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Convolutional neural networks (CNNs) are used in numerous real-world applications such as vision-based
autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-
aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is
the fast evaluation of inference latencies in order to rank different architectures. While building a latency
predictor for each target device has been commonly used in state of the art, this is a very time-consuming
process, lacking scalability in the presence of extremely diverse devices. In this work, we address the scalability
challenge by exploiting latency monotonicity — the architecture latency rankings on different devices are often
correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy
device on new target devices, without losing optimality. In the absence of strong latency monotonicity, we
propose an efficient proxy adaptation technique to significantly boost the latency monotonicity. Finally, we
validate our approach and conduct experiments with devices of different platforms on multiple mainstream
search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201, ProxylessNAS and FBNet. Our results
highlight that, by using just one proxy device, we can find almost the same Pareto-optimal architectures as the
existing per-device NAS, while avoiding the prohibitive cost of building a latency predictor for each device.
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1 INTRODUCTION

Convolutional neural networks (CNNs) are a most commonly used class of deep neural networks,
offering human-level inference accuracy for numerous real-world applications such as vision-based
autonomous driving and video content analysis [21]. Going beyond the contentional server-only
platforms, CNNs have been deployed on increasingly diverse devices and platforms, including
mobile, ASIC and edge devices [46]. As the foundation of a CNN, the neural architecture can
greatly affect the resulting model performance such as accuracy and latency. Thus, optimizing the
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architecture through hardware-aware neural architecture search (NAS) is crucial and being actively
studied [5, 13, 34, 40, 41, 45].

The exponentially large search space consisting of billions of or even more architectures renders
NAS a very challenging task [15, 40, 41, 43, 45, 47]. The key reason is that evaluating and ranking
the architectures in terms of metrics of interest (e.g., accuracy and latency) can be extremely
time-consuming. As a result, many studies have been focused on reducing the cost! of training and
evaluating the architecture accuracy, including reinforcement learning-based NAS with accuracy
evaluated based on a small proxy dataset [52], differentiable NAS [45], one-shot or few-shot NAS
[4, 9, 51], NAS assisted with an accuracy predictor [15, 43], among many others.

In addition to speeding up accuracy evaluation, reducing the cost of assessing the inference
latency on a target device is equally important for efficient hardware-aware NAS [9, 19, 33, 40].
The naive method of measuring the latency for each architecture can lead to a total search time
exceeding several weeks or even months, whereas using the floating-point operations (FLOPs) as a
device-agnostic proxy may not accurately reflect the true inference latency on different devices
[40]. As a result, state-of-the-art (SOTA) hardware-aware NAS has mainly relied on device-specific
latency lookup tables or predictors [5, 10, 13, 15, 19, 34, 43, 47].

Nonetheless, building a latency predictor for a target device requires significant engineering
efforts and can be very slow. For example, [10] measures average inference latencies for 5k sample
DNNs on a mobile device and uses the results to build a latency lookup table for that specific device.
Assuming the ideal scenario of 20 seconds for each measurement (to average out randomness
per the TensorFlow guideline [22]) and non-stop measurement, it can take 27+ hours to build
the latency predictor for one single device [10]. Similarly, it is reported by [15] that 350k records
are collected for building a latency predictor for just one device. Even by measuring latencies on
six devices in parallel, the authors of [29] report on OpenReview that they spent one month to
collect latency data on the small NAS-Bench-201 space and build latency predictors for another two
datasets on the FBNet space. More recently, kernel-level latency predictors that capture complex
processing flows of different neural execution units are proposed, but it takes up to 4.4 days for just
collecting the latency measurements on one edge device [50]. All these facts highlight the crucial
point that building a latency predictor for a target device — a key step of SOTA hardware-aware
NAS — is costly and cannot be taken for granted as free lunch.

Worse yet, the target devices for CNN deployment are ex-
tremely diverse, ranging from mobile CPUs, ASIC, edge devices 1.0
to GPUs. For example, even for the mobile devices alone, as
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target devices, the combined cost of building device-specific
latency predictors for hardware-aware NAS is prohibitively
high and increasingly becoming a key bottleneck for scalable
hardware-aware NAS. In addition, this challenge is further magnified by the fact that building
device-specific latency predictors is not a one-time cost: varying the input resolution and/or out-
put classes also requires new latency predictors (e.g., two device-specific latency predictors are

Fig. 1. Device statistics for Facebook
users as of 2018 [46].

!In this paper, “cost” also interchangeably refers to computational complexity: a higher complexity requires more computa-
tional resources (measured in, e.g., machine hours) and hence a higher monetary cost, too.
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built, each for one dataset, on the FBNet space [29]). Consequently, how to efficiently scale up
hardware-aware NAS for extremely diverse target devices has arisen as a critical challenge.

Contributions. In this paper, we focus on reducing the total latency evaluation cost for scalable
hardware-aware NAS in the presence of diverse target devices across different platforms (e.g.,
mobile platform, FPGA platform, desktop/server GPU, etc.). Concretely, we show that latency
monotonicity commonly exists among different devices, especially devices of the same platform.
Informally, latency monotonicity means that the ranking orders of different architectures’ latencies
are correlated on two or more devices. Thus, with latency monotonicity, building a latency predictor
for just one device that serves as a proxy — rather than for each individual target device as in
state of the art [9, 15, 29] — is enough. Even when a target device has a weak monotonicity with
the default proxy device (e.g., a mobile phone proxy vs. a target edge TPU), we use an efficient
adaptation technique which, by measuring latencies of a small number of architectures on the
target device, significantly boosts the latency monotonicity between the adapted proxy device and
the target device.

We validate our approach by considering various search spaces and running experiments with
devices of different platforms, including mobile, desktop GPU, desktop CPU, edge devices and
FPGA. Our results show that, using just one proxy device, there is almost no Pareto optimality loss
compared to architectures specifically optimized for each target device. In addition, we also consider
the recent latency datasets [19, 29, 50], and confirm further that one proxy device is enough for
hardware-aware NAS.

2 STATE OF THE ART AND LIMITATIONS OF HARDWARE-AWARE NAS

In this section, we provide an overview of the existing (hardware-aware) NAS algorithms as well
as SOTA approaches to reducing the performance evaluation cost, and highlight their limitations.

2.1 Overview

Neural architecture is a key design hyperparameter that affects the inference accuracy and latency
of DNN models. In Fig. 2, we show an example architecture, which is found by searching over the
possible layer-wise kernel sizes, expansion ratio, and block depth in the MobileNet-V2 search space
using evolutionary search [9].
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Fig. 2. Anexample architecture in the MobileNet-V2 search space, which achieves 70.2% accuracy on ImageNet
and 71ms average inference latency on S5e. The text “Z; x Zz x Z3” the input size for each layer.
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The available architecture space is exponentially large, often consisting of billions of or even
more choices (e.g., >10' in [9]). To address the complexity challenge, NAS has recently been
proposed to efficiently automate the discovery of neural architectures that exceed the performance
of expert-designed architectures [52]. Next, we provide a summary of existing NAS algorithms.

2.1.1 NAS Without a Supernet. Many prior NAS algorithms can be broadly viewed as “NAS without
a supernet”, where the search process is entangled with the model training process [35, 40, 52].
Specifically, as illustrated in the left subfigure of Fig. 3, the NAS process is governed by a controller
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Fig. 3. Overview of NAS algorithms. Left: NAS without a supernet. Right: One-shot NAS with a supernet.

(e.g., a reinforcement learning agent): given each candidate architecture produced by the controller,
the model is trained on the training dataset and then evaluated for its performance, based on which
the controller produces another candidate architecture. This process repeats until convergence or
the maximum search iteration is reached. Techniques to reduce the search cost include training on
part of the training dataset, a small proxy dataset, using Bayesian optimization or reinforcement
learning to reduce the number of sampled candidate architectures, parameterizing the architectures
and using gradients of the loss to guide the search and training simultaneously, among others
[31, 34, 38-40, 52]. Nonetheless, the search cost for even a single device can still take up to 100+
GPU hours, lacking scalability in the presence of numerous heterogeneous devices [10, 45].

2.1.2  One-shot NAS. In view of the extremely diverse devices and platforms for model deployment,
one-shot NAS and its variants such as few-shot NAS have recently been proposed to reduce the
search cost by exploiting the weight sharing mechanism [4, 5, 9, 14, 23, 36, 48, 51]. Concretely, as
illustrated in the right subfigure of Fig. 3, the key idea of one-shot NAS is to decouple the training
process from the search process: pre-train a super large model (called supernet) whose weight is
shared among all the candidate architectures, and then use a separate search process to discover
optimal architectures that inherit the weights from the supernet. For example, in SOTA algorithms
such as APQ, ChamNet, BigNAS and FBNet-V3 [9, 14, 15, 43, 48], a supernet is pre-trained first,
which is then followed by a search process based on evolutionary algorithms or reinforcement
learning to find an optimal architecture.

While pre-training the supernet is more costly than training an individual network, the training
cost is one-time? for each learning task and, when amortized over hundreds of target devices, will
be much more affordable. For example, with the recent once-for-all algorithm [9], the amortized
training cost for each target device is around 12 hours given a modest size of 100 devices, and
further less given more devices.

2.2 Current Practice for Reducing the Cost of Performance Evaluation

With a O(1) model training cost incurred by one-shot NAS, the cost of performance evaluation —
accuracy and latency evaluation — increasingly becomes a bottleneck.

Accuracy evaluation. For each candidate architecture, the time needed to evaluate the inference
accuracy (even on a small proxy/validation dataset) is in the order of minutes. Thus, to expedite the
accuracy evaluation, SOTA NAS algorithms have leveraged an accuracy predictor: first measuring
the accuracies of sample architectures (extracted from the supernet) and then building a machine
learning model [14, 15, 43]. Therefore, the candidate architectures can be ranked based on their
predicted accuracies, speeding up the runtime process for NAS. Since the inference accuracy is

2With the optimal architecture found by NAS, additional model updates (e.g., by training over the entire dataset or fine-
tuning the weights) may still be needed to further improve the accuracy, but this will typically not affect the accuracy
rankings of different architectures [34] and is orthogonal to NAS whose goal is to decide an optimal neural architecture.
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Table 1. Cost Comparison of Hardware-aware NAS Algorithms for n Target Devices.

Algorithm Search Model Accuracy Latency Total Cost
Method Training Evaluation Evaluation (Machine-hours)
MNasNet [40] RL O(n) O(n) O(n) 6912n
FBNet [45] Gradient O(n) O(n) O(n) 216n
ProxylessNAS [10] Gradient O(n) O(n) O(n) (200 + cp)n
NetAdapt [47] Loop 0(1) O(n) O(n) cr +(ca+cp)n
APQ [43] Evolutionary o(1) o(1) O(n) 2400+ ca +cLn
ChamNet [15] Evolutionary 0(1) oQ) O(n) cr+ca+ern
Once-for-All [9] Evolutionary o) o(1) O(n) 1200 + c4 + cLn

evaluated based on the testing dataset, the accuracy predictor is device-independent and can be
re-used for different target devices, incurring a fixed one-time cost of O(1).

Latency evaluation. Measuring the actual latency for each candidate architecture takes about
20 seconds or more (to average out the random variations as per TensorFlow-Lite guideline [22]
and also suggested by [10]). Meanwhile, the total number of candidate architectures sampled by
a NAS algorithm is typically in the order of 10k or even more [12, 15, 40], thus settling the total
latency evaluation time to be 50+ hours for just one target device.

Using the FLOPs as a device-agnostic proxy cannot accurately reflect the true latency rank-
ings of different architectures on a target device [40]. Instead, to reduce the latency evaluation
cost, SOTA hardware-aware NAS algorithms have most commonly used latency predictors — pro-
filing/measuring the latencies for sample architectures in advance and then building a latency
predictor (either a lookup table or machine learning model) [9, 10, 15, 50]. Then, the latency pre-
dictor is utilized to guide the NAS process, without measuring the actual latency on the target
device.

2.3 Limitations

Despite the recent progress, SOTA hardware-aware NAS algorithms still cannot scale up in view of
the extremely diverse target devices for model deployment.

Summary of total search cost. Given n target devices, we summarize in Table 1 the total
search costs, measured in machine-hours, of a few representative hardware-aware NAS algorithms.
If the quantitative evaluation cost is not reported for an algorithm, we use cr, ca, 1 to denote its
model training cost, accuracy evaluation cost, and latency evaluation cost, respectively. Empirically,
for each device, ¢y, is in the order of at least a few tens of hours [10, 19] or even hundreds of hours
[29, 50]. Thus, we can see that the latency evaluation cost is a significant or even dominant part of
the total search cost, especially when n increases.

While the actual execution time of NAS may be further reduced by parallel processing, the total
cost in terms of machine-hours does not decrease. For example, latency measurements on multiple
devices in parallel and assigning more GPUs for supernet training can both speed up the overall
NAS process, but the total resources needed by NAS still remain unchanged (or possibly even
higher due to communications overheads among GPUs for distributed training). For this reason,
machine-hour is a more accurate and widely-used metric for total resource expenditure in NAS
[9, 40, 43, 45].

Challenges. In the current practice, building a latency predictor for each target device requires
significant engineering efforts and can be very slow, while it is often excluded from the total cost
calculation [15, 30, 42, 43, 45, 47]. Moreover, the diverse set of target devices have different latency
collection pipelines, programming environment, and/or hardware domain knowledge requirement,
all of which add to the significant challenges of building a latency predictor [29].
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The challenges of building latency predictors have been increasingly recognized and motivated
some latest studies on latency predictors to facilitate hardware-aware NAS research. For example,
[29] releases latency datasets/predictors for six devices on the NAS-Bench-201 space and FBNet
space. Even by measuring latencies in parallel, the authors of [29] report on OpenReview that they
spent one month to collect latency measurement. Another recent study [50] builds a kernel-level
latency predictor, taking up 1-4.4 days for latency measurement on each device depending on how
powerful the device is. Nonetheless, these approaches are not scalable, and the latency predictors
built by these studies are all specific to their limited set of devices.

We can conclude that, in the presence of extremely diverse target devices, the combined cost
of building latency predictors for hardware-aware NAS is prohibitively high at O(n). This has
increasingly become a bottleneck for scalability.

3 PROBLEM FORMULATION, INSIGHTS, AND PRACTICAL CONSIDERATION

We present the problem formulation for hardware-aware NAS, show the key insights for when we
can reduce the latency evaluation cost to O(1), and finally discuss practical considerations.

3.1 Problem Formulation

The general problem of hardware-aware NAS can be formulated as follows:

max max accuracy(x, wy) (1)
xeX wx
s.t., latency(x;d) < Lq (2)

where x represents the architecture, X is the search space under consideration, wy is the network
weight given architecture x, Lq is the average inference latency constraint, and d € D denotes a
device with D being the device set. Note that accuracy(x, wy) is measured on a dataset independent
of the device d, and can also be replaced with a certain loss function (e.g., cross entropy). By varying
Lq between its feasible range [fd,min,fd’ max)> We can obtain a set of Parefo-optimal architectures,
denoted by Py = {X*(Zd; d), for Zd (S [fd,min,fd,max]}.

Remark. We offer the following remarks on the problem formulation. First, due to the non-
convexity and combinatorial nature, the obtained architectures by using approximate methods (e.g.,
evolutionary search [43]) to solve Eqns. (1)(2) may not be globally Pareto-optimal in a strict sense;
instead, the notation of Pareto-optimality (or simply, optimality) in the context of NAS usually
means a satisfactory architecture that outperforms or is very close to SOTA results [1, 14, 40].
Second, as recently shown in [29], the inference latency and energy of an architecture on a device are
very strongly correlated. That is, an energy constraint can be implicitly mapped to a corresponding
latency constraint. Thus, like in [5, 13, 40, 45, 47], we only consider the inference latency constraint
in our formulation for the convenience of presentation.

3.2 Key Insights

By observing the NAS problem in Eqns. (1)(2), achieving O(1) latency evaluation cost may seem very
unlikely. The reason is that the inference latency latency(x; d) is highly device-specific — with a
new device, the latency function will change in general, and so will the Pareto-optimal architectures
accordingly. We notice, however, that the Pareto-optimal architectures for two different devices can
actually be identical if their latency functions are monotonic, as formally defined and proved below.

DEFINITION 1 (LATENCY MONOTONICITY). Given two different devicesd; € D and d; € D, if
latency(x1;d;) > latency(xy; dy) and latency(x;; dy) > latency(xz; dz) hold simultaneously for any
two neural architectures x; € X and x, € X, then the two devices d; and d, are said to satisfy latency
monotonicity. ]
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ProrosiTION 3.1. Iftwo devicesd; € D andd; € D strictly satisfy latency monotonicity, then they
have the same set of Pareto-optimal architectures, i.e., Pq, = Pa,, where Pq, = {x"(Lg,;d;), for Ly, €
[Ldi,min» Ldi,max]} for i=12

Proor. Define del’ 4, as the set of architectures satisfying latency(x;d;) < Lg,. By latency

monotonicity, we can find another constraint Zdz such that de 4 = de dy- In other words, the
1’ Al

latency constraint latency(x;d;) < Lg, is equivalent to latency(x;dy) < Lg,. Therefore, device-
aware NAS formulated in Eqns. (1)(2) for devices d; and d; are equivalent, sharing the same set of
Pareto-optimal architectures. O

Proposition 3.1 guarantees that, for any two devices satisfying latency monotonicity, we only
need to run device-aware NAS on one device, avoiding the cost of numerous latency measurements
and building a separate latency predictor for each device. The key reason is that in NAS, it is the
architecture’s accuracy and latency performance ranking that really matters for Pareto-optimality.
Consequently, if latency monotonicity is satisfied among all the target devices, the latency evaluation
cost can be kept as O(1).

3.3 Practical Consideration

To quantify the degree of latency monotonicity in practice, we use the metric of Spearman’s Rank
Correlation Coefficient (SRCC), which lies between -1 and 1 and assesses statistical dependence
between the rankings of two variables using a monotonic function. The greater the SRCC of CNN
latencies on two devices, the better the latency monotonicity. SRCC of 0.9 to 1.0 is usually viewed
as strongly dependent in terms of monotonicity [3].

While Proposition 3.1 does not strictly hold when the SRCC is less than 1.0, we note that a
sufficiently high SRCC (e.g., around 0.9 in our experiments) is already good enough in practice. This
is due in great part to imperfection/approximation in other aspects of the NAS process. Concretely,
in SOTA hardware-aware NAS algorithms [15, 40, 43], the accuracy predictor (or the accuracy
measured on a small proxy dataset) only has a SRCC value of around 0.9 with the true accuracy.
Thus, given the imperfection of accuracy evaluation, strictly satisfying the latency monotonicity
does not offer substantial benefits.

4 LATENCY MONOTONICITY IN THE REAL WORLD

We now investigate latency monotonicity in the real world and show that it commonly exists
among devices, especially of the same platform.

4.1 Intra-Platform Latency Monotonicity

We empirically show the existence of strong latency monotonicity among devices of the same
platform, including mobile, FPGA, desktop GPU and CPU.

Mobile platform. We first empirically measure the actual latencies of CNN models on four
mobile devices: Samsung Galaxy S5e, TabA, Lenovo Moto Tab, and Vankyo MatrixPad Z1 (a
low-end device). The details of deveice specifications are listed in Table 2. We randomly sample
10k models from the MobileNet-V2 space [37] (details in Section 6). Then, we deploy these models
on the four devices and calculate their average inference latencies. We show the actual latencies on
S5e, Lenovo, Vankyo versus TabA in Fig. 4(a), where each dot represents one CNN model.

We see that when the sampled CNN models run faster on TabA, they also become faster on the
other devices. In Fig. 4(a), the maximum standard deviation (denoted by the vertical line within
each bin) is 1.3% for Vankyo, while it is negligibly 0.6% and 0.84% for Lenovo and S5e. Thus, latency
monotonicity is well preserved on these devices. We further show the SRCC values of these 10k
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Device Abbrev. Chipset RAM Freq.  Peak Perf.  Mem. Bandwidth

CPU RAM
(GHz) (GB) (MHz) (GFLOPs/sec) (GB/sec)

Vankyo MatrixPad Z1 Vankyo N/A 1.5 4 1 933 N/A N/A
Table 2. Device specifications. Full details are not available for Vankyo.
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Fig.4. Empirical measurement of latency monotonicity. (a)(c) Black vertical lines denote the standard deviation
of latency data points within each bin, with the center denoting the average. (b)(d) SRCC of 10k sampled
model latencies on different pairs of devices.
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Fig. 5. CDF of SRCC values of DNN models on mobile phones and SoCs. The annotation “high/mid/low”
represents the highest/middle/lowest 33.3% of the devices.

sampled model latencies on our four mobile device in Fig. 4(b) with heatmap. We see that SRCC
between any pair of our mobile devices is larger than 0.98, implying strong latency monotonicity.

Al-Benchmark data. To examine latency monotonicity at scale, we resort to the AI-Benchmark
dataset showing DNN inference latency measurements on diverse hardware [2]. Considering top-
300 smartphones (ranging from Huawei Mate 40 Pro to Sony Xperia Z3) and top-150 mobile SoCs
(ranging from HiSilicon Kirin 9000 to MediaTek Helio P10) ranked by the metric “AI-Score” [25],
we show in Fig. 5 the SRCC values of latency rankings based on the 22 DNN models including
both floating-point and quantized models (e.g., MobileNet-V2-INT8 and MobileNet-V2-FP16) listed
in the dataset. We see that latency monotonicity is well preserved at scale. For example, among
the top-100 mobile phones, SRCC values among 50+% of any device pairs are higher than 0.9 (a
very strong ranking correlation). While the Al-Benchmark dataset is built for orthogonal purposes
and includes models from different search spaces, the resulting SRCC values, along with our own
experiments, still provide a good reference and show reasonable latency monotonicity for mobile
devices at scale.
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Table 3. Nine FPGA specifications on Xilinx ZCU 102 board.
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Fig. 6. Latency monotonicity on non-mobile platforms. Black vertical lines denote the standard deviation of
latency data points within each bin, with the center denoting the average.

Other platforms. Going beyond the mobile platform, we also perform experiments to show
latency monotonicity on other platforms: desktop CPU, GPU and FPGA.

We build latency lookup tables for three desktop CPUs: Intel Core i7-4790, Intel Core i7-4770
HQ, and E5-2673 v3. In addition, we consider four NVIDIA GPUs: Tesla T4, Tesla K80, Quadro
M4000, and Quadro P5000. For the FPGA platform, we configure nine subsystems for an Xilinx
ZCU 102 FPGA board to create nine different FPGAs following the hardware design space in [26].
The detailed configuration for FPGAs is shown in Table 3. “Computation Design" is the computation
subsystem design, Ty, T, are loop tiling parameters for input and output feature maps, and T,(d)
denotes the parameter for depth-wise separable convolution. “Communication Design" represents
the communication subsystem design, where I,,, O,, and W,, are communication ports allocated
for input feature maps, output feature maps and weights, respectively. We measure CNN model
latency on nine Xilinx ZCU 102 boards shown in Table 3, using the performance model in [26].

We consider latencies for the same set of 10k models as in Fig. 4, and plot the results in Figs. 6
and 7, respectively. We see that within each platform, latency monotonicity is generally very well
preserved, with most SRCC values close to or above 0.9+. In addition, we also show in Fig. 7 the
SRCC between the model FLOPs and the actual inference latency, confirming the prior observation
that FLOP may not accurately reflect the true latency performance [29, 45, 50].

Next, to complement our own measurement, we also examine latency monotonicity by leveraging
third-party latency predictors and measurements results on other devices. The results are available
in Appendix B.1 and further corroborate our finding.
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Fig. 7. SRCC of 10k sampled model latencies on different pairs of non-mobile devices. Specification of nine
FPGAs in Fig. 7(c) is listed in Table 3.

4.2 Inter-Platform Latency Monotonicity

We choose one FPGA (Xilinx ZCU 102), one desktop CPU (Intel Core i7-4790), and one desktop
GPU (Tesla T4) as cross-platform devices. We show the latency monotonicity results and SRCC
values for the same set of 10k models in Figs. 4(c) and 4(d), respectively. It can be seen that latency
rankings are only moderately correlated for cross-platform devices. The SRCC values are lower
than in the case of mobile device pairs (Fig. 4(b)), since mobile devices often differ significantly
from desktops/FPGAs.

Our finding is also confirmed in the appendix by considering the six cross-platform devices on
the NAS-Bench-201 [17] and FBNet[45], and four devices on MobileNet-V3 using nn-Meter [50].

4.3 Roofline Analysis

We now explain the empirically observed latency monotonicity based on roofline analysis, which
is a methodology for visual representation of hardware platform’s peak performance as a function
of the operational intensity, which identifies the bottleneck of the system [44]

Fig. 8(a) shows the theoretical roofline model of two mobile devices (Samsung Galaxy S5e and
TabA) plotted according to their reported hardware specification listed in Table. 2. When operational
intensity is low (linear slope region), memory bandwidth is the limiting factor for program speed
(i.e., memory-bound); when operational intensity is high (horizontal region), peak FLOPs rate
becomes the bottleneck (i.e., compute-bound).

Suppose that we have two devices d; and d; with memory bandwidths Bq, and By, , respectively,
and two CNN models of architectures x; and x; with operational intensities Oly, and Ol,, respec-
tively. Next, we show that latency monotonicity is guaranteed to hold for two devices if CNN
models are either memory-bound or compute-bound on both devices.

Memory-bound. In the memory-bound region, the slope in the roofline model of a device is the
bandwidth, and the resulting performance is the bandwidth multiplied by the program’s operational

intensity. Assuming that x; is slower than x; on device d; without loss of generality, we have

FLOP,, FLOP,, D . By, . FLOPy FLOP,,
O, Ba, > oL, Ba - Then, by multiplying both sides by B we obtain T Ba, > oL, Bay

also slower than x; on device d;. Thus, latency monotonicity holds for the two devices d; and d,.
Compute-bound. Likewise, if CNN models fall into the compute-bound region for two devices,
then we can also establish latency monotonicity using a similar logic.
For search spaces with models that span across both memory-bound and compute-bound regions,
the latency monotonicity may not be strong (which we shall address in this paper). Moreover, the
roofline analysis only provides a sufficient condition for latency monotonicity under the assumption

,le., xqis
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Fig. 8. (a) Theoretical roofline model is plotted according to hardware specification of S5e and TabA. (b) Black
vertical lines denote the standard deviation of data within each bin, with the center denoting the average.

that devices run at their peak performances (in terms of FLOPs/sec). Thus, we experimentally show
the actual performance of CNN models on our four mobile devices shown in Table 2.
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Fig. 9. Empirical roofline models of devices in Table 2 measured with Gables [24].

We measure the actual attainable peak performance of our four devices with the tool in [24], a
roofline model specially for mobile SoCs. Our results show that the sampled CNN models (with
2.6 to 5.4 FLOPs/Byte) are all in the compute-bound region for the devices. We randomly sample
10000 models from the MobileNet-V2 [37]. The empirical roofline results are shown in Fig. 8(b). The
operational intensity of the sampled models ranges from 2.6 to 5.4 FLOPs/Byte, while the devices’
actual performances as shown in Fig. 9 are much lower than their peaks and vary for different
models. Specifically, the ridge operational intensity of S5e, Lenovo, and Vankyo are less than or
around 2 FLOPs/Byte, while TabA has a threshold of 3 FLOPs/Byte. Thus, most of our sampled
models reside in the compute-bound region of these devices, except for those with operational
intensity less than 3 FLOPs/Byte on TabA. This partially explains the strong latency monotonicity
that we empirically observe in Fig. 4(b).

5 HARDWARE-AWARE NAS WITH ONE PROXY DEVICE

Section 4 demonstrates good latency monotonicity among devices of the same platform, but this is
not always the case, especially for devices across different platforms. To address the cases of low
monotonicity, we propose efficient transfer learning based on the proxy device.
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Algorithm 1 Hardware-Aware NAS With One Proxy Device

1: Inputs: Target device d, proxy device dy with its latency predictor Lq,(x) and Pareto-optimal
architecture set $y,, small sample architecture set A, SRCC threshold S;p,
Output: Pareto-optimal architecture Pq
Measure latency(x; d) for x € A;
Estimate SRCC Sq 4 for sample architectures in A;
if Sq.4, = S:n then
Set Pq = P4, or re-run NAS (e.g., evolutionary search) based on Lq,(x) to obtain Py;
else
Use Eqn. (3) to obtain Lq, 4(x) based on measured latency(x; d) for x € A;
Run NAS based on Lg, 4(x) to obtain Pg;
: end if
: Measure latencies for architectures x € $4 on device d, and remove non-Pareto-optimal ones
from Py;

R A A o

_
- O

5.1 Necessity of Strong Latency Monotonicity

We first highlight the necessity of strong latency monotonicity for finding optimal architectures on
the target device. An interesting and challenging case is when latency monotonicity is not satisfied,
and this is not uncommon in practice as shown in Section 4. In such cases, the optimal architectures
searched on one device can be far from optimality on another device. To see this point, we show
in Fig. 11(a) the performance of architectures found on different devices using the MobileNet-V2
search space. All latencies are measured on S5e (Mobile), and the architectures directly found for
S5e are Pareto-optimal ones. Nonetheless, when performing NAS on two other (proxy) devices —
4790 (Desktop CPU) and T4 (Desktop GPU) — which both have low SRCC values with S5e, the
searched architectures are highly sub-optimal. Thus, given weak latency monotonicity, the Pareto
optimality of P4, on the proxy device dy does not hold on the target device d, calling for remedies
to boost the latency monotonicity.

5.2 Overview
Our scalable hardware-aware NAS approach is illustrated in Fig. 10 and described in Algorithm 1.

L "t"ea‘r‘,"'e " SRCC with SRCC>=0.9 | yse Proxy’s Remove Non- @‘
atencies o Proxy Device Optimal Models Optimal Modt.els
Sample Models on Target Device @‘

Target
Device SRCC < 0.9 :
Measure Latencies of More SRCC with ~~SRCC >= 0.9 P_erform NAS 8@'
Models & Perform Proxy Proxy Device with Adapted Pareto-
Adaptation Proxy Optimal
SRCC < 0.9 Models

Fig. 10. Overview of using one proxy device for hardware-aware NAS.

Prerequisite. The prerequisite step is to select a proxy device dy and run SOTA hardware-aware
NAS to find a set Pq, of Pareto-optimal architectures for the proxy.

Checking latency monotonicity. Given a new target device, we check whether strong latency
monotonicity is satisfied between the proxy device and the target device, by estimating the SRCC
based on a small set of sample architectures A and comparing it against a threshold.
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Fig. 11. (a) Architectures by evolutionary search in the MobileNet-V2 search space. All latencies are measured
on S5e (Mobile). Architectures searched on 4790 (Desktop CPU) and T4 (Desktop GPU) are highly sub-optimal
compared to those searched specifically on S5e. These two devices have SRCC of 0.78 and 0.72 with S5e,
respectively. (b)(c) SRCC estimation. X-axis denotes the number of sample architectures we randomly select
per run. We use 1000 runs to calculate the mean and standard deviation. “x-y” means the device pair is (x, y).

e When strong latency monotonicity holds. With strong latency monotonicity, the target device’s
Pareto-optimal architecture set Py is also likely the same as proxy device’s Pg,. Alternatively, we
can also re-run evolutionary search based on the proxy device’s latency predictor to obtain more
architectures, which are in turn also likely optimal ones for the target device.

e When strong latency monotonicity does not hold. We propose an efficient transfer learning
technique — adapting the proxy’s latency predictor to the target device. By doing so, we can quickly
find optimal architectures for the target device, yet without first measuring latencies of thousands
of architectures and then building a latency predictor.

Removing non-Pareto-optimal architectures. We measure the actual latencies of Pareto-
optimal architectures (obtained for either the paroxy or adapted proxy device) on the target device,
and remove non-Pareto-optimal architectures.

5.3 Prerequisite and Checking Latency Monotonicity

5.3.1 Prerequisite. We first select a proxy device dy that preferably has good latency monotonicity
with other target devices. To do so, we can first measure the latencies of a small set A of sample
architectures (e.g., 30-50 sample architectures in our experiments) on all the target devices, and
calculate the resulting SRCC values for each pair of devices based on the measured latencies.
We only need to measure the overall inference latency, unlike building latency predictors which
typically needs profiling the latency of each operator/layer for thousands of architectures [30, 50].

Then, we can obtain a SRCC matrix like the one shown in Fig. 4(d). Latency measurement of
a small set of sample architectures is also needed to check latency monotonicity (Section 5.3.2)
and hence is not an extra step. Next, we can choose a proxy device that has high SRCCs with a
good number of other devices. Note that proxy device selection does not need to be very precise;
instead, even though we choose a proxy device that does not have high SRCCs with many other
devices, our proposed proxy adaptation technique can still significantly boost the SRCC between
the selected proxy device and target devices.

For the selected proxy device, we run SOTA hardware-aware NAS to find Pareto-optimal archi-
tectures. Specifically, following the one-shot NAS approach [9, 43], we first pre-train a supernet
and build an accuracy predictor. We then build a latency predictor denoted by Lq,(x) based on
extensive latency profiling and SOTA methods for latency prediction [19, 50]. Finally, we apply
evolutionary search [15, 43], which quickly produces the Pareto-optimal architecture set g, by
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varying different latency constraints. Once the accuracy predictor and latency predictor are built,
running evolutionary search takes at most a few minutes and hence is negligible.

5.3.2  Checking latency monotonicity. To check whether strong latency monotonicity is satisfied
between the selected proxy device and a target device, we estimate the SRCC based on a small set
A of sample architectures and then compare it against a threshold. The latency measurement for
the small set of sample architectures is already performed during the proxy selection process. In
Figs. 11(b) and 11(c), we can see that latency measurement based on a few sample architectures is
enough to reliably estimate the SRCC value: e.g., if we set 0.9 as the SRCC threshold, then 30-50
sample architectures are sufficient. Thus, the cost for measuring latencies for the small set A of
sample architectures is negligible compared to building a device-specific latency predictor.

5.4 Increasing Latency Monotonicity by Adapting the Proxy Latency Predictor

As illustrated in Fig. 11(a), in case of weak latency monotonicity, we cannot re-use the Pareto-
optimal architectures found for the proxy device to a new target device. To address this issue, we
propose an efficient transfer learning technique — adapting the proxy’s latency predictor to the
target device — to boost latency monotonicity.

5.4.1 A close look at SOTA latency predictors. We first review three major types of SOTA latency
predictors used in hardware-aware NAS.

e Operator-level latency predictor. A straightforward approach is to first profile each operator
[10, 15] (or each layer [6, 39]), and then sum all the operator-level latencies as the end-to-end latency
of an architecture. Specifically, given K operators (e.g., each with a searchable kernel size and
expansion ratio), we can represent each operator using one-hot encoding: 1 means the respective
operator is included in an architecture, and 0 otherwise. Thus, an architecture can be represented as
x € {0,1}¥ U {1}, where the additional {1} represents the non-searchable part, e.g., fully-connected
layers in CNN, of the architecture. Accordingly, the latency predictor can be written as [ = w'x,
where w € RK*! is the operator-level latency vector. This approach needs a few thousands of
latency measurement samples (taking up a few tens of hours) [10, 30].

® GCN-based latency predictor. To better capture the graph topology of different operators, a
recent study [19] uses a graph convolutionary network (GCN) to predict the inference latency for
a target device. Concretely, the latency predictor can be written as I = GCNg(x), where © is the
learnt GCN parameter learnt and x is the graph-based encoding of an architecture.

e Kernel-level latency predictor. Another recent latency predictor is to use a random forest
to estimate the latency for each execution unit (called “kernel”) that captures different compilers
and execution flows, and then sum up all the involved execution units as the latency of the entire
architecture [50]. This approach unifies different DNN frameworks, such as TensorFlow and Onnx,
into a single model graph, and hence can predict latencies for models developed using different
frameworks. By encoding an architecture based on the execution units, we can also transform
the latency predictor into a linear one: [ = w!x where w is the vector of latencies for different
execution units and x denotes the number of each execution unit included in an architecture. Thus,
an “execution unit” in [50] is conceptually equivalent to a searchable operator in the operator-level
latency predictor [10].

Summary. The three SOTA latency predictors use different encodings/representations for an
architecture: the encoding based on searchable operators in an operator-level predictor is the
simplest, while the encoding based on fine-grained execution units in a kernel-based predictor
has the most details of an architecture. Despite different prediction accuracies in terms of mean
squared errors, they all reflect the latency rankings on an actual device very well and hence are
sufficient for serving as the proxy predictor.
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5.4.2 Adapting the proxy latency predictor. We propose efficient transfer learning to boost the
otherwise possibly weak latency monotonicity for a target device.

Intuition. Even though two devices have weak latency monotonicity, it does not mean that
their latencies for each searchable operator are uncorrelated; instead, for most operators, their
latencies can still be roughly proportional. The reason is that a more complex operator with higher
FLOPs that is slower (say, 2x slower than a reference operator) on one device is generally also
slower on another device, although there may be some differences in the slow-down factor (say,
2x vs. 1.9x). This is also the reason why some NAS algorithms use the device-agnostic metric of
architecture FLOPs as a rough approximation of the actual inference latency [40, 41]. If we view
proxy adaptation as a new learning task, this task is highly correlated with the task of building the
proxy device’s latency predictor, and such correlation can greatly facilitate transfer learning.

Approach. To explain our transfer learning approach, we consider the proxy device’s latency
predictor in a linear form: Ly, (x) = w!x, where w is the weight and x is the architecture repre-
sentation (e.g., one-hot encoding of the searchable operators, penultimate layer output in a neural
network-based predictor,3 or encoding of the execution units). We measure the latencies of a small
set of sample architectures x € A on the target device, noting that this step is also needed to check
the SRCC value and incurs a negligible overhead compared to SOTA approaches (i.e., tens of hours
of latency measurement [29, 50]). Then, with the latency measurement samples denoted by (x;, y;),
we quickly adapt the proxy device’s latency predictor as L, 4(x) = [(aIT +bT)o WT] x tailored to
the target device, by solving the following the problem:

1
%}?NZH(MT +bT)ow! | x -y + Albl, 3)
where Lis the identity vector with all the elements being 1, the operator “o” denotes the element-wise
multiplication, and A > 0 is a hyperparameter controlling the weight for the sparsity regulariza-
tion term |b| and tuned based on a small validation set of architectures (20 architectures in our
experiment) split from the sample architecture set A.

The interpretation of using Eqn. (3) is as follows. First, the scaling factor « reflects our intuition
that a more complex operator that is slower on one device is generally also slower on another
device. Second, the sparsity term b accounts for the fact that the slow-down factors for an operator
on two devices are not necessarily the same.

With Lg, 4(x), we essentially construct a new virtual proxy device (called adapted proxy or
AdaProxy) whose latency is given by Lq, 4(x). Here, our goal is to increase the latency monotonicity
between the new virtual proxy and the target device; we do not need to create a new latency
predictor that produces accurate estimates of the absolute latency values for the target device.

If strong latency monotonicity still does not hold between AdaProxy and the target device, we
can incrementally measure the latencies of another small set of sample architectures on the target
device and re-solve Eqn. (3). In the majority of our experiments, 50 latency measurements on the
target device are enough to achieve a strong latency monotonicity. This is negligible compared to
thousands of latency profiling and measurements used by SOTA algorithms [10, 50].

Next, with the adapted latency predictor Ly, 4(x) that reflects the architecture latency rankings on
the target device d, we can run evolutionary search to find the set of Pareto-optimal architectures.

5.5 Remove non-Pareto-optimal architectures

Up to this point, we have obtained for the target device an architecture set P4, which is the same as
the proxy (or AdaProxy) device’s Pareto-optimal set. While the latency monotonicity between the

31f the proxy device uses a neural network-based latency predictor, we can also fix the earlier layers while updating the
weights in the last few layers, instead of only updating the last single layer.
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proxy (or AdaProxy) device and the target device is strong (e.g., SRCC around 0.9 or higher), it is not
perfect. Thus, some architectures in $4 may not be Pareto-optimal for the target device. We remove
these architectures based on their actual latencies measured on the target device. Specifically, if an
architecture x; € g4 has a higher latency but the same or similar accuracy compared to another
architecture x, € P4, we can remove x; from Pyq.

Finally, if there is a specific latency constraint that is not satisfied by architectures in Py, we
can re-run evolutionary searches with the assistance of Lq,(x), or adapted Lq, 4(x) if applicable, to
further enlarge the set 4. The key point is that we do not need to go through a very time-consuming
process to build a new latency predictor specifically for the target device.

In summary, the cost for measuring latencies of a small sample set of architectures on the target
device for checking latency monotonicity (and, if needed, adapting Lq,(x)) is negligible. Therefore,
given n different devices, we achieve a total latency evaluation cost of O(1), which, when combined
with SOTA NAS algorithms that have O(1) cost for model training and accuracy evaluation [9, 15],
successfully keeps the entire NAS cost at O(1).

6 EXPERIMENT

We run experiments on multiple devices (including mobile phones, desktop GPU/CPU, ASIC, etc.)
on different mainstream search spaces — MobileNet-V2, MobileNet-V3, NAS-Bench-201, and FBNet.

6.1 Results on MobileNet-V2

6.1.1 Setup. We now present the setup for our experiments on MobileNet-V2.

Search Space. As in [10], the backbone of our CNN architecture is MobileNet-V2 with multiplier
1.3, with the channel number in each block fixed. The search space consists of depth of each stage,
kernel size of convolutional layers, and expansion ratio of each block. The depth can be chosen
from “2, 3, 4”, kernel size can be “3, 5, 7”, and candidate expansion ratios are “3, 4, 6”. There are five
stages whose configurations can be searched.

NAS Method. We consider one-shot NAS and use the Once-For-All network [9] as a supernet
that has the same search space as ours. We run evolutionary search to find optimal architectures
for the proxy (or AdaProxy) device. Our parameter settings are: population size is 1000, parent ratio
is 0.25, mutation probability is 0.1, mutation ratio is 0.25, and we search for 50 generations given
each latency constraint. Evolutionary search takes less than 30 seconds for each run. To facilitate
the readers’ understanding, we provide a summary of evolutionary search in Appendix A, while
the full details can be found in [15, 43].

Accuracy Predictor. The evolutionary search is assisted with by an accuracy predictor for
fast architecture performance evaluation [15, 43]. Our accuracy predictor is a neural network
with four fully-connected layers and updated with 176 samples on top of the predictor used in
[9]. The accuracy predictor takes a 128-dimensional feature vector (which is converted from a
21-dimensional architecture configuration within the search space) as input. Fig. 12(a) compares
the actual and predicted accuracies, which have a SRCC of 0.903 and root mean squared error
of 1.11%. The performance of our accuracy predictor is in line with the existing NAS literature
for MobileNet-based models [9]. As a result, the imperfection in the accuracy predictor explains
why a strong, but not perfect, latency monotonicity (e.g., SRCC>0.9) is enough for our one-proxy
approach to find Pareto-optimal architectures for a new target device.

Latency Predictor. We build device-specific latency predictors in the MobileNet-V2 space for
our four devices listed in Table 2. Specifically, for each sample architecture, we profile the average
latency of 1000 runs. We use a single thread for running the TensorFlow Lite interpreter by default.
To show the accuracy of our latency predictors, we sample a few additional models and measure
their actual latency on our four mobile devices. The comparison between actual and predicted
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Fig. 12. (a) Actual vs. predicted accuracy. The root mean squared error is 1.11%, and SRCC is 0.903. (b)(c)(d)(e)
Measured average inference latency versus predicted latency based on latency lookup tables. The root mean
squared errors for S5e, TabA, Lenovo, and Vankyo are 2.88ms, 4.69ms, 3.72ms, and 59.18ms respectively.

latency is shown in Fig. 12, with a root mean squared error of 2.88ms on S5e, 4.69ms on TabA,
3.72ms on Lenovo, and 59.18ms on the low-end Vankyo. As corroborated by prior studies [15, 43, 47],
our result shows that the predicted average latency is almost identical to the actual value.

We choose S5e mobile phone as the proxy device. Our results of using other mobile devices as
the proxy are nearly the same because S5e and the other mobile devices have SRCC close to 1.0
(Fig. 4(b)), i.e., these mobile devices are almost viewed one device based on Proposition 3.1.

Architecture Evaluation. For a searched architecture, the actual model performance is mea-
sured. We evaluate accuracies on the ImageNet validation dataset [16], which consists of 50000
images in 1000 classes. Accuracy evaluation is run on Google Colab equipped with Tesla T4.

6.1.2 Baselines. We consider the following baselines for hardware-aware NAS.

#1: Building a Latency Predictor for Each Target Device [9, 15, 19, 43]. For each device,
we use the same evolutionary search described in Section 6.1.1. While the accuracy predictor is
reusable across devices and evolutionary search is quick, measuring latencies of thousands of
architectures to build a device-specific latency predictor (as done in the existing hardware-aware
NAS [9, 19, 43]) is time-consuming. Thus, this approach has a total cost of O(n) for n devices [5, 15].

#2: Heuristic Model Scaling. There are different ways to scale a CNN to meet different latency
constraints: e.g., adapt the network depth and/or width [40, 41]. Since the number of channels in
our backbone network is fixed, we heuristically scale the depth of a Pareto-optimal architecture on
the proxy device by increasing (for higher accuracy) or reducing (for smaller latency) the depth
by up to two blocks, and transfer the scaled architecture to new target devices. This approach has
O(1) complexity.

The two baselines highlight that the existing hardware-aware NAS either achieves Pareto opti-
mality but has a O(n) latency evaluation cost (Baseline #1), or keeps the latency evaluation cost
at O(1) but loses Pareto optimality (Baseline #2). By contrast, our approach has a O(1) latency
evaluation cost in total, while preserving Pareto optimality.

6.1.3  Performance of Searched Architectures. We compare the measured top-1 accuracy on Ima-
geNet versus average inference latency of searched architectures on each target device.

Mobile Devices. Fig. 13 shows the result for three different target mobile devices, all using S5e
as the proxy device. The SRCC values between S5e and the target devices are all greater than or
equal to 0.98 (Fig. 4(b)). We see that the architectures searched on S5e can result in almost the
same (accuracy, latency) tradeoff as device-specific NAS, but the additional latency evaluation
cost for each target device is negligible. Further, we see that despite its O(1) complexity, heuristic
adaptation (baseline #2) can result in really bad architectures without performance guarantees.

Non-Mobile Devices. We show the results in Fig. 14 for non-mobile devices. As these devices
have low SRCC values with our S5e proxy, we use Eqn. (3) to create an AdaProxy device, which has
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Fig. 13. Results on three different mobile target devices, using S5e as proxy device. “Target” is the baseline

#1, “Proxy” means using our approach with S5e as the proxy device, and “Scaling” means heuristic scaling
applied to S5e’s one Pareto-optimal architecture.
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Fig. 14. Results for non-mobile target devices with the default S5e proxy and AdaProxy. The top row shows
the evolutionary search results with real measured accuracies, and the bottom row shows the exhaustive
search results based on 10k random architectures and predicted accuracies.

SRCC of close to 0.9 or higher with the target devices. The details of the proxy adaptation process,
including the SRCC values before and after proxy adaptation, are available in Appendix B.2.

The top row shows the architectures found by evolutionary search. We see that with a low
SRCC (around 0.7-0.8), the architectures searched on the proxy device are not Pareto-optimal on
the target devices. With proxy adaptation, the SRCC increases significantly, and the architectures
searched on the AdaProxy device are almost the same as those directly searched on the target
device. This highlights the need of strong latency monotonicity between the proxy and the target
device, as well as the effectiveness of our proposed proxy adaptation technique to boost the latency
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Edge GPU- 1.0

Fig. 15. SRCC for various devices in the NAS-Bench-201 search space on CIFAR-10. Pixel3 is our proxy device.
SRCC values boosted with AdaProxy are highlighted.

monotonicity. The heuristic scaling approach (Baseline #2) performs even worse than directly using
the architectures searched on the proxy device, and hence are omitted.

The bottom row shows exhaustive search results out of 10k randomly selected architectures,
using the predicted accuracies as the true values. This is essentially considering a semi-oracle
NAS process (on a small space of 10k architectures) assuming a perfect accuracy predictor. As
a result, compared to evolutionary search using an imperfect accuracy predictor, it may have a
more stringent requirement on the SRCC between the target device and the proxy (or AdaProxy)
device. We see that, due to the low SRCC, the architectures found by using the proxy device’s
latency predictor may not overlap with the oracle’s Pareto-optimal boundary. In fact, some of the
proxy’s optimal architectures can perform very poorly on the target device. For example, Fig. 14(d)
shows that S5e’s optimal architectures are highly sub-optimal on Tesla T4. On the other hand,
with improved SRCC, the architectures found by using the AdaProxy device’s latency predictor
preserves Pareto optimality very well on the target devices, again demonstrating the necessity
and effectiveness of our proxy adaptation technique in the presence of weak latency monotonicity
between the default proxy and target device.

Additional results, including settings for proxy adaptation and comparison of exhaustively
searched architectures on other devices, can be found in Appendix B.2.

6.2 Results on NAS-Bench-201, FBNet, and nn-Meter

We now evaluate our approach on the recently released latency datasets for six different devices on
NAS-Bench-201 and FBNet spaces [29], additional devices on NAS-Bench-201 [19], as well as four
devices on nine different search spaces [49].

We first consider the latency results on the NAS-Bench-201 search space using the CIFAR-
10 dataset [29]. Since NAS-Bench-201 represents a simple architecture space with only around
15k architectures, we consider an oracle NAS process via exhaustive search. Thus, compared to
evolutionary search using an imperfect accuracy predictor, the oracle NAS process can have a
more stringent requirement on the SRCC between the target device and the proxy (or AdaProxy)
device. We use Pixel3 as the default proxy which, as shown in Fig. 15, does not have strong latency
monotonicity with the target devices (except for Raspi4). By proxy adaptation, we can significantly
boost the latency monotonicity, increasing the SRCC values to 0.9 or higher.

Next, Fig. 16 shows the optimal architectures found by using the proxy device’s latency predictor,
the adapted latency predictor, and the oracle, respectively. We can see that due to the pre-adaptation
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Fig. 16. Exhaustive search results for different target devices on NAS-Bench-201 architectures (CIFAR-10
dataset) [17, 29]. Pixel3 is the proxy.

low SRCC values between the proxy device Pixel3 and the target devices, only a few architectures
that are optimal for the proxy are still optimal for the target devices after architecture removal
(Section 5.5). Moreover, even the proxy’s remaining optimal architectures can be far from optimality
on the target device. For example, Fig. 16(a) shows that some of Pixel3’s optimal architectures deviate
from the Pareto-optimal boundary on the edge GPU. By using proxy adaptation and increasing the
SRCC values, the AdaProxy’s optimal architectures can be efficiently transferred to target devices
while preserving optimality. The proxy device Pixel3 has a high SRCC of 0.96 with Raspi4, even
without proxy adaptation. Thus, as shown in Fig. 16(e), the optimality of Pixel3’s architectures
preserve very well on Raspi4. All these demonstrate the importance of strong monotonicity between
the proxy and the target device, as well as the effectiveness of our proxy adaptation technique. for
scalable hardware-aware NAS.

Additional results, including the details of proxy adaptation and results on other search spaces,
are available in Appendix B. These results further validate our approach and highlight the practical
feasibility of using only one proxy device for scalable hardware-aware NAS.

7 RELATED WORK

The huge search space for neural architectures presents significant challenges (see [20, 30, 33, 40, 41,
45, 52] and references therein). To minimize the cost of training numerous architectures, one-shot
NAS uses a super net that includes all the weights for candidate architectures [4, 5, 9, 23, 34]. In
recent years, transformer-based vision algorithms have also been emerging and inspired studies
transformer search to optimize the performance [18], but it is orthogonal to NAS that we focus on.

Importantly, fast evaluation of accuracy and inference latency to rank different architectures is
crucial for efficient hardware-aware NAS [20, 30, 33, 40, 41, 45, 52]. To reduce the cost of accuracy
evaluation, the prior studies have considered reinforcement learning with accuracy evaluated
based on a small proxy dataset [52], Bayesian optimization-based NAS (to reduce the number of
sampled and evaluated architectures) [35], generative approaches [27], one-shot or few-shot NAS
[4, 9, 51], and NAS assisted with an accuracy predictor [15, 43]. More recently, ranking architecture
accuracies based on easily-computable proxy metrics has also been studied: e.g., computing a model
score based on a small minibatch of training data [1], and analyzing the neural tangent kernel
(NTK) as well as the number of linear regions in the input space [11].

To expedite inference latency evaluation, the SOTA hardware-aware NAS has mainly resorted
to device-specific latency predictors [5, 10, 13, 15, 19, 34, 43, 47]. Nonetheless, building even one
latency predictor incurs a non-trivial upfront cost. Thus, [19, 29, 50] have recently released latency
datasets and predictors, but only for a few devices due to the prohibitive time cost.

Given many diverse devices, scalability of latency evaluation is critically important. A straight-
forward approach is to build a meta latency predictor that incorporates hardware features as
additional input [28, 32]. Nonetheless, significant drawbacks exist for this approach: (1) numerous
latency measurements on a large number of heterogeneous devices are required in advance for
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meta-training; (2) there is a fundamental challenge for provably-good generalization to new unseen
target devices that deviate significantly from the training device pool (i.e., out-of-distribution); and
(3) the process of meta-learning and adaptation to new devices involves complex hyperparameter
tuning, adding considerable uncertainties to the latency prediction performance. For example, in
order to cover 24 devices with good generalization performance in the experiment, up to 18 hetero-
geneous devices are used for meta-training in which 900/4000 architecture latencies are collected
for each device on the NAS-Bench-201/FBNet search space, while only the remaining 6 devices are
used for testing [28]. Crucially, these meta latency predictors [28, 32] aim at producing accurate
latency prediction with low prediction errors, which adds further challenges to the prediction model
but is unnecessary for hardware-aware NAS. By contrast, what matters most is the architecture
latency ranking on a target device, for which sophisticated (meta) latency predictors may not offer
substantial benefits. We show both theoretically and empirically that one proxy device that has
strong latency monotonicity with target devices (after proxy adaptation if needed) is enough for
hardware-aware NAS, truly keeping the total latency evaluation cost at O(1).

Considering a synthetic latency metric aggregated over a few devices, simultaneous multi-device
NAS [13] may not meet the latency constraint or achieve Pareto optimality for any involved device.
Heuristic scaling approaches, e.g., by changing the number of layers and/or channels [36, 40, 41],
can limit the architecture space and hence reduce both accuracy and latency evaluation costs,
but they may also miss Pareto-optimal architectures because of their coarse scaling granularity.
Architecture FLOPs is a device-agnostic proxy metric, but it cannot accurately reflect the true
latency ranking of architectures on real devices [15, 29, 40]. While various proxy metrics (e.g., NTK
[11]) have been considered for accuracy evaluation, our approach of using one proxy device is
the first to address a complementary challenge of fast latency evaluation in the presence of many
diverse devices.

8 CONCLUSION

In this paper, we efficiently scale up hardware-aware NAS for diverse target devices. Concretely,
we demonstrate latency monotonicity among different devices, and propose to use just one proxy
device’s latency predictor for NAS. When latency monotonicity is not satisfied between the proxy
device and the target device, we propose an efficient transfer learning technique — adapting the
proxy’s latency predictor to the target device — to boost latency monotonicity. Overall, our approach
results in a much lower total cost of latency evaluation, yet without losing Pareto optimality. For
evaluation, we conduct experiments with different devices of different platforms on mainstream
search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201 and FBNet spaces.
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Appendix

In the appendix, we provide a summary of evolutionary search used in our experiment and
additional experimental results.

A SUMMARY OF EVOLUTIONARY SEARCH
A.1 Description

To facilitate the readers’ understanding, we provide a summary of the widely-used evolutionary
search process for NAS, taking the MobileNet-V2 search space as example. More details of using
evolutionary search in hardware-aware NAS can be found in [15, 43].

In our experiment, the total number of searchable blocks is 21, divided into five stages plus the
last convolutional layer. Thus, we can use two 21-dimension vectors to represent the kernel size
and expansion ratio of each block, respectively, and one 5-dimension vector to denote the depth of
each stage. The depth can be chosen from “2, 3, 47, the kernel size can be “3, 5, 77, and the candidate
expansion ratios are “3, 4, 6”. Each individual member in evolutionary search consists of these three
vectors. Here is an example individual: {*kernel_size™: [5, 3, 5, 7, 5, 3,5,3,7,7,5,7,5,3,3,5, 5, 3, 5,
5, 3], “expansion_ratio™ [3, 3,4, 6,4,3,4,6,4,3,6,4,3,4,3,4,4, 3,3, 4, 3], “depth™ [2, 2, 2, 2, 3]}.

To run evolutionary search, we first randomly sample the initial population of individuals
according to the population size. Next, we evaluate the fitness of each individual in the population,
where the fitness function is defined as:

(t — 1) - accuracy + t - latency (4)

where t € [0, 1] is the weight parameter to balance the tradeoff between accuracy and latency
of each individual model, and accuracy and latency are predicted values given by the accuracy
and latency predictors, respectively. By varying ¢ € [0, 1], we can obtain a set of Pareto-optimal
architectures.

For each evolutionary search iteration, we select the fittest individuals as parents for reproduction,
which will survive in the next generation and also breed new individuals through crossover. For
example, if our population size is 1000 and the parent ratio is 0.25, we have 250 fittest individuals
as parents. Then, we randomly select a pair of parents each time for crossover and generate a child.
Within the crossover process, each element in the child’s vector is chosen randomly from one of
the parents’. Also, based on the mutation ratio setting, part of the offsprings will further perform
mutation operations. For example, with mutation ratio 0.25 and mutation probability 0.1, 250 out
of 750 children have a possibility of 0.1 to mutate. If a child is chosen to mutate, its kernel size,
expansion ratio, and depth will be randomly sampled out of all the possible values for exploration.
After crossover and mutation, we have a new population consisting of parents, bred children, and
mutated children. Next, the fittest individuals are selected as new parents for next iteration. The
above crossover and mutation steps will be repeated for the maximum evolutionary search iteration
number.

A.2 Evolutionary Search Hyperparameters

Typically, the evolutionary search is not very sensitive against different hyperparameter settings,
provided that the population size and iteration number are large enough and that there is adequate
exploration. In Section 6, our hyperparameter settings are: population size is 1000, parent ratio is
0.25, mutation probability is 0.1, mutation ratio is 0.25, and we search for 50 generations given each
latency constraint. We denote these settings as “EA#1". In Fig. 17, we change the hyperparameters
to “EA#2": population size is 500, parent ratio is 0.3, mutation probability is 0.2, mutation ratio is
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Fig. 17. Pareto-optimal models searched on Samsung Galaxy S5e with different parameter settings for
evolutionary search. “EA#1" denotes the parameter setting that population size is 1000, parent ratio is 0.25,
mutation probability is 0.1 and mutation ratio is 0.25; while “EA#2" represents that population size is 500,
parent ratio is 0.3, mutation probability is 0.2 and mutation ratio is 0.4.

0.4, and run evolutionary search again on Samsuang Galaxy S5e. The results in Fig. 17 show that
the searched Pareto-optimal models are almost identical to the original ones (‘EA#1").

B ADDITIONAL RESULTS

In this section, we present additional experimental results, including the demonstration of latency
monotonicity based on third-party latency results and the effectiveness of our transfer learning
technique in various mainstream search spaces.

B.1 Latency Monotonicity

To corroborate our own measurement and finding in Section 4, we examine latency monotonicity
by leveraging third-party latency predictors and measurements for other devices.

B.1.1  Results on Predicted Latencies. We obtain latency lookup tables for four mobile devices [7]:
Google Pixel1, Pixel2, Samsung Galaxy S7 edge, Note8 in the MobileNet-V2 space with stage
widths “32, 16, 24, 48, 80, 104, 192, 320, 1280". In addition, we obtain from [8] latency lookup tables
for four cross-platform devices (used in [10]): Google Pixel1, Pixel2, TITAN Xp, E5-2640 v4 in the
MobileNet-V2 space with different stage widths “32, 16, 24, 40, 80, 96, 192, 320, 1280" and measured
with the MKL-DNN library. Note that latency predictors are very accurate (e.g., with an root mean
squared error of less than 1% of the average) [5, 10, 15, 47].
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Fig. 18. Latency monotonicity on third-party latency predictors [7, 8]. (a)(b) and (c)(d) use different search
spaces and DNN acceleration libraries.

We randomly sample 10k models in each search space with variable depths of “2, 3, 4” in each
stage, variable filter sizes of “3, 5, 7” in each convolutional layer, and variable expansion ratios of “3,
4, 6” in each block. We show the results in Fig. 18, which are in line with our experiments: latency
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Fig. 19. Latency results of 2000 models on CortexA76 CPU, Adreno 640 GPU, Adreno 630 GPU, and Myriad
VPU, available in the dataset [49]. Search spaces: (a)(d) GoogLeNet, (b)(e) MnasNet, (c)(f) MobileNet-V2,
(2)(j) ResNet, (h)(k) SqueezeNet, and (i)(I) VGG.

monotonicity among mobile devices is strong (>0.95), while FLOP-latency ranking correlation for
mobile devices is also quite strong but cross-platform latency monotonicity degrades.
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B.1.2  Results on Measured Latencies. We provide more evidence of latency monotonicity across
different devices, and even across different DNN frameworks, using the nn-Meter results [49, 50].
Specifically, Fig. 19 shows the measured latencies and cross-device SRCCs in six different search
spaces. We see that cross-device latency monotonicity strongly exists.

B.2 Results on MobileNet-V2

Search Space. Our backbone is MobileNet-V2 with multiplier 1.3, with the channel number in
each block fixed. As shown in Fig. 20, The search space consists of depth of each stage, kernel size
of convolutional layers, and expansion ratio of each block. The depth can be chosen from “2, 3,
4”, kernel size can be “3, 5, 77, and candidate expansion ratios are “3, 4, 6”. There are five stages
whose configurations can be searched, plus the kernel size and expansion ratio of the last inverted
residual block.
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Fig. 20. MobileNet-V2 search space and architectural encoding.

Proxy Adaptation. We use S5e as the default proxy device. Fig. 21 shows the original SRCC
between S5e and desktop CPUs and GPUs, which are all below 0.8. We observe from Section 5 that
SRCC of <0.8 is not enough to find Pareto-optimal architectures on the target device. Thus, in the
absence of strong latency monotonicity between the default proxy device and the target device,
proxy adaptation is necessary.

In the MobileNet-V2 search space, we have 21 searchable blocks in total, whose configurations
can each be chosen out of nine kernel size and expansion ratio combinations or none (i.e., the block
is not selected with a reduced stage depth). Thus, to represent an architecture, we simply use a
9-dimension one-hot vector x;, to encode the specification of each block. Given the proxy device’s
latency predictor as Ly, (x) = w’ x built a priori, we collect the latencies of 80 sampled architectures
on the target device, which are further split into 60 for training and 20 for validation. For i7-4790
and i7-4770HQ, we only need latencies of 30 sampled architectures for training. Next, by solving
Eqn. (3), we obtain the AdaProxy device’s latency predictor adapted to the target device, resulting
in a significantly increased SRCC. Therefore, with the new latency predictor, we can quickly obtain
Pareto-optimal architectures for the AdaProxy device, which are also very close to optimum for
the target device (after removal of non-Pareto optimal architectures as specified in Section 5).

Results. Even without proxy adaptation, our results in Section 4 show that latency monotonicity
among mobile devices (and between S5e and FPGA) is very strong. Here, we show the latency
monotonicity between our proxy and desktop GPUs/CPUs, both with and without proxy adaptation.
We see from Fig. 21 that the weak monotonicity can be significantly increased by using proxy
adaptation. Thus, for a new target device that has a low SRCC with our default proxy device, we can
simply use the AdaProxy device’s latency predictor instead of profiling thousands of architectures
and building a new one.
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Fig. 21. SRCC for various devices in the MobileNet-V2 space. S5e is the default proxy device. SRCC values
boosted by AdaProxy are highlighted.
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Fig. 22. Exhaustive search results based on 10k random architectures and predicted accuracies, for non-mobile

target devices with the default S5e proxy and AdaProxy. SRCC values before and after proxy adaptation are
shown in Fig. 21.

In Section 6, we already show the architecture performances for mobile target devices and some
GPU/CPU devices. Now, we show the architecture performances for the remaining GPU/CPU
devices in Fig. 22. We see that, due to the low SRCC, the architectures found by using the default
proxy device’s latency predictor may not overlap well with the oracle’s Pareto-optimal boundary.
On the other hand, with improved SRCC, the architectures found by using the AdaProxy device’s
latency predictor preserves Pareto optimality very well on the target devices. Again, this shows
that our proposed transfer learning approach to boost the latency monotonicity is necessary and
effective. For the devices in Fig. 22(d), we use 80 sampled architectures (50 for training, and 30
for validation and tuning 1) to construct AdaProxy. Note that the results are based on exhaustive
search out of 10k randomly selected architectures, using the predicted accuracies as the true values.
This is essentially considering a semi-oracle NAS process (on a small space of 10k architectures)
assuming a perfect accuracy predictor. In other words, compared to evolutionary search (whose
accuracy predictor itself is also not perfect), it has a more stringent requirement on the SRCC
between the target device and the proxy (or AdaProxy) device. Thus, our approach works well even
in this challenging case.
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B.3 Results on NAS-Bench-201

Search Space. NAS-Bench-201 adopts a fixed cell search space [17]. Each searched cell is repre-
sented as a densely-connected directed acyclic graph (DAG), which is then stacked together with a
pre-defined skeleton to construct an architecture. Specifically, as shown in Fig. 23, the search space
considers four nodes and five representative operation candidates for the operation set, and varies
the feature map sizes and dimensions of the final fully-connected layer to handle different datasets
(i.e., CIFAR-10, CIFAR-100, and ImageNet16-120).

zeroize [1, 0,0, 0, 0]

( 3x3 conv
@

o
3x3 avg pool

skip-connect [0, 1, 0, O, 0]
Fig. 23. NAS-Bench-201 search space and architectural encoding.

Proxy Adaptation. We have four searchable nodes in total, the operation for each of which
can be chosen from five candidates. Thus, we can use a 5-dimension one-hot vector to encode
the specification of each node, although more advanced representation (e.g., graph-based [19]) is
also applicable. Pixel3 is the default proxy device. Given the proxy device’s latency predictor as
Lg,(x) = wx built a priori, the training in transfer learning is based on measured latencies of 40
sampled architectures for the edge TPU and edge GPU, and 20 sampled architectures for Eyeriss
and FPGA, respectively. In addition, validation uses another 20 sampled architectures for tuning
the hyperparameter. Next, by solving Eqn. (3), we obtain the AdaProxy device’s latency predictor
adapted to the target device, resulting in a significantly increased SRCC. We show in Fig. 24 the
latency monotonicity in terms of SRCC values, both with and without proxy adaptation. We see
that the weak monotonicity can be significantly increased by using proxy adaptation.

Results. Considering the CIFAR-100 dataset, Fig. 25 shows optimal architectures found by using
the proxy device’s latency predictor, the adapted latency predictor, and the oracle, respectively. We
can see that due to the pre-adaptation low SRCC values between the proxy device Pixel3 and the
target devices, only a few architectures that are optimal for the proxy are still optimal for the target
devices after architecture removal. Moreover, even the proxy’s remaining optimal architectures
can be far from optimality on the target device. For example, Fig. 25(a) shows that some of Pixel3’s
optimal architectures deviate from the Pareto-optimal boundary on the edge GPU. By using proxy
adaptation and increasing the SRCC values, the AdaProxy’s optimal architectures can be efficiently
transferred to target devices while preserving optimality. The proxy device Pixel3 has a high SRCC
of 0.96 with Raspi4, even without proxy adaptation. Thus, as shown in Fig. 25(e), the optimality
of Pixel3’s architectures preserve very well on Raspi4. All these demonstrate the importance of
strong monotonicity between the proxy and the target device, as well as the effectiveness of our
proxy adaptation technique, for hardware-aware NAS with a total latency evaluation cost of O(1).

The same observation is also made in Fig. 26 for the ImageNet16-120 dataset.
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Fig. 24. SRCC for various devices in the NAS-Bench-201 search space on CIFAR-100 (left) and ImageNet16-120
(right) datasets. Pixel3 is our proxy device. SRCC values boosted with AdaProxy are highlighted.
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Fig. 25. Exhaustive search results for different target devices on NAS-Bench-201 architectures (CIFAR-100

dataset) [17, 29]. Pixel3 is the proxy. SRCC values before and after proxy adaptation are shown in the left
subfigure of Fig. 24.
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Fig. 26. Exhaustive search results for different target devices on NAS-Bench-201 architectures (ImageNet16-

120 dataset) [17, 29]. Pixel3 is the proxy. SRCC values before and after proxy adaptation are shown in the
right subfigure of Fig. 24.

B.4 Results on FBNet

Search Space. Similar to MobileNet-V2, the FBNet search space is also layer-wise with a fixed
macro-architecture, which defines the number of layers and input/output dimensions of each layer
and fixes the first and last three layers, with the remaining layers to be searched. As shown in
Fig. 27, the overall search space consists of 22 searchable blocks: the first and last inverted residual
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blocks, and five stages within each of which there are at most four blocks. For each block, the kernel
size can be chosen from “3, 5", and the expansion ratio can be “1, 3, 6". For the first and last 1x1
convolution layer, group convolution can be used to reduce the computation complexity. Also, each
block can be skipped. Thus, there are nine candidate specification choice for each block (detailed
configurations are shown in Table 2 of [45]).

22 Searchable Blocks
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Fig. 27. FBNet search space and architectural encoding.

Proxy Adaptation. We have 22 searchable blocks in total, the configuration for each of which
can be chosen from the nine architecture candidates (including “Skip”). Then, we can still use a
9-dimension one-hot vector to encode each block. Using Pixel3 as the default proxy and the same
approach as in Appendix B.2, we can solve Eqn. (3) to create an AdaProxy device, which has SRCC
of close to 0.9 or higher with the target device. In the transfer learning process, the numbers of
sampled architectures for training are: 80 (Edge GPU), 40 (Raspi4), 30 (FPGA), 20 (Eyeriss). In
addition, validation uses another 20 sampled architectures for tuning the hyperparameter.
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Fig. 28. SRCC for various devices in the FBNet search spaces [29], on CIFAR-100 (left) and ImageNet16-120
(right) datasets respectively. Pixel3 is the proxy. SRCC values boosted by AdaProxy are highlighted.

Results. Our key focus is to achieve a high SRCC between the proxy (or AdaProxy) device
and the target device, such that we can efficiently transfer the optimal architectures found on the
proxy (or AdaProxy) device to the new target device without measuring latencies of thousands of
architectures and building a new latency predictor. Since the accuracy results for architectures in
the FBNet search space are not available [29], we only show in Fig. 28 the SRCC values instead,
both with and without proxy adaptation. We can see that cross-platform SRCCs are greatly boosted
(i.e., close to 1) with AdaProxy. By Theorem 3.1, the strong latency monotonicity ensures that
the optimal architectures found on the proxy (or AdaProxy) device can be applied to new target
devices.
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B.5 Results on nn-Meter

The nn-Meter dataset released in [49, 50] includes measured inference latencies of 2000 models
from 11 search spaces, including GoogLeNet, MnasNet and ProxylessNAS, etc on three mobile
devices and one edge device: Pixel4 (Cortex A76 CPU), Mi9 (Adreno 640 GPU), Pixel3XL (Adreno
630 GPU), and Myriad VPU (Intel Movidius NCS2 edge device). Fig. 19 shows that the devices
already have strong latency monotonicity with SRCC values greater than 0.9 on six search spaces.
Among the remaining five search spaces, MobileNet-V1 and AlexNet are obsolete and phased
out for hardware-ware NAS. Next, we apply our proxy adaptation technique on the other three
search spaces: MobileNet-V3, NAS-Bench-201, and ProxylessNAS, which are mainstream and
widely-used backbones in SOTA NAS algorithms.
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CortexA76 0.94 0.92 1.0

0.0

Fig. 29. SRCC for various devices in the MobileNet-V3 search space [49, 50]. SRCC values boosted by AdaProxy
are highlighted.

B.5.1 MobileNet-V3. In our experiment, the number of searchable blocks in the MobileNet-V3
space is fixed as 12. For each block, the input, mid, and output channel number, and kernel size
are variable from a set of candidates. Instead of directly using the kernel-based latency predictor
in [50] that has a very large dimensionality for one-hot architectural encoding, we use a simple
block-level encoding method. Concretely, for each block, we use one-hot encodings for the input,
mid, and output channel number and kernel size, respectively, and then concatenate these four
one-hot vectors together to get the block-level encoding. After further concatenating the encoding
vector of each block, we have a 530-dimension encoding for each architecture. Then, we build a
simple 4-layer fully-connected neural network (with 500/250/100 neurons in each hidden layer)
and train it on the latency data of the edge device Myriad VPU (used as the proxy), which has
a low SRCC with the other three mobile devices. For the neural network training, we split the
1000 data samples (we use 1000 out of 2000 models for this experiment) into 800 for training and
200 for testing, set the learning rate as 0.01 and the batch size as 128, and train the network for
500 epoches. We also compress the network to 2 layers by fixing the first layer and appending it
with another layer for the proxy device’s latency predictor. Next, we apply the transfer learning
method in Section 5.4 to the three target mobile devices. We use latencies of 150 architectures
for transfer learning on Adreno 630/640 and 160 architectures for Cortex A76, respectively, while
using 20 architectures for validation. The relatively larger number of latency measurements needed
for boosting the latency monotonicity is due in great part to two reasons: (1) MobileNet-V3 is a
fairly complex search space, with many searchable operators; and (2) we intentionally address a
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challenging case where the proxy device has weak monotonicity with all the target devices. The
results are shown in Fig. 29, where we can see that the SRCC values are significantly increased
after proxy adaptation. despite the initially weak latency monotonicity.

B.5.2  ProxylessNAS. This search space is based on the MobileNet-V2 backbone, with variable
expansion ratios, kernel sizes, inputs, and output channel numbers [10]. We apply a similar encoding
approach as in the MobileNet-V3 space, and get a 783-dimension vector for each architecture in the
nn-Meter dataset [49]. The Myriad VPU and Adreno 640 GPU is the only pair of devices with SRCC
less than 0.9, with the pre-adaptation SRCC already being 0.87. We directly use the 783-dimension
vector to perform transfer learning by updating the weights pre-trained on the proxy device (Adreno
640 GPU), with latencies of 30 sampled architectures for training and 20 architectures for validation.
The results are shown in Fig. 30, demonstrating that the SRCC can be increased to over 0.9 after
proxy adaptation.
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Fig. 30. SRCC for various devices in the ProxylessNAS search space [49, 50]. SRCC values boosted by AdaProxy
are highlighted. We only apply proxy adaptation for the Myriad VPU edge device, since the other target
devices already have high SRCC of 0.9+ with the proxy device.

B.5.3 NAS-Bench-201. For the NAS-Bench-201 space, we adopt the same encoding method as
described in Appendix B.3. We also consolidate the latency datasets released by three different
research studies [19, 29, 50] for the NAS-Bench-201 search space. The Myriad VPU edge device
is the default proxy, while the target devices include FPGA, GPU, CPU, mobile, edge device, DSP,
and TPU. Using the latencies of 20 sampled architectures for validation, the numbers of sampled
architectures for training in the transfer learning process are: 30 for Edge GPU, Edge TPU, Eyeriss,
FPGA, Raspi4, Adreno 630, Adreno 640, Cortex A76, CPU 855, GPU 855, 50 for DSP 855, 55 for
Pixel3 and Jetson, 60 for GTX and i7, and 90 for Jetson 16. Note that the dataset in [49] only contains
latencies for 2000 architectures in the NAS-Bench-201 space, and hence we only consider these
2000 architectures when calculating the cross-device SRCC values. We show the results in Fig. 31.
While the latencies are measured by different research groups, on very different devices and using
different deep learning frameworks, our proxy adaptation technique can still successfully increase
the SRCC values to 0.9+, significantly boosting the otherwise weak latency monotonicity and
keeping the total latency evaluation cost at O(1) for hardware-aware NAS.
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Fig. 31. SRCC for various devices in the NAS-Bench-201 search space with latencies collected from [19, 29,
49, 50]. SRCC values boosted by AdaProxy are highlighted. “Adreno640" and “Adreno640*" denote model
latencies measured by [50] and [19] respectively. “Jetson Nano" and “Jetson Nano 16" represent the latencies
of FP32 and FP16 models correspondingly.
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