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ABSTRACT

We present a comparative study of different modeling approaches to the elec-

tronic properties of the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 high-entropy alloy. Common

to our modeling is the methodology to compute the one-particle Green’s func-

tion in the framework of density functional theory. We demonstrate that the

special quasi-random structures modeling and the supercell, i.e., the locally self-

consistent multiple-scattering methods, provide very similar results for the

ground state properties such as the spectral function (density of states) and the

equilibrium lattice parameter. To reconcile the multiple-scattering single-site

coherent potential approximation with the real space supercell methods, we

included the effect of screening of the net charges of the alloy components.

Based on the analysis of the total energy and spectral functions computed

within the density functional theory, we found no signature for the long-range

or local magnetic moments formation in the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 high-

entropy alloy; instead, we find possible superconductivity below � 9K.
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Introduction

Order or rather disorder lies at the heart of the

development of advanced materials. The traditional

design of novel materials starts from a primary or

host material, to which other components are added

to adjust the performance of the material. Many of

modern alloys with attractive properties were found

to be located in the centers of the phase diagrams

rather than close to its corners. These materials are

not formed by a single host and a minor component;

instead, they contain multiple elements and crystal-

lize as solid solutions.

The structural order/disorder can be characterized

through the entropy which is a measure of the ran-

domness in the system, and it turned out to be an

important factor in the fabrication of unordered

intermetallics such as high-entropy alloys (HEA). The

most common for these alloys are simple structures

(like body-centered cubic (bcc)) with extremely high

chemical disorder. Typically, HEA are composed of

four or more components to achieve high entropy of

mixing, which stabilize the crystal structure and

results in highly tunable properties [1–5]. In this

paper our system of choice is the class of HfNbTaTiZr

refractory high-entropy alloys, as they have a great

potential for a variety of applications. This system

has been previously synthesized and studied for

biocompatibility and wear resistance for applications

in the biomedical field[?], high temperature

mechanical properties for potential applications in

aerospace and power-generation industries [?], and

superconducting properties [6].

As the random placement of atomic species on the

lattice sites destroys the translational symmetry that

underpins most first-principles calculations of solid

state systems, multiple methods have been proposed

to deal with disordered alloy systems. Here we will

provide a comparison of different approaches for the

first principles calculations of alloys to allow the

informed decision to choose a computational method

for these materials.

Density functional theory (DFT) [7, 8] methods

have been applied in the theoretical studies of HEA

systems, see for instance the recent review [9]. Note

that the presence of multi-components leads to a

‘‘reduction’’ of the translation symmetry nevertheless

the underlying crystalline space group symmetry of

the lattice still exists. This allows in fact a supercell

description which constitutes one of the possibility to

model a given disorder realization. Alternative to the

supercell methods, which include both large random

cells and the special quasi-random structure (SQS)

model, is the class of effective medium theories such

as the coherent potential approximation (CPA). In

fact, any method using an artificial partitioning of the

crystal into regions associated with particular alloy

components, may possess nonzero net charges. This

is by now a well-known problem originating from the

conventional effective medium single-site approxi-

mation and the self-consistent DFT loop in comput-

ing the electrostatic contribution through the Poisson

equation. The correct solution of the Poisson equation

should reflect the charge distribution in the lattice,

which leads to an apparent inconsistency between

the CPA (producing a homogeneous charge distri-

bution) and the electrostatic part of the DFT (favoring

inhomogeneity). A way out of this problem is to

modify the electrostatic potential for each alloy

component in agreement with the assumptions of the

CPA. In practice this amounts to introduce an addi-

tional shift of the one-electron potential inside each

atomic sphere representing the interaction of the

electrons within the sphere with the missing charge

distributed outside the sphere. Such a correction will

be applied in the Korringa–Kohn–Rostoker CPA cal-

culations and allows to obtain a very good agreement

with the supercell and SQS methods.

In this paper we present a comparison of the three

ab initio approaches to disordered metallic systems

applied to high-entropy alloys: the effective medium

CPA method, the supercell method, and the special

quasi-random structure (SQS). All three approaches

presents advantages and disadvantages [10]. The

CPA is less computationally expensive, when com-

pared to the SQS and the Supercell methods, since

only a small unit cell is required to represent any

arbitrary composition of HEA. However, the SQS and

supercell methods capture correctly the local chemi-

cal environment effects through the long-range elec-

trostatic interactions. Our comparative study applied

to HfNbTaTiZr extends over the total energy com-

putations, spectral functions and charge distribu-

tions. The total and alloy component resolved density

of states show a local maxima around the Fermi level.

Thus, we have searched for the existence of possible

magnetic instabilities or formation of local moments.

Our spin-polarized DFT-LSDA calculations and the

DFT based disordered local moment (DLM) applied

10678 J Mater Sci (2022) 57:10677–10690



to HfNbTaTiZr did not show indication for the exis-

tence of long-range or local magnetic moments.

Instead based on the knowledge of the existence of

superconductivity in this family of compounds, we

have estimated the possible critical temperature of

this alloy based on the Gaspari–Gyorffy formula [11]

to � 9:3 K considering the similar Debye temperature

as the experimentally reported

Hf0:08Nb0:33Ta0:34Ti0:11Zr0:14 alloy [6].

Electronic structure using green’s functions

In this section, we give a brief description of the

ab initio Green’s function based approaches to ran-

dom alloys. We start with the general description of

the Korringa–Kohn–Rostoker (KKR)-based methods,

followed by the description of two classes of the

numerical approaches to get the KKR solution. First,

we described the effective medium approaches (the

KKR Coherent Potential Approximation (KKR-CPA)

and its extension), and second, we describe the

supercell methods (the locally self-consistent multi-

ple scattering (LSMS) and a Special Quasi-Random

structure approach).

Multiple scattering and Korringa–Kohn–
Rostoker methods

Many computational schemes use single-particle

Kohn–Sham (KS) eigenfunctions and KS eigenval-

ues [8] to obtain the density and the ground-state

energy, respectively. Within the Korringa–Kohn–

Rostoker Green’s function (KKR-GF) method [12, 13]

the single-particle Green’s function (GF) of the KS

equation is constructed providing the equivalent

information. This method is not restricted to periodic

solids but can also be applied also to finite or even

disordered systems. Specific to this method is that

instead of a Hamiltonian H, the resolvent of H, i.e.,

the GF plays the central role. In the KKR method, the

system is partitioned into cells, each of which cen-

tered around an atom. For a cell n with volume Xn

whose center is the atomic site with the position

vector Rn, the local potential is given as

vnðrnÞ ¼
VeffðrÞ; if r 2 Xn;

0; otherwise;

�
ð1Þ

here rn ¼ r� Rn, and Veff is a sum of localized one-

electron potential, vn, within each cell. Having chosen

a decomposition of space (muffin-tin, or Wigner–

Seitz construction), a scalar/fully relativistic single-

electron Hamiltonian is constructed including the

Hartree potential and the exchange-correlation

potential with local (spin) density approximation

(LDA) [8, 14] or generalized gradient approxima-

tion [15, 16]. The resulting single-site problem is

solved numerically providing energy-dependent

scattering solutions for the isolated potentials located

at the atomic sites in terms of solution of the Lipp-

mann–Schwinger equation with respect to an

unperturbed Bloch wave. For a potential which is

zero outside some domain (sometimes spherical for

the spherical potential approximation) the radial

wave function inside the potential region is com-

puted in terms of spherical Bessel and Hankel func-

tions. From the radial solutions the single-site t-

matrix, representing the scattering behavior at a sin-

gle-site potential, is constructed and the boundary

conditions are imposed in terms of the regular and

irregular solutions, which allows also to set up the

full GF.

Among the various techniques available to calcu-

late the GF, the multiple scattering theory (MST) is

especially appealing because it splits the solution of

the problem into a potential (single site)- and geom-

etry-related (multiple sites) form. The single-site

scattering involves the t-matrix, while the multiple

scattering problem is solved using the scattering

path-operator, i.e., the corresponding scattering

matrix for a given finite or infinite array of scatterers

is given as

snmð�Þ ¼ tnð�Þdnm þ tnð�Þ
X
k 6¼n

gnkð�Þskmð�Þ; ð2Þ

here tnð�Þ is a single site scattering t-matrix associated

with the potential vn, and gnkð�Þ is the free-electron

propagator matrix. The calculation of the Kohn-Sham

orbital wave function is unnecessary in the KKR-GF

approach, as the spectral function and dispersion can

be obtained directly from the GF constructed using

the multiple scattering path operator

Gðrn; rm; �Þ ¼
X
L;L0

Zn
Lðrn; �ÞsnmLL0 ð�ÞZm�

L0 ðrm; �Þ

�
X
L

Zn
Lðrn; �ÞJn�L ðrn; �Þdnm;

ð3Þ

where Zn
Lðrn; �Þ and JnLðrn; �Þ represent the regular and

irregular local solutions to Schrödinger equation for a

single potential Eq. 1 in cell n and for the angular
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momentum indices L ¼ ðl;mÞ. Once the GF becomes

available, the electronic charge density in the atomic

cell Xn can be easily calculated by taking the imagi-

nary part of the GF as follows,

qnðrnÞ ¼ � 2

p
Im

Z �F

�1
d�Gðrn; rn; �Þ; ð4Þ

where the factor 2 arises from the two spin states, and

�F is the Fermi energy.

Embedding via an effective medium
approach

KKR-CPA

The coherent potential approximation (CPA) com-

bined with the KKR method provides a powerful first

principles technique for random alloy systems. The

KKR-CPA approach is an effective medium

approach, which is based on the assumption that the

random system may be mapped onto the impurity

placed in the ordered effective medium which is

determined self-consistently. [17–20] The CPA med-

ium can be imagined as a periodic system consisting

of the ‘‘virtual’’ species, described by effective med-

ium t�matrix tCPAð�Þ. The CPA effective medium

scattering path matrix sCPA is then given as

snmCPAð�Þ ¼ tnnCPAð�Þdnm þ tnnCPAð�Þ
X
k 6¼n

gnkð�ÞskmCPAð�Þ: ð5Þ

The local site-diagonal part of the effective medium

scattering path operator then can be formally

rewritten as

snnCPAð�Þ ¼ ½t�1
CPAð�Þ � Dnn

CPAð�Þ�
�1; ð6Þ

where Dnn
CPA is a renormalized interactor, which is

independent of the nature of the potential at a site n.

The CPA medium is then determined self-consis-

tency by placing the actual impurity of species a in

the medium. For the impurity of species a at site n,

the impurity multiple scattering path matrix snna is

calculated by replacing the effective medium t�ma-

trix by a real impurity t�matrix, ta

snna ð�Þ ¼½t�1
a ð�Þ � Dnn

CPAð�Þ�
�1

snna ð�Þ�1 ¼snnCPAð�Þ
�1 þ tnað�Þ

�1 � tnCPAð�Þ
�1;

ð7Þ

The KKR-CPA self-consistency condition requires

that

snnCPAð�Þ ¼
X
a

cas
nn
a ð�Þ ð8Þ

which imposes the condition that the replacement of

an effective t� matrix by the impurity ta matrix

should, on average, produce no changes to the

medium. Furthermore, since the CPA medium is

translation-invariant, the t�matrix and the multiple-

scattering path matrix s for the medium are related

through the equation

snnCPAð�Þ ¼
1

XBZ

Z
½t�1
CPAð�Þ � gðk; �Þ��1; ð9Þ

where XBZ is the first Brillouin zone volume, and

gðk; �Þ is the lattice Fourier transform of the free

electron propagator gnkð�Þ. In the CPA self-consis-

tency loop, Eqs. (6)–(9) are combined such that tCPAð�Þ
is determined iteratively. [21]

KKR-CPA and the electrostatic potential correction

As described in the previous section, the conven-

tional KKR-CPA method is a single site local

approximation. The CPA medium is obtained self-

consistently by taking the average of a single impu-

rity structures consisting of one chemical species and

its surrounding CPA ‘‘atoms,’’ described by single

scattering t-matrix tcpa. For a self-consistent field

(SCF) calculation in the conventional KKR-CPA

method, such single impurity structures are also

applied in the determination of the electrostatic

potential: each chemical species experiences the same

long-range electrostatic interaction, arising from an

averaged environment which is considered charge

neutral. Especially, when atomic sphere approxima-

tion (ASA) is applied, such long-range electrostatic

interaction is essentially zero. Despite being appeal-

ing in physics intuition and straightforward to

implement in practice, the ansatz that on average,

each chemical species ‘‘feels’’ the same long-range

electrostatic potential turns out to be a questionable

approximation.

As shown by supercell calculations, the long-range

electrostatic potential acting at each site is found to be

almost linearly dependent on the net charge of the

atom at the site, known as the qV relation: The

potential versus the net charge of the atoms of the

same species type falls approximately on a straight

line. One important observation is that the long-range

electrostatic potential, averaged over the atoms of the
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same species, turns out to be different for different

species, rather than being the same as assumed by

conventional KKR-CPA method, which obviously

needs to be corrected to incorporate this observation.

In addition to the qV relation, several electrostatic

potential models have also been proposed for ran-

dom alloys [22–24]. Among those potential models,

the charge screening (CS) model [24, 25] is the most

straightforward to implement in the KKR-CPA

method. In the CS model, the net charge at an atomic

site is assumed to be completely screened in the

nearest neighbor shell, so that the electrostatic

potential arising from the environment is determined

by the total charge on the neighbor shell which is

equal in magnitude but opposite in sign to the net

charge of the atom at the given site. Therefore, based

on the CS model, an extra potential needs to be added

to the effective one-electron potential for species a,

DVCS
a ¼ �e2 DQa

R1
; ð10Þ

where DQa is the average net charge of the species

and R1 is the nearest neighbor shell distance of the

site. The contribution of this electrostatic potential to

the total energy is obviously given by

DECS ¼ � e2

2

X
a

ca
DQ2

a

R1
: ð11Þ

An alternative approach to the inclusion of long-

range electrostatic interaction in the KKR-CPA

method is to apply the qV relation by letting

DVqV
a ¼ AaDQa þ Ba; ð12Þ

where Aa and Ba are obtained from a supercell cal-

culation via, e.g., LSMS method, and the total energy

contribution from this potential correction is

DEqV ¼ � 1

2

X
a

caDV
qV
a DQa � d:c:; ð13Þ

where ‘‘d.c.’’ is the double counting term that needs to

be removed from the total energy. Careful analysis

shows that this double counting term exists for the

calculations with muffin-tin approximation, but is

zero for the ASA calculations [25].

Supercell methods

The locally self-consistent multiple scattering (LSMS)

method

To judge the validity of the various approximation

approaches for alloys, it is desirable to consider cal-

culations that as best as possible represent the actual

arrangement of atomic species in the material. For the

substitutional alloys we are investigating here, this

can be achieved with large supercell calculations with

the sites randomly occupied by the chemical ele-

ments. With sufficiently large supercells, this

approach can capture the fluctuations in the distri-

bution of the occupancy of neighbor sites. Addition-

ally, cells could be constructed to capture systems

with different short range order. A supercell calcu-

lation in the KKR method requires to perform

inversion of a large matrix, also known as the KKR

matrix, for each k point in the irreducible Brillouin

zone to obtain the snnð�Þ matrix for a set of energy

points, �’s, along a contour in the complex energy

plane. The size of the KKR matrix is proportional to

the number of atoms in the unit cell, and its inverse is

essentially an OðN3Þ operation. As the number of

atoms in the simulation cell (or unit cell) increases, a

supercell approach based on KKR or other conven-

tional ab initio methods becomes less favorable,

because of increasing computational cost. That is, the

large supercell sizes required for direct calculation of

random disordered alloys make the standard ab initio

methods impractically expensive to use.

While the mean field KKR-CPA approach descri-

bed in the previous sections as well as the SQS

method described below are designed to reduce the

size of the simulation cell and are thus well suited for

standard density functional method calculations, an

alternative approach to the supercell method is to

apply a real space scheme for solving the Kohn–Sham

equation of density functional theory that will allow

us to achieve linear scaling in the system size of the

computational effort per self-consistent iteration step

as well as near optimal parallel performance on

current high performance computing architectures.

Specifically, we are using the Locally Self-Consistent

Multiple Scattering (LSMS) method [26], which has

demonstrated very good scaling and performance on

contemporary computing architectures and has

proved to be a very useful tool for performing the
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ab initio calculation for complex structures involving

tens of thousands of atoms [27].

In the LSMS method, the linear scaling for the

calculation of snnð�Þ is achieved based upon an

approximation that the multiple scattering processes

involving atoms at a distance greater than a cutoff

radius RLIZ from atom n are ignored. The idea behind

this approximation is based on the observation that

the scattering processes involving far away atoms

influence the local electronic states less and less as the

distance from the scatter under study is increased, an

example of nearsightedness proposed by W. Kohn. In

the LSMS method, the space within RLIZ centered at

an atom is called local interaction zone (LIZ) of the

atom. If there are M atoms in the LIZ centered at

atom n, the computational cost for calculating snnð�Þ,
and thus the GF, for atom n does not depend on N,

rather it depends on M. Since we only have to repeat

the GF calculation for each atom, the total time cost

for the entire electronic structure calculation will

scale linearly with respect to N, the number of atoms

in the unit cell. The results obtained with this LSMS

approach will converge with increasing the size of

the LIZ. For sufficiently large LIZ sizes, the total

energy result given by the LSMS method agrees very

well with the KKR result, which is considered exact.

Evidently, the LSMS method will allow us to readily

perform calculation for supercells with thousands of

atoms.

The special quasi-random structure (SQS) method

The Special Quasirandom Structure (SQS) is one of

the realizations among all possible random structures

of a periodic supercell. It is special in the sense that

the particular structure provides the best approxi-

mation to the averaged local correlations [28, 29]. The

local correlations are defined in the context of the

cluster expansion. A cluster is part of the lattice, the

smallest cluster is one site of the lattice, and the lar-

gest one is the entire supercell. Given a random

realization of a binary alloy, the correlation of a

cluster can be defined as the product of all sites

within the cluster with sites occupied by element A

designated as þ1 and those by element B as �1. This

correlation is averaged with respect to all the clusters

obtained by point group symmetry and translation

among all sites in a supercell.

Based on the assumption that the physical rele-

vance of the correlation functions decrease with

respect to the cluster size, in practice, only the cor-

relations among the first few nearest neighbors are

considered [29]. The SQS is chosen as the realization

of a supercell with correlation functions best matched

the averaged correlation function for a set of chosen

clusters. Instead of calculating all the random con-

figurations for disorder realization averaging, the

SQS method picks a configuration or a set of config-

urations which provides the best matched averaged

correlation function as the representative for the

random systems.

Results

To compare these methods, we have performed self-

consistent first principles calculations using our

multiple scattering code MuST [30]. All the calcula-

tions employ the von Barth-Hedin approximation

[14] for the exchange correlation functional and

muffin-tin potential type. For the KKR calculations,

we use 60 special k points. The LIZ size used for the

calculations is 169. All calculations, both for the

reciprocal as well as real space methods, use the same

cutoff for l of lmax ¼ 4. The LSMS calculations for

large random supercells include 1120 atoms in the

supercell, and the SQS calculations include 40 –160

atoms and are performed using the real space LSMS

code using the same parameters as for the supercell

calculations. We also ran simulations for different

realizations of 40-atom SQS cells to assess the varia-

tions in total energy and density of states. As can be

seen in the insert in the right panel of Fig. 1, the SQS

total energy converges to the random supercell result

and is already significantly closer to it than the mean-

field CPA result for a calculation cell size of 40 atoms.

The choice of the size of the local interaction zone

(LIZ), the number of k points and lmax was deter-

mined from the convergence of the total energy of the

system. As the CPA method does not readily account

for the displacements of atoms from the ideal crystal

site, we chose to also restrict the calculations for the

supercell methods to ideal unrelaxed lattice sites, as

the main aim of the present study is the comparison

of these methods, and the origin of differences would

have been obscured by the inclusion of displace-

ments. It should be noted though that atomic dis-

placements can play an important role in body

centered high-entropy alloys and these
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displacements can play an important role in stabi-

lizing the bcc structure. [?]

Ground state properties: total energies,
formation enthalpy, density of states

The total energy was calculated for different con-

centrations of the components in the HfNbTaTiZr

alloy for the same unit cell size, with 1120 atoms in

total. The concentration of one component was varied

x, while keeping the concentrations of other compo-

nents ð1 � xÞ=4. This was done for all of the compo-

nents in the HfNbTaTiZr alloy and the total energy

was calculated for all of these variations (see Fig. 1

(left panel)). The result shows that

Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 alloy has the lowest total

energy. Because of the restriction in the way to vary

the concentration of each component here, there is a

much larger configuration space that is not explored.

Finding the global minimums that correspond to the

stable states requires calculating the formation

enthalpy of the alloys with unrestricted concentration

variations. This is a computationally demanding task

and it is beyond the focus of this paper.

The total energy of the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05

system was calculated by all four methods: LSMS, SQS,

KKR-CPA, and corrected KKR-CPA. The largest total

energy difference is between LSMS and KKR-CPA

methods, which is about 2.2 mRyd. For SQS, even with

the system size of 40 atoms, the total energy difference

between SQS and LSMS is less than 0.28 mRyd and

keeps decreasing as the system size increases. Corrected

KKR-CPA provides a lower total energy than the con-

ventional KKR-CPA with the total energy difference

between the corrected KKR-CPA and the LSMS being

about 0.98 mRyd.

In Fig. 1(right panel), we show the calculated total

energy, relative to an energy offset, of

Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 as a function of the lattice

constant. As shown, the LSMS, KKR-CPA, and cor-

rected KKR-CPA lattice constants agree with each other

within the accuracy of the fit of the energy-lattice con-

stant curve. The equilibrium lattice constant from all

three methods for Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 is about

6.26 Bohr and is lower than the experimental results for

equimolar HfNbTaTiZr 6.42 Bohr [31, 32], which is

related to the smaller atomic size of Ta comparing to Hf

or Zr [33, 34]. As a matter of fact these curves can be

collapsed, showing the excellent agreement between all

these methods. For a given concentration we plotted on

the right panel the decomposition of the energies on

alloy components. Given the similarities of the energies

for a given concentration we can expect that a similar

collapsing is possible at other concentrations and the

alloy components decomposition might be similar.

Note that the results correspond to the LSMS compu-

tation with more than 1000 atoms in the unit cell. Such

Figure 1 Left panel: Total energy of the HfNbTaTiZr alloy from

the LSMS method calculated for different concentrations of the

components in the system. Labels correspond to the concentrations

of the main component which was varied x, while the

concentrations of the other components were kept as (1-x)/4.

LSMS system size is 1120 atoms. Note that our calculations are

all-electron methods; thus, the total energy includes the binding

energy of the core electrons, and the grouping of the energy

depends on concentration into 3d (Ti), 4d (Nb, Zr) and 5d elements

(Hf, Ta). Right panel: Total energy - lattice constant dependence

for the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 system, with Etot offset of -

25918 Ryd. Inset: Total energy of the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05

system from the LSMS, KKR-CPA, and corrected KKR-CPA

methods as well as total energy for the different SQS system sizes.

LSMS system size is 1120 atoms. Etot offset is -25918 Ryd.
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computation is hardly possible in the SQS approach and

the other methods; therefore, we have taken the results

from this computation only.

Next, we consider the partial and total density of

states normalized per atom, which we show in Fig. 2.

The total density of states is in a good agreement for

all four methods. In fact, there’s even better agree-

ment between LSMS and SQS, and between KKR-

CPA and corrected KKR-CPA (Fig. 2). The sharp

peak on the left around -1.21 Ryd corresponds to Hf,

as can be seen from the partial density of states in

Fig. 2 (left panel) [35]. The inserts are provided to

better see the peaks between -0.4 and 0.4 Ryd.

As explained in ‘‘ KKR-CPA and the Electrostatic

Potential Correction’’, the corrected CPA improves

the total energy calculation by applying a screened

charge model to include the long-range Coulomb

interaction effects. The screened charge correction

essentially shifts the local potential for each species

by an amount proportional to the local charge of the

species. The major effect is on the total energy result,

lowering the energy by � 10 mRyd if charge transfer

is around 0.1e. Interestingly, the average DOS shown

in Fig. 2 is not sensitive to the screened charge cor-

rection. This can be understood by considering the

fact that the average potential shift is zero, since there

is only 1 atomic site per unit cell in the CPA approach

and the average charge at each atomic site is 0.

To further compare our methods, we now perform

the analysis of the formation enthalpy which is

defined as:

DE ¼EHfð1�xÞ=4Nbð1�xÞ=4TaxTið1�xÞ=4Zrð1�xÞ=4
� ðð1 � xÞ=4ÞEHf

� ðð1 � xÞ=4ÞENb � xETa � ðð1 � xÞ=4ÞETi � ðð1 � xÞ=4ÞEZr;

ð14Þ

where EHfð1�xÞ=4Nbð1�xÞ=4TaxTið1�xÞ=4Zrð1�xÞ=4 is the total energy

per atom of the alloy (Table 1), and

EHf ;ENb;ETa;ETi;EZr are the energies per atom of Hf,

Nb, Ta, Ti, and Zr respectively. In Table 1 we show

the formation enthalpies for the

Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 alloy calculated with

LSMS, SQS, KKR-CPA, and corrected KKR-CPA

methods. The formation enthalpies are negative,

except for the KKR-CPA method (see Table 1). This is

not surprising since the conventional KKR-CPA

method does not have the electrostatic potential

energy properly included. Negative formation

enthalpy tells us that this alloy is energetically

favorable comparing to the complete phase separa-

tion into the individual elemental constituents.

However, other phases are possible. Main arguments,

such as negative formation enthalpy and high con-

figurational entropy, suggest that this alloy is ener-

getically favorable.

Finally, we also calculated another experimentally

relevant quantity, the bulk modulus , which was

obtained using the Birch–Murnaghan equation of

state by fitting the data from the KKR-CPA, LSMS,

and corrected KKR-CPA. The results are in a fairly

good agreement with each other and correspond to

158.4867 GPa from KKR-CPA, 158.1960 GPa from

corrected KKR-CPA, and 159.0923 from the LSMS.

Figure 2 Left panel: Partial density of states from LSMS for all of

the components of the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 alloy. Insert:

the same figure, but for -0.4 to 0.4 Ryd E range. Right panel: Total

density of states for Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 system from the

LSMS, KKR-CPA, SQS and the corrected KKR-CPA methods.

Insert: the same figure, but for -0.4 to 0.4 Ryd E range. The value

of DOS at EF enters in the estimation of the electron-phonon

coupling in ‘‘ Possible Superconductivity’’.
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The bulk modulus of Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 is

higher than the experimental results for equimolar

HfNbTaTiZr, which is 134.6 GPa [36].

Charge transfer and Madelung potential

In alloys, the charge transfer takes place between

atoms, driven by a combination of quantum

mechanics and electrostatics. From the perspective of

a computational approach based on DFT, the charge

transfer occurs as a result of the charge self-consis-

tency. For a periodic system with N atoms per unit

cell, the Madelung potential Vn
mad, which is the elec-

trostatic potential at atomic site n due to the excess

charges at all the other sites, is given by

Vn
mad ¼ Vn

0 � e2
XN
m¼1

MnmDQ
m; ð15Þ

where Vn
0 is a constant potential, Mnm is the Made-

lung constant [37], taking into account the fact that

the charge distribution in the unit cell repeats itself in

the entire space, and DQm is the excess charge (in the

units of e) at site m. In the muffin-tin approximation

(MTA), the electronic charge distribution in the unit

cell consists of a spherical density distribution, qnðrnÞ,
surround each atomic site within muffin-tin radius

Rn
mt and a constant density q0 in the interstitial region.

The excess charge DQm in Eq. (15) is defined to be the

net charge in the atomic cell Xm,

DQm ¼ Zm � 4p
Z Rm

mt

0

drm qmðrmÞ � q0 Xm � 4p
3

Rm
mt

� �3
� �

ð16Þ

where Zm is the positive charge of the nucleus, and

the last term is the electric charge in the interstitial

region inside the atomic volume. The constant

potential in Eq. 15 is given by

Vn
0 ¼ �e2q0 2p Rn

mt

� �2þ
XN
m¼1

MnmXm

" #
: ð17Þ

The terms in the square bracket in this expression

depend purely on the geometrical parameters. If the

atomic cell volume is chosen to be the same for all the

atoms, which is a common practice in the KKR

community and is also used throughout the calcula-

tions carried out in this paper, by construction, the

muffin-tin radius is the radius of the inscribed sphere

radius of the atomic cell and is therefore also the

same for all the atoms, and Vn
0 is essentially a con-

stant, independent of atomic sites n. It is also neces-

sary to point out that, in the atomic sphere

approximation (ASA), there is no interstitial region,

so that we have q0 ¼ 0 and Vn
0 ¼ 0 in ASA [25].

For the study of random alloys, unlike local CPA

method, the supercell calculation allows a direct

observation of the charge transfer effects in the ran-

dom alloy of a given configuration. A histogram of

the charge distribution in HEA

Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 and binary alloy NbZr is

shown in Figs. 3 (left panel) and 4, respectively. The

solid dots in the figures represent the averaged excess

charge obtained by various methods. In the LSMS

method in particular, the average is taken over all the

atom of the same type in the entire unit cell which is

usually chosen to be sufficiently large that self-aver-

aging is assumed to takes place. Interestingly, despite

the fact that the SQS method is also considered as a

supercell approach, since its average is taken over a

set of small unit cell samples, the average charge for

Hf, Nb, Ti, and Zr in the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05

alloy shows small but noticeable difference from the

averaged results given by the LSMS method, while its

averaged charge for Ta agrees rather well with the

LSMS. We speculate that as Hf, Nb, Ti, and Zr in this

alloy have very low concentration, 0.05, the size of the

samples for the SQS to take average over may not be

sufficient. On the other hand, both LSMS and SQS

agree very well on the average charge of Nb and Zr in

the equimolar NbZr alloy case.

It is necessary to point out that multi-element

alloys also exhibit the qV relation, where the charge

transfer at each site correlates almost linearly with the

Madelung potential at the site, as shown by Fig. 3

(right panel), where the charge on the atoms of the

same type falls on a straight line and the 5 visible

lines formed by the crosses (LSMS results) in the

figure are associated with 5 chemical elements. This

linear phenomenon, first observed by Faulkner

et al. [37] for CuZn alloy, has been subjected to a

Table 1 Formation enthalpies for Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05 in

kJ/mol

LSMS SQS CPA Corrected CPA

-1.29214 -0.92588 1.60654 -0.10657

The SQS result is obtained from 40 atom supercell calculations
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number of investigations on various binary

alloys [25, 38–40]. This relation is understood as a

result of the charge screening effect in random alloys.

The existence of the qV relation in HEAs allows to

include the species dependent long-range electro-

static potential Eq. (12) in the KKR-CPA calculations.

The coefficients Aa and Ba in Eq. (12) can be obtained

from a supercell calculation.

From the results shown in Figs. (3) and (4), we also

observe that the conventional CPA results for the

averaged charge show a significant difference from

the supercell (LSMS and SQS) results, especially for

the charge on Ti in the HEA case. Not surprisingly, as

explained in Sect. 2.2.2, the average Madelung

potential given by the CPA is the same for all ele-

ments. To overcome this deficiency of the CPA, we

also performed the corrected CPA analysis by

including a correction term, Eq. (10), based on the

charge screening model to the electrostatic potential

for each chemical species in the charge self-consis-

tency calculation. Both average charge and average

Madelung potential results by the corrected CPA

show a significant improvement over the conven-

tional CPA results, and they agree well with the

averaged LSMS results.

Figure 3 Left panel: Charge transfer distribution from LSMS

method as well as the average charge transfer per atom species

from LSMS, SQS, KKR-CPA, and corrected KKR-CPA methods

for Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05. Right panel: Madelung potential

Vmad versus charge transfer calculated by the LSMS, SQS, CPA,

and corrected CPA methods for the Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05

system.

Figure 4 Left panel: Charge transfer distribution per atom species

from LSMS, KKR-CPA, corrected KKR-CPA, and SQS methods

for equimolar Nb0:5Zr0:5. Right panel: Madelung potential Vmad

versus the charge transfer calculated by the LSMS and corrected

CPA methods for the Nb0:5Zr0:5 system.
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Possible superconductivity

Superconductivity in the Hf0:08Nb0:33Ta0:34Ti0:11Zr0:14

alloy has been reported a few years ago [6]. The alloy

has a bcc structure and the reported critical temper-

ature of Tc ¼ 7:3 K is slightly smaller than that of the

pure Nb metal (Tc ¼ 9:2 K) and to the NbTi alloys

(Tc � 10 K), which are the mostly-used practical

superconductors. In the reported superconducting

HEA specific heat measurement confirmed bulk

superconductivity and the conventional phonon

mediate pairing was inferred. An estimate of the

critical temperature in the conventional supercon-

ductors can be obtained by knowing the magnitude

of the electron–phonon couplings. However, elec-

tron-phonon calculations in disordered alloys from

first principles remain computationally expensive;

therefore, phenomenological approaches like the

Gaspari–Gyorffy theory [11] still provide the input

for these estimates.

In the following we briefly go through the essential

ideas of the Gaspari–Gyorffy approach [11]. Within

the theory of strongly-coupled superconductors [41]

the electron-phonon coupling constant k can be

expressed as:

k ¼ NðEFÞhI2i=Mhx2i;

where NðEFÞ is the DOS at the Fermi level, hI2i is the

electron–phonon matrix element, averaged over the

Fermi surface, M is the atomic mass, and hx2i is the

average squared phonon frequency. The numerator

can be rewritten as g ¼ NðEFÞhI2i, which is known as

the Hopfield parameter. In a so-called local-phonon

representation the electron-phonon interactions

mainly consist of scatterings that change the elec-

tronic angular momentum l [42]. Using these ingre-

dients Gaspari and Gyorffy proposed an approximate

way to compute hI2i using the multiple-scattering

Green’s function formalism and adopting the rigid

muffin-tin approximation. In these approximations

the Hopfield parameter is computed from a combi-

nation of electronic scattering phase shifts and the

electronic densities of states. The average squared

phonon frequency hx2i can in principle be computed

from the phonon density of states, but since this is

hard to obtain for disordered systems, it can be

approximated by using the Debye temperature hD via

hx2i � 1
2 h

2
D. Bringing everything together, the elec-

tron-phonon coupling constant can be computed as

k ¼ hgi= 1
2 hMih2

D, where hgi and hMi are the disorder-

averaged Hopfield parameter and atomic mass,

respectively.

In the present work, we computed the Hopfield

parameter within the exact muffin-tin orbitals

(EMTO) method [43–45]. The atomic masses were

taken from Ref. [46]. Since we do not know the Debye

temperature for Hf0:05Nb0:05Ta0:8Ti0:05Zr0:05, we used

the experimentally determined Debye temperature

for Hf0:08Nb0:33Ta0:34Ti0:11Zr0:14 [6], hD ¼ 243 K. This

gives us an electron-phonon coupling k ¼ 0:9.

McMillan [41] provided a solution for the finite

temperature Eliashberg theory and found the Tc for

various cases as an approximate equation relating Tc

to a small number of simple parameters:

Tc ¼
hD

1:45
exp � 1:04ð1 þ kÞ

k� l�ð1 þ 0:62kÞ

� �
; ð18Þ

The 1 þ k plays the role of electron mass enhance-

ment and the parameter l� ¼ 0:13 is an effective

Coulomb repulsion reflecting the retardation effect of

electron-phonon coupling with respect to the instan-

taneous Coulomb repulsion [41]. With our computed

k, we get a critical temperature Tc ¼ 9 K. It should be

noted that the Gaspari–Gyorffy theory overestimated

Tc for Hf0:08Nb0:33Ta0:34Ti0:11Zr0:14 by roughly a factor

2, therefore it seems likely that a similar overesti-

mation would be the case also for the presently

investigated alloy.

In ‘‘Possible Superconductivity’’ the results of DOS

computations are presented. Fig. 2 on the left the

alloy component DOS is seen and on the right panel

the total DOS in the different modeling of disorder is

presented. In what superconductivity is concerned,

we used the McMilan formula (g and k parameters) in

which the DOS contributes through its value at the

Fermi energy. From the total DOS, we see that

around EF all methods (LSMS, SQS, CPA, and cor-

rected CPA) produce similar values for the total DOS

at EF. Thus, the estimated Tc in all approaches will be

similar.

Conclusion

In this paper we provided a comparison of different

first principles approaches for treating disordered

substitutional alloy systems. While the main focus

was on multicomponent bcc refractory metal alloys,

we expect that our general conclusions are applicable
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to a wider range of alloys. The methods that we have

compared fall into two categories, namely the mean

field descriptions of chemical disorder, as repre-

sented by CPA and corrected CPA, and supercell

representations of disorder, as represented by the

SQS approach and large random supercell LSMS

calculations. As a large random supercell will reduce

the spurious periodic interactions of sites with

themselves and also capture the full distribution of

atomic neighborhoods as the cell size goes to infinity,

this approach represents the standard against which

the other approaches should be evaluated. In this

comparison, the straight CPA method clearly falls

short in capturing some physical properties, includ-

ing the wrong sign for the enthalpy of formation. We

have identified the source of this discrepancy as

originating from the assumption of a constant

Madelung potentials for all atomic species. The

atomic species-specific screening correction for this

deficiency significantly improves the mean field

results and allow us to draw conclusions of the

qualitative behavior. The SQS method has very good

agreement with the random supercell method and

approaches the results with increasing SQS cell sizes.

Thus, in many practical cases the overarching fac-

tor to decide which method to employ will depend

on the computational resources available as well as

the number of different concentrations to be investi-

gated. The CPA approach has the smallest resource

requirements as it can represent the alloy on the

minimal unit cell of the underlying crystal lattice.

This will allow high volume screening of many

compounds and concentration and it also allows for

arbitrarily small fractional site concentrations that are

not readily representable in supercell methods with-

out resorting to very large cell sizes. For higher

accuracy requirements, the SQS method is likely the

most practical approach for traditional DFT methods

that scale with the cube of the system size, yet the

construction of the SQS atom arrangements for large

cells and averaging over potential ensembles of cells

can also represent a non-negligible cost. For linear

scaling methods, such as our LSMS approach, the

random supercell approach has the advantage of

minimizing the assumptions that need to go into

constructing the simulation cells and it allows for the

study of the distribution of local quantities, such as

the charge distribution, that cannot be captured by

smaller systems. It also has the added potential to

investigate arbitrary atomic arrangements while

minimizing spurious periodicity induced artifacts.
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