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Abstract. Federated learning offers a framework of training a machine
learning model in a distributed fashion while preserving privacy of the
participants. As the server cannot govern the clients’ actions, nefar-
ious clients may attack the global model by sending malicious local
gradients. In the meantime, there could also be unreliable clients who
are benign but each has a portion of low-quality training data (e.g.,
blur or low-resolution images), thus may appearing similar as malicious
clients. Therefore, a defense mechanism will need to perform a three-fold
differentiation which is much more challenging than the conventional
(two-fold) case. This paper introduces MUD-HoG, a novel defense algo-
rithm that addresses this challenge in federated learning using long-short
history of gradients, and treats the detected malicious and unreliable
clients differently. Not only this, but we can also distinguish between
targeted and untargeted attacks among malicious clients, unlike most
prior works which only consider one type of the attacks. Specifically, we
take into account sign-flipping, additive-noise, label-flipping, and multi-
label-flipping attacks, under a non-IID setting. We evaluate MUD-HoG
with six state-of-the-art methods on two datasets. The results show that
MUD-HoG outperforms all of them in terms of accuracy as well as pre-
cision and recall, in the presence of a mixture of multiple (four) types of
attackers as well as unreliable clients. Moreover, unlike most prior works
which can only tolerate a low population of harmful users, MUD-HoG
can work with and successfully detect a wide range of malicious and
unreliable clients - up to 47.5% and 10%, respectively, of the total pop-
ulation. Our code is open-sourced at https://github.com/LabSAINT/
MUD-HoG Federated Learning.

1 Introduction

In recent years, the proliferation of smart devices with increased computational
capabilities have laid a solid foundation for training machine learning (ML)
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models over a large number of distributed devices. Traditional ML approaches
require the training data to reside at a central location; the distributed ML case
requires a well-controlled data-center-like environment. Such approaches demand
high network bandwidth and provoke great privacy concerns. To this end, Google
introduced the concept of Federated Learning (FL) [21] which allows distributed
clients to collaboratively train a global ML model without letting their data
leave the respective devices. At a high level, it works as follows. A central server
initiates the training process by disseminating an initial global model to a set
of clients. Each client updates the received model using its local data and sends
back the updated model (not data). The server aggregates the received model
updates (weights or gradients) into a global model and disseminates it again back
to the clients. This procedure repeats until the global model converges. FL is
advantageous in preserving data privacy and saving communication bandwidth,
and has been applied to a wide range of applications in the Internet of Things
(IoT) [12], natural language processing [10,14], image processing [17], etc.

However, the uncontrolled and distributed nature of the clients, as well as
the server’s inaccessibility to clients’ data, make FL vulnerable to adversarial
attacks launched by clients [1–3,20,30]. In general, a malicious client (adversary)
can launch two types of attacks: (1) an untargeted attack, sometimes referred to
as a Byzantine attack [5,15,30], where the adversary attempts to corrupt the
overall performance of the global model (e.g., degrade a classifier’s accuracy on
all classes); (2) a targeted attack, where the adversary aims to degrade the model
performance only for some specific cases (e.g., misclassify all dogs to cat) while
not affecting the other cases [9,20]. Untargeted attacks could be tackled by robust
aggregation techniques [4,7,33] when data are independent and identically dis-
tributed (IID) among the clients, whereas targeted attacks are much harder to
defend because their specific targets are often unknown to the defender.

Another category of clients, which are largely overlooked in the FL security
literature, are unreliable clients. These are benign clients but some of their data
are of low quality and hence may appear as if their model updates were mali-
cious too. For example, IoT devices such as sensors, smartphones, wearables, and
surveillance cameras, are often subject to rigid hardware limitations and harsh
ambient environments and thus may produce low-quality and noisy data [11]. A
simplified solution could be one that treats clients who do not improve classifica-
tion performance over a number of rounds as unreliable, and excludes them from
aggregation in subsequent rounds, like in [18,19]. However, firstly this does not
differentiate between benign and malign clients; secondly, excluding unreliable
clients is not always desirable because such clients may possess valuable data
such as infrequent classes on which other clients have no or few samples.

In this paper, we tackle the challenge of detecting and distinguishing between
malicious and unreliable clients, as well as between targeted and untargeted
attackers (among malicious clients), in FL. The main idea of our approach is
to use long-short history of gradients jointly with judiciously chosen distance
and similarity metrics during the iterative model updating process. Unlike prior
works in [1,4,7,9,20] which only consider attackers, we identify unreliable clients
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and take advantage of their contributions. We further consider both targeted and
untargeted attacks and more fine-grained attack types: (untargeted) additive-
noise and sign-flipping attacks, and (targeted) single- and multi-label-flipping
attacks. Moreover, unlike prior works in [4,7,33], we consider non-IID data set-
tings which are more representative of real-world FL scenarios with heteroge-
neous clients.

The main contributions of this paper are summarized as follows:

– We propose a novel approach MUD-HoG that stands for Malicious and
Unreliable Client Detection using History of Gradients. To the best of
our knowledge, this is the first work that detects both malicious attackers
and unreliable clients in FL, distinguishing between targeted and untargeted
attackers. It allows the server to treat the clients in a more fine-grained man-
ner, by exploiting unreliable clients’ low-quality (but still useful) data.

– We introduce short HoG and long HoG and a sequential strategy that uses
them in a carefully-designed way, allowing us to achieve the above goal. In
addition, we achieve our goal in a non-IID setting which is more realistic and
challenging, with the presence of mixed types of attackers.

– We conduct extensive experiments to evaluate MUD-HoG in terms of accu-
racy, precision, recall, and detection ratio, on two benchmark datasets in com-
parison with 6 prior FL security mechanisms. The results show that MUD-
HoG withstands up to 47.5% clients being malicious with a negligible (∼1%)
compromise of accuracy, and comprehensively outperforms all the baselines
on the considered metrics.

The rest of the paper is organized as follows. Section 2 reviews the related
literature while Sect. 3 define the problem statement with the types of clients and
considered attacks. Section 4 presents the proposed MUD-HoG approach with
novel concepts of short HoG and long HoG, and Sect. 5 evaluates the robustness
of the approach by conducting extensive experiments. Finally, Sect. 6 concludes
the paper with future research directions.

2 Related Work

2.1 Distributed ML with Malicious Clients

Defending against malicious clients has been explored in distributed ML [4,34,
35]. It has been noted that the stochastic gradient descent (SGD) algorithm is
vulnerable to untargeted (Byzantine) attacks where malicious clients send ran-
dom/arbitrary gradients to the server to negatively affect the convergence or
performance of the global model. Methods such as Krum and Multi-Krum [4],
Medoid [33], and GeoMed [7] have been proposed to defend against Byzan-
tine attacks by extending SGD with a robust aggregation function. In another
work [26], the authors argued that the effect of malicious clients can be mit-
igated by gradient or norm clipping based on a threshold assuming that the
attacks produce boosted gradients. However, these methods assume IID data,
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which often does not hold in FL settings. In addition, they aim to tolerate mali-
cious clients rather than distinguishing them from normal ones, and thus may
lead to cumulative negative impact over time and is also less preferable.

2.2 FL Under Untargeted Attacks

Various Byzantine-robust algorithms have been proposed for FL’s non-IID set-
tings in recent years. For example, a class of subgradient-based algorithms is pro-
posed to defend malicious clients by robustifying the objective function with a
regularization term [15]. However, these algorithms only consider simple attacks
such as same-value and sign-flipping attacks. In another work [30], a variance
reduction scheme inherited from [8] is combined with model aggregation to tackle
untargeted attacks. In [6], the authors provided provable guarantees to ensure
that the predicted label of a testing sample is not affected by the attack. They
also proposed an ensemble method with a voting strategy to address the case of
a bounded number of malicious clients. However, similar to some of the works
discussed in the distributed ML case, this ensemble method cannot identify
which clients are malicious. The above Byzantine-robust algorithms fail to stand
against the attackers if they are present in high percentage. Moreover, all the
above works are vulnerable to targeted attacks such as label flipping [27].

2.3 FL Under Targeted Attacks

As targeted attacks aim to reduce the model performance only on certain tasks
while maintaining a good performance on others, they are elusive and harder to
detect [20]. One of the popular defense methods, called FoolsGold [9], attempts
to detect targeted attackers (e.g., label-flipping) based on the diversity of client
contributions over the training rounds with an unknown number of attackers.
With more realistic FL settings, Awan et al. [1] also exploited the clients’ per-
round contribution and cosine-similarity measure to defend against data poi-
soning attackers. In [16], an anomaly detection framework is proposed to differ-
entiate anomalous gradients from normal ones in a low-dimensional embedding
(spectral) using reconstruction errors. However, it requires a pre-trained model
on a reference dataset at the server prior to start the training process, which
is a strong requirement often not met in FL settings. Mao et al. [20] treated
FL as a repeated game and introduced a robust aggregation model to defend
against targeted and untargeted adversaries by designing a lookahead strategy
based similarity measure. However, like many studies discussed earlier, it toler-
ates but does not distinguish adversaries from normal clients. Moreover, since
most existing works [1,9,16,20] consider only two types of clients (normal and
malicious), they may treat an unreliable client (who possesses lower-quality data)
as malicious, which is not desirable.

In this work, we do not include backdoor attacks [1,24,29,32], which are a
sub-category of data poisoning attack triggered by a particular pattern (e.g.,
pixel patch) embedded into data (e.g., images). However, unlike prior work,
we include unreliable clients which are more likely to encounter in realistic FL
deployments.
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We also highlight that the term unreliable or irrelevant clients used in some
studies [18,19,22] means clients whose contributions do not make any progress
(i.e., improve model accuracy) over the past few rounds, which is considerably
different from our definition of unreliable clients (see Sect. 3.2) which refers to
clients who have low-quality data.

3 Model

We consider a typical FL framework with a central server and multiple clients
participating in a collaborative model training process for a classification task
using a deep learning model.

3.1 FL Preliminaries

Let N be the total number of clients participating in the FL model training
process. Out of these N clients, m of them are malicious, and u of them are
unreliable. Thus, there are n = N−m−u normal clients. We consider a typical FL
scenario for building a neural network model, where all clients share a common
model structure under the same learning objective. The server initiates training
by sending a global model w (e.g., random weights) to all clients. Each client
updates the model w by training on its local dataset a certain number of epochs,
and sends back the updated gradients. Note that sending gradients is equivalent
to sending model parameters (weights). During training, each client learns the
new weights w′ by minimizing a loss function L(hw(x), y) (e.g., cross-entropy
loss function) over multiple epochs, where the function hw(·) maps input data
samples x to labels y. At a round τ , a client ci computes the gradients as follows:

∇τ,i = wτ − argmin
w

L(hi,w (x), y). (1)

Let the client ci hold a local dataset Di which can be non-IID as compared to
other clients. When all clients are normal, the server aggregates all the gradients
received from the clients, by

∇τ =
N∑

i=1

|Di|
|D| ∇τ,i, (2)

where |D| =
∑N

i=1 |Di|. The weights of the global model for the next round τ +1
are then updated as wτ+1 = wτ − η∇τ , where η is the learning rate.

3.2 Client Types

For generality, we consider a heterogeneous FL setting in which clients may be
sensor boards, smartphones, surveillance cameras, laptops, connected vehicles,
etc., owned by individuals or organizations. As a result, their data could be
non-IID and thus each client could contribute to the global model training. We
consider three types of clients and the last is further categorized in terms of
attack types (see Sect. 3.3) the malicious client can launch.
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1) Normal clients honestly participate in the model training process and have
good-quality data.

2) Unreliable clients participate honestly in the FL but have some of its data are
of low-quality. These data, however, could be exploited to improve diversity,
especially if they capture distributions that normal clients fail to (or inade-
quately do). For example, A low-end camera does not produce high-resolution
images but may capture some infrequent classes of images that other clients
do not. Note that our definition of “unreliable client” is different from that
in [18,19] and also from the “irrelevant client” in [22], where they mean a
client who does not make progress (i.e., improve model accuracy) over the
past few FL rounds, which therefore is a useless client.

3) Malicious clients are attackers who manipulate their local training data (i.e.,
data poisoning) or model weights/gradients (i.e., model poisoning) to generate
adversarial impact on the global model being trained. For example, they may
alter the labels of some of their data samples or perturb their local gradients
before sending to the server.

With the presence of mixed types of clients having non-IID data, our problem
is more realistic and challenging than prior work such as [1,7,9]. Figure 1 provides
an overview of our problem setting, where MUD-HoG runs at the server.

Fig. 1. Overview of FL with mixed types of clients. Malicious clients include targeted
and untargeted attackers

Problem Statement. The problem in hand is two-fold: (1) How to identify
and differentiate malicious clients (together with their attacks) from unreliable
clients at the server while performing model aggregation? (2) How to mitigate
the negative influence of malicious clients on the global model while still taking
advantage of unreliable clients’ updates? Let us reformulate Eq. (2) as:
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∇τ =
∑

i∈Cnorm

|Di|
|D| ∇τ,i + α

∑

i∈Cunrl

|Di|
|D| ∇τ,i, (3)

where Cnorm and Cunrl are the set of normal clients and that of unreliable clients,
respectively, and the parameter α ∈ (0, 1) down-weights the gradients of unreli-
able clients. Note that malicious clients are excluded.

3.3 Threat Model

A malicious client can launch either of the following attacks:
– Untargeted attack. The objective here is to downgrade the overall perfor-

mance of the global model. The following two model poisoning attacks are
considered: (i) Sign-flipping. The malicious client flips the sign of its local gra-
dients (from positive to negative and vice versa) before sending them to server,
while the magnitude of the gradients remains unchanged. (ii) Additive-noise.
The malicious client adds Gaussian or random noise to its local gradients
before sending to the server.

– Targeted attack. The objective is to decrease model performance on par-
ticular cases while not affecting other cases. The following two data poisoning
attacks are considered: (i) Label-flipping. The attacker changes the label of
all the instances of one particular class (source label), say y1, to another
class (target label), say y2, while (intentionally) keeping other classes intact
to avoid being detected. (ii) Multi-label-flipping. The attacker flips multiple
source labels to a particular target label. This will result in the target label
has an increased accuracy while harming the accuracy on other classes.

We make the following Assumptions: (i) Each attacker can only manipulate
its own data or model but not other clients’ or modify the server’s aggregation
algorithm. (ii) Number of malicious clients (including untargeted and targeted
attackers) is less than other clients (including normal and unreliable). (iii) Mali-
cious clients are persistent, meaning that they attack in every round.

4 MUD-HoG Design

MUD-HoG runs at the server to defend the global model. Unlike existing work
such as [4], MUD-HoG assumes that the number of malicious clients is unknown
to the server.

Challenges. The design challenges come from the following factors: the mixed
types and unknown distribution of clients, non-IID data, and the server’s inac-
cessibility to client data. The only information that the server has is the gradients
(Eq. 1) sent by the clients each round, as a result of their local optimization such
as stochastic gradient descent (SGD) over the loss function L(·).
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With targeted attacks, the malicious clients share a common objective and
thus will have similar gradients [9] between each other. On the other hand, gra-
dients from untargeted attackers would be dissimilar from each other since they
perturb gradients randomly or flip gradient signs. This gradient space is rather
complex and irregular, insofar as there is no single appropriate similarity mea-
sure that can distinguish malicious clients from the normal ones. Furthermore,
unreliable clients introduce another degree of complication as they would behave
very similar to untargeted attackers and hence are hard to distinguish.

Long-Short History of Gradients (HoG). We propose two new notions
of HoG, based on which we design a robust algorithm MUD-HoG to address
the above challenges. Let ∇i = {∇1,i,∇2,i, · · · ,∇τ−1,i} denote the collection of
HoGs received by the server from client ci prior to the τ th round.
Definition 1 (Short HoG). The short HoG of client ci at round τ , defined as,

∇sHoG
i =

1
l

τ−1∑

t=τ−l

∇t,i (4)

is a moving average of ci’s gradients of the last l rounds, where l is the sliding
window size. The short HoG smooths a client’s gradients to remove single-round
randomness.

Definition 2 (Long HoG). The long HoG of client ci at round τ is defined as

∇lHoG
i =

τ−1∑

t=1

∇t,i, (5)

which is the sum of all the gradients in the set ∇i. Thus, the long HoG captures
the accumulated influence of a client on the global model, which reflects its goal.

Note that, at any round τ , the server does not need to store all the previous
gradient vectors {∇1,i,∇2,i, · · · ,∇τ−1,i} received from the client ci; instead, it
only needs to keep l latest vectors for computing short HoG and the sum of
all the previous vectors for long HoG. Hence, at each round, the server would
keep only l + 1 gradient vectors for each client. Therefore, the required memory
is independent of the number of training rounds τ , and one should not have
memory concerns when τ increases.

4.1 Sequential Strategy

By introducing short HoG and long HoG, MUD-HoG exploits two different gra-
dient space and follows a sequential strategy to detect the type of each client in
the following order: untargeted, targeted, unreliable, and normal, as depicted in
Fig. 2. The key ideas are discussed in the following steps.

1) Untargeted attack. We can deduce the untargeted intention from the
client’s short HoG. Since an untargeted attacker aims to corrupt the whole
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Fig. 2. Overview of MUD-HoG with the gradient space (short or long HoG) and sim-
ilarity measures (Euclidean or cosine) used for detecting different types of clients

model, for example using sign flipping or additive noise, its short HoG would dif-
fer substantially from normal clients. First, in the case of sign-flipping attack, a
malicious client essentially changes its gradient to the opposite direction, which
would result in a large angular deviation from the median gradient of all the
clients, as depicted in Fig. 3a. This also justifies that using cosine distance in
the space of short HoG would be an appropriate choice. Note that short HoG is
more robust than a single-round gradients by reducing false alarms.

On the other hand, additive-noise attackers and unreliable clients (with low-
quality data) would have similar short HoGs, but considered collectively, would
be apart from other clients. Therefore, after excluding the sign-flipping attackers,
we use a clustering method based on short HoG to distinguish the above two
types of clients from other clients. Empirically, we choose DBSCAN [25] as the
clustering method because it conforms to our intuition and yields the best results.
Between these two types, additive-noise attackers tend to be farther away from
other clients than unreliable clients as the attackers add deliberate perturbations;
nevertheless, a separation boundary could be learned by finding the largest gap
over Euclidean distances. We also note that this is not a clear-cut line and further
processing is needed which we discuss below in Step 3. The above intuition is
depicted in Fig. 3b.

2) Targeted attack. Targeted attackers intend to manipulate the global model
toward a specific convergence point (e.g., misclassifying all dogs to cats). Such
intention can be captured by our long HoG which reinforces their adversarial goal
over the entire history and is also robust to short-term noises and camouflage
cases in which some attackers may strategically behave benignly in some of the
rounds in order to evade detection. In MUD-HoG, we use K-means clustering
with K=2 over long HoG to separate out targeted attackers, after excluding
untargeted attackers detected in Step 1.

3) Unreliable clients. Finally, MUD-HoG identifies and separates unreliable
clients from normal ones. After excluding all the detected malicious clients (tar-
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Additive−noise attackers Unreliable Other clients

MedianSign−flipping
attackers

Other clients

(a) (b)

> 90◦

Fig. 3. Illustration of (a) the angular deviation of sign-flipping attackers from the
median client (green), and (b) clustering of additive-noise attackers, unreliable clients,
and other clients after excluding sign-flipping attackers (Color figure online)

geted and untargeted), the unreliable clients become farther from the median
client in terms of their short HoG. Rather than using clustering, in this case
we find that the cosine distance is the most effective to detect them and hence
adopt it in MUD-HOG.

4.2 Detection of Malicious Clients

Based on the basic ideas discussed above, now we present all the technical details
of how MUD-HoG detects different types of clients. The server starts detection
from round τ0 (τ0 = l = 3 in our experiments).

Detecting Untargeted Attackers Using Short HoG. MUD-HoG first com-
putes the median short HoG over all clients, as ∇sHoG

med = median{∇sHoG
i |1 ≤

i ≤ N}. Then, it flags a client ci as a sign-flipping attacker if

dcos

(
∇sHoG

med ,∇sHoG
i

)
< 0, (6)

where the function dcos(·) computes the cosine distance. We note that an existing
algorithm CONTRA [1] also employs cosine distance to separate out targeted
attackers. CONTRA computes the pair-wise distances between the gradients of
all the clients, which therefore leads to a complexity of O(N2); in contrast, MUD-
HoG uses median and thus the complexity is linear, O(N), which is worth noting
because FL often deals with a massive number of clients (e.g., IoT devices).
Moreover, CONTRA does not handle unreliable clients.

Next, MUD-HoG proceeds to detecting additive-noise attackers after exclud-
ing the above detected sign-flipping attackers. We apply DBSCAN clustering
on the short HoGs of all the remaining clients and obtain two groups – (i)
a smaller group (gl) consisting of the additive-noise attackers and unreliable
clients and (ii) a larger group (gh) consisting of the rest of the clients. Based on
our above analysis that the additive-noise attackers are relatively farther from
normal clients than unreliable clients (Fig. 3b), MUD-HoG attempts to learn a
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separation boundary as follows. Recalculate ∇sHoG
med as the median short HoG of

group gh, and construct d = {dEuc(∇sHoG
med ,∇sHoG

i )} which is a set of Euclidean
distances (denoted by dEuc(·)) between ∇sHoG

med and each client ci ∈ gl. The rea-
son we use Euclidean distance rather than cosine distance is that the former
produces a larger separation over unnormalized short HoG (which we intend).
Then, we find the largest gap between any two consecutive values in the sorted
list of the set d, and use the mid-point of this gap as the separation boundary
dφ. Thus, a client ci ∈ gl is an additive-noise attacker if

dEuc

(
∇sHoG

med ,∇sHoG
i

)
> dφ (7)

for 1 ≤ i ≤ |gl|. The remaining clients in gl and the set gh will be handled in
the next step. The above detection of untargeted attackers is summarized as the
pseudo-code of Lines 6 − 16 in Algorithm 1.

Detecting Targeted Attackers Using Long HoG. After excluding the
detected untargeted attackers as above, we compute the long HoG for each of
the remaining clients, denoted by ∇lHoG

i . Then, we apply K-means clustering
with K = 2 on all the computed long HoGs to obtain two groups of clients: the
smaller group will consist of the targeted attackers and the other (bigger) group
of the normal clients, based on our assumption that normal clients constitute
more than half of the entire population. In Algorithm 1, Lines 17-18 corresponds
to the detection of targeted attackers.

4.3 Detection of Unreliable Clients

We are now left with a mixture of unreliable and normal clients. To distinguish
them, MUD-HoG finds a new separation boundary dφ as follows. Let N ′ be the
number of remaining clients and ∇sHoG

med be the (updated) median short HoG
of them. Let d′ = {dcos(∇sHoG

med ,∇sHoG
i )} be a set of cosine distances between

∇sHoG
med and each client cj for 1 ≤ i ≤ N ′. The separation boundary dφ is then

determined from d′ similarly as the above detection of additive-noise attackers
(but here we use cosine distance). Then, a client ci is deemed unreliable if it
satisfies the condition

dcos

(
∇sHoG

med ,∇sHoG
i

)
< dφ. (8)

Note that the cosine distance is smaller when the angle between two vectors is
larger, and that is why the condition ‘<’ used in (8) is opposite to that in (7).
The unreliable clients are detected at Lines 19-24 in Algorithm 1 after exclusion
of all types of attackers.

Thus finally (in each FL round), MUD-HoG obtains the set of normal clients
Cnorm and the set of unreliable clients Cunrl, after filtering out Ctar and Cuntar.
It then aggregates the gradients of normal and unreliable clients using (3) (or
see Line 26 in Algorithm 1), where unreliable clients are downscaled, and then
updates the global model as wτ+1 = wτ − η∇τ . Clearly, since the gradients of
malicious clients have been discarded, their negative impact is eradicated from
the global model.
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Algorithm 1: MUD-HoG
Input: Gradients from round 1 to τ , for each client ci, denoted by

∇i = {∇1,i, ∇2,i, · · · , ∇τ−1,i}, i = 1...N . (Note that the server only
keeps the latest l gradient vectors and the sum of all τ − 1 gradients.)

Output: Normal clients (Cnorm), targeted attackers (Ctar), untargeted attackers
(Cuntar), and unreliable clients (Cunrl)

1 Initialize Cnorm, Ctar, Cuntar = ∅, Call = {ci}, 1 ≤ i ≤ N
2 for round τ = 1 to τ0 do
3 Aggregate gradients of all clients

4 for round τ = τ0 + 1 to T do

5 Compute short HoG ∇sHoG
i and long HoG ∇lHoG

i for each client ci

/* Detecting untargeted attackers */

6 Computer median short HoG ∇sHoG
med over all N clients

7 for i = 1 to N do
8 if (6) holds then
9 Cuntar = Cuntar ∪ {ci} ; // Sign-flipping attackers

10 Apply DBSCAN clustering on short HoGs of Call \ Cuntar to obtain two
groups gl and gh

11 Compute ∇sHoG
med of the larger group gh

12 Compute dEuc between ∇sHoG
med and each ∇sHoG

i of the smaller group gl

13 Find the separation boundary dφ per Section 4.2
14 for i = 1 to N and ci /∈ Cuntar do
15 if (7) holds then
16 Cuntar = Cuntar ∪ {ci} ; // Additive-noise attackers

/* Detecting targeted attackers */

17 Apply K-means clustering with K = 2 on long HoGs of Call \ Cuntar

18 Ctar = clients who belong to the smaller cluster

/* Detecting unreliable clients */

19 Recompute ∇sHoG
med over Call \ {Ctar ∪ Cuntar}

20 Compute dcos between ∇sHoG
med and each ∇sHoG

i of Call \ {Ctar ∪ Cuntar}
21 Recompute the separation boundary dφ per Section 4.3
22 for i = 1 to N and ci /∈ {Ctar ∪ Cuntar} do
23 if (8) holds then
24 Cunrl = Cunrl ∪ {ci}

25 Cnorm = Call \ {Ctar ∪ Cuntar ∪ Cunrl}

/* Aggregate gradients over Cnorm and Cunrl */

26 ∇τ =
∑

i∈Cnorm

|Di|
|D| ∇τ,i + α

∑
i∈Cunrl

|Di|
|D| ∇τ,i

27 Update global model as wτ+1 = wτ − η∇τ

28 Send wτ+1 back to all clients

29 return Cnorm, Ctar, Cuntar, Cunrl
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5 Performance Evaluation

In this section, we evaluate MUD-HoG in comparison with six state-of-the-art
methods on two real datasets with various type of attacks.

5.1 Experiment Setup

We consider a classification task on two datasets: (i) MNIST [13]: Our FL task
is to train a deep model with 2 convolutional neural networks (CNN) followed
by 3 fully connected layers1 to classify 10 digits. (ii) Fashion-MNIST [31]: We
build a deep model with 6 CNN layers followed by two fully connected layers to
classify 10 fashion classes.

Hyper-parameters. We train the FL model with SGD optimizer (learning
rate = 1e-2, momentum = 0.5 for MNIST and 0.9 for Fashion-MNIST, and
weight-decay = 1e-4 for Fashion-MNIST) over 40 communication rounds, 4 local
epochs; other setup details are similar to [28]. We use the window size of l = 3
for calculating the moving average short HoG. Our algorithm triggers only after
τ0 = 3 rounds to accumulate enough HoGs. Since, the server stores only l + 1
gradient vectors (l latest and a sum of all previous vectors) to compute HoGs, it
never runs into storage related issues. Moreover, we make a firm decision about
malicious clients if they are detected in two consecutive rounds. Therefore, our
algorithm can only detect malicious clients at least after 4 rounds.

To simulate non-IID data, we divide the datasets into 40 clients as disjoint
portions that follows Dirichlet distribution with hyperparameter 0.9, as also
adopted by [2,28]. Besides normal clients, our FL system consists of unreliable
clients (up to 10% of total clients), and malicious clients (up to 47.5% of total
clients), as detailed below.

Untargeted Attacks. (i) Sign-flipping (SF) – We flip the sign of gradients of
the malicious clients without enlarging the magnitudes in our FL setup, which
makes the detection more challenging. (ii) Additive-noise (AN) – We add a
Gaussian noise with μ = 0 and σ = 0.01 to the gradients of attackers.

Targeted Attacks. (i) Label-flipping (LF) – Before training the local model,
attacker flips label of digit “1” to “7” in its local MNIST dataset, and label (“1-
Trouser‘’) to (“7-Sneaker”) in Fashion-MNIST dataset. (ii) Multi-label-flipping
(MLF) – Attacker flips the labels of few source classes to a targeted class in
its local dataset. For MNIST and Fashion-MNIST (in brackets) datasets, we
flip three source labels of digits “1” (“1-Trouser”), “2” (“2-Pullover”), and “3”
(“3-Dress”) to a target label “7” (“7-Sneaker”).

Unreliable Clients. We simulate them to mimic a real-life scenario of low-end
smartphone with poor-resolution camera and computing power. We use Gaussian
smoothing (kernel size= 7, σ = 50) to blur 50% of the local image dataset; and
simulate low computing power by training over randomly selected portion of
30% of local dataset. We set α = 0.5 to downscale the unreliable clients.

1 Adopt the model from PyTorch tutorial.

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
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To simulate heterogeneous FL scenarios, we consider two different series of
experiments with upto 47.5% malicious clients (including untargeted and tar-
geted attack) and upto 10% unreliable clients. We configure 12 different exper-
imental setups with increasing numbers of unreliable and malicious clients as
follows.

– Series of Exp1 consists of a = min{i, 4} unreliable clients, b = min{i, 6}
additive-noise attackers, c = min{i, 5} sign-flipping attackers, d = (i + 2)
label-flipping attackers, and (40 − a − b − c − d) normal clients; where i =
{1, 2, 3, 4, 5, 6}.

– Series of Exp2 consists of a = min{i, 4} unreliable clients, b = min{i, 6}
additive-noise attackers, c = min{i, 5} sign-flipping attackers, d = (i + 2)
multi-label-flipping attackers, and (40 − a − b − c − d) normal clients; where
i = {1, 2, 3, 4, 5, 6}.

Evaluation Metrics. The performance of MUD-HoG is measured in terms of
precision, recall, accuracy, and detection ratio. We define detection ratio (r) as

r =

∑T
τ=1

∑
i∈Cx

1(ci detected at τ)
T

∑
x |Cx| (9)

where Cx is either Ctar, Cuntar or Cunrl, and not all of them are empty. The higher
the detection ratio (closer to 100%), the better algorithm is.

Benchmark Algorithms. In addition to FedAvg [21], a popular algorithm in
FL, we compare our proposed MUD-HoG algorithm with five other algorithms.
They are: (i) coordinate-wise Median (or Median for short) [35], (ii) GeoMed [7],
(iii) Krum [4], (iv) Multi-krum (or MKrum for short) [4], and (v) FoolsGold [9].
We borrowed the source code of these existing algorithms from [28].

5.2 Experimental Results

Overall Performance. Figure 4 shows the accuracy of 12 setups for series of
Exp1 and Exp2 for MNIST and Fashion-MNIST datasets under the above seven
benchmark algorithms. We observe that over all 12 setups with multiple types
of attacks, MUD-HoG always achieves the best accuracy.

Fig. 4. Accuracy vs. the percentage of malicious clients. (a) and (b) are results on the
MNIST dataset. (c) and (d) are results on the Fashion-MNIST dataset
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It is consistently observed that when increasing percentage of malicious
clients from 12.5% to 47.5% of the total number of clients, Krum and Fools-
Gold show fluctuated performance and poor performance at a certain level of
attacks, some other algorithms such as FedAvg, GeoMed, Median, and MKrum
continuously drop their accuracy. In contrast, our proposed MUD-HoG main-
tains robust performance against multiple levels of heterogeneous attacks.

For MNIST dataset shown in parts (a) and (b) of Fig. 4, initially GeoMed
performs as good as MUD-HoG, but when the level of attacks are increased more
than 35%, GeoMed drops its accuracy by 9.33% and 12.39% while MUD-HoG
only drops 0.5% and 0.56% in series of Exp1 and Exp2, respectively. When com-
pared to the second-best algorithm, i.e. MKrum, the proposed algorithm gained
upto 1.28% and 1.12% higher accuracy in series of Exp1 and Exp2, respectively.

For Fashion-MNIST dataset shown in parts (c) and (d) of Fig. 4, GeoMed
achieves comparative results as MUD-HoG at a low level of attacks for both
series; however, GeoMed drops performance significantly at the high level of
attacks. For instance, in series of Exp1 and Exp2, while MUD-HoG’s accuracy
only drops by 0.72% and 1.5% (when increasing percentage of attacks from
12.5% to 47.5%), GeoMed’s accuracy drops by 10.52% and 13.21%, respectively.
When compared to the second-best algorithm, i.e., Median, MUD-HoG gains
upto 0.65% and 1.47% accuracy in series of Exp1 and Exp2, respectively.

Fig. 5. Results for Series of Exp2 with 42.5% malicious clients. “2” and “7” are the
source and target classes, respectively. (a) and (b) are results on the MNIST dataset.
(c) and (d) are results on the Fashion-MNIST dataset

Precision and Recall. To make a fair comparison with other algorithms (i.e.,
Krum, MKrum, FoolsGold) that ware designed specifically for targeted attacks,
we plot precision of the targeted class (i.e., number of samples correctly classified
as the targeted class over all samples predicted as the targeted class), and recall of
a source class (i.e., number of samples correctly classified as the source class over
all ground-truth samples of the source class) for MNIST and Fashion-MNIST
datasets in Fig. 5. Here, FedAvg, GeoMed, Median or even Krum obtain poor
performance and highly fluctuated precision of targeted class and recall of source
class because they could not defend targeted attacks. On the flip side, though
MKrum and FoolsGold show quite good precision, their values are lower than
MUD-HoG for both the datasets.
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Detection Ratio. We keep track of detected rounds for each type of clients
during the course of FL training with MUD-HoG algorithm. Table 1 reports
detection ratio (defined in Eq. 9) for each type of clients, and their first round
of detection (presented inside brackets) for a setup in series of Exp1 and Exp2
with 27.5% malicious clients. We observe that the sign-flipping and additive-
noise attackers are detected immediately at round 4, which is the earliest round
when the MUD-HoG algorithm could provide a firm decision.

Table 1. Detection ratio r (%) and the earliest round (1strnd) that detects the client
type (round number in brackets), with 27.5% malicious clients. [SF: Sign-flipping, AN:
Additive-noise, LF: Label-flipping, MLF: Multi-label-flipping, UR: Unreliable]

Type Detection MNIST Fashion-MNIST

Exp1 Exp2 Exp1 Exp2

SF r (1strnd) 90.0 (4) 90.0 (4) 90.0 (4) 90.0 (4)

AN r (1strnd) 90.0 (4) 90.0 (4) 90.0 (4) 90.0 (4)

LF r (1strnd) 87.5 (5) – 85.0 (6) –

MLF r (1strnd) – 90.0 (4) – 85.0 (6)

Overall rate r (%) 88.9 90.0 87.7 87.7

UR r (1strnd) 87.5 (5) 87.5 (5) 85.0 (6) 85.0 (6)

For MNIST dataset, overall, we can detect all malicious clients at detection
ratio (calculated over all types of clients) 88.9% and 90.0% for a setup in series
of Exp1 and Exp2, respectively. Since FL training is done over 40 rounds and
the earliest detection round is 4, upper bound of detection ratio can be at most
90.0%. And we can see in Exp2 of MNIST, MUD-HoG can detect MLF at round
4, which is as early as SF or AN, resulting in 90.0% of detection ratio. Next,
for Fashion-MNIST dataset, our algorithm detects targeted attacks (i.e., LF and
MLF) a bit slower than the case in MNIST, but the overall detection ratio is
still above 87%. Finally, for unreliable clients (last two rows in Table 1), in all
experiments, MUD-HoG achieves firm results of all unreliable clients from round
5 and round 6 for MNIST and Fashion-MNIST datasets, respectively. As a result,
the detection ratio for unreliable clients is above 85.0%.

5.3 Discussions and Limitations

Convergence Analysis. Based on our experimental results (see Fig. 6 and
Fig. 7), the loss of the global model stabilizes in 40 FL rounds for both the
datasets even in the presence of 42.5% clients posing different types of attacks
and having non-IID data. This indicates that MUD-HoG can achieve conver-
gence in rather adversarial scenarios. Although the presence of malicious clients
initially diverges the global model from its objective, excluding them from aggre-
gation, as MUD-HoG did, rectifies the SGD process back to normal as defined
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in [23]. In future work, we plan to incorporate a rigorous theoretical analysis of
convergence for our approach.

More Strategic Attacks. While we have experimentally shown that MUD-
HoG is robust to various untargeted and targeted attacks in the presence of
a large number of malicious clients, it may still miss out attackers who per-
form stealthy or highly strategic targeted attacks (some are formally defined
in [7]). Besides, an attacker may implant a certain trigger pattern into some
training/test data to inject corruption [3,29], known as backdoors. Such attacks
are more evasive since they are only triggered when the particular pattern arises,
while the overall performance is almost not affected. Currently, MUD-HoG has
not been specifically designed to defend backdoor attacks but this would be an
interesting direction to explore.

6 Conclusion

While federated learning (FL) offers a privacy-preserving framework for collabo-
rative training of ML models, it is susceptible to adversarial attacks. This paper
has proposed a new approach called MUD-HoG to detect malicious clients who
launch untargeted or targeted attacks and unreliable clients who possess low-
quality data, and offers a fine-grained classification of four types of participants.
We introduce the concept of long-short HoG and select appropriate distance and
similarity measures to identify different types of attacks and clients. MUD-HoG
excludes malicious contributions but exploits unreliable clients’ contributions to
maximize the utility of the final global model. Experimental results confirm that
MUD-HoG is robust against malicious and unreliable clients and produces a
global model with higher accuracy than state-of-the-art baselines. It can detect
a mixture of multiple types of attackers and unreliable clients in non-IID set-
tings even when the ratio of attackers is close to half. In future work, we plan
to investigate more challenging and dynamic settings where attackers may vary
attack types and clients may even switch roles (attackers, unreliable, normal,
etc.) over time. More extensive experiments will also be conducted.

Acknowledgements. This work is partially supported by the NSF grant award
#2008878 (FLINT: Robust Federated Learning for Internet of Things) and the NSF
award #2030624 (TAURUS: Towards a Unified Robust and Secure Data Driven App-
roach for Attack Detection in Smart Living).

A Additional Experimental Results

A.1 Performance Improvement over Rounds

We consider a specific setup with 42.5% malicious clients, for both the datasets to
evaluate the improvement of the accuracy of all the algorithms over FL rounds.

We plot test accuracy and loss from round 5 to the final round 40 for MNIST
dataset in Fig. 6 using global model. It is obvious to see that MUD-HoG obtains
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an upper bound of test accuracy and an lower bound of test loss over the course of
FL training. While some algorithms show fluctuated performance during training
such as Krum with a high fluctuation, or FedAvg and GeoMed with smaller fluc-
tuations, the other state-of-the-art algorithms designed against attackers such
as Median, MKrum, FoolsGold and MUD-HoG show smooth improvement as
training progresses. Among these algorithms, we also observe in Fig. 6 that the
gap of test loss between MUD-HoG and the second-best algorithm is increasing
over the course of FL training.

Fig. 6. Performance improvement of global model on MNIST in Series of Exp2 with
42.5% malicious clients

Figure 7 shows test accuracy and loss for Fashion-MNIST dataset. Similar to
MNIST’s results, we can see that among all evaluated algorithms, MUD-HoG
obtains the highest accuracy and the lowest loss for all training rounds. The
fluctuation of FedAvg and GeoMed is more severe with high variance, so the
final accuracy of these algorithms are not really reliable. This is the reason why
FedAvg and GeoMed can obtain accuracy close to MUD-HoG (see Fig. 4) in the
setups of 12.5% and 20% of malicious clients.

Fig. 7. Performance improvement of global model on Fashion-MNIST in Series of Exp2
with 42.5% malicious clients
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A.2 Confusion Matrix

In Fig. 8, we show confusion matrices for MUD-HoG and FedAvg obtained from
the completely trained model for MNIST and Fashion-MNIST datasets using a
setup of series Exp2 with 42.5% malicious clients. As multi-label-flipping attack-
ers flip their local samples with source labels of “1”, 2‘’, and “3‘’ to the target
label “7”, we can clearly see in parts (b) and (d) of Fig. 8, FedAvg confuses with
several samples actually having the source labels as the target label while it is
not the case for MUD-HoG. In addition, we see an interesting observation in
part (d) of Fig. 8, where FedAvg completely fails as it predicts nearly all sam-
ples of source label “1” as the target label “7” (i.e., 940 samples of label “1” are
predicted as label “7”).

Fig. 8. Confusion matrices in Series of Exp2 with 42.5% malicious clients
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