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Abstract—Markov Logic Networks (MLNs) represent rela-
tional knowledge using a combination of first-order logic and
probabilistic models. In this paper, we develop an approach to
explain the results of probabilistic inference in MLNs. Unlike
approaches such as LIME and SHAP that explain black-box
classifiers, explaining MLN inference is harder since the data
is interconnected. We develop an explanation framework that
computes importance weights for MLN formulas based on their
influence on the marginal likelihood. However, it turns out that
computing these importance weights exactly is a hard problem
and even approximate sampling methods are unreliable when
the MLN is large resulting in non-interpretable explanations.
Therefore, we develop an approach where we reduce the large
MLN into simpler coalitions of formulas that approximately
preserve relational dependencies and generate explanations based
on these coalitions. We then weight explanations from different
coalitions and combine them into a single explanation. Our exper-
iments illustrate that our approach generates more interpretable
explanations in several text processing problems as compared to
other state-of-the-art methods.

Index Terms—Explainable AI, Markov Logic Networks, Sta-
tistical Relational Models

I. INTRODUCTION

Explainable Artificial Intelligence (XAI) [9] has made sig-
nificant progress over the last few years. In particular, several
approaches that explain results from black-box classifiers have
been developed [19, 14]. However, these explainers typically
work for classification problems when the data instances are
independent of each other. To explain predictions on relational
data, we need to factor in the influence of relationships in
the data. In this paper, we develop an approach for expla-
nations in probabilistic inference in Markov Logic Networks
(MLNSs) [4], a well known statistical relational model. MLNs
consists of first-order logic formulas with weights attached
to them. However, weights attached to the formulas as such
do not have a direct probabilistic interpretation that can be
used for explanations. Instead, we need to perform prob-
abilistic inference to quantify the influence of formulas in
the distribution. To explain inference in MLNs, we formal-
ize explanations as expected values of formula states. We
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can then estimate these expectations from samples drawn
from the distribution of the MLN using approaches such as
Markov Chain Monte Carlo. However, while this approach
yields sound explanations, in practice, explaining large MLNs
is a hard problem. Specifically, the underlying probabilistic
model becomes very large and well-known sampling methods
such as Gibbs sampling have poor mixing properties in such
large MLNs [20]. Consequently, explanations derived from a
poorly mixed sampler tend to produce results that have poor
interpretability. To improve interpretability of explanations,
here, we derive explanations from an approximate MLN.
Specifically, we construct coalitions of formulas where a
coalition tries to maintain the relational structure present in
the original MLN. To do this, we leverage symmetries in
the MLN, i.e., variables that have similar relational structure
to other variables in the MLN. We derive coalitions with
a reduced number of variables by sampling from groups of
(approximately) symmetric variables in the MLN. We then
explain probabilistic inference outcomes in the coalitions.

However, once we have multiple explanations from different
coalitions, it turns out that combining these explanations
is challenging in our case since it is hard to weight the
explanations. Ideally, the weights should encode the distance
between the coalition to the true distribution, i.e., give closer
approximations of the MLN a larger weight in the overall
explanation. However, computing the true distribution in our
case is intractable. Therefore, we develop a weighting method
that penalizes explanations where the influence of formulas
significantly deviates from the MLN parameterization. That is,
if the ranking of formulas in the explanation tend to match the
rankings based on the MLN weights, then the explanation is
more consistent with the MLN parameterization and therefore
is given a larger weight. We integrate the explanations by
combining the weighted ranking orders in each explanation.
Specifically, the optimal global explanation is one that main-
tains the weighted ranking order in explanations over all
coalitions. We use a sampling based approach [12] to solve
this hard combinatorial problem that converges to the optimal
ranking asymptotically.

We show through experiments that our approach focuses
on relevant explanations better than other approaches such
as LIME, SHAP or relational explainers using the full MLN
distribution [5]. Further, we also conduct a user study to
evaluate the usability of our explanations.



II. RELATED WORK

Guidotti et al. [8] survey different explanation approaches in
Machine learning and organize them as outcome explanation
methods or model explanation methods. Outcome explana-
tions are used for “black-box™ classifiers that are complex
to explain. A common theme here is to explain the black-
box classifier with a simpler model. LIME [19] explains an
instance by perturbing it and learning a local, simple decision
boundary to classify the perturbed instances. SHAP [13]
generates coalitions of features and quantifies the influence of
a feature by minimizing the loss between a simple classifier
on the coalitions and the original model. Koh and Liang
[11] use influence functions from robust statistics to measure
the change in training parameters due to a small change
in the data. Fong and Veladi [7] use interpretable image
perturbations to recognize salient image features. Suderrajan
et al. [23] developed integrated gradients as an approach to
explain deep networks more generally. More recently, Shao
et al. [21] developed an approach using influence functions
to correct the model during training such that it gives bet-
ter quality explanations. In symbolic Al models, Darwiche
and Hirth [2] developed a formal framework for explaining
classifier decisions using ordered binary decision diagrams
compiled from a Bayesian network. Shih et al. [22] explained
Bayesian networks by compiling them into decision trees.
Farabi et al. [5] explained MLN formulas but unlike our
approach they generate explanations using the full MLN which
can be non-interpretable if the MLNs represent large, complex
distributions. More recently, Broeck et al. [3] analyzed the
complexity of SHAP and showed that it is intractable even
for simple distributions.

III. INTERPRETABLE EXPLANATIONS

We motivate our approach with a simple example. Consider
an MLN with three formulas, Smokes(z) = Asthma(z);
Smokes(y) A Friends(x,y) = Asthma(z) and Smokes(z)
= Smokes(x). Generally speaking, the first formula is a good
explanation for an individual having asthma. However, for an
individual, say Alice who does not smoke, Asthma(Alice) is
explainable if a lot of Alice’s friends are smokers. Thus, the
relational dependencies between Alice and other individuals
is an effective explainer for Alice having asthma. However,
suppose Alice is friends with a large number of individuals,
it becomes harder to quantify the influence of each of these
individuals since their smoking habits depend upon other
individuals who are friends with them. In general, as the
domain (number of individuals or objects) become larger, the
probabilistic graphical model underlying the MLN becomes
complex and extracting the important dependencies for a
specific query becomes harder.

A common strategy that is used in well-known explanation
methods for black-box classifiers is to estimate the hard-to-
interpret black-box classifier boundary using simpler surrogate
functions. For instance, SHAP creates feature coalitions that
combines subsets of features and learns a surrogate model
from these coalitions from which the explanation is derived.

Similarly, LIME perturbs instances in the neighborhood of
the predicted instance and learns a surrogate model for ex-
plaining the classification of the perturbed instances in the
local-neighborhood. Following the same principle, here, we
simplify the MLN creating smaller coalitions of formulas. We
rank the importance of formulas within each coalition and
then combine these explanations together. Since each of the
explanations are extracted from a simpler MLN, the inference
results on the model are more reliable and the explanations
for the inference results are likely to be more interpretable.

A. Explanation Framework

To formalize our explanation framework, we begin with
some terms and notation. An MLN formula combines pred-
icates using logical connectives.We assume that all formulas
are universally quantified clauses. A predicate has multiple
arguments. A variable (z) representing an argument in a pred-
icate has can substituted by a finite domain (A,) (Herbrand
semantics). A ground atom is a predicate where all its variables
have been substituted by objects from their corresponding
domains. A ground formula only consists of ground atoms.
Each ground atom is a binary random variable (True / False
or 0/1) and each ground formula is a potential function in the
Markov network representation of an MLN. An assignment to
all the ground atoms of the MLN is called a possible world.

Let M represent the MLN and P() represent the distribution
of the MLN. Let f(Q) represent the set of ground formulas
containing the query atom () and let E represent the set of
evidence atoms. Note that here, we assume that each atom is
either an evidence or a query atom. Let Q_¢ represent the
set of possible assignments to all query atoms except @ € Q.
Let wy represent the weight of a ground formula f (note that
all groundings of a first-order formula share the same weight
in the regular MLN semantics). The marginal probability is
defined as follows.

1
PQIE)= > —exp|D wpny (1)
Q'EQ-q f
where Z is the normalization constant of M. Specifically, we
need to sum out Q_g to compute the marginal for (). We

define an explanation for query @) as follows.

Definition 1. The explanation for query @ in M with evidence
E is denoted by o(Q) is a permutation 7 over £(Q).

Given an importance weighting function I(), where I(f, Q)
indicates the importance of ground formula f on determining
the probability of the query P(Q), a sound explanation is
defined as follows.

Definition 2. o(Q) is a sound explanation if ™ orders f; €

£(Q) such that I(fr,,Q) > I(fr,,,, Q).

In the remainder of the paper, when we refer to an ex-
planation given an importance function, we assume that it
is a sound explanation. To define I(), an intuitive approach
is to directly use the MLN parameters. Specifically, I(f, Q)



= wy, where wy is the weight of f. However, this simple
approach is problematic since the importance of a formula
changes dynamically based on the observed variables E.
For example, let Fever(x) = Flu(x) have a larger weight
compared to Cough(x) = Flu(x). However, given evidence
that an individual has cough and not fever, we can explain
that the individual has flu using the second formula. Similarly
for a different query, the first formula may be more important
than the second. Thus, the underlying problem with assuming
that the MLN weights determine the importance of a formula
is that the parameters do not correspond to probabilities.
For the explanation to be meaningful, given evidence E, I()
should encode the influence of a formula on the conditional
probability P(Q1,...Q,|E) where Q1, ... @, represent the
query atoms. We define this as follows.

Definition 3. Let E[ny| be the expected truth value of formula
f w.rt the joint conditional distribution P(Q1,...Qn|E) and
Eg[ny] be the expected truth value of f w.rt the marginal
distribution of Q, ie., P(Q|E), we define the importance
weight of formula f for a query Q as

I(f,Q) = Eq[nf] — E[ng] 2)

Intuitively, using the above definition, I(f, Q) has a larger
value if f is true in more worlds where @ is also true and
false in more worlds where @ is false. More specifically, we
relate the importance I(f, Q) to the partial derivative of the
marginal probability w.r.t to the weight of f.

Olog(P(QIE)
Qwy

Proposition 1. I(f,Q) =
Proof. Taking logs in Eq. (1) we have,
logP(Q|E) = log Z exp(z wyny) — log(Z)
Q'EQ-q f
Taking partial derivatives we have,

OlogP(QIE) 1 072" 1 0Z
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where Z' = Yqreq o XP(2opwyny). Simplifying terms we
get,

> PQ.QE)n; -
Q'EQ-_q

Y PQ.QIE)my
Q,Q'€Q_q

where () denotes a possible assignment to (). Thus,

OlogP(Q|E)

dw; Eq[nys] — E[ny]

O

From the above theorem, the importance I(f, Q) is pro-
portional to the influence of f on P(Q|E). Note that the
importance of a formula is dynamic (as compared to the MLN
weight) since it depends on the query as well as the evidence.

B. Sampling-based Importance Estimation

From Eq. (2), to compute I(f,Q), we need to compute
expectations w.r.t P(Q|E) and P(Qy,...Q,|E). Therefore,
computing I(f, Q) is computationally infeasible since comput-
ing the expectations is equivalent to solving the marginal in-
ference problem which is well-known to be in # P. Therefore,
we use a sampling-based approach to approximate I(f, Q).

Specifically, we use Gibbs sampling (though in theory other
samplers can be utilized) due to its efficiency to estimate
I(f,Q). Specifically, we generate samples from the distribu-
tion and approximate the expected values Eg[ny| and E[ny].
To implement this, we start with a random configuration of
Q. In each iteration, we sample a random query () from its
conditional distribution P(Q|Q_¢g). If the sampled value is
Q@ =1 (or True), then for all True formulas that contain (),
we update the estimate for Eg[n /] and for all True formulas,
we update the estimate for E[nf].

Algorithm 1: Explanations

Input: MLN M, evidence E, queries Q
Output: Explanations for Q
//

1 Q = random assignment to Q

2 fort =11t T do

3 for Each atom Q € Q do
4 Sample @ from P(Q|Q—_q,E) and update Q
5 for each f containing Q do
// update sufficient statistics
for E[ny]
6 Update the count n1(f, Q) if f is true
// update sufficient statistics
for Eq [’I’Lf]
7 if Q is sampled as true then
| Update the count for n2(f, Q) if f is true

9 for each @ in Q do
10 for each f containing @Q do

11 L f(.ﬂQ):% (TLQ(f,Q)—TLl(f,Q))

Algorithm 1 summarizes our sampling-based approach for
explanations. Based on the convergence of the probabilities for
the Gibbs sampler in Algorithm 1, clearly, the expected values
in Eq. (2) converge to the true expected values. Therefore, as

T — o0, I(f,Q) = I(f,Q).

C. Influence of Domain-Size

The mixing time of the Gibbs sampler in Algorithm 1
is the time that the sampler takes to reach the stationary
distribution, namely, the distribution P(). I(f, Q) is estimated
from samples after the sampler reaches its stationary distribu-
tion, i.e., after a period called its burn-in time. If I(f,Q) is
estimated from samples before burn-in, the explanations will
be unreliable since they are not consistent with the distribution
represented by the MLN. However, the main issue is that
for large MLNSs, the mixing time can be extremely large and
consequently, the explanations generated from the samples are
likely to be of non-interpretable.



Intuitively, when the MLN structure is more complex, the
distribution becomes harder to sample and explain. This can be
formalized by results in Sa et al. [20]. Specifically, the mixing
time depends upon the fotal influence in the MLN distribution.
To define this, let B; denote the set of all pairs of states X,
37). Each each state is an assignment to all atoms, and each
pair (X,Y) € B differ in an assignment to a single variable
j. The total influence is the maximum total variational distance
between distributions obtained by conditioning an atom on the
assignments in the pairs defined in B;. Formally,

IP(VIX_v) = P(VIY_v)|lrv (3)

o = max _max
Vem 7 (X,Y)eB;

where P(V|X_y/) is the conditional distribution of an atom
V' € M given assignments to all the other atoms.

For larger values of « in Eq.(3), in [20] it is shown that
the Gibbs sampler takes longer to mix. Thus, using Algorithm
1, it becomes harder to generate meaningful explanations.
Specifically, in our case, the difference between P(V|X_y/)
and P(V|Y_y) is dependent upon the influence of a single
atom. Specifically, if the change to an atom’s assignment
modifies the truth values of several ground formulas, then the
total variational distance in Eq. (3) increases.

Formally, let C(f, R) represent the variables in formula f
that are part of predicate R. Let C(f, R)™ represent variables
in formula f that are not part of predicate R. Let (X, Y) € B,
and j denote an atom of predicate type R. For any atom V/,
the variational distance between P(V|X_y) and P(V|Y_y)
is proportional to the number of groundings of f whose truth
value (either 0/1) differ in the two distributions. The atom j
occurs in [, cc (s ry- |Av| ground formulas, where A, is
the domain of variable v’. Therefore, a change to the state of
j can potentially change the truth value of all these ground
formulas. Thus, as the domains of the variables increase, the
variational distance between the state pairs in B, increases
and the total influence becomes larger. Algorithm 1 therefore
generates non-interpretable explanations in MLNs with large
domains. To generate interpretable explanations, we simplify
the MLN such that the total influence in the simplified MLN
is smaller than that in the original MLN.

D. Relational Coalitions

To reduce the total influence, we create coalitions of ground
formulas that are much smaller than the full MLN. On such
coalitions, the sampler in Algorithm 1 mixes faster and is more
likely to generate interpretable explanations. In principle, this
approach is similar to LIME and SHAP where the original
classifier is approximated by a simpler, more explainable
classifier. One way to generate coalitions is to sample ground
formulas in £(Q) randomly for each query ). However, since
the MLN is a relational model a randomly sampled coalition
may not preserve the relational dependencies present in the
original MLN. To illustrate this, consider the graph underlying
an MLN shown in Fig. 1.Suppose we randomly sample this
graph, we may end up with coalitions shown in Fig. 1 (b).
However, this does not truly capture all dependencies in the

original graph. Instead, if we sample the graph to obtain
coalitions shown in Fig. 1 (c), though this model is simpler,
we still retain the dependencies specified in the original graph.
More generally, by exploiting symmetries in the MLN, we
create coalitions that preserve relational dependencies.

Definition 4. Given evidence E, X1 and Xs are exchangeable
objects if X1 and X5 can be exchanged in the ground formulas
such that the formulas which were satisfied (or unsatisfied) by
E before the exchange remain satisfied (or unsatisfied) after
the exchange.

Two coalitions L; and Ly are symmetric if for every
formula in L; can be uniquely mapped to a formula in Ly
such that the objects in L; are exchangeable with objects in
L,. For example, the coalition, R(X1) A S(X3,Y1); R(X1)
A 8(X1,Y2) is symmetric to R(X2) A S(X3,Y1); R(X2)
A 8(X2,Y2) if X; is exchangeable with X5. Suppose we
are given equivalent coalitions, L; and Lo, where a ground
formula where f € L; is mapped to f’ € Lo, then, if f
is an explanation to a query w.r.t Ly, we project f’ as the
explanation to @ w.r.t Ls.

While truly exchangeable objects may be rare in practice,
we can soften the constraints in our definition to allow for
approximately exchangeable objects. Specifically, we define a
continuous approximation for the exchangeability between X
and Xo, §(X7, X2) based on the number of ground formulas
whose assignments differ before and after the exchange of
X1 and Xs. However, computing this for large MLNs is hard
and it is shown in prior work [24] that counting the satisfied
groundings of a formula given evidence is a computationally
hard problem. Therefore, it is infeasible to exactly compute
d(X1, X2). However, we instead leverage scalable learning
methods to learn a dense vector representation that approx-
imately encodes how similar X; is to Xs. Specifically, as
in [10], we learn embeddings over objects in the MLN using
an approach commonly used in word embedding methods.
Specifically, suppose a ground formula f that is satisfied by
the evidence contains objects (X7 ... Xj), we predict X;
from Xy ... X;_q, X;y1 ... Xg. Thus, if X and X' are
predicted from similar objects (or have the same context), this
means that X and X’ can be exchanged without significantly
altering the truth values of the formulas in which they occur.
To learn the embedding, we use existing implementations of
skip-gram models [15]. Note that several other graph-based
methods such such as those computing automorphisms in
the MLN graphs to recognize symmetries [1, 17], locality-
sensitive hashing [16], etc. can be used as well. However, it
is easy to see that, to compute the embedding in our case, we
do not explicitly construct the MLN graph which can be very
large, and therefore we can scale up even to large MLNs.

Given the embeddings, we cluster the objects to generate
coalitions such that for a query, we choose formulas in the
coalition that can effectively substitute for formulas that are
not chosen in the coalition.

Definition 5. Given a clustering of objects based on their
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Fig. 1: (a) Original MLN Graph. (b) Simplification by random
sampling. (c) Simplification that preserves relational structure.

embeddings, if f is a formula with objects (O1 ... Oy),
0(f) is an approximately symmetric formula where each O;
is substituted by O) that is in the same cluster as O;.

We construct a coalition by selecting formulas based on
a clustering of objects. Specifically, we sample objects from
each cluster such that the number of objects sampled is
proportional to the cluster size. Let O = O; ... O,, be the
sampled objects. For every query atom that can be formed
from the sampled objects, say (), we construct the coalition
f(Q) as follows. Initially, we start with an empty f'(Q). For
each ground formula f that contains ), we include f in f'(Q)
if we cannot find 0(f) € £'(Q). Thus, we reduce the original
set of formulas £(Q) to f(Q) such that for f € £(Q) \ £(Q),
there exists a 0(f) € f'(Q). This means that, suppose the
optimal explanation for ) is a ground formula f, then the
coalition can potentially generate f or 8(f) as its explanation.

E. Integrating Multiple Explanations

By combining coalitions across all sampled queries, we
generate an MLN and jointly explain all the sampled queries
using Algorithm 1. However, note that since the embeddings
and the clustering is approximate, using a single coalition,
we may not obtain the formulas needed to explain a query
effectively. Therefore, we generate multiple coalitions and
explain each independently. We then integrate the explanations
generated across all the coalitions.

Let 0;(Q) represent the explanation obtained for query @
using M; which is the MLN generated in the ¢-th iteration
of sampling the clusters. Note that since we are sampling the
clusters, not every query will be a part of each of the generated
MLNSs. Therefore, if a query @ ¢ M, we can generate an
explanation for ) using ' € M, that is in the neighborhood
of @ in the embedding assuming that the two explanations are
symmetric. Specifically, if f is a formula in the explanation
for Q’, we explain @) with a substitution 0( f) that contains Q.

Given explanations 01(Q) ... 0,,(Q), where each explana-
tion is from a coalition that tries to cover the full relational
structure of the MLN, we now generate a unified explanation
for (). Specifically, we want to know the influence of a
formula f on a query across the coalitions. In the case of non-
relational models, note that predictions are typically easy to
perform. Therefore, for each coalition, it is relatively simple
to optimize the loss between the prediction by the original

model for that coalition instance with the predication made
by the approximate, simpler model (e.g. a linear model) to
derive the final explanation across coalitions. However, in the
case of relational models, inference is hard and therefore, we
cannot assume that we can perform inference in the original
model in the first place. That is, generating results based on
the full MLN is a hard problem when the MLN is large
even using approximate inference methods.Therefore, instead
of optimizing the loss between inference results from the
original MLN with inference results from the coalitions, we
derive weighted explanations, where the weight approximately
encodes the difference between the original MLN and the
simpler MLN. The weighted explanations are then combined
into a unified global explanation for the model.

1) Coalition Weighting: Let (3; denote the weight for the
explanations derived from M;. Note that, ideally, we want
to weight o;(Q) based on the distance between M, and M.
However, this is infeasible since the exact distribution of M
is intractable to compute. Therefore, we instead weight each
coalition based on how the importance weights computed from
the coalition match with the MLN parameterization. Influence
functions proposed in [11] use a similar approach where the
change in model parameters relative to perturbed parameters
is used as a way to quantify the effect of the perturbation.

Formally, let M be the original MLN and M; be the MLN
that was generated from the coalitions. Let w be the weights
(or parameters) of M and let w; be the optimal parameteriza-
tion for M. This means, if w; was used to parameterize M,
then the importance weights for explanations from the MLN
would ideally match with its formula weights. Suppose we are
explaining query ); using M;, we compute the importance
weights according to Eq. (2). In Proposition 1, we show that
the importance weights computed for (); is equivalent to the
gradient vector for the likelihood function of @ ;. Suppose this
gradient has a large norm, this means that to the importance
weights are significantly different from the weights w. That
is a large gradient norm implies that w must be significantly
changed to reach w;. Thus, the explanations generated by
M have a larger bias and should therefore be weighted down
relative to the other generated simple MLNs. On the other
hand, if the importance weights imply a small gradient norm,
then the difference between w and w; is small.

In general, we can now weight the coalitions based on the
importance weights of the formulas generated while explaining
the queries in the coalition. That is, if the importance weights
of the formulas show a large variation over all the queries,
then those coalitions will have a smaller weight compared to
coalitions where the importance weights have small variation
over all the queries. Specifically, let I, represent the matrix
of importance weights obtained from M;, where the j-th row
corresponds to weights for query @;. Let z; = ||L;||p, where
||L;|| = denotes the Frobenius norm for the weight matrix. Let
7 = >, #i- We weight the explanations from M; with 3; =
1-—Z.

Z)ZUniﬁed Explanation Ranking: Let S(Q) = U; 0;(Q),
i.e., the union of explanations from all MLNs. To make



equations more readable, we drop the () since it is implicit
that explanations are specific to a query. Let 7 represent an
ordered (or ranked) subset of k£ explanations, i.e., 7 C S. We
now define a distance function between 7 and each of the
explanations, where the explanation for M, is weighted by f;
as,

®(r) = Zﬁid(ﬂ i) “4)

where d(7,07) = 3,1, [Ri(t)—R-(t)], Ri(t) is t’s ranking
in o; and R.(t) is its ranking in 7. Note that if ¢ is not in 7,
we set R, (t) to the maximum value & + 1, and similarly if ¢
is not in o;, we set R;(t) to k + 1. We formulate the optimal
explanation as,

7" = argmin ®(7)

Solving the optimization problem for 7* exactly is computa-
tionally hard since we need to enumerate all possible subsets
of size k. Therefore, we use an approximate approach to
combine the weighted explanations using the Cross-Entropy
Monte Carlo (CEMC) [12] algorithm. Specifically, let v be
a n X k probability matrix, where n is the total number of
formulas in the union of all explanations and k is the size of
the global explanation that we seek to find. Each column in
v represents a multinomial distribution over the formulas. To
obtain a global explanation, we can draw a sample from the
distribution P, to generate x such that each column in x has
exactly a single 1 and each row sums to at most 1. Given that
v is the current set of parameters, in [12], it is shown that
new parameters v’ that minimizes the KL-divergence between
the current probability distribution and the ideal distribution
is given by maximizing,

Ev[Z(2(f(x,v)) < y)logPy: (x)]

where Z is an indicator function and f(x,v) denotes a 7 that
has been drawn from P,,. To do this, we draw samples from P,
and count the proportion of samples for which the objective
function value is smaller than a given y. Specifically,

o S L(®() Sy)x:
Y Z(2(r) <)
CEMC learns an approximation for the optimal global
explanation as follows. We initialize the probability matrix v,
as a uniform distribution for each column. In each iteration, we
consider N samples, where each sample is a possible explana-
tion. Half the samples are drawn from v; and we augment it
with half of the best samples (best objective function values)
from v;_;. We then order the explanations in ascending order
of their objective values computed using Eq. (4). Suppose @4
... @ are the ordered objective values for the explanations,
we choose y to be the p-quantile (for a suitable rho) objective
value. Using this, we obtain the updated v;;1 from Eq. (5).
After the parameters in the probability matrix converge, we
output the final explanation as the one that corresponds to the
best objective function value, i.e., y = ®;. CEMC generates
asymptotically unbiased explanations, i.e., ®; converges to the
optimal objective value in the limit.

®)

IV. EXPERIMENTS

We evaluate our approach along three dimensions, i) we
evaluate accuracy of explanations based on manual annota-
tions, ii) we evaluate the importance of information present
within the explanations and iii) we evaluate the usability of
explanations through a user-study.

A. Data and Tasks

We use three datasets in our evaluation. The first dataset
is a dataset sampled from Yelp [18] for review sentiment
classification that contains 1544 reviews. Our second dataset
consists of 650 COVID tweets from Kaggle. We classify
whether a COVID-19 tweet contains useful information or
not. We manually annotated tweets based on whether they
contain facts that can be considered as useful information
(e.g. scientific details, policies, etc.) or if the tweets are non-
informative. Our third dataset uses a portion of the well-
known 20newsgroups dataset from the UCI repository. Here,
we classify articles as automative related articles or otherwise.
We had a balanced dataset of 1000 articles. The MLNSs in each
case consist of word formulas, i.e., connecting words with the
query and relational formulas that encode homophily. That is,
if two queries are linked then they share the same class. In
reviews, the links are defined by reviews written by same user
and those about the same restaurant. In the twitter and topics
data, the links are defined by tweets (or topics) written by
the same user. Note that, for more complex relational formula
structures, in general, sampling becomes harder [24]. We will
explore approximations for such formulas in future.

B. Implementation

We refer to our approach as I-Explain. To learn the em-
beddings for MLN objects, we use open source code from [10].
We learn the MLN weights using a hybrid approach where we
initialize the word formula weights using SVM coefficients
and then learn the relational formula weights conditioned word
weights [6] using Max-likelihood estimation (as in standard
MLN learning). We did not use hard constraint formulas since
Gibbs sampling tends to work poorly here. In future, we
will look to extend our explanations to samplers (e.g. slice
samplers) that can better handle determinism. We used an
open source R package for CEMC (with default parameters)
to combine the coalition explanations. We applied LIME and
SHAP to our tasks using the word features since they do
not generate relational explanations. We also developed a
baseline where we created coalitions by randomly sampling
formulas (denoted by R—-Explain. Finally, we also compared
our approach with explanations from the complete MLN as
described in [5] which we refer to as M-Explain. We
manually annotated the ground truth for the explanations for
all instances in our datasets. Specifically, since all our tasks
are text based, for each instance, we pick words that best
explain the class. To avoid bias, these were annotated by two
people independently and the final annotation was the common
explanations chosen by both (if there were no common words,
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Fig. 2:
Dataset Method Top-Exp-Acc (F1)  Peak-Acc (F1)  Std-Dev
I-Explain 0.82 0.84 0.01
R-Explain 0.54 0.58 0.04
Reviews  M-Explain 0.6 0.68 0.01
SHAP 0.53 0.58 0.01
LIME 0.55 0.61 0.02
I-Explain 0.79 0.83 0.01
R-Explain 0.61 0.77 0.08
Tweets  M-Explain 0.6 0.69 0.01
SHAP 0.33 0.44 0.01
LIME 0.46 0.54 0.01
I-Explain 0.7 0.75 0.008
R-Explain 0.58 0.66 0.04
Topics M-Explain 0.62 0.67 0.01
SHAP 0.39 0.54 0.02
LIME 0.53 0.56 0.01
TABLE I: Prediction Accuracy (Fl-score) using only the expla-

nation (Top-Exp-Acc) and the peak accuracy obtained when we add
the formulas (or features) in ranked order according to explanation
importance (Peak-Acc). The mean and std-dev for 10 runs is shown.

we sampled words from both explanations). Annotating rela-
tional formula explanations manually is hard. Therefore, for
a query @, for each true grounding of a relational formula f
where @ is related to @', we measure similarity of @ and Q’
using Gensim’s Doc2Vec. If @ is similar to @', then f is an
explanation to both @ and Q'.!

C. Explanation Accuracy

We computed the accuracy as the % of matches of the
generated explanations with the annotated explanations for
each dataset. To take into account accuracy of predictions, we
only considered explanation matches for correct predictions
and for wrong predictions, we automatically assumed the
explanation to be wrong. For I-Explain, R-Explain and

Data, annotations and code is available at https:/github.com/khanfarabi/
IEEE-Big-Data-2021
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The mean accuracy values (varying values of C' ans .S) for 10 runs are plotted along with error bars that indicate Std-Dev.

M-Explain, we used the top 5 ranked word formulas and
the top 5 ranked relational formulas as the explanation. Note
that for LIME, SHAP, we only obtain word explanations and
therefore only measure accuracy on these. We evaluated our
approach by varying two parameters C' and S, C' controls
the number of clusters and S controls the number of samples
drawn from each cluster to create the coalitions. For a domain-
size of |A,|, we use C'*|A,| clusters and if a cluster contains
N instances, we use S * IV samples from that cluster. For
R-Explain, we pick random formulas to create coalitions
such that it matches the number of formulas in I — Explain
for a fair comparison. We ran the experiments 10 times and
report the mean and variance of the accuracy. Our results are
shown in Fig. 2, where we independently show the accuracy
on word explanations and relational formula explanations. For
M-Explain, LIME and SHAP, clusters don’t play any role,
so their accuracy is constant. Fig. 2 (a), (c), (e) keeps S
constant at 5%, while (b), (d), (f) keeps C constant at 2%
for the review and topic data, and 5% for twitter (since it is
around half the size) and varies S. From the results, we see that
I-Explain consistently shows better accuracy than other
methods. As C' increases, we have larger coalitions and the
performance is fairly stable with slightly increasing accuracy
but can also dip in some cases (see Fig. 2 (c¢)). This indicates
that with larger coalitions, we may have more uncertainty
(since the expected values are estimates), therefore explaining
smaller coalitions is an advantage in relational models.

D. Explanation Information Content

If explanations contain content that is more important in the
model, then, they should be able to make accurate predictions
using only the explanations. Table 1 summarizes the accuracy
in terms of Fl-score when we only add the explanations for
each query and use them to make predictions. Further, we
also show the peak accuracy that is achieved by the model as



Review Sentiment Classification

Covid-19 Tweet Classification

Topic Classification

Somewhat Useful  Not 5o Useful Nt AL AN Useful

(a) Review

Review Sentiment Classificati

(b) Twitter

Covid-19 Tweet Classificatiol

— M-Explain
— IExplain
— LME

(c) Topic

1
—— Relational Formulas-2

(d) Review

(e) Twitter

— No
— Rel
Topic Classification

— Non-Ret
— kel

(f) Topic

Fig. 3: (a) - (¢) The y-axis shows the % of participants who rated the explanation feature with the rating specified in the z-axis where the %
is normalized by the number of features in the explanation. (d) - (f) User ratings for relational and non-relational features for I-Explain.

we add formulas (or features in the case of LIME or SHAP)
in order of explanation importance. We show the results in
Table I where we indicate the mean F1-score for the predicted
queries for 10 runs as well as the standard deviation. As seen
here, I-Explain has better accuracy when we only use the
explanation for the prediction. Also, the peak accuracy is close
to the accuracy using explanations in most cases indicating that
explanations represent highly informative content.

E. Usability

We evaluate the usability of explanations through a user
study. Our goal here is to understand if users find the ex-
planations useful. We recruited 50 graduate students in this
study who were currently (or formerly) enrolled in a Machine
Learning course. Note that this demographic is likely to
constitute potential XAl users since one of the key applications
of XAl is to help experts debug Machine learning methods. For
more naive users, it is our opinion that we may require more
simplified explanation interfaces which we hope to explore
in future. We divided the overall group into 3 sub-groups
and a student was given explanations from just one of the
methods (which was not named) to avoid bias. To ensure
sufficient responses for each method, we used I-Explain,
M-Explain and LIME (since SHAP explanations are similar
in format to LIME).

The explanation dashboard consists of non-relational ex-
planations (words) and relational explanations. Visualizing
relational formula explanations is not as straightforward since
relationships are not explicitly seen in the data (as opposed to
words). To visualize this, we average the importance weights
of the relational formulas in the explanation and display
this as a graph (normalized between O and 1) indicating
support of the relational formulas in the prediction. Our survey

consisted of 12 randomly chosen explanations where we used
4 explanations for each task (2 of them corresponding to
each class). For every explanation, we asked users to rate
the usefulness of each the word and relational explanations
in the dashboard on a 5-point Likert scale. The results of the
survey are shown in Fig. 3. Fig. 3 (a) - (c) show the % of
user responses for each value in the Likert scale. We see
here that IT-Explain and M-Explain had better scores
than LIME. This shows that overall, users preferred to see
explanations with both relational and non-relational formulas.
Further, users also preferred I-Explain to M-Explain
since the explanation quality was better due to the use of
simplified models. That is, M-Explain tends to provide poor
explanations when the MLN is large. Fig. 3 (d) - (f) further
shows the breakdown of scores for I-Explain. Interestingly,
across all datasets while users felt both types of features
are important, a larger percentage found relational features
to be extremely useful in the explanations compared to non-
relational features. The mean user score for the relational
features in the explanation was 4.42 while for the non-
relational features, it was 3.84. A two-sided t-test showed
that the difference in user responses for relational and non-
relational features was statistically significant.

V. CONCLUSION

Explaining the results of marginal probabilistic inference
in an interpretable manner is hard when MLNs have large
domains. We presented an approach that constructs simplified
models from the MLN to generate more interpretable expla-
nations. The simplified explanations are then weighted and
combined into a unified explanation. Our results on several
problems illustrated that our approach generates high quality
explanations for relational data.
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