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ABSTRACT

Human labeling is time-consuming and costly. This problem is fur-
ther exacerbated in extremely imbalanced class label scenarios, such
as detecting fraudsters in online websites. Active learning selects
the most relevant example for human labelers to improve the model
performance at a lower cost. However, existing methods for active
learning for graph data often assumes that both data and label distri-
butions are balanced. These assumptions fail in extreme rare-class
classification scenarios, such as classifying abusive reviews in an
e-commerce website.

We propose a novel framework ALLIE to address this challenge of
active learning in large-scale imbalanced graph data. In our approach,
we efficiently sample from both majority and minority classes us-
ing a reinforcement learning agent with imbalance-aware reward
function. We employ focal loss in the node classification model in
order to focus more on rare class and improve the accuracy of the
downstream model. Finally, we use a graph coarsening strategy to
reduce the search space of the reinforcement learning agent. We
conduct extensive experiments on benchmark graph datasets and
real-world e-commerce datasets. ALLIE out-performs state-of-the-
art graph-based active learning methods significantly, with up to
10% improvement of F1 score for the positive class. We also validate
ALLIE on a proprietary e-commerce graph data by tasking it to detect
abuse. Our coarsening strategy reduces the computational time by
up to 38% in both proprietary and public datasets.
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1 INTRODUCTION

Graph structured data are ubiquitous and are widely used in social
network analysis [29], financial fraud detection [46], molecular de-
sign [17], search engines [44] and recommender systems [36, 38].
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Recently, Graph Neural Networks (GNNs) have emerged as state-
of-the-art models on these types of datasets, due to their ability to
learn and aggregate complex interactions between (K-hop) neigh-
borhoods, as opposed to traditional pointwise or pairwise models
[24]. Despite their appealing advantages, GNNs, like other deep
learning models, require a large amount of labeled data for training
in supervised settings. It is often time-consuming, labor-intensive,
and expensive to acquire sufficient labeled data for training in many
domains, hindering the application of GNNs.

Active Learning (AL) is a promising solution to obtain labels
faster, cheaper, and train models efficiently. AL dynamically queries
candidate samples! for labeling to maximize the performance of the
machine learned model with limited budget. The recent develop-
ments in AL on graphs [7, 10, 16, 17, 21, 31, 35, 49, 54] have proven to
be effective on several benchmark datasets, such as citation graphs
and gene networks. However, AL methods for large-scale imbalanced
scenarios (e.g., finding a small fraction of fraudulent reviews on an
e-commerce website) is less explored. This motivates us to study
how to query the most “informative” samples so as to ameliorate the
effect of imbalance and to reduce the training cost of GNNs.

Training GNNs with AL algorithm on imbalanced graphs is non-
trivial. The low prevalence rate of positive samples? prevents tradi-
tional AL methods fromlearning the whole data distribution, because
under-represented positive samples are less likely to be selected by
traditional AL methods. For example, finding abusive reviews on a
shopping website can be formulated as a binary classification prob-
lem, where positive samples (i.e., abusive reviews) are a very small
portion of the labeled data. Training an AL model to sample reviews
for labeling will mostly yield non-abusive reviews, resulting in lim-
ited model performance improvement. Most of the AL sampling
methods proposed in natural language processing and computer
vision [3, 52, 53] to balance class distribution assume independent
and identically distributed (i.i.d.) data. These approaches are not di-
rectly applicable to graph structured data due to the heterogeneous
relational structure and dense connections. Moreover, existing AL
methods tend to reinforce or even worsen the prediction bias on
minority classes when querying unlabeled data [3].

It is challenging to build an AL approach for large-scale graph
data. For example, popular social network platforms (e.g., Facebook,
Snapchat) have hundreds of millions of monthly active users; on-
line e-commerce websites (e.g., Amazon, Walmart) host millions of
products and conduct billions of transactions. Searching over all the
unlabeled samples in the graph at this scale is impractical, as the
computational complexity of AL methods grows exponentially with
the size of the unlabeled set. Therefore, it is critical to reduce the
search space for AL algorithms on large-scale graphs.

1Samples in the case of node classification in a GNN will be nodes.
2We assume positive samples are the rare class in the imbalanced setting
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To tackle the aforementioned two challenges, we propose an
Active Learning based method for Large-scale ImbalancEd graphs
(ALLIE), which combines the idea of AL on graphs with reinforcement
learning for accurate and efficient node classification. ALLIE can
effectively select informative unlabeled samples for labeling, using
multiple uncertainty measures as its criteria. Moreover, our approach
gives labeling priority to less confident and “under-represented” sam-
ples. To scale our approach to large graphs, we further introduce a
graph coarsening strategy for ALLIE that categorizes similar nodes
into clusters. With a better representation of nodes in each cluster,
the search space for the AL algorithm is reduced. To the best of our
knowledge, this work is the first to jointly model the imbalance issue
on large-scale graphs and active learning. Our contributions are as
follows:

e Imbalance-aware reinforcement learning based graph pol-
icy network. We apply a reinforcement learning strategy by max-
imizing the performance of the classifier to find a representative
subset of the unlabeled dataset. The queried nodes will be more
representative for the minority class (Section. 3.2.1).

e Graph coarsening strategy to handle large-scale graph data.
Existing methods seldom pay attention to scalability, making them
less efficient when applied to real-world applications. To reduce
running time, we apply a graph coarsening strategy to reduce the
action space in the policy network (Section. 3.2.2).

o Robust learning for more accurate node classification. Un-
like conventional methods that do not distinguish the majority
and minority classes when optimizing the objective function, we
construct a node classifier with focal loss that down-weights the
well-classified examples (Section. 3.2.3).

We evaluated ALLIE on both balanced and imbalanced datasets.
Our balanced datasets use public citation graphs (Section. 4.2) and the
imbalanced dataset is from a proprietary e-commerce website (Sec-
tion. 4.3). We report the performance on node classification on both
datasets. The reported results show that on balanced graph datasets,
ALLIE improved an average of 2.39% in Macro F1 and 2.71% in Micro
F1 over the best baseline. On the e-commerce website dataset, ALLIE
achieved an average increase of 4.75% in Precision, 1.96% in Recall
and 3.45% in F1 (with 10.54%, 3.7% and 7.71% relative improvement re-
spectively) on the positive classes (i.e., the abusive users and reviews)
over the best baseline. We also conduct a comprehensive ablation
study to demonstrate the necessity of each component of ALLIE.
Additional experiments show ALLIE performs well over baselines
with various initial training set sizes and query budgets.

2 RELATED WORK
2.1 Active Learning on Graphs

Active learning [2, 4] has been widely studied in different domains
such as computer vision [25, 30] and natural language processing
[14, 50]. More recently, some pioneering works explore AL for graph
structured data [17, 31, 54]. For example, AGE [7] selects the clus-
tering center of node features. It combines several measurements
together, including information entropy [41], density and centrality
to find the best candidate(s) from all unlabeled nodes. FeatProp [49]
extends AGE and also uses cluster centers as selected candidates.
The authors proved an upper bound on the classification loss, and
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discussed why they chose K-Medoids instead of K-Center as the clus-
tering method. ANRpap [16] uses Multi-Armed Bandit to select one
metric from the measurements in AGE. Chen et al. [10] propose Ac-
tiveHNE to further extend ANR)aB to cover heterogeneous graphs.
GPA [21] uses a policy network to perform AL on graphs. The goal
is to select a sequence of nodes by using reinforcement learning
which maximizes the performance of the GNN. Different from the
heuristics-based AL methods, MetAL [35] uses meta-gradients to
evaluate the importance of labeling each unlabeled instance. De-
spite these achievements, existing work mainly focus on balanced
datasets, and perform poorly when the datasets are imbalanced. In
addition, the measurements that are commonly used to estimate
the representativeness of the samples are centrality and density.
Though these criteria can help characterize data distribution, they
do not favor the most “underrepresented” samples at the borders
between classes. We explicitly focus on functions that can be adapted
to imbalanced datasets.

2.2 Graph Coarsening

Learning on graphs is too time-consuming for large-scale graph
data that model the dense connections among millions of nodes. The
computational cost grows exponentially with the number of nodes
[22]. In addition to using state-of-the-art models, we can compress
graphs to reduce the running time of AL on them. Sparsification and
reduction are two common ways of simplifying graphs. Sparsifica-
tion reduces the number of edges, such as spanners, edge cut, and
spectral sparsifiers [26, 43]. Such methods have been previously used
for recommendation systems [12]. Reduction is conducted on the
number of vertices as well as the number of edges. Related methods
include graph coarsening [28, 51] and Kron reduction [8].

Graph coarsening is the merging of vertices in a graph to obtain a
coarser version of the original graph with similar spectral properties
[27]. We can use the same algorithm to process the coarser graph as
with the original. Graph coarsening can be repeated several times
until we get a sufficiently coarse graph [20, 47]. DiffPool [51] uses an
assignment matrix to transform the original graph to a coarser one.
It pools nodes given an assignment matrix at each layer. SAGPool
[28] generalizes convolution operations to graphs. Researchers have
incorporated graph coarsening into GNNs as a way to implement
efficient pooling [5, 13]. For example, GraphSAGE [45] with DiffPool
is 12 times faster than the original model.

2.3 Imbalanced Learning

Many real-world applications in computer vision [37], medical di-
agnosis [11] and fraud detection [34] suffer from class imbalance.
Learning from an imbalanced dataset may result in a prediction
model that favors the majority class over the minority class [19]. A
comprehensive review of class imbalance problems in deep learning
can be found in [6].

Methods for dealing with imbalance can be roughly divided into
two categories: data-level and algorithmic-level methods. Oversam-
pling [9, 18] and undersampling [39] are two data-level methods that
are commonly used in deep learning. Oversampling replicates se-
lected samples from minority classes, while undersampling removes
samples from majority classes. Algorithm-level methods keep the
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data unchanged while adjusting the training or inference process. Fo-
callossis a scaled cross-entropy loss, where the scaling factor goes to
zero for well-classified samples [33]. Cost-sensitive learning assigns
different costs to the misclassified samples from different classes [15].

3 THE PROPOSED METHOD: ALLIE

3.1 Task Description

Let G = (V,E) denote a graph, where V is a set of nodes and E is a
set of edges. We consider a classification setting where each node
veVhasalabel ye Y ={1,...,C} (C is the number of classes). The
node set is divided into three subsets including Viyain, Vyalid and Veest,
with corresponding label sets Yirain, Yyalid and Yiest. In traditional
supervised learning, the goal is to learn a classifier f(G,Virain;04q)
parameterized by 6; with the graph G and labels Viy,i, to predict the
labels of the nodes in Viegt.

In AL setting, a query budget B is given, which allows us to query
the labels of B samples from Viyain (B << |Virain|) in total. Suppose the
initial label set is denoted as Vé)uery. At each step t, we select an un-
labeled node v* using an AL policy 7 from the remaining candidate
nodes Vtrain\Vqtu_elry thathave notbeen queried, and query the label of
thenodev’. Then we update Vqtuery by Vqﬂ;elry U{v’} and train the clas-
sifier f (G,Vqtuery;@d) for one epoch. After the query budgetis used up,
we continue training f (G,Vqlflery;@d) with Vguery until convergence.

The learning process of policy 7 can be naturally formulated as a
Markov Decision Process (MDP), in which the AL network is sequen-
tially querying unlabeled nodes into a sequence over time. Formally,
the MDP is defined as follows.

o State space S: A state matrix S? €S is defined as the state of graph
G at time t where each row s’ is the state representation of a node.
More specifically, a state s’ consists of a node’s degree, entropy,
average KL divergence and reverse KL divergence between its
predicted label distribution and its neighbor’s.

e Action space A: At time ¢, the action at € A is to determine
which node should be queried next. The AL network will append
the node to the node sequence. The number of actions taken should
satisfy the given budget constraint.

o Reward R: After the network has selected a sequence of nodes,
we evaluate the performance of the classifier on the validation set
Vialid @s the final reward. Since the size of the initial training set
[Virain| is limited in AL, calculating the immediate reward after
each action will change the policy estimation a lot. Hence, in order
tomeasure the policy’s quality more accurately, we choose to calcu-
late only the final reward, which provides a more stable estimation.

e Transition probability P: Transition probability p(S*™!|S?,a?)
defines the state transition from S’ to S**! after taking action a’
at time ¢.

We parameterize the policy network using a deep neural network,
which is defined as follows:

DEFINITION 1 (PoLicY NETWORK). A policy network 7(-;0p) pa-
rameterized by 8, is used to select a node sequence from the can-
didate training nodes to query, which yields a probability score for
each node in the unlabeled set. We learn the optimal parameter 9; by
maximizing the performance of the classifier f on the validation set:
M(f (G, Vyatia)s Yvatia), where M is an evaluation metric, f is trained

on Vql?my chosen by 9; and Y, ,jiq is the labels of the validation set.
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Hence we can formally define the MDP based AL problem on
graphs as follows:

PrROBLEM 1 (MDP BASED ACTIVE LEARNING PROBLEM). Given a
graph G =(V ,E), with a query budget B, our goal is to learn a policy
7 to select the best node sequence to query, in order to optimize the
prediction performance throughout the query process.

3.2 Framework

Figure 1 illustrates the proposed framework. First, we alternately
use a policy network to query the label of a candidate node and train
the GNN classifier to update the current state of the graph, until
the query budget is reached. In what follows, we evaluate the GNN
classifier on the validation set to update the policy.

3.2.1 Reinforcement Learning Architecture. The AL algorithm takes
an action by selecting the next node to query. In addition to the
heuristic metrics, we can choose the nodes that can maximize the
performance of the GNN classifier on the validation set. As this
problem can be naturally formalized as a reinforcement learning
architecture, we followed the GPA framework [49] in our paper.

We denote the state of graph G at step t as a matrix S?, where each
row sﬁ, is the state representation of node v. In order to represent the
state representation, we adopt degree as representativeness measure
and entropy and KL divergence as the uncertainty measures in the
policy network:

o Degree: We use the degree of a node to represent its representa-
tiveness. The higher the degree of the nodes, the more important
the nodes are. Thus their labels are more likely to be informative.
The degree is denoted by

s;’l =min(degree(v)/d,1), (1)

where ¢ is a scaling hyperparameter.

e Entropy: The entropy of the label distribution is to predict the
uncertainty of each node. In other words, if the classifier has low
confidence about a node’s predicted label, then the node’s label
is more likely to be useful. We divide the entropy by log(C) to
normalize it into range [0,1]:

C
1 A ~
Sp2=" Tog(C) ;yi(v’)bg(yi(v’)), )

where §;(v?) is the class probability of node v belonging to the
i-th class predicted by the classifier at step ¢.

e Divergence: The divergence is calculated based on a node’s label
prediction distribution and its neighbor’s. It measures how differ-
ent the node and its neighbors are, which can better identify the
decision boundaries in the graph:

o= 2 KL b = D KLl

S .= ——
0,3
INo ueN, ueN,
3

We use an indicator to represent whether the node has been la-
beled or not, and concatenate it with the above metrics to form the
feature vector s, for each node v. The graph state matrix S* will be
passed into the policy network to generate the action probabilities.
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Figure 1: The overview of ALLIE with two main parts: policy network and fraud detector.

Imbalance-aware Reward Function Design: In order to fix the
imbalanced data distribution issue and boost the model’s perfor-
mance on the minority classes, we introduce a balancing strategy
on the reward in AL to make the method query more nodes that can
represent the minority class better. Specifically, for the reward signal,
we use a performance metric that treats each class equally instead of
each sample and thus assigns more weights to the minority samples.

Below we detail how we calculate the reward signal and what met-
rics we choose. The policy network is rewarded by the performance
gain of the GNN classifier f trained with the updated set of labeled
nodes. The reward of the selected node sequence is calculated based
on the performance of f on the validation set:

R(chlery) =M(f(G,Vyalid): Yvalid)» 4)

where M is the evaluation metric, f trained on graph G and labels of

V(fflery, Vialid and Y4154 are the nodes and labels of the validation set.
We implement M using the following metrics:

o Weighted reward: When the sample belongs to the minority class,
the reward is +1 if the prediction 7 is correct; —1 if not. When
the sample belongs to the majority class, the reward is multiplied
by the imbalanced ratio p, which is the number of samples in the
minority class divided by the number of samples in the majority
class [32].

e Micro-1 calculates metrics by counting the total true positives,
false negatives and false positives globally, which favors the ma-
jority classes, e.g., the benign buyer.

e Macro-F1 averages the F1 score per class, which can get a sense
of effectiveness on the small classes (e.g., the abusive buyer).

We empirically compare the three reward functions in Section
4.4.1 and find ALLIE with Macro-F1 achieves the best results.

Reinforcement Learning Algorithm: The training framework is
shown in Figure 1. At every step, we first update the graph state
matrix S tG The policy network selects a node v from Vtrain\VL{u_elry
based on the probability of each action 7(:|S?), gets its label, and
puts it into the label set Vqtuery. Then the GNN classifier f is trained
for one epoch on graph state matrix S é and the label set Vqtuery. After
that, we can get the new label prediction of each node and update the
heuristic metrics such as 52’2, 52’3 and s;’ 4 The heuristic metrics
are used to generate the graph state matrix S**! for the next step.
When the query budget B is used up, we train the GNN classifier f

until convergence without querying more nodes.
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3.2.2  Policy Network Design. The policy network takes graph state
as an input and produces the probability distribution of each action
(where an action is querying a node’s label). GNNs can better char-
acterize the graph’s topology and help find the most informative
nodes in the graph. Hence we set up the policy network architecture
as a GNN. We use GCN [24] to implement the policy network. In
GCN, the nodes are assigned to an initial feature matrix H (0) e RNXF ,
where N is the number of nodes and F is the feature dimension size.
Here we use the initial state of graph H (0) = §* as the initial input
feature. The layer-wise propagation rule updates the node represen-
tations using the representations of its neighbors in the graph in the
(I+1)-th layer, yielding the feature matrix:

H =D 2 AD" 2 HOw), )

where A € RNXN is the adjacency matrix with self-connections
(A+1I), D is the degree matrix of A, W e RN*F s the weight matrix
and o(-) denotes an activation function (we use ReLU in this paper).
We apply a linear layer to map the final output to a probability score
indicating whether this node should be queried:

7(-|St) =Softmax(WH +b). (6)

Graph Coarsening: The computational cost will grow exponen-
tially as the number of GCN layers increases. In addition, as the
search space covers all the candidate nodes for annotation, the large
number of discrete actions makes reinforcement learning methods
difficult to apply for large graphs. Thus, we introduce the graph
coarsening strategy SAGPool [28] into the GCN policy network in
Eq. (5) to distinguish between the nodes that should be dropped and
the nodes that should be retained, which will reduce the running
time and shrink the action space at the same time.

The self-attention score matrix Z € RNX! is calculated as follows:

70 =o(p~2 AD": HD @), (7)

where © € RVX1 js the parameter matrix to be learned. With the
attention score matrix Z, we can select the top k percent nodes to
keep in each layer, yielding a list of top [kNT] nodes’ indices:

idx=top(Z,[kN1). 8)

The output feature matrix and the corresponding adjacency ma-
trix of each layer are calculated as:
1 1

HEV = 072Y) A=Ay iax

idx’

©)
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where ;4 . represents the row-wise (i.e. node-wise) index notation,
© is the broadcasted elementwise product, and ;4. ;g represents
the row-wise and col-wise index notation.

3.2.3 Robust Classification. The GCN fraud detector can classify
both labeled and unlabeled nodes. On the top of the policy network,
we apply a linear layer, taking the final output embedding H (L) as
input. The output of the fraud detector is the probability of a node
being positive.

The goal of the fraud detector is to determine whether a node is
positive (abusive buyer) or not (benign buyer). On the shopping web-
site, the positive class makes up only a very small portion (<5%). This
data imbalanced issue causes two learning problems: (1) the easy
negative samples do not contain much information to facilitate the
training; (2) the easy negative samples may degenerate the model. To
efficiently train on all samples, we employ focal loss [33]. Denote pos-
itive nodes as v™ ~ pr+(v), and negative nodes v~ ~ pr-(v), where
R* and R~ represent the positive samples’ and negative samples’
spaces respectively. The loss function is denoted as follows:

Je(0c)==Epr~py [a(l —f(@;0¢))Y log f (v30c)]
~Eo-~pe- [(1-a) f(v30c) log(1- f (v:0c))]

where y is a focusing parameter, which focuses more on hard and
easily misclassified examples, and « is the weight assigned to the rare
class. y =2 and a =0.25 work best based on the rule of thumb [33].

As for the multi-class scenario in general, we exclude « as it is
not applicable for multiple classes. We still set y as 2 based on rule
of thumb. The multi-class focal loss is calculated as follows:

Je(0c)=—(1-f(v36e))Y log f(v3fe) (10)

3.24 Training and Inference. For training the classifier, we mini-
mize the focalloss J¢ in Eq. (10). The objective function of the policy
network is:
B
Tp(Op)=Env8,,:0,) R Vauery)]- (11)

where B is the query budget, and R is the reward on graph G. We use
a classic policy gradient method REINFORCE [48] to train the policy
network 7.

In order to train the policy network 7 (-;0p) parametered by 6, we
alternately update 6. by optimizing the focal loss 7. on the training
data queried by policy ﬁ(';ép), and update 6, by maximizing the
sum of expected rewards obtained from the classifier f(-;0.) on the
validation set:

9; = argemaxj;,(ep ), 0z :arggmimfc(@c). (12)
D c

The training process is divided into two stages. In the first stage,
we train the classifier f(-;0.) to minimize the loss function J¢(0.),
while actively querying the unlabeled nodes. When the query budget
is used up, we train the classifier f until convergence. In the second
stage, we evaluate the trained classifier f on the validation set to get
the reward signal and use that to update 0),) together with the policy
gradient. The detailed training steps are summarized in Algorithm 1.

4 EXPERIMENTS

In this section, we compare the performance of ALLIE with state-
of-the-art AL methods on graphs. We aim to answer the following
evaluation questions (EQ):
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Algorithm 1: ALLIE for AL on Graphs.

Input: Graph G, validation set
Vialid and corresponding label set Y4144, initial query
set V(?uery, query budget B and training epochs N
Output: Well-trained node classifier f and AL policy &
1 fore=1,....Ndo
2 fort=1,...,Bdo
3 Update the graph state S..;

4 Use policy 7 to sample a node based on

S é; for annotation, and add it to the query set Vqtuery;
5 Minimize the detection loss J¢(6.)
in Eq. (10) with the updated Vq’uery for one epoch;

6 end
7 while not converged do
8 Minimize
the detection loss J¢(0.) in Eq. (10) with Vq]%lery;
9 end
10 Evaluate classifier f on the validation set V,,1;q

and Yy,jiq to get the reward signal R(V(flery) in Eq. (4);
1 Use the sum of expected

rewards to learn the optimal policy z* in Eq. (11);
12 end

Table 1: Statistics of citation graph datasets.

Cora Citeseer Pubmed

#nodes 2,485 2,110 19,717
# edges 5,068 3,668 44,338
#classes 7 6 3

e EQ1:Is ALLIE able to improve the node classification performance
on both benchmark dataset and real-world e-commerce dataset?

e EQ2: How effective are graph coarsening, focal loss, and reward
function adaptation method in ALLIE?

e EQ3: How robust is ALLIE with respect to its hyperparameter
values?

To this end, we introduce the datasets used and baselines, followed
by experiments to answer these questions.

4.1 Experimental Setting

4.1.1 Datasets. We use several benchmark citation graph datasets
(Cora, Citeseer, Pubmed [40]). The statistics of the citation graph
datasets are presented in Table 1. We also use datasets created from
sampled, anonymized logs from an e-commerce website. We con-
struct a graph consisting of sellers, buyers, reviews and products.
Table 2 shows the approximate numbers of the nodes and edges that
we sampled. This dataset is heavily sampled, and is not reflective
of production traffic. We merely use it here to highlight the utility
of ALLIE. We randomly initialized the attributes of each node when
training the graph neural network. Sampling is done by randomly
picking 10K buyers, performing Breadth First Search (BFS), and add
the additional nodes to our dataset. A similar sampling method is
used previously in [1].
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Table 2: Summary of the e-commerce dataset. The dataset is
heavily subsampled, and is used to show the efficacy of ALLIE
on areal world use case.

Data property Value

Node types {buyer, seller, review, product}
#nodes (post sampling) ~50K

% abusive buyers 5.2

# edges (post sampling) ~61K

% abusive reviews 1.7

4.1.2  Implementation details. We implement ALLIE with PyTorch.
We vary the learning rate in {1071,1072,1073,107*} and found learn-
ing rate 102 worked best. For baselines, we follow the exact network
architecture detailed in the corresponding works. We outline the
baselines used in Section 4.1.3. For all models, we use Adam [23] with
100 epochs. On citation graph datasets, we use 5 samples from each
class to construct the initial training set, and set the query budget
as 20 for each class. On the e-commerce dataset, we use 200 samples
from each class to construct the initial training set, and set query
budget as 250 for each class. We repeat all experiments five times
and report the averages and the standard deviations of the metrics.

4.1.3 Baselines. We compare ALLIE with the following represen-

tative and state-of-the-art AL on graph algorithms:

e Random: Random selects several candidate nodes uniformly at
random to annotate in each epoch, and uses GNN to re-train the
classifier using these nodes.

o AGE? [7]: AGE uses the weighted sum of entropy, density and
centrality to find the best candidate(s) from all unlabeled nodes.

o FeatProp? [49]: FeatProp uses cluster centers as selected candi-
dates through k-medoids clustering.

o GPA’ [21]: GPA formalizes AL on graphs as an MDP (Markov
Decision Process) and learns the optimal query strategy with
reinforcement learning.

o MetAL® [35]: MetAL uses an AL algorithm that selects a set of
unlabeled instances based on an informative metric, gets their
labels, and updates the labeled dataset.

We choose the above methods that based on the following aspects:
(1) only heuristic metrics, such as AGE and FeatProp; (2) heuristic
metrics and reinforcement learning, such as GPA; and (3) heuristic
metrics and meta-learning, such as MetAL. This allows us to compare
ALLIE to multiple kinds of methods.

4.14  Evaluation measures. We use Micro F1 and Macro F1 to evalu-
ate the performance of all methods on the citation datasets. We report
per-class precision, recall and F1 score on the e-commerce dataset.
The latter dataset lends itself to a highly imbalanced classification
problem.

4.2 EQ1: Performance on Public Datasets

To answer EQ1, we first compare ALLIE with the state-of-the-art AL
algorithms introduced in Section 4.1.3 on benchmark graph datasets.
We conduct experiments in both balanced and imbalanced settings.

3https://github.com/vwz/AGE
“https://github.com/CrickWu/active_graph
Shttps://github.com/ShengdingHu/GraphPolicyNetworkActiveLearning
Shttps://github.com/Kaushalya/metal
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4.2.1 Balanced Setting. We use the original datasets as-is to conduct
the experiments in this setting. The problem is that of multi-class
node classification. Table 3 summarizes the node classification per-
formance of all competing methods (reporting the average of 5 runs).
From the table, we can make the following observations:

o For the metric-based methods AGE and FeatProp, the performance
is unsatisfactory. Though they use several heuristic metrics to cap-
ture the representativeness of nodes, they do not leverage node
interactions to better measure node informativeness.

e The meta-learning based method MetAL performs better than
metric-based methods, demonstrating the effectiveness of using
the classifier’s performance as feedback. MetAL is inferior to AL-
LIE. We hypothesize that MetAL needs a moderate- to large-sized
initial training set to learn accurate model weights.

e ALLIE outperforms other methods in terms of Macro F1 and Micro
F1 on three datasets. This shows that ALLIE effectively leverages
both graph information as well as feedback.

4.2.2  Imbalanced Setting. In this setting, we manually adapt the
datasets into binary classes to make the data distribution imbal-
anced. Following [42], we treat the smallest class in Cora, Citeseer
and PubMed as the positive class and the rest as the negative class.
The positive class ratios are 7%, 8% and 21% respectively. Results are
shown in Table 4 (reporting the average of 5 runs). From the table,
we can see that:

o All the model performances on Macro-F1 and Micro-F1 degrade.
This reinforces our hypothesis that when the data distribution
becomes imbalanced, the classifier tends to predict most samples
as belonging to the majority class.

o ALLIE outperforms the other models. It demonstrates the effective-
ness of the balancing strategies, including the imbalance-aware
reinforcement learning framework and focal loss.

4.3 EQ1:Performance on e-commerce dataset

In order to test EQ1 in a real-world setting with large-scale im-
balanced graphs, we define two node classification tasks on the
e-commerce dataset. The tasks are detecting abusive users behavior
and abusive reviews. Both these tasks are important in e-commerce
to ensure high customer trust. Because the dataset is proprietary, we
report relative changes in each metric with respect to a baseline.

4.3.1 Classification on Buyers. Here we investigate the performance
of ALLIE when distinguishing abusive buyers from benign buyers,
and make the following observations.

o ALLIE outperforms the other models. It again shows the impor-
tance of applying reinforcement learning to query nodes from the
unlabeled data, which directly optimizes the performance of the
GNN classifier.

e Itis worthwhile to point out that ALLIE has a higher performance
improvement with the abusive buyer class compared with the
benign buyer class. This indicates the effectiveness of adapting
the reward function to better capture the minority class (abusive
buyer) and using focal loss to down-weight the well-classified
samples (benign buyers far from the classification boundary).

4.3.2 Classification on Reviews. We summarize the observations of
ALLIE in classifying abusive reviews and benign reviews.


https://github.com/vwz/AGE
https://github.com/CrickWu/active_graph
https://github.com/ShengdingHu/GraphPolicyNetworkActiveLearning
https://github.com/Kaushalya/metal
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Table 3: Node classification performance (Macro F1 and Micro F1 +Std) on the balanced setting of citation graph datasets. The
best and 2nd best are noted in bold font and underlined, respectively.

Cora Citeseer PubMed
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1
Random 0.6819+0.041 0.7031+0.071 0.5438+0.093 0.5762+0.079 0.7033+0.051 0.7296+0.118
AGE 0.7322+0.046 0.7725+0.031 0.6152+0.013 0.6722+0.098 0.7735+0.019 0.7737+0.019
FeatProp 0.7826+0.018 0.7645+0.009 0.6417+0.041 0.6097+0.087 0.7392+0.068 0.7321+0.124
GPA 0.7677+0.063 0.8105+0.012 0.6635+0.039 0.7130+0.102 0.7912+0.091 0.7996+0.043
MetAL 0.7455+0.012 0.7985+0.023 0.6184+0.016 0.7018+0.065 0.7711+0.086 0.7764+0.075
ALLIE 0.8025+0.071 0.8242+0.027 0.6838+0.020 0.7425+0.082 0.8228+0.038 0.8376+0.049

Table 4: Node classification performance (Macro F1 and Micro F1 +Std) on the imbalanced setting of citation graph datasets.

Cora Citeseer PubMed
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1
Random 0.1781+0.048 0.5645+0.042 0.2755+0.063 0.5695+0.072 0.1735+0.036 0.5691+0.193
AGE 0.1631+0.084 0.6424+0.038 0.3716+0.093 0.6293+0.049 0.1871+0.048 0.6266+0.051
FeatProp  0.3582+0.071 0.6427+0.193 0.4295+0.104 0.6817+0.094 0.2594+0.088 0.6692+0.038
GPA 0.4892+0.042 0.7384+0.098 0.4239+0.078 0.7084+0.053 0.3813+0.085 0.7442+0.158
MetAL 0.4583+0.035 0.6979+0.025 0.4328+0.062 0.7035+0.067 0.3602+0.105  0.7791+0.084
ALLIE 0.5391+0.027 0.7692+0.015 0.4894+0.041 0.7684+0.074 0.4391+0.037 0.7694+0.056

Table 5: Buyer classification performance relative change (Precision, Recall and F1 +Std) on the e-commerce dataset.

Abusive Buyer
Recall

F1

Benign Buyer
Precision Recall F1 Precision

Random - - - -

AGE +0.1650+0.013 +0.0640+0.053 +0.1408+0.028 +0.1119+0.025
FeatProp +0.1547+0.042 +0.0522+0.041 +0.0876+0.031 +0.0987+0.016
GPA +0.1872+0.042 +0.0950+0.032 +0.1647+0.035 +0.1519+0.013
MetAL +0.0546+0.031 +0.0401+0.018 +0.0743+0.039 +0.0941+0.031
ALLIE +0.1936+0.025 +0.0834+0.018 +0.1671+£0.024 +0.2024+0.013

+0.0337+0.024
+0.0028+0.036
+0.0435+0.042
+0.0482+0.013
+0.0521+0.041

+0.0685+0.017
+0.0388+0.028
+0.0891+0.042
+0.0771+0.031
+0.1184+0.027

Table 6: Review classification performance relative change (Precision, Recall and F1 +Std) on the e-commerce dataset.

Benign Review

Abusive Review
Recall

F1

Precision Recall F1 Precision
Random - - - -
AGE +0.1864+0.013 +0.1968+0.019 +0.2037+0.173 +0.1544+0.012
FeatProp +0.1432+0.022 +0.0612+0.017 +0.1286+0.022 +0.1858+0.023
GPA +0.3934+0.032 +0.3167+0.009 +0.3885+0.025 +0.4515+0.013
MetAL +0.1168+0.017 +0.1968+0.041 +0.2054+0.026 +0.4139+0.052
ALLIE +0.3864+0.013 +0.3968+0.019 +0.4207+0.173 +0.4960+0.056

+0.1299+0.695
+0.1259+0.031
+0.3815+0.058
+0.2758+0.032
+0.4409+0.013

+0.1187+0.031
+0.1409+0.032
+0.3979+0.023
+0.3800+0.077
+0.4375+0.042

o ALLIE still outperforms baselines, especially in the abusive review
class, which indicates that ALLIE is suitable for imbalanced graphs.

o The scores of metric-based methods, AGE and FeatProp, on review
classification task is generally much lower than their results on
the buyer classification task. This indicates that their performance
worsens when the data is more imbalanced.

4.4 EQ2: Ablation Study

In order to answer EQ2, we explore each component of ALLIE sep-
arately. We first study the influence of different reward function
designs. Then we examine the influence of graph coarsening and
balancing strategies.

4.4.1  Effect of reward functions. To explore the impact of various
reward function designs in Section 3.2.1, we consider several variants
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of ALLIE that use different reward functions: weighted reward, Micro-
F1 and Macro-F1. We term these methods ALLIEeighted reward
ALLIEMicro-F1 and ALLIEp acro-F1 Tespectively.

Table 7 summarizes the results on the imbalanced setting of the
public datasets in Section 4.2.2. We find that ALLIEacro-F1 iS supe-
rior than ALLIEeighted reward and ALLIEpicro-p1- This verifies that
incorporating sample balancing into the reward function design can
address the class imbalance issue.

4.4.2  Effect of graph coarsening and balancing strategies. We define
several variants of ALLIE to study the effects of graph coarsening,
focal loss and reward function adaptation:

o \coarsen: This is a variant of ALLIE which does not integrate the
graph coarsening module.
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Table 7: Effect of reward functions (Macro F1 and Micro F1 +Std) on imbalanced citation graph datasets.

Cora Citeseer PubMed
Reward Function Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1
Weighted Reward ~ 0.5274+0.034 0.7524+0.080 0.4789+0.016 0.7639+0.011 0.4323+0.141 0.7543+0.187
Micro-F1 0.5245+0.138 0.7534+0.046 0.4716+0.022 0.7563+0.048 0.4287+0.069 0.7685+0.098
Macro-F1 0.5391+0.027 0.7692+0.015 0.4894+0.041 0.7684+0.074 0.4391+0.037 0.7694+0.056
] o0s e R 4.5 EQ3: Hyperparameter Sensitivity Analysis
g o B We vary the initial training set sizes and query budget to test how
o E 008 E
é o 5 %00 E, ALLIE varies along these dimensions. The buyer classification task
& ou w £ B ::: 5 on the e-commerce dataset is used as the example task here.
3 3
-3 o
300
o . 100 4.5.1 Performance under different initial training set sizes. We start
\coarsen oss rewar coarsen loss rewars . e e o« .
e Yo Vi e e oo s ALLIE with {50,150,250,350,450} initial training samples. We run

(a) Benign Buyer (b) Abusive Buyer

Figure 2: Performance gain comparison over variants on
the buyer classification task. The background histograms
indicate the F1 gain over AGE of each variant. The lines
indicate the running time (in seconds).
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Figure 3: Performance gain over Random with different
training set sizes and query budgets.

o \loss: This is a variant which does not specifically down-weight
the well-classified samples. The focal loss function is replaced by
the standard cross entropy loss function.

o \reward: This is a variant which uses Micro-F1 as its reward met-
ric.

We also record the running time (in seconds) of each variant
and summarize the experimental results in Figure 2. We have the

following findings:

e Removing the graph coarsening module slightly degrades the

model’s performance, as SAGPool has an attention mechanism

that can improve the performance of GNN. Furthermore, this vari-
ant takes the longest time compared to all methods in the AL part.

Changing the reward function to Macro-F1 is more effective for im-

proving the F1 of abusive buyers, as Micro-F1 favors large classes

(benign buyer) while Macro-F1 averages F1 per class.

e When we do not use focal loss, the false positive rate increases,
which results in lower Precision and F1. This variant performs the
worst, which indicates that the focal loss function contributes the
most in ALLIE.
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each method five times and report the averaged F1 score in Figure
3(a). From the results, we see that ALLIE outperforms all the base-
lines regardless of the initial training set size. Importantly, when
the training set sizes are small, ALLIE significantly outperforms the
baseline methods.

4.5.2  Performance under different query budgets. We train ALLIE
with {50,100,150,200,250} budgets, and then evaluate the learned
model. All the methods are tested using the same initial training set.
We run each method five times and report the averaged F1 score in
Figure 3(b). Again, we see that ALLIE outperforms baselines signif-
icantly when the budgets are small.

The above experiments show that ALLIE is indeed well suited to
the problem of active learning on graphs when the labeled data is
highly imbalanced.

5 CONCLUSION

In this paper, we propose ALLIE, a novel active learning framework
designed for large-scale imbalanced graphs. ALLIE leverages a graph
policy network to query the candidate nodes to label by optimizing
the long-term performance of the GNN classifier. With two balanc-
ing strategies, ALLIE can better deal with an imbalanced data distri-
bution compared with several state-of-the-art methods. Moreover,
ALLIE has a graph coarsening module which makes it scalable on
large-scale applications. Experiments on three benchmark datasets
and a real-world shopping website dataset demonstrate the strong
performance of ALLIE.
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