
in 2021 IEEE 27th International Symposium on On-Line Testing and
Robust System Design (IOLTS), 2021, pp. 1–4.

[11] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN
accelerator with un-reliable reram,” in Design, Automation & Test in
Europe Conference & Exhibition, DATE 2019, Florence, Italy, March
25-29, 2019, J. Teich and F. Fummi, Eds. IEEE, 2019, pp. 1769–1774.
[Online]. Available: https://doi.org/10.23919/DATE.2019.8715178

[12] S. Dash, Y. Luo, A. Lu, S. Yu, and S. Mukhopadhyay, “Robust
processing-in-memory with multibit reram using hessian-driven mixed-
precision computation,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 41, no. 4, pp. 1006–1019, 2022. [Online]. Available:
https://doi.org/10.1109/TCAD.2021.3078408

[13] S. Zhang and N. R. Shanbhag, “Embedded algorithmic noise-tolerance
for signal processing and machine learning systems via data path de-
composition,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
pp. 3338–3350, 2016.

[14] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Hardnn: Feature map vulnerability evaluation in cnns,” 2020.

[15] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, “Toward
functional safety of systolic array-based deep learning hardware ac-
celerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 3, pp. 485–498, 2021.

[16] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2021, pp. 1–13.

[17] E. Ozen and A. Orailoglu, “Just say zero: Containing critical
bit-error propagation in deep neural networks with anomalous
feature suppression,” in IEEE/ACM International Conference On
Computer Aided Design, ICCAD 2020, San Diego, CA, USA,
November 2-5, 2020. IEEE, 2020, pp. 75:1–75:9. [Online]. Available:
https://doi.org/10.1145/3400302.3415680

[18] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 979–984, 2018.

[19] E. Ozen and A. Orailoglu, “Boosting bit-error resilience of dnn accelera-
tors through median feature selection,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 39, pp. 1–1, 11
2020.

[20] S. Burel, A. Evans, and L. Anghel, “Zero-overhead protection for cnn
weights,” in 2021 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2021, pp. 1–6.

[21] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses, 3rd ed.,
ser. Springer Texts in Statistics. New York: Springer, 2005.

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[26] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[27] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), 2020, pp.
25–31.

