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ABSTRACT ARTICLE HISTORY
Vector GIS represents shorelines as polylines that show the boun- Received 7 January 2021
daries between land and water. This article compares two meth-  Accepted 19 April 2021

ods to measure how boundaries move among time points. The

Area method.converts the polylines at various time points into AMBUR: boundary
polygons of either land or water. The Area method measures tem- movement: coastal studies:
poral change as loss or gain of land areas. The Transect method DSAS; GIS;IshoreIine chang’e
requires subjective decisions to draw a baseline near the shore-

lines and then to draw transects that emanate from the baseline

to intersect the shorelines. The Transect method measures tem-

poral change as the distance between the intersection points

along each transect as in the software packages AMBUR and

DSAS. This article compares the conceptual foundations of the

two methods. We illustrate how the Area method produces

results for cases where the Transect method encounters practical

difficulties. We list each method’s characteristics, so researchers

can align the method with their research question.

KEYWORDS

1. Introduction

Shorelines are interfaces between the aquatic and terrestrial ecosystems usually distin-
guished by a topographic gradient along the lateral land-water margin (Dolan et al. 1991;
Florsheim et al. 2008). Shorelines can change position through time due to interactions of
many physical processes. For instance, sedimentation, erosion, sea-level rise, nearshore
currents and human intervention are among the prominent causes of ocean shoreline
dynamics (Mukhopadhyay et al. 2012). Similarly, river shoreline dynamics derive from
sediment load, biological activity, weather patterns, surface run-off, morphological vari-
ability and human intervention (Calow and Petts 1992; Kummu et al. 2008).

Quantifying the rate of movement of shoreline over time and determining its future
position can help in coastal engineering by facilitating the modelling of coastal morpho-
dynamics (Boak and Turner 2005; Maiti and Bhattacharya 2009) thus can inform policy-
making decisions regarding the management of coastal systems (Pollard et al. 2019).
Positional change of river shorelines, also called riverbanks, influences flood-plain habitats
and plays an important role in impact assessment models and ecological management
(Currin et al. 2015). Therefore, scientists require a method to characterize the amount
and rate of temporal change in the positions of boundaries between land and water.
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2 S. KHALLAGHI AND R. G. PONTIUS

Vector GIS can use polygons to represent areas of land or water, in which case shorelines
are the borders between polygons. Alternatively, vector GIS can use polylines to represent
shorelines. Each representation requires a distinct method to measure temporal change.

Our article compares approaches to characterize the temporal change of boundaries in
a vector GIS based on two representational models: polygons and polylines. The two
approaches are the Area method and the Transect method. We articulate the analytic
capabilities of each approach in-depth, so that reader can understand how each method
addresses its particular goal.

The literature contains two major types of quantitative methods to study shoreline
dynamics. Numerical models are usually complex and require a variety of hard-to-collect
data to model the shoreline evolution based upon the impact of morph-dynamic processes
on the coastal system. Numerical models are often site-specific and their parameters need
recalibration before they can be applied to a different geographical setting (Zeinali et al.
2020). Increase in availability of remotely sensed data and maturity of shoreline extraction
techniques have led to the increasing popularity of GIS methods in shoreline change ana-
lysis. A good example is CoastSat, which automates the extraction of shorelines from the
Landsat and Sentinel-2 archive in Earth Engine (Vos et al. 2019). Regardless of whether
portraying a shoreline as borders between polygons or as polylines, such models formulate
the change as accretion or erosion with the assumption that historical position of the
shoreline is a good representative of the aggregation of all the processes that impact the
coast through time (Dolan et al. 1991; Currin et al. 2015).

Our literature search found a few articles that used the Area method based on poly-
gons. Fearnley et al. (2009) explored the impact of a tropical cyclone on Chandeleur
Islands shorelines in Louisiana. They use both Area and Transect methods to measure
changes of shoreline in terms of area and distance, and then related the changes to hurri-
cane frequency and storm intensity. Yao et al. (2011) used pairwise polygon overlay to
assess the shape and positional change in China’s Yellow River from 1958 to 2008 and
report the rate of accretion and erosion for each riverbank. Sarwar and Woodroffe (2013)
used the Area and Transect methods to analyse Landsat-derived shorelines at 1989 and
2009 in Bangladesh. Deabes (2017) used the Area and Transect methods to analyse the
shoreline change along the Nile delta coast between 1970 and 2010 using twelve time
points. Dewan et al. (2017) analysed the evolution of the Ganges and Padma riverbanks
within Bangladesh from 1973 to 2011 using both Area and Transect methods. Langat
et al. (2019) studied the dynamics of the Tana river in Kenya from 1975 to 2017 using
the Area method after extracting the riverbanks from Landsat imagery.

We found more articles that used the Transect method than the Area method. Dolan
et al. (1991) used data from a 65km section of North Carolina to estimate the rate of
change and potential sources of error. They reported that various parameterizations of the
Transect method caused larger variation in rates where the shoreline curved more. To
and Thao (2008) used the Transect method as implemented in the Digital Shoreline
Analysis System (DSAS) package to quantify the rate of shoreline change in Nam Dinh,
Vietnam. They quantified change using four methods: Endpoint rate (EPR), Average of
Rates (AOR), Linear Regression (LRR) and Jack-Knife rate (JKR). The rate of change was
similar for EPR & AOR and LRR & JKR, while there was a substantial 10 m/year differ-
ence between the two pairs of methods. The authors reported difficulty in drawing non-
intersecting transects near the river mouth. Kuleli et al. (2011) introduced an automated
methodology using histogram-based segmentation of Landsat imagery to classify land and
water in Turkey. They fed polylines into DSAS to compute the rate of change using
weighted linear regression and endpoint rate methods. In a similar study, Kankara et al.
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(2014) used DSAS to capture the rate of change along a part of the Chennai coast in India from
1990 to 2013. Beetham and Kench (2014) examined shoreline dynamics during three weeks in
June 2010 at the Vabbinfaru coral reef platform in the Maldives. They defined the shoreline as
the toe of the beach, and then mapped the shoreline at three time points. They defined a circular
baseline using a buffer around the centroid of a polygon that showed the edge of vegetation.
They then extended transects in one-meter intervals from the baseline and used DSAS 4.3 to cap-
ture the variations in shoreline position. Roy et al. (2018) used High Water Line (HWL) as shore-
line definition and Modified Normalized Difference Water Index (MNDWI) as a means for
extracting shorelines of Odisha coast from 1990 to 2015. Extracted shorelines are then processed
using DSAS to report long-term rate of change. Jana (2019) used the DSAS package to study the
spatio-temporal variability of riverbanks along a 155km segment of the Subarnarekha River.
They reported the rate of change for each bank and reported an overall positional accuracy of
around 0.05m for the evaluation of the short term prediction of riverbank position. Ciritci and
Tiirk (2019) extracted shorelines of Goksu delta from Landsat 5 and analysed the rate of change
using DSAS for the period between 1984 and 2011 using six time-points. Elkafrawy et al. (2020)
used eight shorelines from 1973 to 2018 and the DSAS package to explore the effectiveness of
coastal protective structures in Egypt. Zagorski et al. (2020) used DSAS to study the dynamics of
the Calypsostranda shoreline in the period of 2007 to 2017 including both short-term and multi-
decadal trends to the produce shoreline hazard map of the area.

Jackson et al. (2012) developed an R package called Analyzing Moving Boundaries
Using R (AMBUR), which uses an implementation of the Transect method to quantify
the rate of change in a time series of shorelines. AMBUR provides some new functions
such as near transects that can partially solve the problem of crossing transects in highly
curved shorelines. AMBUR also provides some graphical tools that do not exist in DSAS.
Addo (2015) used AMBUR to explore the trends of shoreline change among five time
points in Ghana. Eulie et al. (2013) used AMBUR to analyse sub-annual shoreline changes
in North Carolina. Zhu et al. (2014) adopted the average high-tide line as the definition
of shoreline. They used AMBUR to describe the change in terms of distances. They also
studied the variations in the coastline length and change in the sea area. Jayson-
Quashigah et al. (2019) studied sediment budgets in Ghana. Wiberg et al. (2019) used
AMBUR to compare the rate of shoreline change in shallow coastal bays across three
time points: 2006, 2009 and 2014. Various non-academic organizations also use the
Transect method to describe change in coastal areas (O’Brien et al. 2014; Bracewell 2017).
We have not found literature that compares conceptually the Area method to the
Transect method. We have not found literature that reports when either method fails to
produce interpretable results. Meanwhile, we have encountered cases where the Transect
method fails to produce results due to conceptual challenges with the Transect method.
This is the motivation for us to write this article. The ‘Methods” section describes both
methods. The ‘Results’ section summarizes our findings in a table that compares the
methods. The ‘Discussion’ section elaborates on the findings. The ‘Conclusion’ section
summarizes how each method has a distinct conceptual foundation and goal.

2. Materials and methods
2.1. Materials for the Plum Island Ecosystems

We illustrate the concepts with an example from the Plum Island Ecosystems (PIE),
which is a site of the Long-Term Ecological Research network of the United States
National Science Foundation. The PIE site is a marsh-dominated estuary in northeastern
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Figure 1. Boundaries between land and water for the Plum Island Ecosystems, northeastern Massachusetts in 1938,
1971 and 2013.

Massachusetts, USA. Figure 1 shows the data, which consist of polylines that separate
land from water at three time points: November 1938, July 1971 and April 2013. The spa-
tial extent consists mainly of brackish and saline marshes with elevation ranges between
sea level and 2 metres (Hopkinson et al. 2018). The riverbanks were digitized as polylines,
using a heads-up method on a Wacom tablet. Information on the PIE dataset is in Burns
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Figure 2. Pairwise overlay of shorelines in 1938, 1971 and 2013. Land Gain (G) and Loss (L) indicate boundary move-
ment. Parts a and b show the change during each interval. Part ¢ shows the change during the temporal extent. The
shaded part of transition polygons shows the area of joint uncertainty (AJU) based on the reported positional uncer-
tainty of the shoreline polyline.

et al. (2020). The recorded positional accuracy for each time point in chronological order
is 3.07, 2.85 and 2.74 metres, which are assumed constant for the entire length of shore-
line. According to the dataset metadata, “The positional accuracy was assessed using the
method described in Rooney et al. (2009). Sources of error were identified and summed
in quadrature at each year. Digitizer error was assessed by repeatedly digitising the same
location five times and taking the standard deviation of the shoreline position’.

We illustrate the two methods using subsets of the shoreline dataset that have continu-
ous shorelines at three time points: 1938, 1971 and 2013. Figure 2 shows an overlay for
each of the three time intervals: 1938-1971, 1971-2013 and 1938-2013. Land experiences
loss and gain during each of the time intervals. Figure 2(a) shows that the river moves
mostly to the west during 1938-1971. Figure 2(b) shows that the river moves mostly to
the east during 1971-2013. Figure 2(c) shows that the river widens during 1938-2013.

2.2. Methods

2.2.1. Area method

Figure 3 shows the steps to perform the Area method. We assume the original data are
polylines. If discontinuous polylines portray a shoreline, then the first step connects the
gaps between the polylines to form a continuous polyline. If the gaps are small, then the
gap-filling algorithms in GIS packages such as ArcGIS and QGIS can connect the gaps.
Filling large gaps requires a new extraction of shorelines or a different selection of the
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Figure 3. Flow diagram of steps for Area method. Rectangles indicate the required steps. Rectangles with curved sides

show outputs.
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Figure 4. Gains and losses during two time intervals. Part ‘a’ shows the output of the Area method on a river for
three time points. L denotes land, W denotes water, and the three-letter code indicates the sequence of three time
points, for example, LWL denotes land in 1938, water in 1971, and land in 2013. The Area of Joint Uncertainty (AJU)
is shown with cross-hatched polygons. Part b shows stacked bars that indicate annual change. The width of the bar is
the duration of each time interval. The total height of the stacked bars indicates the annual change during each time
interval. The bars’ segments show specific land transitions. Gain Once segments are WLL for the first time interval and
WWL for the second time interval. Gain Toggle segments are WLW during the first time interval and LWL during the
second time interval. ‘Loss Once’ segments are LWW during the first time interval and LLW during the second time
interval. The ‘Loss Toggle’ segments are LWL during the first and WLW during the second time interval. The area of
‘Gain Toggle’ during 1938-1971 is identical to the area of ‘Loss Toggle’ during 1971-2013. Area of ‘Loss Toggle’ dur-
ing 1938-1971 is identical to the area of ‘Gain Toggle’ during 1971-2013.

spatial extent. A bounding polygon allows the GIS to use continuous polylines to generate
polygons within the bounding polygon. The continuous polylines at each time point strat-
ify the bounding polygon into polygons of either land or water. The maps at the various
time points are then overlaid in the GIS system to generate sub-polygons, where each
sub-polygon shows a temporal sequence of land or water.

Figure 4 illustrates an application of the Area method. If T denotes the number of
time points, then 27 is the number of possible sequences between land and water during
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T-1 time intervals. Figure 4(a) uses the letter L to denote land and the letter W to denote
water at each time point. The eight sequences across the three time points are LLL, LLW,
LWL, LWW, WLL, WLW, WWL and WWW. LLL and WWW are persistence during
both time intervals. LLW is the land’s persistence then loss. LWL is land’s loss then gain.
LWW is land’s loss then water’s persistence. WLL is land’s gain then persistence. WLW is
land’s gain then loss. WWL is water’s persistence then land’s gain. LLW and LWW show
land loss during the temporal extent. Analogously, WLL and WWL show land gain dur-
ing the temporal extent.

The segmented bar graph in Figure 4(b) shows four sequences of change. The width of
each segment is proportional to the duration of each time interval. The vertical axis is
annual change; thus, the area of each bar segment is proportional to the area of change in
the polygons of the map in Figure 4(a). The height of the stacked bar is the annual gross
change during each time interval. Figure 4(b) shows the first time-interval has a faster
annual change compared to the second time interval. The two segments above the hori-
zontal axis show land’s gain during each time interval, while the two segments with nega-
tive change rates below the horizontal axis show land’s loss. The green segments of ‘Gain
Once’ are land’s gain then persistence during the first time interval and water’s persistence
then land’s gain during the second time interval. The yellow segments with a densely dot-
ted pattern of ‘Gain Toggle’ are land’s gain then loss during the first time interval and
land’s loss then gain during the second time interval (Pontius et al. 2017). The red seg-
ments of ‘Loss Once’ are the areas of land loss then water persistence during the first
time interval and land’s persistence then loss during the second time interval. The yellow
segments with sparse dot patterns of ‘Loss Toggle’ are land’s loss then gain during the
first time interval and land’s gain then loss during the second time interval. The stacked
bar shows land’s loss is greater than land’s gain during both time intervals, as the sum of
the sizes of the negative segments is larger than the sum of sizes of the positive segments
during each time interval. The Net line is land’s annual net change during the temporal
extent, which is the Gain segments minus the loss segments scaled by the segments dur-
ation divided by the total duration of the temporal extent. The Gross line is land’s annual
gross change during the temporal extent, which is the Gain segments plus the loss seg-
ments divided by the duration of the temporal extent.

The position of the shoreline contains uncertainty due to seasonality, environmental
conditions, georeferencing errors and various semantics of shoreline definition (Wernette
et al. 2017). The validity of the estimated rate of land change depends upon whether the
shoreline movement exceeds the polyline uncertainties (Mount and Louis 2005). Inspired
by the work of Wernette et al. (2017), we create a buffer with the radius of the reported
positional uncertainty around pairs of shorelines and interpreted the area of intersection
between buffers as the joint area of uncertain change for both shorelines. The intersection
of the joint area of uncertainty and transition polygons normalized by the size of each
transition polygon provides the standard uncertainty ratio in the range of [0,1] associated
with each polygon and indicates how much of the observed change can be explained due
to the joint uncertainty of shoreline delineations. The ratio indicates how much of the
observed change is explained due to the joint uncertainty of shoreline delineations. A
ratio of zero indicates that the uncertainty of the pair of shorelines accounts for none of
the change. A ratio of one indicates the uncertainty of the pair of shorelines may accounts
entirely for the change. To find the area of joint uncertainty (AJU) for more than two
shorelines, we first calculate the AJU for each consecutive time interval in the temporal
extent, merge them, and find the intersection between merged AJU and transition poly-
gons. This procedure is a filtering technique to exclude transition polygons that have an
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associated uncertainty ratio of one or greater than a user-defined threshold. The profes-
sion lacks a rule to decide this threshold, which is a topic for future research. The value
of the threshold is a trade-off between the number and size of transitional polygons. This
becomes important in visualising multi-temporal change analysis where increase in the
number of shorelines creates a growing number of smaller transition polygons to capture
the variability of change. Showing AJU polygons on the map can help the analyst to
understand the spatial distribution of uncertainty.

2.2.2. Transect method

Transect method measures the distance of movement of the polyline boundaries (Jackson
et al. 2012). Our literature review showed AMBUR and DSAS are two main freeware
packages that implement the Transect method and that researchers use extensively to ana-
lyse shoreline change in a vector GIS. The Transect method analyses the movement of
edges of a variety of entities such as shorelines, ponds, fires, and ecozones (Jackson et al.
2012). Recently, ESRI added to the ArcGIS Pro sampling toolbox the capability of gener-
ating perpendicular transects.

Figure 5 shows the steps to perform the Transect method. This method requires sub-
jective decisions that Table 1 lists and that Figure 5 shows as diamonds. The first step is
to construct the baseline layer. The baseline layer is usually created outside the main
package with any GIS-capable application and saved as a shapefile or Geodatabase layer.
Refer to the AMBUR and DSAS documentation on the official website of these projects
for more information on the requirements to make your data analysis-ready.

A baseline is a polyline drawn on either one side or both sides of a time series of
shorelines. The baseline should follow the combined orientation of the time series shore-
lines. Users construct a baseline through either on-screen digitising or automated techni-
ques such as the buffer generation tools in GIS. If the baseline is on land, then the
baseline is called onshore, landward or inner. If the baseline is in the water, then the
baseline is called offshore, seaward, or outer. The baseline does not necessarily need to be
a single polyline and can be defined as a series of polylines that allow the user to choose
a particular type of baseline, for example, inner, outer, mid-shore or hybrid for various
lengths of the shoreline (Thieler et al. 2009). AMBUR introduced a double baseline, which
envelopes the time series of shorelines using both offshore and onshore baselines.
Recently DSAS extended the baseline definition by introducing mid-shore baseline, which
can be drawn in between shorelines. Both AMBUR and DSAS provide an optional step to
smooth the baseline (Jackson et al. 2012; Himmelstoss et al. 2018).

AMBUR uses the baseline and time series of shorelines to construct transects.
Transects are straight lines that emanate from the baseline towards the shorelines at user-
defined intervals along the baseline. In AMBUR, the user defines the transects’ length and
casting direction. In the case of a single baseline, transects are cast perpendicular to the
tangent of the baseline. Transects are intended to cross all shorelines at the various time
points. For double baselines, transects are perpendicular to the offshore baseline and
emanate toward the onshore baseline. DSAS v5.0 replaced the idea of fixed length trans-
ects with a search radius. Transects are drawn on either side of the baseline and intersect
all shorelines within the searching range. This search procedure generates transects that
are trimmed to the extent of the shorelines. However, a specific casting direction is still
possible for onshore and offshore baselines. The intersection points between transect and
shorelines are used to calculate the distance of change along each transect.

The baseline controls each transect’ s orientation, which influences the coordinates of
the intersection points and consequently, affects the distance of temporal change along
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Figure 5. Flow diagram of the Transect method. Rectangles indicate the required steps. Dashed lines indicate optional
steps. Diamonds represent decisions. Trapezoid shows manual operations outside the algorithm.
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Table 1. Questions requiring subjective decisions concerning how to draw Baselines and Transects.

Feature Questions concerning how to draw

Baseline What type of baseline should the user choose?

Baseline How far from the shorelines should the user draw a baseline?

Baseline How smooth should the user draw the baseline?

Baseline Should the user choose a single segment or multi-segment baselines?

Transect How many transects should the user create?

Transect Which intersection point should the user keep when a transect intersects the same

shoreline at more than one point?

each transect. AMBUR and DSAS support perpendicular transects for onshore or offshore
baselines. If double baselines are used, then AMBUR supports three additional types of
transect casting: trimmed perpendicular, near transect and filtered transect. Trimmed per-
pendicular transects confine the length of the transect between the onshore and offshore
baselines. Near transects are drawn from the offshore baseline to the nearest point on the
onshore baseline relaxing the perpendicularity rule. Filtered transects are created using a
moving window that averages the azimuth of the casted transects and assigns the averaged
value to the middle transect in the window to minimize the gap between transects on the
inner baseline in curved shorelines. According to AMBUR developers, these new transect
types can mitigate transect overshooting, where a too long fixed-length transect might
intersect a shoreline i erent geographic settings. DSAS achieves the same goal
through the search radiu¥. Shoreline sample points are further analysed to estimate the
rate of change and to extrapolate the position of a shoreline in the future or past.

AMBUR reports Net Shoreline Movement (NSM) defined as the distance between the tran-
sect’ s intersection points with the shoreline’s first and last dates. DSAS reports also the Shoreline
Change Envelope (SCE), which is the distance between the most seaward and landward intersec-
tion points along each transect. Various techniques exist for computation of the shoreline change
rate along each transect. The simplest calculation is the End Point Rate (EPR) where the rate for
each transect is the NSM divided by the duration between the dates. This simplicity comes with
a price. The EPR model fails to consider the shoreline movement between the first and last dates
(Dolan et al. 1991). Compared to other estimators, the EPR becomes more unreliable as the dur-
ation between the first and last dates increases. This effect is due mostly to the higher chance of
missing cyclic changes. EPR is best suited for calculating the change rate on a short-term basis
(Thieler et al. 2009). A Linear Regression Rate (LRR) computes the rate of change along a tran-
sect by fitting a least-squares line to describe the distance of shoreline from the baseline as a func-
tion of the dates. Each point in the regression derives from the intersection of the transect with
the shoreline’s time series. The slope of the regression line is the rate of change along each tran-
sect accompanied by the standard error of the slope with a confidence interval and R-squared
value. The standard error of the estimated position of each shoreline point is also reported
(Thieler et al. 2009; Jana 2019). LRR is sensitive to outliers especially when the time-series shore-
line is clustered (Dolan et al. 1991). Both AMBUR and DSAS require the users to report the pos-
itional uncertainty of each shoreline as part of the attribute table of the time series shoreline
dataset. The regression can use weighted linear regression where the weight is a function of each
shoreline’s uncertainty. The weight for each shoreline is usually the inverse of the squared uncer-
tainty of the shoreline, thus more uncertain shorelines receive smaller weights. AMBUR provides
also the least median of squares (LMS) regression in which the median value of the squared
residuals determines the regression line. LMS is less sensitive than ordinary least squares regres-
sion to outliers. The regression-based techniques and are better than EPR for intermediate or
long-term rate of change calculations.
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Figure 6. The output from the AMBUR package concerning boundary movement. AMBUR performs the analysis for
each riverbank separately using a three-baseline scheme with the offshore baseline common in the analysis of banks.
Net change and End Point Rate (EPR) shows erosion for all transects of the right bank. The left bank has seven trans-
ects of erosion and three of accretion.

Both packages provide options for shoreline forecasting. DSAS uses a Kalman filter to
extrapolate the shoreline position 10 or 20 years into the future accompanied by a polygon
layer as an estimation of the positional uncertainty of the extrapolated shoreline and
needs at least 4 time points (Himmelstoss et al. 2018; Ciritci and Tirk 2020). AMBUR
can use EPR, LRR or WLR for the extrapolation.

We used AMBUR to illustrate the Transect method. Figure 6 shows the left riverbank
in the north and the right riverbank in the south, where the flow direction determines left
and right. We treat each riverbank as its own shoreline. The onshore baseline in the north
analyses the northern riverbank. The onshore baseline in the south analyses the southern
riverbank. The offshore baseline in the river analyses both riverbanks. AMBUR generates
numerous outputs in the form of PDF reports, CSV tables, and shapefiles. Figure 6 sum-
marizes the most informative results. All transects on the right shoreline in the south
have loss. For the left shoreline in the north, seven transects have loss and three transects
have gain. These results agree with the results of the pairwise overlay of the first and last
time points in Figure 7 regarding accretion or erosion on both riverbanks.

3. Results

Table 2 summarizes the characteristics that distinguish between the Area and Transect
methods. The Area method measures the area of overlaid polygons. In contrast, the
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Figure 7. The peninsula’s shoreline at 1938 in yellow recedes by 1971 in red, then shifts southeast by 2013 in green.
Transects emanate from the offshore baseline towards the onshore baseline. Part a shows trimmed perpendicular
transects that either fail to intersect with all the shorelines or have the multiple intersection issue. Part b shows near
transects that intersect with all the shorelines but several transects intersect at more than one point on the
1938 shoreline.

Transect method attempts to measure the distance the shoreline has moved through time.
The Transect method is a distance sampling strategy that takes samples in equal intervals
along emanated transects with the hope that these samples are good representatives to
capture the dynamics of the shoreline. modelling the shoreline as a common boundary in
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Table 2. Characteristics of the area and the transect methods.

Characteristic Area Method Transect Method
Concept to express temporal change Area Distance

Data model Field-based Object-based
Representation model Polygon Polyline

Change type Gross, Net, Toggle Net

Works for any curvature of the boundary Yes No

Requires parameter tuning No Yes

Can predict future boundary Not automated Yes

Sensitive to missing data More Less

Reports uncertainty Only visually Statistical report

Area method uses the whole length of shoreline and doesn’t need a sampling strategy
hence doesn’t require the subjective decisions that influence the Transect method.
However, this same advantage becomes problematic in extrapolation of the shoreline
future position in as we get a single change rate for the whole length of the spatial extent.

The Area method reports gross loss, gross gain, net and toggle change. The Transect method
calculates the net change. For instance, the stacked bar graph in Figure 4 shows 56 m°/y of
change during the first time interval and 41 m*/y of change during the second time interval.
Land loss is greater than land gain during both time intervals. Land experiences gross loss of
45 m®/year and gross gain of 11 m*/year during the first time interval and a gross loss of 32 m?/
year and gross gain of 9 m*/year during the second time interval. Gross loss is 47 m*/year during
the temporal extent. Net change is —34 m®/year during the first interval and —24 m*/year during
the second interval. Net change is —28 m*/year during the temporal extent.

The curvature of shorelines has no effects on the Area method. However, perpendicu-
lar transects can fail to intersect with curved shorelines. Such transects must be discarded
or manually edited. Transects 1 to 4 in Figure 7(a) illustrates this problem. Figure 7(b)
shows how near transects can overcome this issue by modifying the casting direction but
this can give rise to another serious issue of multiple intersection points or result in an
arbitrary distance of change along a shoreline.

Each transect must have exactly one intersection point with each shoreline. If a transect
intersects a shoreline at more than one point, then the user must decide to use either the
most landward or the most seaward intersection point. The decision can influence the rate of
change for that transect. Figure 8 illustrates the multiple intersection issue. Transects 1-4
intersect the 1938 shoreline more than once and fail to intersect the shorelines at 1971 and
2013. Transects 5-8 illustrate other forms of the multiple intersection issue.

The constraint of the unique intersection of each transect with a shoreline enforces a
separate analysis for each riverbank as shown using a three-baseline design in Section
2.2.2. For the same reason, the Transect method cannot handle temporary islands, which
must be removed. Figure 9 shows a situation where an island exists at only 1938. The
Area method analyses these situations seamlessly.

Both AMBUR and DSAS provide the associated uncertainty with a confidence interval
for the rate of change and the extrapolated position of the shoreline along each transect.
We know of no software that automates uncertainty analysis into the Area method. The
Area method requires continuous polylines. Any missing part of a shoreline must be filled
either manually or through a line-filling algorithm.

4. Discussion

The Transect method requires subject decisions that affect the results. The first decisions
concern drawing of the baseline. Baselines should follow the general trend of shorelines,
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Figure 8. All transects demonstrate the multiple intersection issue. The decision to keep the first, middle, or last inter-
section point influences the result along these transect. Transects 1-4 are oriented in directions that fail to intersect
the shoreline in 1971 and 2013.

meaning the baseline should be approximately parallel to the trend of the shorelines
(O’Brien et al. 2014; Himmelstoss et al. 2018). Figures 7 and 8 show how divergence from
parallelism between the baseline and shorelines influences the casting direction and the
distance between shorelines along transects.

Both AMBUR and DSAS recommend drawing the baseline as close to the shoreline as
possible but in the literature we reviewed, this distance is varied between few metres to
more than a kilometre. Figures 10 and 11 show how the orientation of each transect
varies as a function of the smoothness of the baseline and distance between the baseline
and shorelines. Users should avoid smoothing that causes the length of the smoothed
baseline to deviate substantially from the original length of the baseline. The combined
effect of these arbitrary decisions and the multiple intersection issue can affect the
extrapolated position of the shoreline. As a rule of thumb, these subjective decisions can
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Figure 9. Part a shows a river where an island exists at the year 1938 but at neither 1971 nor 2013. Part b shows
the Area method for the same extent.

be safely ignored when the drawn transects meet all the shorelines, transects are approxi-
mately perpendicular to the baseline and parallel to each other, and transects are not suf-
fering from the multiple intersection issue. The three-baseline scheme adopted for river
networks can mitigate decisions regarding the distance between the baseline and the time
series shoreline. Figure 10 shows the difference between near transects cast from the com-
mon offshore baseline towards onshore baselines drawn at 2 and 25 metres. Perpendicular
transects make the distance decision for onshore baselines irrelevant. However, Figure 12
shows a river segment that has lateral movements that prevent the three-baseline scheme.
Figure 12(a) shows a situation where one bank of the river at 1971 intersects the opposite
bank at the other time points. Figure 12(b) shows both banks of the river at 1971 moved
to one side of the banks at the other time points. AMBUR and DSAS requires the analyst
to separate such riverbanks before capturing the intersection points.

Another option is to compute the rate of change based on the movement of the mid-
point on a transect between two shorelines. Neither AMBUR nor DSAS compute such
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Figure 10. This riverbank segment shows the influence of the distance between shoreline and baselines on the shore-
line movement captured by near transects.

mid-points but GIS packages can perform the calculation. Calculating the mid-point for
transects affected by multiple intersection issue is tricky and requires manual
intervention.

DSAS and AMBUR allow users to organize baseline segments into groups. The number
and lengths of baseline segment groups are important decisions. AMBUR and DSAS
report statistics for each group of baseline segments. The length of baseline segments
together with the transect spacing determines the number of transects from each segment.
Users might want to apply a distinct baseline group to each distinct shoreline type, for
example, sandy beach, short cliff or manmade structure. A good strategy to design the
segments and their grouping is to follow shoreline types or the pattern of land loss and
gain via the Area method. Distance between transects should be based on the scale of the
shoreline and spatial autocorrelation of change rate between adjacent transects. DSAS ver-
sion 5.0 uses spatial autocorrelation between transects to adjust the effective sample size
in calculating average change rates for each baseline segment group and the entire study
region. AMBUR does not provide a mechanism for handling the change rates’ spatial
autocorrelation between transects.
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Figure 11. Subjective choices concerning the smoothness of baselines influence the orientation of the transects.
Baselines are drawn at 7 metres and near transects are chosen to demonstrate the effect. Simplification of the con-
cave curve after transect 13 eliminates three transects.

DSAS uses perpendicular transects, whereas AMBUR allows perpendicular or non-per-
pendicular transects. Figure 7(b) shows how each transect’s angle from the baseline influ-
ences the rate of shoreline movement. Near transects shows promising potential in
dealing with curved shorelines. AMBUR uses an optional moving average filter to smooth
the deviation from the perpendicular angle for near transects. Users should be aware that
the reported distances on the non-perpendicular transect can get two times larger than
their perpendicular counterpart when the deviation angle reaches 60 degrees using secant
of the deviation angle to convert apparent distance on the inclined transect to its equiva-
lent distance on a perpendicular transect. The definition of distance becomes vaguer as
the complexity of the shoreline increases.
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Figure 12. Example of situations where the three-baseline scheme does not work. Part a shows a situation where the
west riverbank in 1971 intersects with the east riverbank in 1938 and 2013. Part b shows a situation where both
banks in 1971 reside in the east of the banks in 1938 and 2013.

Another important decision is to keep the first or last intersection point for transects that
intersect a shoreline more than once. Both packages provide the option to apply a decision for
each baseline segment group but not for individual transects from each group. Figure 13 shows
how this decision influences movement rates. Figure 13(a) shows that the first point causes most
of the analysis envelope to pass over the LWW transition. However, the last intersection point
causes most transects to pass through the WLL transition. Exploring how transects pass over
transition polygons can raise awareness of the severity of the problem. If the time-series shoreline
consists of five or more time points, then users can predict one of the existing shorelines from
the rest of the shorelines for the affected transects using either the first or last intersection point
then choose the one with the least amount of positional error.

5. Conclusions

The Area method gives results in terms of loss and gain of land area. The concept of land
area lost to water and land area gained from water is clear and measurable, therefore, the
Area method is straightforward in concept, implementation and interpretation. The Area
method reveals the data’s patterns, but would require a separate model to extrapolate the
shoreline position. The Transect method gives results in terms of net distance of shoreline
change and offers a technique for extrapolation. The drawback of the Transect method is
its dependence on several subjective decisions concerning how to draw the baseline and
transects. Transect method uses subjective decisions to pair a point on an earlier shoreline
with a corresponding point on a later shoreline. The concept of distance of shoreline
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Figure 13. lllustration of the decision concerning whether to keep the nearest or farthest intersection point when
transects from the western baseline intersect the 1938 shoreline more than once. Part a shows the length of transects
in pink to the nearest intersection point on the 1938 shoreline. Part b shows the length of the transects in cyan to
the farthest intersection point.

change becomes especially unclear when the shoreline at one time point is not parallel to
the shoreline at another time point, which can occur when peninsulas grow or shrink.
The Transect method requires users to make several types of subjective decisions concern-
ing how to draw baselines and transects. Some decisions are more important than other
decisions concerning how the decisions influence the results.

Users must align the method with the research question. If the purpose is to examine
the loss and gain of land areas, then the Area method offers a straightforward algorithm
that many GIS software packages can perform. If the purpose is to measure the net dis-
tance that a shoreline moves, then the Transect method is appropriate. This article illus-
trates boundaries for which the Transect method is difficult or impossible to implement.
Therefore, if a user lacks compelling reasons to compute distances, then we recommend
the Area method because the concept of area lost and area gained is conceptually clear
while the concept of distance of boundary movement is vague.
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