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ABSTRACT
Human labeling is time-consuming and costly. This problem is fur-

ther exacerbated in extremely imbalanced class label scenarios, such

as detecting fraudsters in online websites. Active learning selects

the most relevant example for human labelers to improve the model

performance at a lower cost. However, existing methods for active

learning for graph data often assumes that both data and label distri-

butions are balanced. These assumptions fail in extreme rare-class

classification scenarios, such as classifying abusive reviews in an

e-commerce website.

We propose a novel frameworkALLIE to address this challenge of
active learning in large-scale imbalancedgraphdata. Inour approach,

we efficiently sample from both majority and minority classes us-

ing a reinforcement learning agent with imbalance-aware reward

function. We employ focal loss in the node classification model in

order to focus more on rare class and improve the accuracy of the

downstreammodel. Finally, we use a graph coarsening strategy to

reduce the search space of the reinforcement learning agent. We

conduct extensive experiments on benchmark graph datasets and

real-world e-commerce datasets. ALLIE out-performs state-of-the-

art graph-based active learning methods significantly, with up to

10% improvement of F1 score for the positive class. We also validate

ALLIE on a proprietary e-commerce graph data by tasking it to detect

abuse. Our coarsening strategy reduces the computational time by

up to 38% in both proprietary and public datasets.
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1 INTRODUCTION
Graph structured data are ubiquitous and are widely used in social

network analysis [29], financial fraud detection [46], molecular de-

sign [17], search engines [44] and recommender systems [36, 38].
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Recently, Graph Neural Networks (GNNs) have emerged as state-

of-the-art models on these types of datasets, due to their ability to

learn and aggregate complex interactions between (K-hop) neigh-

borhoods, as opposed to traditional pointwise or pairwise models

[24]. Despite their appealing advantages, GNNs, like other deep

learning models, require a large amount of labeled data for training

in supervised settings. It is often time-consuming, labor-intensive,

and expensive to acquire sufficient labeled data for training in many

domains, hindering the application of GNNs.

Active Learning (AL) is a promising solution to obtain labels

faster, cheaper, and train models efficiently. AL dynamically queries

candidate samples
1
for labeling to maximize the performance of the

machine learned model with limited budget. The recent develop-

ments in AL on graphs [7, 10, 16, 17, 21, 31, 35, 49, 54] have proven to

be effective on several benchmark datasets, such as citation graphs

andgenenetworks.However,ALmethods for large-scale imbalanced
scenarios (e.g., finding a small fraction of fraudulent reviews on an

e-commerce website) is less explored. This motivates us to study

how to query the most “informative” samples so as to ameliorate the

effect of imbalance and to reduce the training cost of GNNs.

Training GNNs with AL algorithm on imbalanced graphs is non-

trivial. The lowprevalence rateof positive samples
2
prevents tradi-

tionalALmethods fromlearning thewholedatadistribution, because

under-represented positive samples are less likely to be selected by

traditional AL methods. For example, finding abusive reviews on a

shopping website can be formulated as a binary classification prob-

lem, where positive samples (i.e., abusive reviews) are a very small

portion of the labeled data. Training an ALmodel to sample reviews

for labeling will mostly yield non-abusive reviews, resulting in lim-

ited model performance improvement. Most of the AL sampling

methods proposed in natural language processing and computer

vision [3, 52, 53] to balance class distribution assume independent

and identically distributed (i.i.d.) data. These approaches are not di-

rectly applicable to graph structured data due to the heterogeneous

relational structure and dense connections. Moreover, existing AL

methods tend to reinforce or even worsen the prediction bias on

minority classes when querying unlabeled data [3].

It is challenging to build an AL approach for large-scale graph
data. For example, popular social network platforms (e.g., Facebook,

Snapchat) have hundreds of millions of monthly active users; on-

line e-commerce websites (e.g., Amazon, Walmart) host millions of

products and conduct billions of transactions. Searching over all the

unlabeled samples in the graph at this scale is impractical, as the

computational complexity of AL methods grows exponentially with

the size of the unlabeled set. Therefore, it is critical to reduce the

search space for AL algorithms on large-scale graphs.

1
Samples in the case of node classification in a GNNwill be nodes.

2
We assume positive samples are the rare class in the imbalanced setting
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To tackle the aforementioned two challenges, we propose an

Active Learning based method for Large-scale ImbalancEd graphs

(ALLIE),whichcombines the ideaofALongraphswithreinforcement

learning for accurate and efficient node classification. ALLIE can

effectively select informative unlabeled samples for labeling, using

multipleuncertaintymeasures as its criteria.Moreover, our approach

gives labelingpriority to less confident and “under-represented” sam-

ples. To scale our approach to large graphs, we further introduce a

graph coarsening strategy for ALLIE that categorizes similar nodes

into clusters. With a better representation of nodes in each cluster,

the search space for the AL algorithm is reduced. To the best of our

knowledge, this work is the first to jointlymodel the imbalance issue

on large-scale graphs and active learning. Our contributions are as

follows:

• Imbalance-aware reinforcement learning based graph pol-
icynetwork.We apply a reinforcement learning strategy bymax-

imizing the performance of the classifier to find a representative

subset of the unlabeled dataset. The queried nodes will be more

representative for the minority class (Section. 3.2.1).

• Graphcoarseningstrategytohandle large-scalegraphdata.
Existingmethods seldompay attention to scalability,making them

less efficient when applied to real-world applications. To reduce

running time, we apply a graph coarsening strategy to reduce the

action space in the policy network (Section. 3.2.2).

• Robust learning for more accurate node classification. Un-
like conventional methods that do not distinguish the majority

and minority classes when optimizing the objective function, we

construct a node classifier with focal loss that down-weights the

well-classified examples (Section. 3.2.3).

We evaluated ALLIE on both balanced and imbalanced datasets.

Ourbalanceddatasetsusepublic citationgraphs (Section. 4.2) and the

imbalanced dataset is from a proprietary e-commerce website (Sec-

tion. 4.3). We report the performance on node classification on both

datasets. The reported results show that on balanced graph datasets,

ALLIE improved an average of 2.39% in Macro F1 and 2.71% in Micro

F1 over the best baseline. On the e-commerce website dataset, ALLIE
achieved an average increase of 4.75% in Precision, 1.96% in Recall

and 3.45% in F1 (with 10.54%, 3.7% and 7.71% relative improvement re-

spectively) on the positive classes (i.e., the abusive users and reviews)

over the best baseline. We also conduct a comprehensive ablation

study to demonstrate the necessity of each component of ALLIE.
Additional experiments show ALLIE performs well over baselines

with various initial training set sizes and query budgets.

2 RELATEDWORK
2.1 Active Learning on Graphs
Active learning [2, 4] has been widely studied in different domains

such as computer vision [25, 30] and natural language processing

[14, 50]. More recently, some pioneeringworks explore AL for graph

structured data [17, 31, 54]. For example, AGE [7] selects the clus-

tering center of node features. It combines several measurements

together, including information entropy [41], density and centrality

to find the best candidate(s) from all unlabeled nodes. FeatProp [49]

extends AGE and also uses cluster centers as selected candidates.

The authors proved an upper bound on the classification loss, and

discussedwhy they chose K-Medoids instead of K-Center as the clus-

teringmethod. ANRMAB [16] usesMulti-Armed Bandit to select one

metric from the measurements in AGE. Chen et al. [10] propose Ac-

tiveHNE to further extend ANRMAB to cover heterogeneous graphs.

GPA [21] uses a policy network to perform AL on graphs. The goal

is to select a sequence of nodes by using reinforcement learning

which maximizes the performance of the GNN. Different from the

heuristics-based AL methods, MetAL [35] uses meta-gradients to

evaluate the importance of labeling each unlabeled instance. De-

spite these achievements, existing work mainly focus on balanced

datasets, and perform poorly when the datasets are imbalanced. In

addition, the measurements that are commonly used to estimate

the representativeness of the samples are centrality and density.

Though these criteria can help characterize data distribution, they

do not favor the most “underrepresented” samples at the borders

between classes.We explicitly focus on functions that can be adapted

to imbalanced datasets.

2.2 Graph Coarsening
Learning on graphs is too time-consuming for large-scale graph

data that model the dense connections amongmillions of nodes. The

computational cost grows exponentially with the number of nodes

[22]. In addition to using state-of-the-art models, we can compress

graphs to reduce the running time of AL on them. Sparsification and

reduction are two commonways of simplifying graphs. Sparsifica-

tion reduces the number of edges, such as spanners, edge cut, and

spectral sparsifiers [26, 43]. Suchmethods have been previously used

for recommendation systems [12]. Reduction is conducted on the

number of vertices as well as the number of edges. Related methods

include graph coarsening [28, 51] and Kron reduction [8].

Graph coarsening is the merging of vertices in a graph to obtain a

coarser version of the original graphwith similar spectral properties

[27]. We can use the same algorithm to process the coarser graph as

with the original. Graph coarsening can be repeated several times

until we get a sufficiently coarse graph [20, 47]. DiffPool [51] uses an

assignment matrix to transform the original graph to a coarser one.

It pools nodes given an assignment matrix at each layer. SAGPool

[28] generalizes convolution operations to graphs. Researchers have

incorporated graph coarsening into GNNs as a way to implement

efficient pooling [5, 13]. For example, GraphSAGE [45]withDiffPool

is 12 times faster than the original model.

2.3 Imbalanced Learning
Many real-world applications in computer vision [37], medical di-

agnosis [11] and fraud detection [34] suffer from class imbalance.

Learning from an imbalanced dataset may result in a prediction

model that favors the majority class over the minority class [19]. A

comprehensive review of class imbalance problems in deep learning

can be found in [6].

Methods for dealing with imbalance can be roughly divided into

two categories: data-level and algorithmic-level methods. Oversam-

pling [9, 18] and undersampling [39] are two data-levelmethods that

are commonly used in deep learning. Oversampling replicates se-

lected samples fromminority classes, while undersampling removes

samples frommajority classes. Algorithm-level methods keep the
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data unchangedwhile adjusting the training or inference process. Fo-

cal loss is a scaled cross-entropy loss,where the scaling factor goes to

zero for well-classified samples [33]. Cost-sensitive learning assigns

different costs to themisclassified samples fromdifferent classes [15].

3 THE PROPOSEDMETHOD: ALLIE
3.1 Task Description
LetG = (V ,E) denote a graph, whereV is a set of nodes and E is a

set of edges. We consider a classification setting where each node

v ∈V has a labely ∈Y = {1,...,C} (C is the number of classes). The

node set is divided into three subsets includingVtrain,Vvalid andVtest,
with corresponding label sets Ytrain, Yvalid and Ytest. In traditional

supervised learning, the goal is to learn a classifier f (G,Vtrain;θd )
parameterized by θd with the graphG and labelsVtrain to predict the
labels of the nodes inVtest.

In AL setting, a query budget B is given, which allows us to query

the labels of B samples fromVtrain (B≪|Vtrain |) in total. Suppose the
initial label set is denoted asV 0

query
. At each step t , we select an un-

labeled nodevt using an AL policy π from the remaining candidate

nodesVtrain\V
t−1
query

that havenot beenqueried, and query the label of

thenodevt .ThenweupdateV t
query

byV t−1
query

∪{vt } andtrain theclas-

sifier f (G,V t
query

;θd ) for one epoch.After the querybudget is usedup,

we continue training f (G,V B
query

;θd )withVquery until convergence.
The learning process of policy π can be naturally formulated as a

MarkovDecision Process (MDP), inwhich theAL network is sequen-

tially querying unlabeled nodes into a sequence over time. Formally,

the MDP is defined as follows.

• State spaceS: A statematrixSt ∈S is defined as the state of graph

G at time t where each row st is the state representation of a node.
More specifically, a state st consists of a node’s degree, entropy,
average KL divergence and reverse KL divergence between its

predicted label distribution and its neighbor’s.

• Action space A: At time t , the action at ∈ A is to determine

which node should be queried next. The AL network will append

thenode to thenode sequence.Thenumberof actions taken should

satisfy the given budget constraint.

• Reward R: After the network has selected a sequence of nodes,

we evaluate the performance of the classifier on the validation set

V
valid

as the final reward. Since the size of the initial training set

|V
train | is limited in AL, calculating the immediate reward after

each actionwill change the policy estimation a lot. Hence, in order

tomeasure thepolicy’squalitymoreaccurately,wechoose tocalcu-

late only the final reward,which provides amore stable estimation.

• Transition probability P: Transition probability p(St+1 |St ,at )
defines the state transition from St to St+1 after taking action at

at time t .

We parameterize the policy network using a deep neural network,

which is defined as follows:

Definition 1 (Policy Network). A policy network π (·;θp ) pa-
rameterized by θp is used to select a node sequence from the can-
didate training nodes to query, which yields a probability score for
each node in the unlabeled set. We learn the optimal parameter θ∗p by
maximizing the performance of the classifier f on the validation set:
M(f (G,Vvalid),Yvalid), whereM is an evaluation metric, f is trained
onV B

query chosen by θ
∗
p andYvalid is the labels of the validation set.

Hence we can formally define the MDP based AL problem on

graphs as follows:

Problem 1 (MDP based Active Learning Problem). Given a
graphG = (V ,E), with a query budget B, our goal is to learn a policy
π to select the best node sequence to query, in order to optimize the
prediction performance throughout the query process.

3.2 Framework
Figure 1 illustrates the proposed framework. First, we alternately

use a policy network to query the label of a candidate node and train

the GNN classifier to update the current state of the graph, until

the query budget is reached. In what follows, we evaluate the GNN

classifier on the validation set to update the policy.

3.2.1 Reinforcement Learning Architecture. The AL algorithm takes

an action by selecting the next node to query. In addition to the

heuristic metrics, we can choose the nodes that can maximize the

performance of the GNN classifier on the validation set. As this

problem can be naturally formalized as a reinforcement learning

architecture, we followed the GPA framework [49] in our paper.

We denote the state of graphG at step t as amatrix St , where each
row stv is the state representation of nodev . In order to represent the
state representation, we adopt degree as representativenessmeasure

and entropy and KL divergence as the uncertainty measures in the

policy network:

• Degree: We use the degree of a node to represent its representa-

tiveness. The higher the degree of the nodes, the more important

the nodes are. Thus their labels are more likely to be informative.

The degree is denoted by

stv,1=min(degree(v)/δ ,1), (1)

where δ is a scaling hyperparameter.

• Entropy: The entropy of the label distribution is to predict the

uncertainty of each node. In other words, if the classifier has low

confidence about a node’s predicted label, then the node’s label

is more likely to be useful. We divide the entropy by log(C) to
normalize it into range [0,1]:

stv,2=−
1

log(C)

C∑
i=1

ŷi (v
t )log(ŷi (v

t )), (2)

where ŷi (v
t ) is the class probability of node v belonging to the

i-th class predicted by the classifier at step t .
• Divergence: The divergence is calculated based on a node’s label

prediction distribution and its neighbor’s. It measures how differ-

ent the node and its neighbors are, which can better identify the

decision boundaries in the graph:

stv,3=
1

|Nv |

∑
u ∈Nv

KL(ŷ(vt )∥ŷ(ut )), stv,4=
1

|Nv |

∑
u ∈Nv

KL(ŷ(ut )∥ŷ(vt )).

(3)

We use an indicator to represent whether the node has been la-

beled or not, and concatenate it with the above metrics to form the

feature vector s
t
v for each nodev . The graph state matrix St will be

passed into the policy network to generate the action probabilities.
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Figure 1: The overview of ALLIEwith twomain parts: policy network and fraud detector.

Imbalance-aware Reward Function Design: In order to fix the

imbalanced data distribution issue and boost the model’s perfor-

mance on the minority classes, we introduce a balancing strategy

on the reward in AL to make the method query more nodes that can

represent theminority class better. Specifically, for the reward signal,

we use a performance metric that treats each class equally instead of

each sample and thus assigns more weights to the minority samples.

Belowwe detail howwe calculate the reward signal andwhatmet-

rics we choose. The policy network is rewarded by the performance

gain of the GNN classifier f trained with the updated set of labeled
nodes. The reward of the selected node sequence is calculated based

on the performance of f on the validation set:

R(V B
query

)=M(f (G,V
valid

),Y
valid

), (4)

whereM is the evaluationmetric, f trained on graphG and labels of

V B
query

,V
valid

andY
valid

are the nodes and labels of the validation set.

We implementM using the following metrics:

• Weighted reward: When the sample belongs to the minority class,

the reward is +1 if the prediction ŷ is correct; −1 if not. When

the sample belongs to the majority class, the reward is multiplied

by the imbalanced ratio ρ, which is the number of samples in the

minority class divided by the number of samples in the majority

class [32].

• Micro-1 calculates metrics by counting the total true positives,

false negatives and false positives globally, which favors the ma-

jority classes, e.g., the benign buyer.

• Macro-F1 averages the F1 score per class, which can get a sense

of effectiveness on the small classes (e.g., the abusive buyer).

We empirically compare the three reward functions in Section

4.4.1 and find ALLIEwith Macro-F1 achieves the best results.

Reinforcement LearningAlgorithm: The training framework is

shown in Figure 1. At every step, we first update the graph state

matrix StG . The policy network selects a nodev
t
fromVtrain\V

t−1
query

based on the probability of each action π (·|St ), gets its label, and
puts it into the label setV t

query
. Then the GNN classifier f is trained

for one epoch on graph statematrix StG and the label setV t
query

. After

that, we can get the new label prediction of each node and update the

heuristic metrics such as stv,2, s
t
v,3 and s

t
v,4. The heuristic metrics

are used to generate the graph state matrix St+1 for the next step.
When the query budget B is used up, we train the GNN classifier f
until convergence without querying more nodes.

3.2.2 Policy Network Design. The policy network takes graph state
as an input and produces the probability distribution of each action

(where an action is querying a node’s label). GNNs can better char-

acterize the graph’s topology and help find the most informative

nodes in the graph. Hence we set up the policy network architecture

as a GNN. We use GCN [24] to implement the policy network. In

GCN, the nodes are assigned to an initial featurematrixH (0) ∈RN×F
,

where N is the number of nodes and F is the feature dimension size.

Here we use the initial state of graph H (0) =St as the initial input
feature. The layer-wise propagation rule updates the node represen-

tations using the representations of its neighbors in the graph in the

(l+1)-th layer, yielding the feature matrix:

H (l+1)=σ (D̃− 1

2 ÃD̃− 1

2H (l )W ), (5)

where Ã ∈ RN×N
is the adjacency matrix with self-connections

(A+I ), D̃ is the degree matrix of Ã,W ∈RN×F
is the weight matrix

and σ (·) denotes an activation function (we use ReLU in this paper).

We apply a linear layer to map the final output to a probability score

indicating whether this node should be queried:

π (·|St )=Softmax(WH (l )+b). (6)

Graph Coarsening: The computational cost will grow exponen-

tially as the number of GCN layers increases. In addition, as the

search space covers all the candidate nodes for annotation, the large

number of discrete actions makes reinforcement learning methods

difficult to apply for large graphs. Thus, we introduce the graph

coarsening strategy SAGPool [28] into the GCN policy network in

Eq. (5) to distinguish between the nodes that should be dropped and

the nodes that should be retained, which will reduce the running

time and shrink the action space at the same time.

The self-attention score matrixZ ∈RN×1
is calculated as follows:

Z (l )=σ (D̃− 1

2 ÃD̃− 1

2H (l )Θ), (7)

where Θ ∈ RN×1
is the parameter matrix to be learned. With the

attention score matrix Z , we can select the top k percent nodes to

keep in each layer, yielding a list of top ⌈kN ⌉ nodes’ indices:

idx = top(Z ,⌈kN ⌉). (8)

The output feature matrix and the corresponding adjacency ma-

trix of each layer are calculated as:

H (l+1)=H
(l )
idx, :⊙Z

(l )
idx ,A=Aidx,idx , (9)
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where idx, : represents the row-wise (i.e. node-wise) index notation,

⊙ is the broadcasted elementwise product, and idx,idx represents

the row-wise and col-wise index notation.

3.2.3 Robust Classification. The GCN fraud detector can classify

both labeled and unlabeled nodes. On the top of the policy network,

we apply a linear layer, taking the final output embeddingH (L)
as

input. The output of the fraud detector is the probability of a node

being positive.

The goal of the fraud detector is to determine whether a node is

positive (abusive buyer) or not (benign buyer). On the shoppingweb-

site, the positive classmakes up only a very small portion (<5%). This

data imbalanced issue causes two learning problems: (1) the easy

negative samples do not contain much information to facilitate the

training; (2) the easy negative samplesmay degenerate themodel. To

efficiently train on all samples,we employ focal loss [33].Denote pos-

itive nodes asv+∼pR+ (v), and negative nodesv
−∼pR− (v), where

R+ and R− represent the positive samples’ and negative samples’

spaces respectively. The loss function is denoted as follows:

Jc (θc )=−Ev+∼pR+ [α(1− f (v ;θc ))
γ
logf (v ;θc )]

−Ev−∼pR− [(1−α)f (v ;θc )
γ
log(1− f (v ;θc ))]

where γ is a focusing parameter, which focuses more on hard and

easilymisclassified examples, andα is theweight assigned to the rare

class.γ =2 and α =0.25work best based on the rule of thumb [33].

As for the multi-class scenario in general, we exclude α as it is

not applicable for multiple classes. We still setγ as 2 based on rule

of thumb. The multi-class focal loss is calculated as follows:

Jc (θc )=−(1− f (v ;θc ))
γ
logf (v ;θc ) (10)

3.2.4 Training and Inference. For training the classifier, we mini-

mize the focal lossJc in Eq. (10). The objective function of the policy

network is:

Jp (θp )=Eπ (V B
query

;θp )[R(V
B
query

)], (11)

where B is the query budget, and R is the reward on graphG . We use

a classic policy gradient method REINFORCE [48] to train the policy

network π .
In order to train the policy networkπ (·;θp ) parametered byθp , we

alternately update θc by optimizing the focal loss Jc on the training

data queried by policy π (·; ˆθp ), and update θp by maximizing the

sum of expected rewards obtained from the classifier f (·; ˆθc ) on the
validation set:

θ∗p =argmax

θp
Jp (θp ), θ

∗
c =argmin

θc
Jc (θc ).

(12)

The training process is divided into two stages. In the first stage,

we train the classifier f (·;θc ) to minimize the loss function Jc (θc ),
while actively querying the unlabeled nodes.When the query budget

is used up, we train the classifier f until convergence. In the second

stage, we evaluate the trained classifier f on the validation set to get
the reward signal and use that to update θp ) together with the policy
gradient. The detailed training steps are summarized in Algorithm 1.

4 EXPERIMENTS
In this section, we compare the performance of ALLIE with state-

of-the-art AL methods on graphs. We aim to answer the following

evaluation questions (EQ):

Algorithm 1: ALLIE for AL on Graphs.
Input:GraphG, validation set

V
valid

and corresponding label setY
valid

, initial query

setV 0

query
, query budget B and training epochs N

Output:Well-trained node classifier f and AL policy π
1 for e=1,...,N do
2 for t =1,...,B do
3 Update the graph state StG ;

4 Use policy π to sample a node based on

StG for annotation, and add it to the query setV t
query

;

5 Minimize the detection loss Jc (θc )

in Eq. (10) with the updatedV t
query

for one epoch;

6 end
7 while not converged do
8 Minimize

the detection loss Jc (θc ) in Eq. (10) withV
B
query

;

9 end
10 Evaluate classifier f on the validation setV

valid

andY
valid

to get the reward signal R(V B
query

) in Eq. (4);

11 Use the sum of expected

rewards to learn the optimal policy π∗
in Eq. (11);

12 end

Table 1: Statistics of citation graph datasets.

Cora Citeseer Pubmed

# nodes 2,485 2,110 19,717

# edges 5,068 3,668 44,338

# classes 7 6 3

• EQ1: IsALLIE able to improve the node classification performance

on both benchmark dataset and real-world e-commerce dataset?

• EQ2: How effective are graph coarsening, focal loss, and reward

function adaptation method in ALLIE?
• EQ3: How robust is ALLIE with respect to its hyperparameter

values?

To this end,we introduce thedatasets used andbaselines, followed

by experiments to answer these questions.

4.1 Experimental Setting
4.1.1 Datasets. We use several benchmark citation graph datasets

(Cora, Citeseer, Pubmed [40]). The statistics of the citation graph

datasets are presented in Table 1. We also use datasets created from

sampled, anonymized logs from an e-commerce website. We con-

struct a graph consisting of sellers, buyers, reviews and products.

Table 2 shows the approximate numbers of the nodes and edges that

we sampled. This dataset is heavily sampled, and is not reflective

of production traffic.Wemerely use it here to highlight the utility

of ALLIE. We randomly initialized the attributes of each node when

training the graph neural network. Sampling is done by randomly

picking 10K buyers, performing Breadth First Search (BFS), and add

the additional nodes to our dataset. A similar sampling method is

used previously in [1].
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Table 2: Summary of the e-commerce dataset. The dataset is
heavily subsampled, and is used to show the efficacy ofALLIE
on a real world use case.

Data property Value

Node types {buyer, seller, review, product}

# nodes (post sampling) ∼50K

% abusive buyers 5.2

# edges (post sampling) ∼61K

% abusive reviews 1.7

4.1.2 Implementation details. We implement ALLIEwith PyTorch.
We vary the learning rate in {10−1,10−2,10−3,10−4} and found learn-

ing rate 10
−2

worked best. For baselines,we follow the exact network

architecture detailed in the corresponding works. We outline the

baselines used in Section 4.1.3. For allmodels, we useAdam [23]with

100 epochs. On citation graph datasets, we use 5 samples from each

class to construct the initial training set, and set the query budget

as 20 for each class. On the e-commerce dataset, we use 200 samples

from each class to construct the initial training set, and set query

budget as 250 for each class. We repeat all experiments five times

and report the averages and the standard deviations of the metrics.

4.1.3 Baselines. We compare ALLIEwith the following represen-
tative and state-of-the-art AL on graph algorithms:

• Random: Random selects several candidate nodes uniformly at

random to annotate in each epoch, and uses GNN to re-train the

classifier using these nodes.

• AGE
3
[7]: AGE uses the weighted sum of entropy, density and

centrality to find the best candidate(s) from all unlabeled nodes.

• FeatProp
4
[49]: FeatProp uses cluster centers as selected candi-

dates through k-medoids clustering.

• GPA
5
[21]: GPA formalizes AL on graphs as an MDP (Markov

Decision Process) and learns the optimal query strategy with

reinforcement learning.

• MetAL
6
[35]: MetAL uses an AL algorithm that selects a set of

unlabeled instances based on an informative metric, gets their

labels, and updates the labeled dataset.

We choose the abovemethods that based on the following aspects:

(1) only heuristic metrics, such as AGE and FeatProp; (2) heuristic

metrics and reinforcement learning, such as GPA; and (3) heuristic

metrics andmeta-learning, suchasMetAL.This allowsus to compare

ALLIE to multiple kinds of methods.

4.1.4 Evaluation measures. We use Micro F1 andMacro F1 to evalu-

ate theperformanceof allmethodson the citationdatasets.We report

per-class precision, recall and F1 score on the e-commerce dataset.

The latter dataset lends itself to a highly imbalanced classification

problem.

4.2 EQ1: Performance on Public Datasets
To answer EQ1, we first compareALLIEwith the state-of-the-art AL
algorithms introduced in Section 4.1.3 on benchmark graph datasets.

We conduct experiments in both balanced and imbalanced settings.

3
https://github.com/vwz/AGE

4
https://github.com/CrickWu/active_graph

5
https://github.com/ShengdingHu/GraphPolicyNetworkActiveLearning

6
https://github.com/Kaushalya/metal

4.2.1 Balanced Setting. Weuse the original datasets as-is to conduct

the experiments in this setting. The problem is that of multi-class

node classification. Table 3 summarizes the node classification per-

formance of all competingmethods (reporting the average of 5 runs).

From the table, we can make the following observations:

• For themetric-basedmethodsAGEand FeatProp, the performance

is unsatisfactory. Though they use several heuristicmetrics to cap-

ture the representativeness of nodes, they do not leverage node

interactions to better measure node informativeness.

• The meta-learning based method MetAL performs better than

metric-based methods, demonstrating the effectiveness of using

the classifier’s performance as feedback. MetAL is inferior to AL-
LIE. We hypothesize that MetAL needs a moderate- to large-sized

initial training set to learn accurate model weights.

• ALLIE outperforms othermethods in terms ofMacro F1 andMicro

F1 on three datasets. This shows that ALLIE effectively leverages
both graph information as well as feedback.

4.2.2 Imbalanced Setting. In this setting, we manually adapt the

datasets into binary classes to make the data distribution imbal-

anced. Following [42], we treat the smallest class in Cora, Citeseer

and PubMed as the positive class and the rest as the negative class.

The positive class ratios are 7%, 8% and 21% respectively. Results are

shown in Table 4 (reporting the average of 5 runs). From the table,

we can see that:

• All the model performances onMacro-F1 andMicro-F1 degrade.

This reinforces our hypothesis that when the data distribution

becomes imbalanced, the classifier tends to predict most samples

as belonging to the majority class.

• ALLIE outperforms the othermodels. It demonstrates the effective-

ness of the balancing strategies, including the imbalance-aware

reinforcement learning framework and focal loss.

4.3 EQ1: Performance on e-commerce dataset
In order to test EQ1 in a real-world setting with large-scale im-

balanced graphs, we define two node classification tasks on the

e-commerce dataset. The tasks are detecting abusive users behavior

and abusive reviews. Both these tasks are important in e-commerce

to ensure high customer trust. Because the dataset is proprietary, we

report relative changes in each metric with respect to a baseline.

4.3.1 ClassificationonBuyers. Hereweinvestigate theperformance

of ALLIEwhen distinguishing abusive buyers from benign buyers,

and make the following observations.

• ALLIE outperforms the other models. It again shows the impor-

tance of applying reinforcement learning to query nodes from the

unlabeled data, which directly optimizes the performance of the

GNN classifier.

• It is worthwhile to point out that ALLIE has a higher performance

improvement with the abusive buyer class compared with the

benign buyer class. This indicates the effectiveness of adapting

the reward function to better capture the minority class (abusive

buyer) and using focal loss to down-weight the well-classified

samples (benign buyers far from the classification boundary).

4.3.2 Classification on Reviews. We summarize the observations of

ALLIE in classifying abusive reviews and benign reviews.
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Table 3: Node classification performance (Macro F1 and Micro F1 ±Std) on the balanced setting of citation graph datasets. The
best and 2nd best are noted in bold font and underlined, respectively.

Cora Citeseer PubMed

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Random 0.6819±0.041 0.7031±0.071 0.5438±0.093 0.5762±0.079 0.7033±0.051 0.7296±0.118

AGE 0.7322±0.046 0.7725±0.031 0.6152±0.013 0.6722±0.098 0.7735±0.019 0.7737±0.019

FeatProp 0.7826±0.018 0.7645±0.009 0.6417±0.041 0.6097±0.087 0.7392±0.068 0.7321±0.124

GPA 0.7677±0.063 0.8105±0.012 0.6635±0.039 0.7130±0.102 0.7912±0.091 0.7996±0.043

MetAL 0.7455±0.012 0.7985±0.023 0.6184±0.016 0.7018±0.065 0.7711±0.086 0.7764±0.075

ALLIE 0.8025±0.071 0.8242±0.027 0.6838±0.020 0.7425±0.082 0.8228±0.038 0.8376±0.049

Table 4: Node classification performance (Macro F1 andMicro F1 ±Std) on the imbalanced setting of citation graph datasets.

Cora Citeseer PubMed

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Random 0.1781±0.048 0.5645±0.042 0.2755±0.063 0.5695±0.072 0.1735±0.036 0.5691±0.193

AGE 0.1631±0.084 0.6424±0.038 0.3716±0.093 0.6293±0.049 0.1871±0.048 0.6266±0.051

FeatProp 0.3582±0.071 0.6427±0.193 0.4295±0.104 0.6817±0.094 0.2594+0.088 0.6692±0.038

GPA 0.4892±0.042 0.7384±0.098 0.4239±0.078 0.7084±0.053 0.3813±0.085 0.7442±0.158

MetAL 0.4583±0.035 0.6979±0.025 0.4328±0.062 0.7035±0.067 0.3602±0.105 0.7791±0.084
ALLIE 0.5391±0.027 0.7692±0.015 0.4894±0.041 0.7684±0.074 0.4391±0.037 0.7694±0.056

Table 5: Buyer classification performance relative change (Precision, Recall and F1 ±Std) on the e-commerce dataset.

Benign Buyer Abusive Buyer

Precision Recall F1 Precision Recall F1

Random - - - - - -

AGE +0.1650±0.013 +0.0640±0.053 +0.1408±0.028 +0.1119±0.025 +0.0337±0.024 +0.0685±0.017

FeatProp +0.1547±0.042 +0.0522±0.041 +0.0876±0.031 +0.0987±0.016 +0.0028±0.036 +0.0388±0.028

GPA +0.1872±0.042 +0.0950±0.032 +0.1647±0.035 +0.1519±0.013 +0.0435±0.042 +0.0891±0.042

MetAL +0.0546±0.031 +0.0401±0.018 +0.0743±0.039 +0.0941±0.031 +0.0482±0.013 +0.0771±0.031

ALLIE +0.1936±0.025 +0.0834±0.018 +0.1671±0.024 +0.2024±0.013 +0.0521±0.041 +0.1184±0.027

Table 6: Review classification performance relative change (Precision, Recall and F1 ±Std) on the e-commerce dataset.

Benign Review Abusive Review

Precision Recall F1 Precision Recall F1

Random - - - - - -

AGE +0.1864±0.013 +0.1968±0.019 +0.2037±0.173 +0.1544±0.012 +0.1299±0.695 +0.1187±0.031

FeatProp +0.1432±0.022 +0.0612±0.017 +0.1286±0.022 +0.1858±0.023 +0.1259±0.031 +0.1409±0.032

GPA +0.3934±0.032 +0.3167±0.009 +0.3885±0.025 +0.4515±0.013 +0.3815±0.058 +0.3979±0.023

MetAL +0.1168±0.017 +0.1968±0.041 +0.2054±0.026 +0.4139±0.052 +0.2758±0.032 +0.3800±0.077

ALLIE +0.3864±0.013 +0.3968±0.019 +0.4207±0.173 +0.4960±0.056 +0.4409±0.013 +0.4375±0.042

• ALLIE still outperforms baselines, especially in the abusive review

class, which indicates thatALLIE is suitable for imbalanced graphs.

• The scores ofmetric-basedmethods, AGE and FeatProp, on review

classification task is generally much lower than their results on

the buyer classification task. This indicates that their performance

worsens when the data is more imbalanced.

4.4 EQ2: Ablation Study
In order to answer EQ2, we explore each component of ALLIE sep-
arately. We first study the influence of different reward function

designs. Then we examine the influence of graph coarsening and

balancing strategies.

4.4.1 Effect of reward functions. To explore the impact of various

reward functiondesigns in Section 3.2.1,we consider several variants

ofALLIE thatusedifferent reward functions:weighted reward,Micro-

F1 andMacro-F1. We term these methods ALLIE
weighted reward

,

ALLIEMicro-F1 and ALLIEMacro-F1 respectively.

Table 7 summarizes the results on the imbalanced setting of the

public datasets in Section 4.2.2. We find that ALLIEMacro-F1 is supe-

rior than ALLIE
weighted reward

and ALLIEMicro-F1. This verifies that

incorporating sample balancing into the reward function design can

address the class imbalance issue.

4.4.2 Effect of graph coarsening and balancing strategies. We define

several variants of ALLIE to study the effects of graph coarsening,
focal loss and reward function adaptation:

• \coarsen: This is a variant of ALLIEwhich does not integrate the
graph coarsening module.
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Table 7: Effect of reward functions (Macro F1 andMicro F1 ±Std) on imbalanced citation graph datasets.

Cora Citeseer PubMed

Reward Function Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Weighted Reward 0.5274±0.034 0.7524±0.080 0.4789±0.016 0.7639±0.011 0.4323±0.141 0.7543±0.187

Micro-F1 0.5245±0.138 0.7534±0.046 0.4716±0.022 0.7563±0.048 0.4287±0.069 0.7685±0.098

Macro-F1 0.5391±0.027 0.7692±0.015 0.4894±0.041 0.7684±0.074 0.4391±0.037 0.7694±0.056

(a) Benign Buyer (b) Abusive Buyer

Figure 2: Performance gain comparison over variants on
the buyer classification task. The background histograms
indicate the F1 gain over AGE of each variant. The lines
indicate the running time (in seconds).

(a) (b)

Figure 3: Performance gain over Random with different
training set sizes and query budgets.

• \loss: This is a variant which does not specifically down-weight
the well-classified samples. The focal loss function is replaced by

the standard cross entropy loss function.

• \reward: This is a variant which uses Micro-F1 as its reward met-

ric.

We also record the running time (in seconds) of each variant

and summarize the experimental results in Figure 2. We have the

following findings:

• Removing the graph coarsening module slightly degrades the

model’s performance, as SAGPool has an attention mechanism

that can improve the performance of GNN. Furthermore, this vari-

ant takes the longest time compared to all methods in the AL part.

• Changing the reward function toMacro-F1 ismore effective for im-

proving the F1 of abusive buyers, as Micro-F1 favors large classes

(benign buyer) while Macro-F1 averages F1 per class.

• When we do not use focal loss, the false positive rate increases,

which results in lower Precision and F1. This variant performs the

worst, which indicates that the focal loss function contributes the

most in ALLIE.

4.5 EQ3: Hyperparameter Sensitivity Analysis
We vary the initial training set sizes and query budget to test how

ALLIE varies along these dimensions. The buyer classification task

on the e-commerce dataset is used as the example task here.

4.5.1 Performance under different initial training set sizes. We start

ALLIEwith {50,150,250,350,450} initial training samples. We run

each method five times and report the averaged F1 score in Figure

3(a). From the results, we see that ALLIE outperforms all the base-

lines regardless of the initial training set size. Importantly, when

the training set sizes are small, ALLIE significantly outperforms the

baseline methods.

4.5.2 Performance under different query budgets. We train ALLIE
with {50,100,150,200,250} budgets, and then evaluate the learned

model. All the methods are tested using the same initial training set.

We run each method five times and report the averaged F1 score in

Figure 3(b). Again, we see that ALLIE outperforms baselines signif-

icantly when the budgets are small.

The above experiments show that ALLIE is indeed well suited to
the problem of active learning on graphs when the labeled data is

highly imbalanced.

5 CONCLUSION
In this paper, we propose ALLIE, a novel active learning framework

designed for large-scale imbalanced graphs.ALLIE leverages a graph
policy network to query the candidate nodes to label by optimizing

the long-term performance of the GNN classifier. With two balanc-

ing strategies, ALLIE can better deal with an imbalanced data distri-

bution compared with several state-of-the-art methods. Moreover,

ALLIE has a graph coarsening module which makes it scalable on

large-scale applications. Experiments on three benchmark datasets

and a real-world shopping website dataset demonstrate the strong

performance of ALLIE.
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