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Abstract—Neuro-Symbolic models combine the best of two
worlds, knowledge representation capabilities of symbolic models
and representation learning power of deep networks. In this
paper, we develop a Neuro-Symbolic approach to infer unknown
facts from relational data. A well-known approach is to use statis-
tical relational models such as Markov Logic Networks (MLNs)
to perform probabilistic inference. However, these approaches
are known to be non-scalable and inaccurate for large, real-
world problems. Therefore, given symbolic knowledge, we train
a Neural Tensor Network (NTN) to learn representations for
symmetries implied by the symbolic knowledge. Further, since
the data is interconnected, predicting one fact can positively or
negatively impact the prediction of other facts. Therefore, we
train the NTN using open-world semantics over multiple possible
worlds, learning to represent symmetries in each world. We eval-
uate our approach in several real-world benchmarks comparing
with state-of-the-art relational learning methods, Neuro-Symbolic
methods and purely symbolic methods clearly illustrating the
generality, accuracy and scalability of our proposed approach.

Index Terms—Neuro-Symbolic Models, Relational Learning,
Symmetry Representation Learning

I. INTRODUCTION

Neuro-symbolic learning [4] aims to combine neural net-
works with symbolic Al models. In the past, convergence
between statistical and logical approaches have been explored
in different forms such as statistical relational models [8]
that combine probabilistic graphical models with first-order
logic, or earlier attempts to combine neural networks with
logic formalisms [35]. However, given the impact that deep
neural networks have had in various domains such as computer
vision, natural language understanding etc., it is natural to
explore new connections between symbolic Al and deep neu-
ral networks. Particularly, by regularizing the representation
learning power of deep networks with domain knowledge from
symbolic models, we can aim to learn more scalable and
generalizable models.

In this paper, we focus on the following problem - given
relational data and knowledge about dependencies in the data
specified in a knowledge base, we want to infer if an unob-
served fact (or atom in first-order logic terminology) is likely
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to be true. In theory, for performing such inferences, we can
use well-known statistical relational models such as Markov
Logic Networks [5]. However, the main challenge is that on
real-world problems, these methods scale very poorly and also
have poor accuracy [15]. However, since MLNs are symbolic
models based on first-order logic (FOL), they can encode
rich domain knowledge that can significantly help learning
in complex domains [34]. At the same time, deep learning-
based methods such as Neural Tensor Networks (NTNs) [37]
can be applied to add reasoning capabilities to knowledge
bases (e.g. WordNet [23]). In particular, NTNs combine entity
vectors using a bilinear tensor layer to represent relationships
between entities. In this paper, we leverage the reasoning
power of NTNs to develop a general, scalable framework
for inference in relational data with FOL formulas describing
possible logical dependencies within the data based on our
understanding of the domain.

Symmetries are ubiquitous and essential for reasoning in the
real-world, and symbolic knowledge can effectively encode
symmetries. For example, if we have two FOL formulas
Flu(z) = Fever(x) and Flu(x) = Cough(x), then given
observations Flu(A) and Flu(B), the observation Fever(A)
is symmetrical to the observation Cough(B), i.e., we can likely
infer that A has a cough and B has a fever. To leverage such
symmetries in the NTN, we train an NTN contrastively with
asymmetric atoms given their dependencies in the knowledge
base, thus forcing the NTN to learn different representations
for asymmetric atoms. To do this, we assume semantics of
MLNs to represent the relational data. That is, the FOL
formulas represent cliques in a probabilistic graphical model.
Learning symmetries from these models is well-known to
be a hard problem and one that is often a bottleneck in
lifted inference [41] for MLNs and other related models.
Here, we develop a scalable approach where we learn an
embedding for objects [12] shared across atoms such that
objects that are symmetrical in the knowledge base are close
to each other in the embedding-space. We then use NTNs to
compose object embeddings into atom representations such
that symmetrical atoms have similar representations and use
these representations to make predictions about the atoms.

Further, to quantify uncertainty in our prediction, we need to
explore multiple possible worlds (in MLN/FOL terminology).
Specifically, in relational data, the predictions are related to
each other and one prediction can affect the others. E.g.,



suppose we have a formula Flu(z) A Samehouse (z,y) =
Flu(z), then if A and B stay in the same house, in a world
where we predict flu for A, we are more likely to predict
that B has a flu, but in a world where A does not have
the flu, B is less likely to have the flu. Therefore instead of
optimizing the NTN parameters over a single world, we learn
using open-world semantics on predicted atoms. Specifically,
we re-sample atoms based on their prior predictions to sample
a new world on which we train the NTN. Thus, the NTN learns
to represent symmetries between atoms over multiple possible
worlds. Since we relate objects multiplicatively using multiple
tensors we can compose object representations into different
atom representations to represent symmetries over different
possible worlds.

We evaluate our approach on knowledge base completion
benchmarks and node classification benchmarks comparing
with state-of-the-art relational learning approaches as well as
general Neuro-symbolic methods and show that our approach
performs better or on par with these methods. Further, we
also show the versatility of our approach on other types of
problems including image segmentation where we obtain bet-
ter performance than U-Net which is a state-of-the-art image
segmentation method and on text classification tasks. We also
compare our approach with purely MLN-based approaches and
show that our approach is orders of magnitude more scalable
and accurate compared to these methods.

II. RELATED WORK

Our work is broadly related to general Neuro-symbolic
approaches as well as specialized relational learning methods.
General Models. While combining neural networks with
symbolic systems has a long history [35], there has been a lot
of recent interest under the broad umbrella of Neuro-symbolic
learning [4]. Models for logical inference through neural nets
have been proposed such as [30]. Tensor Logic Nets [33]
similar to our work is inspired by NTNs but for logical
inference. Modeling relational knowledge as graphs and using
graph-based neural network learning algorithm methods have
also been proposed. [19] provide a survey and taxonomy of
Neuro-symbolic computing with graph (relational) networks.
Well known models of this type include GMNNS5 [27] that uses
GCNs [16] to combine Markov networks with deep learning.
Similarly, GATs [42] use attention mechanism in graph-based
knowledge representations.

In the realm of logic programming, [21] proposed Deep-
ProbLog, combining neural networks with probabilistic logic.
[44] proposed a differentiable semantic loss function that
encodes symbolic logical knowledge into the neural network
learning algorithm. Marra et al. [22] proposed Neural Markov
Logic where they extended Markov logic with potential func-
tions that exploit symmetries. Our work has the same flavor
but is distinct in the sense that we do not learn Markov
Logic Networks due to poor scalability learning and inference.
Instead, we simply use its semantics (FOL representation) as
a source of knowledge for the NTN. Very recently, in [47],

the authors developed a combination of MLNs and graph-
neural networks where they used a variational EM learning
approach. In general, the core of our approach which relies
on exploiting symmetries in knowledge has connections with
other general approaches for learning such as exchangeable
variable models [25]. Islam et al. [13] developed a CNN model
that uses exchangeable variables.

Specialized Models. Our work is also related to knowledge
graph embeddings which are more specialized relational learn-
ing problems. [2] is a classical method that proposed embed-
dings for knowledge graphs. Other well-known embeddings
include ReScal [24] and ComplEx [40]. In particular, [14]
proposed SimplelE that learns embeddings using background
knowledge. Distmult [45] also uses a bilinear formulation to
relate entities for link prediction. RotatE [38] achieves state-
of-the-art performance by using a novel adversarial negative
sampling approach. Finally, our approach is similar in spirit
to deep symmetry nets [7], where they used a CNN that
learns features over symmetry groups capturing more broad
invariances in object recognition for images. In our case,
symmetries are more generally defined in the knowledge-base.

ITII. BACKGROUND
A. First-Order Logic

The language of first-order logic (FOL) consists of quan-
tifiers (V and J), logical variables, constants, predicates, and
logical connectives (V, A, -, =, and <). A predicate is a
relation that takes a specific number of arguments as input
and outputs either TRUE (synonymous with 1) or FALSE
(synonymous with 0). The arity of a predicate is the number
of its arguments. We assume that each logical variable x has
a finite domain of objects A, that it can be substituted with
(Herbrand semantics). A ground atom is a predicate where all
its variables have been substituted by a constant (we use the
terms constants and objects interchangeably) from its domain.
For example, Friends(Alice, Bob) is a ground atom obtained
by substituting the variables in Friends(z,y).

A first-order formula connects predicates using logical con-
nectives. For example, —Friends(z,y) V Friends(y,z). A
grounding of a first order formula is one where all variables
in the formula have been substituted by constants. For ex-
ample, —Friends(Alice, Bob) V Friends(Bob, Alice). Note
that a ground formula evaluates to either True or False. A
knowledge-base is a set of first-order formulas. We assume that
our FOL formulas are in the standard conjunctive normal form,
i.e., clauses connected by conjunctions. A possible world,
denoted by w, is a truth assignment to all possible ground
atoms in the first-order KB.

Markov Logic. Markov logic networks (MLNs) add weights
to FOL formulas to capture uncertainty. Each ground formula
acts as a potential function (or clique) in an undirected
graphical model that is parameterized by the weight attached to
that formula. MLNSs can represent very large graphs compactly
due to the shared first-order structure over a large number of
potential functions. That is, the number of potentials depends
upon the number of groundings or ground formulas of a



first order formula. The number of grounding of a first-order
formula depends upon depends upon the domain-size of the
variables within the FOL formulas. Thus, the FOL formulas
act as templates where depending on the number of objects
specified in the domains for the variables in the formulas,
different graphical models corresponding to the same MLN
can be generated. In the typical MLN assumption, all ground-
ings for a formula are parameterized by the same weight. A
parameterized MLN represents a probability distribution over
the set of possible worlds.

IV. PROPOSED APPROACH

Learning Task. Given a world w, where a subset of atoms
are fixed as evidence (or observed atoms) we want to learn a
model that predicts if a non-observed atom is true. We also
assume that we have domain knowledge about the problem-
of-interest represented as a set of first-order logic (FOL)
formulas.

A standard approach is to apply a standard statistical rela-
tional model (e.g. Markov logic) and use max-likelihood esti-
mation for learning weights/parameters for the FOL formulas.
However, the main problem is that the scalability and accuracy
of such models is known to be very poor [15]. Instead, here,
we train a more scalable and accurate discriminative deep
neural network model that learns contrastive representations
for asymmetric atoms based on the structure of the FOL
formulas.

A. Overview

We motivate our approach with a simple example shown
in Fig. 1. The example shows a graphical model assuming
Markov Logic semantics. Here, each clique corresponds to a
ground formula and the nodes correspond to ground atoms.
Let the green cliques denote functions that are active, i.e., the
formula is satisfied based on the assignment to the nodes and
the red cliques denote the non-active functions. For different
worlds (a 0/1 assignment to all nodes), the active/satisfied and
inactive/unsatisfied formulas vary as shown in the example.
Here, we assume that weights are the same for all the formulas
and therefore, we are only interested in which formulas
are satisfied (or unsatisfied) by a world. Based on this, in
each world, we can identify symmetries among nodes, i.e.,
the nodes can be exchanged to create an isomorphic graph.
However, note that in each world, symmetries change based
on the assignments. For instance, for the worlds shown in
the figure, the nodes X5 and X3 may be exchangeable/non-
exchangeable in the graph and at the same time they may
have uniform/non-uniform assignments. The main goal of
our approach is to learn a discriminative model that assigns
similar probabilities to atoms when they are symmetric and
have uniform assignments across different worlds. To scale
up learning, we use Neural Tensor Networks to learn the
representation for atoms by combining embeddings for objects
that are related in the atom. While in theory, we can also learn
atom embeddings directly from the graph using approaches
such as Graph Markov Nets [44], our approach scales up

better when the graph has first-order structure. Specifically,
we learn the object embeddings efficiently without explicitly
constructing the graph. The NTN layer relates the embeddings
multiplicatively and therefore can combine symmetry informa-
tion encoded in the object embeddings non-linearly.
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Fig. 1: Illustrating symmetries between Xo and X3 in 4
different worlds. world 1: X, and X3 are exchangeable and
have uniform assignments, world 2: not exchangeable but
uniform assignments, world 3: exchangeable but non-uniform
assignments and world 4: not exchangeable and non-uniform
assignments. Our proposed approach learns to assign similar
probabilities to X; and X5 in world 1.

B. Contrastive Learning

For each predicate type, we learn an Neural Tensor Network
(NTN) corresponding to that predicate where for every True
atom X in w corresponding to that predicate, we contrast it
with X, a set of False atoms that are also asymmetric to X
to train the model. The training objective is given by,

J(Q;w) =

N
mﬂinz Z maz(0,1 — (g(X)
=1 XeX
—9(X)) + AllQff3 (1)

where () represents the NTN parameters, N is the number
of atoms in the training data w, X is an atom of opposite
assignment to X. g() is the output of the NTN that scores
each atom (larger value indicates that the atom is true).
NTN architecture. To learn the function g¢(), for each
predicate type, the NTN uses a bilinear tensor layer to relate
the objects in atoms corresponding to that predicate. For
simplicity, assume that the predicate type for atom X is a
binary predicate (where R is the type) and X° and X! are
the objects in the atom. To make exposition easier to follow,
we assume a single predicate type of binary arity unless



otherwise specified (we can extend the same easily to higher-
arity atoms). In practice, we learn a separate NTN for each
predicate type. The function g() is defined as follows.

9(X) =

upf W Wg™oxa +V; L?jjj] +br) @

where vxo € R? is a d-dimensional vector representation for
object XY, Wg:k] € RIx4xk jg a tensor, f() is a tanh non-
linearity applied element-wise and by € R is the bias and
upr € RF is a weight vector. v;';o WI[; :k]le results in a vector
representation vy € RF, where each entry is computed by
one tensor slice. The ¢-th dimension of vx is computed using
the i-th tensor slice. U;OWE]’I_}XH. V. € R¥*2d relates the
concatenated object vectors.

Training. Minimizing the objective in Eq. (1) creates a
separation between the True and False atoms. In theory, we
can randomly sample atoms of opposite assignment to contrast
with X. However, while this may classify atoms according
to their truth value, it does not force the NTN to learn a
representation that encodes symmetries between atoms. For
example, Fig. 2 shows 2 possible representations for the same
graph, both of which are accurate in classifying the atoms.
However, we want the NTN to prefer the representation where
symmetric atoms are grouped together.
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Fig. 2: For the world shown in the figure, the approaches on the
right are both correct classifiers but the bottom one represents
symmetries while the top one does not.

Thus, for every atom X, we want X to contain atoms
that not only have the opposite assignment to X but are
also asymmetric to X. This is non-trivial since we do not
know symmetries between atoms apriori. Therefore, similar
to weak supervision, we use a noisy approximation based on
symmetries between objects.

Definition 1. Given a world, atom X is exchangeable with X'
in that world if for every ground formula the truth assignment
for that formula is unchanged when all instances of X are
replaced with X' and vice-versa.

Definition 2. Given a world, object O is exchangeable with O’
in that world if for every ground formula the truth assignment
for that formula is unchanged when all instances of o1 are
replaced with o2 and vice-versa.

Definition 3. A monadic FOL formula is one where each atom
in the formula is constrained to be a unary atom (also called
singleton, e.g. R(x)).

Proposition 1. Given a set of monadic FOL formulas, in a
world w, if object O is exchangeable with O’ then this implies
that every atom that contains O is exchangeable with an atom
containing O'.

Proof. Let X contain the object O and X’ contain object
O’. Assume that O is exchangeable with O’ but X is not
exchangeable with X’. This means that there exists at least
one ground formula f such that exchanging X with X’ flips
the truth assignment to f. Since X and X’ are unary atoms,
this implies that exchanging O with O’ in f flipped the truth
assignment to f which is a contradiction since O and O’ are
exchangeable. O

From the given set of FOL formulas for the domain-of-
interest, we construct a monadic approximation of the FOL
formulas as follows. For every k-ary atom, R(z; ...xy), we
substitute it with R(x1) V R(z2) ... V R(zx). We remove any
redundant atoms that are repeated in the clause. Note that this
approximation is similar to the ones used in [41]. Using this
approximation, we vectorize objects such that exchangeable
objects have similar vector representations. Specifically, we
apply Obj2Vec [12] to learn a dense vector representation using
word-embedding models. Here, for each ground formula f
that is satisfied by the world, f acts as a positive instance
for the model. We consider each object O in f and predict
the context of O, where the context refers to other objects
that occur in f. Importantly, when objects are exchangeable,
they will have similar contexts. This allows us to learn a con-
tinuous approximation for exchangeable objects since objects
with similar (but not identical) contexts will be represented
by similar (though not identical) vectors in the embedding.
Thus, we obtain vector representations for objects that also
represent atoms if we assume monadic formulas. To learn atom
representations w.r.t the original FOL formulas, we learn an
NTN to combine the vectors of objects corresponding to an
atom.

To train the NTN, for an atom R(X, X'), we contrast
it with atoms that are asymmetric with it in the monadic
approximation. That is, we choose objects that are distant
from XY and X' in the embedding. To ensure that our
contrastive examples are taken from sufficiently diverse parts
of the embedding space, we cluster the object embeddings into
K clusters, C = C; ... Cg. Given that an atom X contains
an object in cluster C;, we contrast it with atoms that have
objects in C \ C,. To do this, we sample all clusters other than
C, and pick atoms of opposite assignment to X that contain
the sampled objects.



C. Symmetry Representation

From prior work on lifted inference, we can define three
general forms of symmetry as follows.

Definition 4. Uniform Assignment (UR) is a symmetry on a
group of atoms where each of the atoms are constrained to
have the same assignment. The group of atoms can therefore
be replaced by a single atom. The MAP inference rule defined
in lifted inference algorithms [32] illustrates such symmetries.

Definition 5. Count Symmetry (CS) is a symmetry on a
group of atoms where configurations (assignments to atoms
in the group) that have the same number of true atoms
are symmetric to each other. The binomial rule defined in
lifted inference algorithms such as PTP [9] illustrates such
symmetries.

Definition 6. Variable-Value Symmetry (VS) is a symmetry
on a group of atoms that constrains specific configurations
(assignments to atoms in the group) to be equivalent to
each other. Such symmetries are discovered using graph-based
algorithms in [1].

Suppose our model assumes a type of symmetry, clearly,
in terms of bias of the model, UA models > CS models >
VS models. That is, assuming UA makes the model simpler
but may fit the data poorly since such symmetries are less
representative of real-world data. Given the embeddings for
objects in an atom, we can combine them using simpler
methods such as additive compositions [3]. However, this
approach will yield UA models. Specifically, let C; and C,
represent clusters of objects in the embedding-space. Suppose
v1 € Cy and vy € Cs. An additive composition v; + vy is
likely to be similar to other compositions that can be formed
from C; and Cs. Thus, any atom that includes objects from
C; and C; is constrained to have a very similar representation
which means that the model implicitly assumes UA symmetry
among atoms.

On the other hand, consider the NTN multiplicative function
in Eq. (2) that combines two object vectors. In this case,
multiplying the vectors with each tensor slice followed by
the non-linearity generates a binary value. Thus, the model
can generate up to 2" unique representations assuming k
tensors. Specifically, the model can assign each atom that
can be formed from clusters of objects C; and C;, to one
of the 2" representations each of which can have a different
assignment. Thus, there are 2¥ possible configurations of atom
assignments that can be generated by the model and the model
can therefore represent VS symmetries. For example, the toy
example in Fig. 3 (a) shows atoms arranged in a 2-D grid
based on the values of their object embeddings. That is, each
axis is an object’s 1-D embedding. Note that the symmetries
across different rows and columns are different (indicated
by the true/false atom colors). The training accuracy results
from our NTN-based approach is shown in Fig. 3 (b) for
different number of tensor slices. As seen here, for smaller
number of tensor slices the NTN could not accurately infer

all the symmetries, but increasing the number of tensor slices
results in a significant increase in accuracy (reduction of bias)
since the model can assign each tensor-slice to detect different
variants of the symmetries.

D. Open World Training

Eq. (1) which optimizes J(2; w) implicitly assumes a closed
world, i.e., when we are predicting g(X), the assignments to
all atoms other than X in the world are known to us. However,
since our training data is relational, it in fact consists of
several interconnected atoms. In particular, predictions made
for one atom can affect other predictions. Therefore, we train
the model such that we optimize over open world atoms.
Specifically,

Definition 7. Given w, the open-world atoms O is a subset
of atoms in w such that the possible worlds (denoted by V)
contain every possible configuration of assignments to atoms
in O andV X & O, the assignment to X remains unchanged
from its assignment in w.

Therefore, to optimize over open-world atoms, we modify
the training objective function as,

* 3 !/

J*(Q) = min Z J(Q;w) 3)
w'ew

However, optimizing Eq. (3) exactly is clearly infeasible
since |W| is exponential in |O|. To train our model tractably,
we use an approach similar to stacking used to learn mixture
models [36, 11]. Specifically, we learn a model that optimizes
Eq. (3) over worlds sampled based on the “out-of-sample”
prediction scores for the open world atoms. Specifically, we
assume a fully factored mean-field distribution on the open
world atoms.

pol) = [T 9(x19)

XeOo

“4)

where ¢(X|Q2) is the out-of-sample (normalized) score
between 0 and 1 for an open-world atom X given the learned
parameters €. That is, we assume that €2 is estimated without
using X in training the model. Note that the distribution
assigns higher probabilities for larger scores in predicting O
which indicate that the atoms can be more accurately predicted
using symmetries in the world. However, note that to compute
the distribution, we need {2 which in turn requires learning the
model over multiple worlds. Therefore, we use a coordinate
descent approach, where we fix {2 to compute P(O|Q2) and
then re-estimate €2 from a new world sampled using P(O|Q2).
In theory, we can guarantee convergence to a local optima
by rejection sampling, i.e., if the objective J(€;w’) is larger
than the previous value, we reject the sampled world w’ and re-
sample a new world. However, in practice, we noticed that this
wastes sampled worlds and in many cases, it may be better
to explore more diverse worlds to capture their symmetries
during learning. Therefore, we instead set a fixed number of
iterations for stopping or stop if the world converges, i.e., the
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Fig. 3: Toy example where (a) shows atoms with true/false assignments shown by the red/blue colors. Each axis denotes
an object’s 1-D embedding. Each row and column has varying true/false assignments. (b) shows the training accuracy in our

model for different number of tensor slices.

assignments to all the open world atoms reach a fixed point
before these maximum iterations. Further, note that to compute
the distribution P(O|2), we need to learn |O| different models
since for each atom X € O, we need to compute its out-of-
sample score, which is computationally expensive. Therefore,
similar to cross-validation, we split the world into m parts,
train on m — 1 parts and compute the scores for all the open
world atoms on the remaining part.

Algorithms 1 and 2 summarize our approach in training
and prediction. We start training from our initial world. In
each iteration, we partition O into m parts. We mask the
assignments to atoms in the test partition part to compute
the object embeddings. Specifically, recall that to learn the
embedding using Obj2Vec, our positive examples are object
pairs that occur in satisfied ground formulas given a world. For
a partial world, the masked atoms will have no assignment
and we assume these to be false (closed world assumption)
while learning the embeddings. We then train over all the
atoms in the training partitions using the object embeddings.
For each atom in the test partition, we predict the atom and
sample it using its score. We repeat over all partitions to
obtain a sample over O. We combine this with the unchanged
assignments from the original training data to obtain a new
world. For prediction, we initially assign each atom in O
a random assignment. In each iteration, we update the pre-
trained embedding learned during training. Specifically, we use
the current world to create new training instances of object
pairs to update the pre-trained embedding. We then predict
each instance in O and sample a new world from their scores.
We average scores for the atom in all the sampled worlds as
our final predicted score.

V. EXPERIMENTS

A. Setup

We evaluated our approach (which we refer to as MNTN)
using the following studies.

Algorithm 1: M-NTN Training

3
4
5

10

11
12

13

14

Input: FOL formulas F, training data w, open world

atoms O

Output: Trained M-NTN
1w =w
2 for i = [ to T iterations do

Partition O into m partitions
repeat
£ = Compute object embeddings using w(?)
where assignments to T are masked
// Train NTN Model using
asymmetric examples
C = Cluster £
for each atom X € P do
C’ = clusters that do not contain objects in
X
X = Contrastive atoms for X containing
objects sampled from C’
Train M-NTN with X and X

// Sample test partition and
update world
for each X in T do
Sample X from g(X) and add to world
W+
until for each training partition R and test
partition T;
Copy assignments to non-open world atoms from

o Comparison using the standard publicly available Word-
Net and Freebase benchmarks [37] with several state of
the art methods in knowledge base completion.

o Comparison using the standard publicly available Cora,
Citeseer and Pubmed benchmarks [27] with several state-
of-the-art Neuro-Symbolic models.

« An ablation study where we evaluated different parts of



Algorithm 2: M-NTN Prediction
Input: Test Database w, Object embeddings &,
Trained NTN M-NTN, open world atoms O
Output: Predictions for O
1 w(® = random assignment to © combined with other
assignments in w
2 for t = 1 to T iterations do
3 Update object embeddings £ based on assignments
to O
for each atom X € O do
v = embedding vectors for objects in X
Predict g(X) using v in M-NTN
XM = g(X)

for each atom X € O do
9 L Sample an assignment for X using g(X)

N S B

=)

// Average scores across 1 iterations
10 for each X € O do

1 fort =11t T do

12 L X=X+4+Xx0

13 for each X € O do

14 L PX)=1L1X

1
T

our system. In (NTN-R), we randomly sample negative
examples, i.e., we do not specifically train on asymmetric
atoms. (NTN-CW), we train on a single world, i.e. we
make the closed world assumption. Additive Composition
(AC), we implemented a linear composition of object
vectors instead of using NTNs to combine the object
vectors.

« To show applicability of our proposed approach in other
diverse tasks, we implemented image segmentation us-
ing the publicly available TU Darmstadt database of
images [20] and compare with a state-of-the-art deep
learning architecture for segmentation, UNET [31]. We
also compare with purely symbolic learning and inference
using two MLN based learning and inference systems,
Tuffy [26] and Magician [43] using publicly available
text classification benchmarks.

1) Implementation: To learn the Obj2Vec embeddings, we
used the Gensim [29] implementation of word2vec with the
skip-gram model. We implemented the standard NTN archi-
tecture as specified in [37] using Tensorflow. All experiments
were performed on an AWS cluster with 16 CPUs and 64 GB
RAM and a GPU. For the NTN, we used 20 tensor slices after
experimentation.

For Knowledge Base Completion, we use the Freebase
dataset with 13 relations and 75043 entities and the Wordnet
dataset with 11 relations and 38696 entities [37, 3]. For
Object classification, we use the same benchmarks used in
GMNN [27] For Segmentation, we use the TU Darmstadt
database of images [20] to perform image segmentation into
foreground/background pixels. We used the set of images

corresponding to side-views of cows. For text processing, we
used WebKB, Yelp and Movielens datasets. The WebKB task
and dataset is defined in Alchemy [17] where we classify
webpages according to a topic. For Yelp [28], the task is to
classify if a review is fake or not. For Movielens [10], we
predict movie ratings.

2) Relational Knowledge: .

o For Knowledge Completion, corresponding to each
triplet, (h,r,t) we encode a formula Head_Rel(h,r) A
Tail Rel(t,r) = Head _Tail(h,t) that specifies the
head and tail relations. Further, we add a transitive for-
mula corresponding to each of the three predicates. This
is similar to the transitive relationship encoded in [14].

o For Object Classification, we encoded the homophily
property of the form Class(z,¢) A Linked(z,y) =
Class(y,c). We also had formulas that connect words
in each instance to the class for that instance similar
to the bag-of-words formulas in WebKB specified in
Alchemy [17].

o For the Segmentation task, we define regions in which
the pixel lies along both the x-axis and the y-axis
and add formulas of the form Region(z,y1,7)
A Foreground(zi,y1) A Region(za,ys,7) =
Foreground(zsa,y2) where (z1, 1) and (z2, y2)
are pixel-coordinates. This rule encodes our knowledge
that if two pixels are in the same region they are
likely to be of the same type (foreground/background).
Further, we add formulas that connect the pixel values
(discretized to 10 levels for R, G and B channels)
along 4 orientations (top, right, bottom, left) to the
Foreground predicate.

« For text processing, the formulas are similar to Object
Classification except the relational formulas connect web-
pages in WebKB, and users (who wrote the review) in
Movielens and Yelp.

All the data and code for MNTN is available here'.

B. Results (Knowledge Base Completion)

The comparison results with several state-of-the-art systems
are shown in Table. I. The results shown for the other systems
are from SimplelE [14] over 6 different metrics. The methods
include canonical Polyadic (CP) decomposition, TransE and
its variants (STransE and TransR) [3], ComplEx [40], Dist-
mult [45], NTNs (note that in the result here the NTN does
not use our embedding), ER-MLP [6]. The Mean Reciprocal
Rank (MRR) is defined in [14]. Here, for each test triple
(h,r,t), we compute ranking for h based on the scores of
other triples of the form (h’,r,t) and similarly, we compute
a similar ranking for ¢. We then take the mean of the inverse
of these rankings which is more robust than a mean rank.
The filtered MRR is the same as defined in [3]. The HIT@k
computes the % of test triples with ranking < k. As seen
from the results, in majority of the cases, MNTN outperformed
most of the competing systems over most of the metrics.

Thttps://github.com/tushancse04/MNTN



WN18 FB15k
MRR HIT@ MRR HIT@

Model Filter Raw 1 3 10 | Filter Raw 1 3 10
CP 7.5 5.8 4.9 8.0 125 32.6 152 1219 376 532
TransE 454 335 | 89 823 934 38.0 22.1 | 23.1 472 64.1
TransR 60.5 427 | 33.5 87.6 94.0 34.6 19.8 | 21.8 404 58.2
DistMult 82.2 822 | 822 914 914 914 242 | 546 733 824
NTN 53.0 - — - 66.1 25.0 - - - 41.4
STransE 65.7 46.9 - - 934 54.3 25.2 — — 79.7
ER-MLP 71.2 528 | 62.6 77.5 86.3 28.8 155 | 17.3 31.7 50.1
ComplEx 94.1 587 1 93.6 945 94.7 69.2 242 1599 759 84.0
SimplE 94.2 58.8 1939 944 947 72.7 239 | 66.0 773 83.8
RotatE 79.7 746 83.0 884 94.9 944 952 959
MNTN 97.0 745 1924 952 97.7 94.3 42.0 | 88.5 95.5 96.2

TABLE I: Comparing the accuracy of different relational learning methods for Knowledge Base Completion for the Wordnet

and Freebase benchmarks.

RotatE [38] performed slightly better on some metrics for
FB15k and SimplelE on one metric for WN18. Overall, MNTN
was competetive with the best system in each case.

C. Results (Object Classification)

The comparison results with several state-of-the-art ap-
proaches including Neuro-symbolic models and purely sym-
bolic (SRL) models are shown in Table II. Here, F1 score is the
metric used in [44]. The results shown for the other systems
are taken from the Graph Markov Neural Nets (GMNN) [44]
paper. The other systems used for comparison are as follows.
Semi-supervised Learning (SSL) using label propagation [48].
For statistical relational learning (SRL), MLNs along with
Probabilistic Relational Model (PRM) [18] and Relational
Markov Network(RMN) [39]. For Graph Neural Network
based approaches, the methods include Graph Convolutional
Networks (GCN) [16], Graph Attention Networks (GAT) [42]
and Planetoid [46]. Three relational learning benchmarks were
used, Cora, Citeseer and PubMed. On all three benchmarks
MNTN had the best accuracy. The next best approach was
GMNN but the difference in accuracy between MNTN and
GMNN was significant in all three benchmarks. This shows
that the use of symmetries indeed plays an important role in
relational learning.

D. Ablation Study

The results of the ablation study are shown in Table III.
That is, we compared AC with As seen here AC, NTN-R,
NTN-CW and MNTN to analyze the significance of each. As
seen by the results, AC consistently performs the worst in
terms of accuracy indicating that a simple additive composition
of objects is not sufficient to represent symmetries and the
value of MNTN is the use of multiplicative composition to
represent symmetries. Further, the results for NTN-CW show
that exploiting symmetries helps in improving accuracy com-
pared to random negative samples NTN-R. However, training

Category Algorithm Cora Citeseer Pubmed
SSL LP 742 563 71.6
PRM 770 634 68.3
SRL RMN 71.3 68.0 70.7
MLN 74.6  68.0 75.3
Planetoid  75.7 64.7 77.2
GNN GCN 81.5 70.3 79.0
GAT 83.0 725 79.0
GMNN Best results  83.7 73.6 81.9
MNTN Best results 89.4 82.2 91.0

TABLE II: Comparing accuracy for Object Classification on three
relational benchmarks. The F1 Score is shown in each case.

Task MNTN | NTN-R | NTN-CW AC
Freebase | 94.1 91.2 90.8 68.2
Wordnet 89 86.6 85.6 62.4

Cora 89.4 84.1 85.3 68.0
CiteSeer | 82.2 78.6 80.0 71.7
Pubmed 91 84.6 86.3.0 | 76.8

TABLE III: Ablation Study results for different benchmarks. The
ROC-AUC score is shown for Freebase and Wordnet while for the
remaining three benchmarks, the F1 score is shown as in [44].

over several possible worlds adds the greatest improvement in
performance showing that capturing symmetries over different
configurations of the open world atoms adds most value in our
system.

E. Results (Image Segmentation and Text Processing)

Results on the image segmentation and text classification
tasks are shown in Table IV. The results once again show that
MNTN outperformed the other methods including specialized
methods such as U-Net for image segmentation. NTN-R and
NTN-CW also showed good performance in this case. For



Task MNTN | NTN-R | NTN-CW | AC | U-Net
Segmentation | 98.2 97.3 97 77 90
WebKB 94.3 92.7 92.5 71
Yelp 92.3 89.7 90.1 61
Movielens 94.8 87 92.5 76

TABLE IV: Results for Image Segmentation and Text Classification
(ROC-AUCQ).

Task Tuffy-1|Magician | Tuffy-2
WebKB 61 64 54
Yelp 56 53 53
Movielens 46 51 48

TABLE V: MLNs for Text Classification (ROC-AUC). Tuffy-
1 denotes marginal inference results and Tuffy-2 MAP inference
(for which the F1 score is mentioned since it produces binary
classification).

image segmentation since spatially distant pixels can be easily
randomly sampled as contrasting examples, choosing the right
negative examples seemed to have lesser effect here. In the text
classification tasks, MNTN outperforms the other methods. The
next best approach here was NTN-CW.

The results for the MLN based methods for text classifi-
cation are also shown in Table V. As seen here, the results
have much poorer accuracy than all the other methods. That is,
purely symbolic methods such as MLN-based approximate in-
ference methods perform poorly in terms of accuracy. Also, in
terms of scalability, we could not process the full datasets here
for these methods and sampled them down to approximately
50K atoms per dataset. Thus, MNTN is orders of magnitude
more scalable and accurate than MLN methods. Thus, the case
for using MLNs as a knowledge representation component
and performing the inference and learning through deep neural
networks is reinforced with these results.

F. Scalability

Table. VI shows the training time for MNTN and the number
of atoms in each of the benchmarks. As seen here, even for
large number of atoms, MNTN scales up quite easily. As seen
by our results, even for the largest benchmark (Pubmed) which
contains over a million atoms, the training time is under 2
hours. In comparison, purely symbolic methods such as MLN-
based systems (Magician, Tuffy, etc.) cannot process more
than around 50K atoms. Thus, using neural training algorithms
with input from symbolic methods is orders of magnitude more
scalable. Further, while we have not fully exploited the benefit
of pre-trained models here, this is a direction we will explore
in future to further improve scalability of our approach.

G. MNTN Representation

Fig. 4 shows the change in accuracy as we change the
number of clusters in training the model. In Fig. 4, we
show results for different C'R(Compression Ratio) which is
maxgy g—‘idl, where d represents a domain, Ay is the number
of objects d and ¢4 is the number of clusters. As we increase
CR, it implies that the number of clusters are correspondingly
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Fig. 4: Accuracy for varying compression ratios (CR). The ROC-
AUC score is shown except for object classification where F1 score
is shown. Larger CR implies a larger number of clusters are used to
cluster the objects in the domain.

increased. This means that for a small C'R, since the number
of clusters are small, asymmetric atoms may be part of the
same cluster. On the other hand, for a very large C'R, since the
number of clusters is large, symmetric atoms may be part of
different clusters. As shown, increasing C'R increases accuracy
initially forcing similar representations for asymmetric atoms
and results plateau out or may become worse since we may
learn diverse representations for symmetrical atoms for large
CR.

Finally, we illustrate the representation learned by MNTN
with an example case. Fig. 5 shows a 2-D visualization using
t-SNE of the atom embeddings from the Yelp data. Fig. 5 (a)
represents the embeddings learned using AC and Fig. 5 (b)
represents the embeddings learned using MNTN. As seen in
the results, AC does not a very distinctive pattern to separate
the atoms (of different assignments). On the other hand, MNTN
seems to learn the atom representations such that there is better
structure and separation between symmetric groups of atoms.

H. Hyperparameters

Table VII shows the accuracy for different settings in our
architecture. Specifically, we vary the activation functions,
epochs, dropout rate and the tensor slices. As seen here, a
dropout rate of around 0.5 with 50 epochs gave us the best
performance in most of the datasets. The tanh activations per-
formed better than the ReLLU activations in general. Compared
to the other parameters, changing the tensor slices affected
accuracy more significantly. This is expected since the tensors
are responsible for learning to represent symmetries between
atoms. As seen by these results, for a small number of tensors,
the accuracy was lower and this increased with the number of
tensor slices which indicates that the increased capacity due
to the larger number of tensors allowed MNTN to represent
symmetries better.

VI. CONCLUSION

We developed a Neuro-Symbolic model that learns to pre-
dict unknown facts from knowledge bases where the knowl-
edge base also encodes first-order logic rules. Using the



Cora | Movielens | Segmentation | Wordnet | Freebase | Yelp | Citeseer | Pubmed
#Atoms 250K | 269K 445K 463K 567K [ 653K | 700K 1.2M
Training Time (mins) | 22 23 45 60 58 63 71 110

TABLE VI: Scalability of MNTN. Number of atoms in benchmarks and Training time is shown.
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Fig. 5: Tlustrating T-SNE visualization of atom embeddings (with truth values shown by different colors) for Yelp data. (a) shows the
pattern of embeddings learned for AC and (b) for MNTN. The representation for atoms learned by MNTN shows a more well defined smooth
pattern.
Activation Epochs Dropout Tensor slices
Benchmark | ReLU tanh 10 20 50 0.3 0.5 0.7 4 8 16
WNI18 94.3 97.0 {939 96.8 97.0 | 97.0 96.8 88.1 | 8.5 96.2 97.0
FB15k 92.8 943 | 89.6 93.0 943|942 937 86.1 | 882 939 943
Cora 83.5 894 | 83.8 885 894|892 89.0 827|835 894 894
Citeseer 81.5 822 | 765 814 822|822 822 789|820 822 822
Pubmed 85.7 91.0 | 87.7 89.8 91.0 | 91.0 91.0 835 | 84.8 90.2 91.0
Movielens 94.4 948 [ 884 93.0 945|945 941 873 | 87.8 944 944
Yelp 88.1 923 [ 853 887 923|922 923 844 |88.1 923 923
webkb 94.0 943 [94.0 933 935|942 942 937|942 942 942
TABLE VII: Comparing different hyper-parameter settings. We show the ROC-AUC scores except for object classification

where we show F1 scores.

semantics of MLNs for representing the knowledge base, we
trained a Neural Tensor Network (NTN) to learn contrastive
representations for asymmetric atoms. Since several predic-
tions made by our model may be related to one another,
to quantify uncertainty in our predictions, we trained the
NTN over multiple possible worlds. In each world, the NTN
tensors learn to encode symmetries specific to that world. Our
empirical results on varied types of datasets and problems
clearly illustrated that our approach is general, highly scalable
to large real-world benchmarks and outperforms state-of-the-
art relational learning methods as well as Neuro-Symbolic
methods in several benchmark problems.

In future, we plan to extend our approach to generative
Neuro-symbolic learning. Further, we will also extend our

work to generate interpretable predictions based on the for-
mulas specified by the knowledge base.
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