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Abstract. Continuous deep learning models, referred to as Neural Ordi-
nary Differential Equations (Neural ODEs), have received considerable
attention over the last several years. Despite their burgeoning impact,
there is a lack of formal analysis techniques for these systems. In this
paper, we consider a general class of neural ODEs with varying archi-
tectures and layers, and introduce a novel reachability framework that
allows for the formal analysis of their behavior. The methods developed
for the reachability analysis of neural ODEs are implemented in a new
tool called NNVODE. Specifically, our work extends an existing neural
network verification tool to support neural ODEs. We demonstrate the
capabilities and efficacy of our methods through the analysis of a set
of benchmarks that include neural ODEs used for classification, and in
control and dynamical systems, including an evaluation of the efficacy
and capabilities of our approach with respect to existing software tools
within the continuous-time systems reachability literature, when it is
possible to do so.

1 Introduction

Neural Ordinary Differential Equations (ODEs) were first introduced in 2018,
as a radical new neural network design that boasted better memory efficiency,
and an ability to deal with irregularly sampled data [21]. The idea behind this
family of deep learning models is that instead of specifying a discrete sequence of
hidden layers, we instead parameterize the derivative of the hidden states using
a neural network [8]. The output of the network can then be computed using a
differential equation solver [8]. This work has spurred a whole range of follow-up
work, and since 2018 several variants have been proposed, such as augmented
neural ODEs (ANODEs) and their ensuing variants [39,11,16]. These variants
provide a more expressive formalism by augmenting the state space of neural
ODEs to allow for the flow of state trajectories to cross. This crossing, prohibited
in the original framework, allows for the learning of more complex functions that
were prohibited by the original neural ODE formulation [11].

Due to the potential that neural networks boast in revolutionizing the de-
velopment of intelligent systems in numerous domains, the last several years
have witnessed a significant amount of work towards the formal analysis of these



models. The first set of approaches that were developed considered the formal
verification of neural networks (NN), using a variety of techniques including reach-
ability methods [46,47,3,40], and SAT techniques [29,30,13]. Thereafter, many
researchers proposed novel formal method approaches for neural network control
systems (NNCS), where the majority of methods utilized a combination of NN and
hybrid system verification techniques [14,22,44,26,23,6]. Building on this work, a
natural outgrowth is extending these approaches to analyze and verify neural
ODEs, and some recent studies have considered the analysis of formal properties
of neural ODEs. One such study aims to improve the understanding of the inner
operation of these networks by analyzing and experimenting with multiple neural
ODE architectures on different benchmarks [36]. Some studies have considered
analyses of the robustness of neural ODEs such as [7] and [48], which evaluate
the robustness of image classification neural ODEs and compare the efficacy of
this class of network against other more traditional image classifier architectures.
The first reachability technique targeted for neural ODEs presented a theoretical
regime for verifying neural ODEs using Stochastic Lagrangian Reachability (SLR)
[19]. This method is an abstraction-based technique that computes confidence
intervals for the calculated reachable set with probabilistic guarantees. In a
follow-up work, these methods were improved and implemented in a tool called
Gotube [20], which is able to compute reach sets for longer time horizons than
most state-of-the-art reachability tools. However, these methods only provide
stochastic bounds on the reach sets, so there are no formal guarantees on the
derived results.

To the best of our knowledge, this paper presents the first deterministic
verification framework for a general class of neural ODEs with multiple continuous-
time and discrete-time layers. In this work, we present our verification framework
NNVODE that makes use of deterministic reachability approaches for the analysis
of neural ODEs. Our methods are evaluated on a set of benchmarks with different
architectures and conditions in the area of dynamical systems, control systems,
and image classification. We also compare our results against three state-of-the-
art verification tools when possible. In summary, the contributions of this paper
are:

– We introduce a general class of neural ODEs that allows for the combination
of multiple continuous-time and discrete-time layers.

– We develop NNVODE, an extension of NNV [46], to formally analyze a general
class of neural ODEs using sound and deterministic reachable methods.

– We run an extensive evaluation on a collection of benchmarks within the
context of time-series analysis, control systems, and image classification. We
compare the results to Flow*, GoTube, and JuliaReach for neural ODE
architectures where this is possible.

2 Background and Problem Formulation

Neural ODEs emerged as a continuous-depth variant of neural networks becoming
a special case of ordinary differential equations (ODEs), where the derivatives
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are defined by a neural network, and can be expressed as:

ż = g(z), z(t0) = z0, (1)

where the dynamics of the function g : Rj → Rp are represented as a neural
network, and initial state z0 ∈ Rj , where j corresponds to the dimensionality of
the states z. A neural network (NN) is defined to be a collection of consecutively
connected NN-Layers as described in Definition 1.

Definition 1 (NN-Layer). A NN-Layer is a function h: Rj → Rp, with input
x ∈ Rj, output y ∈ Rp defined as follows

y = h(x) (2)

where the function h is determined by parameters θ, typically defined as a tuple θ
= ⟨σ,W,b⟩ for fully-connected layers, where W ∈ Rj×p, b ∈ Rp, and activation
function σ: Rj → Rp, thus the fully-connected NN-Layer is described as

y = h(x) = σ(W(x) + b). (3)

However, for other layers such as convolutional-type NN-Layers, θ may include
parameters like the filter size, padding, or dilation factor and the function h
in (3) may not necessarily apply. For a formal definition and description of the
reachability analysis for each of these layers that are integrated within NNVODE,
we refer the reader to Section 4 of [43]. For the Neural ODEs (NODEs), we assume
that g is Lipschitz continuous, which guarantees that the solution of ż = g(z)
exists. This assumption allows us to model g with m layers of continuously
differentiable activation functions σk for k ∈ {1, 2, ...,m} such as sigmoid, tanh,
and exponential activation functions. Described in (1) is the notion of a NODE
as introduced in [8] and an example is illustrated in Figure 1.

Definition 2 (NODE). A NODE is a function ż = g(z) with m fully-connected
NN-Layers, and it is defined as follows

ż = g(z) = hm(hm−1(...h1(z))), (4)

where g : Rj → Rp, σk : Rjk → Rpk , Wk ∈ Rjk×pk , and bk ∈ Rpk . For each layer
k={1, 2, . . . ,m}, we describe the function hk as in (3).

2.1 General Neural ODE

The general class of neural ODEs (GNODEs) considered in this work is more
complex than previously analyzed neural ODEs as it may be comprised of two
types of layer: NODEs and NN-Layers. We introduce a more general framework
where multiple NODEs can make up part of the overall architecture along with
other NN-Layers, as described in Definition 3. This is the reachability problem
subject of evaluation in this work.
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Fig. 1. Illustration of an example of NODE with m = 2 hidden layers, 2 inputs and 2
outputs, as defined in (1) and (4), and Definition 2.

Definition 3 (GNODE). A GNODE F is any sequence of consecutively
connected N layers Lk for k ∈ {1, . . . N} with NO NODEs and ND NN-Layers,
that meets the conditions 1 ≤ NO ≤ N , 0 ≤ ND < N , and ND + NO = N .

With the above definition, we formulate a theorem for the restricted class
of neural ODEs (NODE) that we use to compare our methods against existing
techniques.

Observation 1 (Special case 1: NODE) Let F be a GNODE with N layers.
If N = 1, NO = 1 and ND = 0, then F is equivalent to an ODE whose continuous-
time dynamics are defined as a neural network, and we refer to it as a NODE
(as in Definition 2).

In Figure 2, an example of a GNODE is shown, which has 1 input (x ), 1
output (y), NO = 2 NODEs, and ND = 5 NN-Layers, with its 5 numbered
segments described as: 1) The first segment has a NN-Layer, with one hidden
layer of 2 neurons and an output layer of 2 neurons, 2) a NODE with one hidden
layer of 3 neurons and an output layer of 2 neurons, 3) NN-Layer with 3 hidden
layers of 4,1, and 2 neurons respectively, and an output layer of 2 neurons, 4)
NODE with a hidden layer of 3 neurons and output layer of 2 neurons, and 5)
NN-Layer with a hidden layer of 4 neurons and and output layer with 1 neurons.

Fig. 2. Example of a GNODE. The filled circles represent weighted neurons in each
layer, non-filled neurons represent the inputs of each layer-type segment, shown for
visualization purposes.

Given this GNODE architecture, we are capable of encoding the originally
proposed neural ODE [8], as well as several of its model improvements including
higher-order neural ODEs like the second-order neural ODE (SONODE) [39],
augmented neural ODEs (ANODEs) [11], and input-layer augmented neural ODEs
(ILNODEs). This general class of neural ODEs from Definition 3 is applicable to
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many applications including image classification, time series prediction, dynamical
system modeling and normalizing flows.

Observation 2 (Special case 2 - NNCS) We can consider the NNCS as a
special case of the GNODE, as the NNCS models also consist of NN-Layers and
NODE, under the assumption that the plant is described as an NODE. NNCS in
the general architecture have NN-Layers followed by an ODE or NODE, which
connects back to the NN-Layers in a feedback loop manner for cp control steps.
Thus, by unrolling the NNCS cp times, we consecutively connect the NN-Layers
with the NODE, creating a GNODE.

2.2 NODE: Applications

There are two application modes of a NODE, model reduction and dynamical
systems. On one hand, we can use it as a substitute for multiple similar layers to
reduce the depth and overall size of a model [8]. In this context, we treat the NODE
as an input-output mapping function, and set the integration time tf to a fixed
number during training, which will be then used during simulation or reachability.
Typically, this value is set to 1. On the other hand, we can make use of NODEs
to capture the behavior of time-series data or dynamical systems. In this sense,
tf is not fixed, and it will be determined by the user/application. In summary,
we can use NODEs for: 1) time-series or dynamical system modeling, and 2)
model reduction. For time-series, tf is variable, user or application dependent.
For model reduction, tf is a parameter of the model fixed before training. Only
the output value at time = tf is used, while for the time-series models, we are
interested in the interval [0,tf ].

2.3 Reachability Analysis

The main focus of this manuscript is to introduce a framework for the reachability
analysis of GNODEs. This framework combines set representations and methods
from Neural Network (NN), Convolutional Neural Network (CNN) and hybrid
systems reachability analysis. Similar to neural network reachability in NNV [46],
we consider the set propagation through each layer as well as the set conversion
between layers for all reachability methods for the supported layers. Hence, the
reachability problem of GNODE is defined as follows:

Definition 4 (Reachable Set of a GNODE). Let F : Rj → Rp be a GNODE
with N layers. The output reachable set RN of a GNODE with input set R0 is
defined as:

R1 ≜ {y1 | y1 = f1(y0), y0 ∈ R0},
R2 ≜ {y2 | y2 = f2(y1), y1 ∈ R1},

...

RN ≜ {yN | yN = fN (yN−1), yN−1 ∈ RN−1},

(5)
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where fi: Rji → Rpi is the function f of layer i, where f is either a NODE (g)
or a NN-Layer (h).

The proposed solution to this problem is sound and incomplete, in other
words, an over-approximation of the reachable set. This means that, given a set
of inputs, we compute an output set of which, given any point in the input set,
we simulate the GNODE and the output point is always contained within the
reachable output set (sound). However, it is incomplete because the opposite is
not true; there may be points in the output reachable set that cannot be traced
back to be within the bounds of the input set.

Definition 5 (Soundness). Let F : Rj → Rp be a GNODE with an input set
R0 and output reachable set Rf . The computed Rf given F and R0 is sound
iff ∀x ∈ R0, | y = F(x), y ∈ Rf .

Definition 6 (Completeness). Let F : Rj → Rp be a GNODE with an input set
R0 and output reachable set Rf . The computed Rf given F and R0 is complete
iff ∀x ∈ R0, ∃y = F(x) | y ∈ Rf and ∀y ∈ Rf , ∃x ∈ R0 | y = F(x).

Definition 7 (Reachable set of a NN-Layer). Let h: Rj → Rp be a NN −
Layer as described in Definition 1. The reachable set Rh, with input X ⊂ Rn is
defined as

Rh = {y | y = h(x), x ∈ X}.
Definition 7 applies to any discrete-time layer that is part of a GNODE,

including, but not limited to the following supported NN − Layers supported
in NNVODE: fully-connected layers with ReLU, tanh, sigmoid and leaky-ReLU
activation functions, and convolutional-type layers such as batch normalization,
2-D convolutional, and max-pooling.

The reachability analysis of NODEs is akin to the general reachability problem
for any continuous-time system modeled by an ODE. If we represent the NODE
as a single layer i of a GNODE with continuous dynamics described by (1),
and assume that for a given initial state z0 ∈ Rji , the system admits a unique
trajectory defined on R+

0 , described by ζ(., z(t0)), then the reachable set of the
given NODE can be characterized by Definition 8.

Definition 8 (Reachable set of a NODE). Let g be a NODE with solution
ζ(t; z0) to (1) for initial state z0. The reachable set, Rg at t = tF , Rg(tF ), with
initial set R0 ⊂ Rn at time t = t0 is defined as

Rg(tF ) = {ζ(t; z0) ∈ Rn | z0 ∈ R0, t ∈ [0, tf ]}.

We also describe the reachable set for a time interval [t0,tf ] as follows

Rg([t0, tf ]) :=
⋃

t∈[t0,tf ]

Rg(t)

Now that we have outlined the general reachability problem of a NODE,
whether we compute a single reachable set for the NODE at t = tF , or over an
interval t ∈ [t0,tF ] (computed by get_time()), depends on how the neural ODE
was trained and the specific application of its use. However, the core computation
remains the same. This is outlined in Algorithm 1.
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Algorithm 1 Reachability analysis of a GNODE.
Input: F ,R0 // GNODE, input set
Output: Rf // output reachable set
1: procedure Rf = reach(F ,R0)
2: N = F .layers // number of layers
3: for i = 1 : N do // loop through every layer
4: Li = F .layer(i)
5: if Li is NODE then // check layer type
6: ti = get_time(Li) // get integration time bounds of layer i

7: Ri = reachNODE(Li,Ri−1, ti) // reach set of layer i, Definition 8
8: else
9: Ri = reachNN(Li, Ri−1) // reach set of layer i, Definition 7

10: Rf = RN // output reachable set

2.4 Reachability Methods

In the previous sections, we defined the reachable set of a GNODE using a
layer-by-layer approach. However, the computation of these reachable sets is
defined by the reachability methods and set representations utilized in their
construction. For instance, the same operations are not utilized to compute the
reachable set for a fully-connected layer with a hyperbolic tangent activation
function as with a fully convolutional layer. In the following section, we describe
the set of methods in the NNVODE tool available to the community to compute
the reachable set of each specific layer.

We begin with the NODE approaches, where we make a distinction based on
the underlying dynamics. If the NODE is nonlinear, we make use of zonotope
and polynomial-zonotope based methods that are implemented and available in
CORA [1,2]. If the NODE is purely linear, then we utilize the star set-based
methods introduced in [5], which are more scalable than other zonotope-based
methods and possess soundness guarantees as well.

For the NN-Layers, there are several methods available, including zonotope-
based and star-set based methods. However, we limited our implementation only
using star sets to handle these layers, as this representation was demonstrated to
be more computationally efficient and to enable tighter over-approximations of
the derived reachable sets than zonotope methods [45]. Additionally, in using star
set methods, we allow for the use of both approximate methods (approx-star)
and exact methods (exact-star). A summary of these methods and supported
layers is depicted in Table 1, and for a complete description of the reachability
methods utilized in our work, we refer the reader to [46] and the manual12.
Implementation. One of the key aspects of the verification of GNODEs is
the proper encoding of the NODEs within reachability schemes. Depending
on the software that is used, this process may vary and require distinct steps.
As an example, some tools, like NNVODE, are simpler and allow for matrix

1 NNV manual: https://github.com/verivital/nnv/blob/master/docs/manual.pdf
2 CORA manual: https://tumcps.github.io/CORA/data/Cora2021Manual.pdf
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Table 1. Layers supported in NNVODE and reachability sets and methods available.

Layer Type – Set Rep. (method name)
NODE Linear – Star-set ("direct") [5]
NODE Nonlinear – Zonotope, Polynomial Zonotope * [1,2]

NN-Layer FC: linear, ReLU – Star-set ("approx-star", "exact-star") [45]
NN-Layer FC: leakyReLU, tanh, sigmoid, satlin – Star-set ("approx-star") [46]
NN-Layer Conv2D – ImageStar ("approx-star", "exact-star") [46]
NN-Layer BatchNorm – ImageStar ("approx-star", "exact-star") [46]
NN-Layer MaxPooling2D – ImageStar ("approx-star", "exact-star") [46]
NN-Layer AvgPooling2D – ImageStar ("approx-star", "exact-star") [46]

* We support several methods available using Zonotope and PolyZonotopes, which includes user-
defined fixed reachability parameters ("ZonoF", "PolyF") as well as adaptive reachability methods
("ZonoA" and "PolyA"), which require no prior knowledge on reach methods or systems to verify
to produce relevant results.

multiplications within the definition of equations. However, for tools like Flow*,
the set of steps required to properly encode this problem are more complex as it
requires a definition for each individual equation of the state derivative. Thus, a
more general conversion is needed, illustrated in the extended version [34].

3 Evaluation

Having described the details of our reachability definitions, algorithm, and
implementation, we now present the experimental evaluation of our proposed
work. We begin by presenting, a method and tool comparison analysis against
GoTube3 [20], Flow*4 [9] and JuliaReach5 [6]. Then, we present a case study of an
Adaptive Cruise Control system, and conclude with an evaluation of the scalability
of our techniques using a random set of architectures for dynamical system
applications as well as a set of classification models for MNIST. The GNODE
architectures for each benchmark can be found in the extended version. To
facilitate the reproducibility of our experiments, we set a timeout of 2 hours (7200
seconds) for each reach set computation6. All our experiments were conducted
on a desktop with the following configuration: Intel Core i7-7700 CPU @ 3.6GHz
8 core Processor, 64 GB Memory, and 64-bit Ubuntu 16.04.3 LTS OS.

3.1 Method and Tool Comparison

We have implemented several methods within NNVODE, and the first evaluation
consists of comparing the available methods for nonlinear NODEs, fixed-step
zonotope and polynomial zonotopes (zono-F,poly-F) and adaptive zonotope and
polynomial zonotope (zono-A,poly-A) based methods [1]. For all other NN-Layers
in the GNODEs, we use the star-set over-approximate methods. We considered
3 GoTube can be found at https://github.com/DatenVorsprung/GoTube
4 Flowstar version 2.1.0 is available at https://flowstar.org/
5 JuliaReach can be found at https://juliareach.github.io/
6 NNV Release: https://zenodo.org/record/6840545#.YtGlrzfMKUk
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multiple models, all inspired by the ILNODE representation that was introduced
by Massaroli. They consist of a set of models with a varying number of augmented
dimensions. All these models are instances of the GNODE class presented in
Definition 3, which present an architecture of the form NN-Layers + NODE +
NN-Layers. In this context, we were concerned with how the methods scale with
respect to the number of dimensions of each model.

Table 2. Computation time of the reachability analysis of the Damped Oscillator
benchmark. Results are shown in seconds with up to one decimal place.

Aug. Dims Zono-F Zono-A Poly-F Poly-A
0 34.0 574.5 201.7 654.0
1 146.4 4205.0 1573.9 3440.9
2 441.0 – – –

(a) Aug. Dims = 0 (b) Aug. Dims = 0 (c) Aug. Dims = 1 (d) Aug. Dims = 1

Fig. 3. Reach sets comparison of the Damped Oscillator benchmark of the model with
0 and 1 augmented dimensions. Plots (a) and (c) show the reachable set at t = 1s, and
plots b) and d) show the zoomed-in reach sets to observe the minor size differences
between the four methods: ZonoA, ZonoF, PolyF and PolyA.

In Table 2, we observe that the Zono-F method is the fastest across all
models, while the adaptive methods are the slowest. Moreover, only Zono-F is
able to complete the reach set computation for all three models, while the other
methods time out. In terms of the size of the computed reach sets, we compare
the last reach set obtained in Figure 3. In the subplots 3(b) and 3(d) we see the
zoomed in reach sets, and observe that the Poly-A method computes the smallest
over-approximate reach set across both experiments. Based on these results, in
all subsequent experiments, we use the zono-F method for nonlinear NODEs,
the direct method for linear NODEs, and the over-approximate star-set methods
for all the NN-Layers.

The next part of our evaluation consists of comparing NNVODE’s methods for
NODEs to those of Flow* [9], Gotube [20] and JuliaReach [6] across a collection of
benchmarks that include a linear and nonlinear 2-dimensional spiral [8], a Fixed-
Point Attractor (FPA) [38] and a controlled cartpole [18]. The computationn
reachability results are displayed in Table 3 with the intention to characterize
major differences between tools, i.e., to show some tools are 10× to 20× faster
than others for some benchmarks. It is worth noting, that we are not experts on
every tool that we considered. Thus it may be possible to optimize the reachable
set computation for each benchmark with depending on the tool. However, we did
not do so. Instead, we attempted around 3 to 5 different parameter combinations
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for each benchmark, and used the best results we could obtain when comparing
against the other tools. The details can be found in the extended version [34].
The first three rows correspond to the linear spiral 2D model, and the subsequent
three rows to the nonlinear one. The first set of observations that can be made in
this context is that Flow* times out on all problems involving nonlinear neural
ODEs, and that GoTube cannot obtain a solution to the reachability problem
for the linear model. In terms of computation time, the results vary. Flow* is
the fastest for the linear Spiral 2D model, regardless of the size of the initial
set. In general, JuliaReach and NNVODE are much faster than GoTube, with
JuliaReach being the fastest tool across the board. Additionally, there is not
a significant difference between NNVODE and JuliaReach in the treatment of
the nonlinear spiral model and FPA models. However, JuliaReach is an order
of magnitude faster than NNVODE and two orders of magnitude faster than
GoTube on the cartpole benchmark. In Figure 4 we display a subset of the
reachability results from Table 3 where we observe that JuliaReach is able to
compute smaller over-approximations of the reachable set on all the benchmarks
except for the linear spiral model. Notably, in most cases, GoTube computes the
largest over-approximation, and this effect grows far more significantly than the
other tools when the complexity of the model increases. This can be observed in
Figures 4(d) and 4(h).

Table 3. Results of the reachability analysis of the NODE benchmarks. All results are
shown in seconds. TH stands for Time Horizon and δµ to the input uncertainty.

Name TH (s) δµ Flow* GoTube JuliaReach NNVODE (ours)
SpiralL1 10 0.01 4.0 – 10.2 8.0
SpiralL2 10 0.05 3.7 – 7.2 7.4
SpiralL3 10 0.1 3.7 – 7.2 7.3

SpiralNL1 10 0.01 – 106.4 58.9 47.4
SpiralNL2 10 0.05 – 106.7 41.7 46.2
SpiralNL3 10 0.1 – 106.5 41.9 46.2

FPA1 0.5 0.01 - 13.6 1.9 1.3
FPA2 2.5 0.01 - 42.4 5.6 6.6
FPA3 10.0 0.01 - 140.2 28.4 7.5

Cartpole1 0.1 1e-4 - 183.0 3.2 67.9
Cartpole2 1.0 1e-4 - 1590.9 13.8 404.3
Cartpole3 2.0 1e-4 - 3065.7 35.5 834.7

3.2 Case Study: Adaptive Cruise Control (ACC)

This case study was selected to evaluate an original NNCS benchmark used in
all the AINNCS ARCH-Competitions [27,28,35,46] against NNCS with NODEs
as dynamical plants learned from simulation data using 3rd order NODEs [39].
We demonstrate the verification of the ACC with different GNODEs learned as
the plant model of the ACC and compare against the original benchmark, while
using the same NN controller across all three models. The details of the original
ACC NNCS benchmark can be found in [46], and the architectures of the third
order neural ODEs can be found in the extended version [34].

We considered all three models using the same initial conditions and present
the results in Figure 5. The reachable sets obtained from all three plants are
largely similar, and we can guarantee that all the models are safe since the
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(a) SpiralL3 (b) SpiralNL3 (c) FPA3 (d) Cartpole3

(e) SpiralL3
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Fig. 4. NODE reach set comparisons. The top 4 figures ([a,d]) show the complete
reachable sets of each benchmark, while the bottom 4 correspond to the zoomed-in
reach sets (e, g) and to the zoomed-in figure of the last reach set (f ,h). The figures
show the computed reach sets of GoTube, NNVODE, JuliaReach and Flow*.
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(b) Linear NODE
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(c) Nonlinear NODE

Fig. 5. Adaptive Cruise Control comparison. In red we display the relative distance
of the original plant, in blue the linear NODE, in black the nonlinear NODE, and in
magenta, the safe distance.

intersection between the safe distance and the relative distance is empty. When
we consider the size of the reachable sets, one can see that the original model
returns the smallest reach set, whereas the linear model boasts the largest one.
In all, the biggest difference between the plant dynamics is the computation time.
Here, the linear 3rd order NODE boasts the fastest computation time of 0.86
seconds, whereas the original plant takes 14.9 seconds, and the nonlinear 3rd

order NODE takes 998.7 seconds.

3.3 Classification NODEs

Our second set of experiments considered performing a robustness analysis for
a set of MNIST classification models with only fully-connected NN-Layers and
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other 3 models with convolutional layers as well. There is one linear NODE in
each model, and we vary the number of parameters and states across all of them
to study the scalability of our methods. We evaluate the robustness of these
models under an L∞ adversarial perturbation of ϵ = {0.05, 1, 2} over all the
pixels, and ϵ = {2.55, 12.75, 25.5} over a subset of pixels (80). 7 The complete
evaluation of this benchmark consists of a robustness analysis using 50 randomly
sampled images for each attack. We compare the number of images the neural
ODEs are robust to, as well as the total computation time to run the reachability
analysis for each model in Table 4.

Definition 9 (Robustness). Given a classification-based GNODE F(z), input
z ∈ Rj , perturbation parameter ϵ ∈ R and an input set Zp containing zp such that
Zp = {z : ||z − zp|| ≤ ϵ} that represents the set of all possible perturbations of z.
The neural ODE is locally robust at z if it classifies all the perturbed inputs zp
to the same label as z, i.e., the system is robust if F(zp) = F(z) for all zp ∈ Zp.

Table 4. Robustness analysis of MNIST classification GNODEs under L∞ adversarial
perturbations. The accuracy and robustness results are described as percentage values
between 0 and 1, and the time computation corresponds to the average time to compute
the reachable set per image. Columns 3-8 corresponds to ϵ = {0.5,1,2} over all pixels in
the image, columns 9-14 corresponds to ϵ = {2.55,12.75,25.5} attack over a subset of
pixels (80) n each image.

ℓ∞ ℓ∞ (80)

0.5 1 2 2.55 12.75 25.5
Name Acc. Rob. T(s) Rob. T(s) Rob. T(s) Rob. T(s) Rob. T(s) Rob. T(s)
FNODES 0.9695 1 0.0836 0.98 0.1062 0.98 0.1186 1 0.0192 0.98 0.0193 0.98 0.0295
FNODEM 0.9772 1 0.0948 1 0.1177 0.98 0.2111 1 0.0189 1 0.0225 0.98 0.0396
FNODEL 0.9757 1 0.1078 1 0.1674 0.96 0.5049 1 0.0187 1 0.0314 0.96 0.0709
CNODES 0.9706 0.98 13.95 0.96 15.82 0.86 17.58 0.98 1.943 0.94 3.121 0.78 4.459
CNODEM 0.9811 1 176.5 1 193.8 1 293.8 1 21.45 1 83.28 1 182.0
CNODEL 0.9602 1 1064 1 1089 1 1736 1 234.6 1 522.7 1 779.3

Finally, we performed a scalability study using a set of random GNODE
architectures with multiple NODEs. Here, we focus on the nonlinear methods
for both the NN-Layers and the NODEs and evaluate how our methods scale
with the number of neurons, inputs, outputs and dimensions in the NODE. The
main challenge of these benchmarks is the presence of multiple NODEs within
the GNODE. There are a total of 6 GNODEs (XS,S,M,L,XL, and XXL), all with
the same number of layers. However, we increase the number of inputs, outputs,
and parameters across all the layers of the GNODEs. Here, XS corresponds to
the smallest model and XXL to the largest. A description of these architectures
can be found in the extended version [34].

Several trends can be observed from Table 5. The first is that in general, smaller
models have smaller reach set computation times, with two notable exceptions:
the first run with XS and the last experiment with XL. Furthermore, one can
observe that the largest difference in the reach set computation times comes
from increasing the number of states in the NODEs, which are {2, 3, 4, 4, 5, 5}
7 Adversarial perturbations are applied before normalization, pixel values zp ∈ [0,255].
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for both NODEs in every model in {XS,S,M,L,XL, and XXL} respectively, while
increasing the input and output dimensions ({1, 2, 2, 3, 3, 4} respectively) does not
affect the reachability computation as much. This is because of the complexity of
nonlinear ODE reachability as state dimensions increase, while for NN−Layers,
increasing the size of the inputs or neurons by 1 or a few units does not affect
the reachability computation as much.

Table 5. Computation time of the reachability analysis of the randomly generated
GNODEs. Results are shown in seconds.

XS S M L XL XXL
δµ = 0.01 57.0 16.2 59.3 61.8 168.3 223.9
δµ = 0.02 3.4 11.4 42.2 41.0 262.4 115.4
δµ = 0.04 3.1 10.3 37.6 72.9 1226.3 243.6

4 Related Work

Analysis of Neural ODEs. To the best of our knowledge, this is the first
empirical study of the formal verification of neural ODEs as presented in the
general neural ODE (GNODE) class. Some other works have analyzed neural
ODEs, but are limited to a more restricted class of neural ODEs with only purely
continuous-time models. We refer to these models in this paper as NODEs. The
most comparable work is a theoretical inquiry of the neural ODE verification
problem using Stochastic Lagrangian Reachability (SLR) [19], which was later
extended and implemented in a stochastic reachability analysis tool called GoTube
[20]. The SLR method is an abstraction-based technique that is able to compute
a tight over-approximation of the set of reachable states, and provide stochastic
guarantees in the form of confidence intervals for the derived reachable set.
Beyond reachability analysis, there have also been several works investigating the
robustness of neural ODEs. In [7], the robustness of neural ODE image classifiers
is empirically evaluated against residual networks, which are a standard deep
learning model for image classification tasks. Their analysis demonstrates that
neural ODEs are more robust to input perturbations than residual networks. In
a similar work, a robustness comparison of neural ODEs and standard CNNs was
performed [48]. Their work considers two standard adversarial attacks, Gaussian
noise and FGSM [17], and their analysis illustrate that neural ODEs are more
robust to adversarial perturbations. In terms of the analysis of GNODEs, to the
best of our knowledge, no comparable work as been done, although for specific
models where all the NN-Layers of a GNODE have fully-connected layers with
continuous differentiable activation functions like sigmoid or tanh, it may be
possible to compare our methods to other tools (with minor modifications) like
Verisig [26,23] or JuliaReach [6]. However, that would restrict the more general
class of neural ODEs (GNODEs) that we evaluate in this manuscript.

Verification of Neural Networks and Dynamical systems. The con-
sidered GNODEs are a combination of dynamical systems equations (ODEs)
modeled using neural networks, and neural networks. When these subjects are
treated in isolation, one finds that there are numerous studies that consider
the verification of dynamical systems, and correspondingly there are numerous
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works that deal with the neural network verification problem. With respect to
the former, the hybrid systems community has considered the verification of
dynamical systems for decades and developed tools such as SpaceEx [15], Flow*
[9], CORA [1], and JuliaReach [6] that deal with the reachability problem for
discrete-time, continuous-time or even hybrid dynamics. A more comprehensive
list of tools can be found in the following paper [10]. Within the realm of neural
networks, the last several years have witnessed numerous promising verification
methods proposed towards reasoning about the correctness of their behavior.
Some representative tools include Reluplex [29], Marabou [30], ReluVal [47], NNV
[46] and ERAN [42]. The tools have drawn inspiration from a wide range of tech-
niques including optimization, search, and reachability analysis [33]. A discussion
of these approaches, along with pedagogical implementations of existing methods,
can be found in the following paper [33]. Building on the advancements of these
fields, as a natural progression, frameworks that consider the reachability problem
involving neural networks and dynamical systems have also emerged. Problems
within the space are typically referred to as Neural Network Control Systems
(NNCS), and some representative tools include NNV [46], Verisig [26,23], and
ReachNN* [22,14]. These tools have demonstrated their capabilities and efficiency
in several works including the verification of an adaptive cruise control (ACC)
[46], an automated emergency breaking system [44], and autonomous racing cars
[24,25] among others, as well as participated in the yearly challenges of NNCS
verification [35,28,27]. These studies and their respective frameworks are very
closely related to the work contained herein. In a sense, they deal with a restricted
GNODE architecture, since their analysis combines the basic operations of neural
network and dynamical system reachability in a feedback-loop manner. However,
this restricted architecture would only consist of a fully-connected neural network
followed by a NODE. In Table 6, we present a comparison to verification
tools that can support one or more of the following verification problems: the
analysis of continuous-time models with linear, nonlinear or hybrid dynamics
(ODE), neural networks (NN), neural network control systems (NNCS), neural
ODEs (NODE) and GNODEs as presented in Figure 2.

5 Conclusion & Future Work.

We have presented a verification framework to compute the reachable sets of
a general class of neural ODEs (GNODE) that no other existing methods are
able to solve. We have demonstrated through a comprehensive set of experiments
the capabilities of our methods on dynamical systems, control systems and
classification tasks, as well as the comparison to state-of-the-art reachability
analysis tools for continuous-time dynamical systems (NODE). One of the main
challenges we faced was the scalability of the nonlinear ODE reachability analysis
as the dimension complexity of the models increased, as observed in the cartpole
and damped oscillator examples. Possible improvements include integrating other
methods into our framework such as [32], which improves the current nonlinear
reachability analysis via an improved hybridization technique that reduces the
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Table 6. Summary of related verification tools. A ✓means that the tool supports
verification of this class, a ⃝ means that it may be supported it, but some minor
changes may be needed, a – means it does not support it, and a ⊙ means that some
small changes have been made to the tool for comparison and the tools has been used
to verify at least one example on this class.

Tool ODE8 NODE9 NN10 NNCS GNODE
CORA [1] ✓ ⊙ – – –
ERAN [42] – – ✓ – –
Flow* [9] ✓ ⊙ – – –
GoTube [20] ✓ ✓ – – –
JuliaReach [6] ✓ ⊙ ✓ ✓ –
Marabou [30] – – ✓ – –
nnenum [3] – – ✓ – –
ReachNN [22,14] ✓ ⃝ ✓ ✓ –
Reluplex [29] – – ✓ – –
ReluVal [47] – – ✓ – –
Sherlock [12] ✓ ⃝ ✓ ✓ –
SpaceEx [15] ✓ ⃝ – – –
Verisig [26,23] ✓ ⃝ ✓ ✓ –
NNV [46] ✓ ⊙ ✓ ✓ –
NNVODE (ours) ✓ ✓ ✓ ✓ ✓

8ODE verification is considered to be supported for any tool than can verify at least one of linear
or nonlinear continuous-time ODEs. 9NODE is a specific type of ODE, so in theory any tool that
supports ODE verification may be able to support NODE. However, these tools are optimized for
NODE and in practice may not be able to verify most of these models as seen on our comparison
with Flow*. 10We include in this category any tool that supports one or more verification methods
for fully-connected, convolutional or pooling layers.

sizes of the linearization domains, and therefore reduces overapproximation error.
Another approach would be to make use of the Koopman Operator linearization
prior to analysis in order to compute the reach sets of the linear system, which are
easier and faster to compute as observed from the experiments conducted using
the two-dimensional spiral benchmark [4]. In terms of models and architectures,
latent neural ODEs [41] and some of its proposed variations such as controlled
neural DEs [31] and neural rough DEs [37] have demonstrated great success in the
area of time-series prediction, improving the performance of NODEs, ANODEs
and other deep learning models such as RNNs or LSTMs in time-series tasks.
The main idea behind these models is to learn a latent space from the input of
the neural ODE from which to sample and predict future values. In the future,
we will analyze these models in detail and explore the addition of verification
techniques that can formally analyze their behavior.
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