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Abstract: The profession debates how to encode a categorical variable for input to machine learning
algorithms, such as neural networks. A conventional approach is to convert a categorical variable
into a collection of binary variables, which causes a burdensome number of correlated variables.
TerrSet’s Land Change Modeler proposes encoding a categorical variable onto the continuous closed
interval from 0 to 1 based on each category’s Population Evidence Likelihood (PEL) for input to the
Multi-Layer Perceptron, which is a type of neural network. We designed examples to test the wisdom
of these encodings. The results show that encoding a categorical variable based on each category’s
Sample Empirical Probability (SEP) produces results similar to binary encoding and superior to PEL
encoding. The Multi-Layer Perceptron’s sigmoidal smoothing function can cause PEL encoding to
produce nonsensical results, while SEP encoding produces straightforward results. We reveal the
encoding methods by illustrating how a dependent variable gains across an independent variable
that has four categories. The results show that PEL can differ substantially from SEP in ways that
have important implications for practical extrapolations. If users must encode a categorical variable
for input to a neural network, then we recommend SEP encoding, because SEP efficiently produces
outputs that make sense.

Keywords: categorical variable; encoding; Sample Empirical Probability; Population Evidence
Likelihood; land change modeler; Multi-Layer Perceptron; neural network; transition potentials

1. Introduction

Empirical land-change modeling is a method of revealing the biophysical and an-
thropogenic patterns of land change, with the goals to understand and to extrapolate
the dynamics of a land system, to inform decision-making for land-use planning [1,2].
Spatially-explicit, pattern-based, inductive models of land change rely on mathematical
representations of the relationship between independent variables and past land change
to extrapolate future land change [2,3]. Machine learning techniques that quantify these
mathematical relationships have become popular compared to older parametric techniques,
such as logistic regression [4].

The TerrSet software offers machine learning algorithms in its Land Change Modeler
(LCM) [5]. Authors have used LCM for many publications [6-11]. The Multi-Layer
Perceptron (MLP) was the only neural network in LCM for many years until TerrSet’s 2020
version. Our article analyzes the MLP because of its popularity. The MLP calibrates a
relationship between independent variables and the transition from an earlier land class to
a later land class. The MLP calibrates the relationship using three interconnected layers: the
input layer, the hidden layer, and the output layer. Each layer is comprised of individual
nodes [12-14]. The input nodes for the MLP neural network are the independent variables
chosen by the researcher because the researcher believes the variables might be associated
with a land cover transition. The MLP uses independent variables on the continuous
closed interval from 0 to 1; therefore, all independent variables must be encoded as such.
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The output of MLP is a soft classification, called the transition potential for a particular
land transition. A sigmoidal activation function in the MLP causes a smooth relationship
between the encoded independent variable and the transition potential value [5].
Modelers must encode a categorical independent variable so that each category be-
comes a number on the continuous closed interval from 0 to 1 [15,16]. Sangermano et al.
(2012) used likelihoods to encode categorical independent variables [17], but other arti-
cles neither explain nor justify their technique for encoding the categorical independent
variables [18,19]. We and other authors found scant research concerning the impact of
various types of encoding on model calibration [20]. If K is the number of categories in
an independent variable, then one-hot encoding transforms each category into a dummy
variable for which 0 indicates absence and 1 indicates presence of one of the categories.
Thus, one-hot encoding produces a collection of K binary independent variables. Fitkov-
Norris et al. (2012) tested four methods of encoding categorical variables in a binary format,
including K, K-1, Thermometer K, and Thermometer K-1 encoding [20]. Their first method
is one-hot encoding. The thermometer encoding method slightly outperformed K and K-1
encoding in classification accuracy. Binary encoding of a categorical variable that has K
categories produces K binary variables, which can exceed computer storage capacity or
hinder processing speed. Furthermore, the resulting binary variables are correlated with
each other. Therefore, researchers have been searching for alternative encoding methods.
The Land Change Modeler manual recommends that users encode categorical vari-
ables based on the concept of Population Evidence Likelihood (PEL) [5]. Let k denote
one of the K categories. The PEL for category k is the intersection of category k with the
land change between two time points, divided by the size of the land change. Population
evidence likelihood assigns the greatest value to the category with the largest change size.

size of change on category k
size of change

Population Evidence Likelihood for category k =

In contrast, the Geomod land-change simulation model encodes categorical variables
based on the concept of population empirical probability (PEP), also known as change
intensity [21-23]. The PEP for category k is the intersection of category k with the land
change between two time points, divided by the size of category k. PEP encoding assigns
the greatest value to the category with the greatest change intensity.

size of change on category k

Population Empirical Probability for category k = size of category k

Eastman et al. (2005) state that a potential benefit of transforming categorical variables
to PEL is that the calculated relationships are independent of the size of each category,
and therefore PEL are transferrable across time and space, unlike PEP [4]. The benefit of
transforming categorical variables as PEL was a speculation by the authors, who concluded
PEL would probably outperform PEP. Their hypothesis was not tested, and we do not
understand their reasoning. Furthermore, we could not find literature concerning whether
machine learning algorithms find relationships that correspond to PEL, PEP, or some other
concept. On the other hand, the PEP transformation of a categorical variable into a continu-
ous transition potential makes intuitive sense to us, because PEP calculates change intensity
relative to category size, whereas PEL ignores category size. PEP describes how intensively
a gaining dependent variable targets or avoids various categories using the same logic
as the transition-level of Intensity Analysis, which is a framework to quantify categorical
transitions [23]. The size of change on a category is a product of the category’s size, times
the category’s change intensity, thus it makes sense to envision PEP as independent of the
category’s size.

To illustrate the fundamental conceptual difference between PEL and PEP, consider
a process whereby builders build on a landscape that has various geological categories.
If builders consider all geological categories as equally suitable, then builders have no
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incentive to target or to avoid any particular geological category. If builders were to build
on each category with the same intensity, then all categories would have the same PEP
while larger categories would have larger PELs. Through this logic, PEP indicates the
category’s suitability, while PEL reflects the category’s size. On the other hand, if builders
consider some geological categories as more suitable than other geological categories, then
builders have an incentive to target the most suitable categories, in which case the more
suitable categories would tend to have greater PEPs than the less suitable categories. If the
most suitable categories are rare, while the less suitable categories account for the majority
of the extent, then builders might build a larger area on the less suitable categories despite
the builder’s preference, in which case the less suitable categories would have greater PELs,
simply because the less suitable categories are large. It is not immediately clear whether
any particular machine learning algorithm tends to learn patterns according to PEL, PEP,
or some other criterion.

Our article examines how the MLP neural network in TerrSet’s Land Change Modeler
computes transition potentials when the independent variable is categorical. Specifically,
our article addresses the question: How should a modeler encode a categorical variable
on the continuous closed interval from 0 to 1 for input to the MLP? Our article compares
how the MLP neural network produces transition potentials, depending on three encoding
methods. We illustrate the concepts using designed data and a practical example from the
Plum Islands Ecosystems site of the United States National Science Foundation’s Long
Term Ecological Research network.

2. Materials and Methods
2.1. Flow of Methods

Figure 1 shows the flow of steps when using TerrSet’s Land Change Modeler (LCM)
with one independent variable that has categories. The legend at the top shows that each
color indicates the step’s role in the LCM.

- =Map - = User Decision - = Automated Calibration

Categorical Encoding to produce GEEEM  Encoded Multi-Layer Transition
Independent a binary collection or Independent Perceptron Potential for

Variable

Earlier
Land Cover

a single map? Variable(s) with sampling and extrapolation

smoothing of allocation

Sl el Markov matrix for

Extrapolated

Land Cover

- during calibration interval . . "
6 Future Time extrapolation of size
Later

Land Cover

Figure 1. Flow diagram of the Land Change Modeler when using one independent variable that shows categories. Our

manuscript addresses the user decision concerning the method of encoding a categorical independent variable and the

decision’s implications for the transition potential map and the subsequent extrapolated land cover map.

The LCM overlays the land cover maps from the earlier and later time points, to
produce a land cover change map. Our manuscript compares three ways to use the land
cover change map and the categorical independent variable map to encode the independent
variable on the continuous closed interval from 0 to 1. The user must decide whether to
encode the categorical independent variable as a collection of binary maps. If so, then the
user produces one binary map for each category, where 1 indicates presence and 0 indicates
absence of the category. Binary encoding does not use the land cover change map and
produces as many binary maps as the number of categories in the independent variable,
which consumes computer resources. Alternatively, the user can select an encoding method
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that produces a single encoded map, where each category receives a number on the
continuous closed interval from 0 to 1. Our manuscript compares two ways to use the land
cover change map to perform the encoding to a single map.

The Multi-Layer Perceptron reads the encoded independent variable map(s) and the
land cover change map to produce a transition potential map for each transition from
each losing land cover to each gaining land cover. The transition potential map guides
the allocation of the extrapolated change. The LCM uses a Markov procedure that reads
the land cover change map and the user-specified future time to extrapolate the size of
each transition from a losing land cover to a gaining land cover during the extrapolation
time interval. The LCM modifies the later land cover map by converting a number of
pixels that matches the extrapolation size for each transition. The LCM allocates changes
to the pixels that have the greatest transition potential values. The final output is a map
of extrapolated cover change from the calibration interval’s later time to the future time.
Our manuscript focuses on how to encode the independent categorical variable, and the
encoding’s implications for the MLP’s algorithm to produce the transition potential map,
which influences the allocation of extrapolated change.

2.2. Theoretical Analysis Illustrated with Designed Data

We designed data with purposeful patterns for three cases to reveal how the MLP
neural network uses a categorical variable. Figure 2 shows the designed data, where each
image has 100 rows and 100 columns of pixels, which forms 10 thousand pixels. Figure 2a
is the independent variable, with four categories named 1, 2, 3, and 4. Category 1 has 1000
pixels; category 2 has 2000 pixels; category 3 has 3000 pixels; category 4 has 4000 pixels.
Figure 2b—d shows the dependent variable respectively for cases I, II, and III. The dark grey
pixels are the change and the light grey pixels are the persistence between two arbitrary time
points. The height of the dark grey region reflects each category’s change intensity, which is
the size of change on the category divided by the size of the category. The change intensity
decreases from left to right within each of the three cases, as category 1 has the greatest
intensity and category 4 has the least intensity. The change intensities of categories 1, 2, and
3 are, respectively, 0.70, 0.40, and 0.30 in all three cases. The change intensity of category 4
shrinks from 0.25 to 0.20 to 0.15 from cases I to II to III. Consequently, cases I, II, and II have
change sizes of 3400, 3200, and 3000 pixels, respectively. Figure 2e—g quantifies how the
change aligns with the categories for cases I, II, and III. The height of each bar shows the
size of each category. The dark grey segment at the bottom of each bar is the change size
for each category. The change size remains the same across all three cases on categories 1,
2, and 3. However, the change size on category 4 shrinks from cases I to II to III. Category 4
contains a larger change size than any other category for case I because category 4 is the
largest and despite category 4 having the lowest change intensity. Category 4 contains the
same change size as category 2 for case II. Category 4 contains a smaller change size than
any other category for case III. MLP uses inputs where the number of change pixels equals
the number of persistence pixels to avoid the class imbalance problem [24]. However,
Figure 2 shows fewer change pixels than persistence pixels, which is typical in practice.
Therefore, TerrSet’s MLP uses all of the change pixels and samples an equal number of
pixels randomly from the persistence pixels. For example, case I has 3400 change pixels,
thus the MLP randomly samples 3400 pixels from the 6600 persistent pixels as input for
case I. Consequently, MLP uses 68% of the extent’s ten thousand pixels. Similarly, MLP
uses 3200 change pixels and 3200 sampled persistent pixels as input for case II, where MLP
uses 64% of the extent’s pixels. MLP uses 3000 change pixels and 3000 sampled persistent
pixels as input for case III, where MLP uses 60% of the extent’s pixels.
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Figure 2. Designed data shows that Sample Empirical Probability is robust to smoothing, unlike Population Evidence
Likelihood. (a) The independent categorical variable. (b) Case I dependent variable, where change intensity declines from
categories 1 to 4. (c) Case II dependent variable, where the change intensity of category 4 shrinks from case I. (d) Case III
dependent variable, where the change intensity of category 4 shrinks from case II. (e) Case I bars, where category 4 has

the largest change size. (f) Case II bars, where category 4 has the same change size as category 2. (g) Case III bars where

category 4 has the smallest change size. (h) Case I scatter plot, where the three encoding methods produce similar output.
(i) Case II scatterplot, where PEL renders the MLP unable to distinguish between categories 2 and 4. (j) Case III scatter plot,
where PEL produces a category ranking different from the other encoding methods.
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The light grey segments in Figure 2e—g show the expected number of sampled persis-
tence pixels in each category. The peach-colored segments show the remaining unsampled
persistence pixels, which the MLP ignores. Thus, the union of the dark gray and light gray
segments in the bars of Figure 2e—g constitutes the input pixels for a run of MLP. MLP then
randomly selects half of the input pixels for testing and uses the remaining half for testing
the fit for each run of the neural network.

We derived equations to compute the expected number of sampled persistence pixels
in each category, which we then used to encode a categorical variable onto the contin-
uous closed interval from 0 to 1 for entry into the MLP. Table 1 gives the notation for

the equations.
K K
Ex= <ch>{Dk/ Y. Dy } 1
k=1 k=1

Sk = Ci/ (Cy + Ex) ()

K
P =Cy/ (Z Ck) ®)
k=1

Table 1. Mathematical notation for Equations (1)-(3).

Symbol Meaning
k Identifier for an arbitrary category in the independent variable
K Number of categories in the independent variable
Cy Number of change pixels on category k
Dy Number of persistence pixels on category k
Ey Expected number of sampled persistence pixels on category k
Sk Sample Empirical Probability for category k
Py Population Evidence Likelihood for category k

Equation (1) computes the expected number of sampled persistence pixels on each
category k by multiplying the number of change pixels in the extent times a ratio. The
parentheses in Equation (1) contain the number of change pixels in the extent. MLP requires
the number of change pixels to equal the number of sampled persistence pixels. The braces
in Equation (1) contain a ratio where the numerator is the persistence in category k, while
the denominator is the extent’s persistence where the random sampling occurs. Equation (1)
generates the light grey segments in Figure 2e—g. Equation (2) uses the dark grey and light
grey segments to compute the Sample Empirical Probability for each category k, which
is analogous to the population empirical probability in our manuscript’s introduction.
However, the Sample Empirical Probability uses the sampled persistence, not the entire
persistence. Equation (3) uses the notation to express the Population Evidence Likelihood,
as in our manuscript’s introduction. Equation (3) is a function of exclusively the dark grey
segments in Figure 2e—g, thus the sampling does not influence Equation (3).

Figure 2h—j compares three encoding methods, where the green diamonds are binary
encoding, the blue circles are SEP encoding, and the red squares are PEL encoding. The
number within each shape denotes the category. Binary encoding transforms each category
to a binary variable, where 1 indicates presence and 0 indicates absence of the category.
We ran MLP once for each binary variable. Thus, the green diamonds derive from six
MLP runs, consisting of one run for each of categories 1, 2, and 3, plus three runs for the
three cases of category 4. SEP requires one MLP run for each of the three cases, where SEP
encodes into a single map the four categories onto the continuous closed interval from 0 to
1, which MLP reads in one run for each case. Similarly, PEL requires one MLP run for each
of the three cases. A laptop computer completed each run in less than a minute.

Binary encoding is the default method in the profession. Binary encoding makes
conceptual sense but requires an onerous amount of computer resources because binary
encoding converts one categorical variable of K categories into a collection of K binary
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variables. The green diamonds in Figure 2h—j shows how binary encoding produces the
transition potential as the output for each category. In all of the cases, binary encoding
produces the greatest output values for categories that have the greatest change intensity,
meaning category 1 has the greatest output value, then category 2, then category 3, and
then category 4 has the least output value.

SEP encoding produces output nearly identical to binary encoding, meaning the
categories that have more intensive change are the categories that have greater output
values. Furthermore, the blue circles are on, or near, the diagonal Output=Input line in the
scatter plots of Figure 2hj. This indicates that the SEP input is nearly identical to the MLP
output, implying that SEP gives MLP the answer for which the neural network searches,
thus MLP does not need to modify the SEP encoding. The randomness in the sampling
causes the sampled number of persistence pixels in each category to deviate slightly from
the expected number, which accounts for the slight deviations of some of the blue circles
from the Output = Input line.

The PEL encoding is fundamentally different from binary and SEP encoding. Case
Iin Figure 2h shows a decreasing relationship between the PEL input and MLP output,
which indicates that PEL does not give MLP the direct signals for which MLP searches.
Figure 2h shows that PEL generates nearly the same outputs as SEP and binary for case
I, which is possible because SEP encodes a unique input for each category for case I
However, Figure 2i shows how SEP encoding creates the same input value for categories
2 and 4 because categories 2 and 4 contain the same change size. Therefore, MLP has no
opportunity to differentiate between categories 2 and 4, so both categories receive the same
output value. Figure 2j shows an even more severe problem with SEP, which relates to
the sigmoidal activation function in the neural network, which produces a smooth and
possibly non-linear relationship between the input and output values. Sigmoidal functions
can constrain overfitting to noisy data, which might be desirable when an independent
variable is continuous [25], but our original independent variable is categorical. For Case III
in Figure 2j, category 4 has the least SEP and the least output value. Furthermore, category
4 is larger than the other categories; thus, we suspect category 4 has more influence than
the other categories in the sigmoidal function. This causes category 4 to pull down the
output for category 1 and to push up the output for category 3 relative to cases I and II,
even though cases I, II, and III are identical concerning the input data for categories 1,
2, and 3. The sigmoidal function allows one category to influence the output of another
category for the SEP encoding, which is an influence that does not exist for the binary
encoding and is minor for the PEL encoding.

The output from the binary encoding reflects what the MLP is designed to learn. We
suspect that SEP encoding produces output similar to the binary output because SEP gives
the MLP the values that MLP is designed to learn. Those values are the change intensities
in the sample data. The SEP encoding generates values on the Output=Input line; thus, the
smoothing does not have as much effect on SEP as the smoothing has on PEL. The PEL
encoding produces two interrelated problems. First, PEL fails to give the intensities that
the MLP is designed to learn; second, the sigmoidal smoothing function forces the output
of one category to influence the output for other categories, which violates the logic for the
analysis of categories.

2.3. Practical Application

Figure 3 shows the location of the application to suburban growth in the Plum Island
Ecosystems (PIE). The spatial extent is three towns in Massachusetts, USA. Figure 4 shows
one independent variable to illustrate the methodological concepts that apply to many
possible independent categorical variables, such as soil, zoning, and bins of a continuous
variable, such as slope, elevation, and distance to roads. Limited availability of consistent
data guided the selection of variables and years. The data derive from maps for the
years 1971 and 1999 of the same 21 land categories available from the Commonwealth of
Massachusetts [26]. Figure 4a shows the independent categorical variable, which is the
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1971 land cover consisting of four categories: Pasture, Cropland, Forest, and Low. These
four categories have the potential to transition from 1971 to the Built category because they
were not Built at 1971. Low is an aggregation of small land cover categories, most of which
have a low transition intensity to Built during 1971-1999. Figure 4b shows the dependent
variable of change from non-Built to Built between 1971 and 1999. The Built area at 1971
is excluded from the encoding because the Built area cannot transition to Built. Figure 4c
shows the size of each category as the sum of the category’s change, sampled persistence,
and unsampled persistence. Forest is the largest category, which is why Forest has the
largest change. Cropland has the next largest change, followed by Pasture, then Low. The
change size on each category dictates the PEL. Figure 4d shows that the PEL is greatest
for Forest, followed by Cropland, Pasture, and least for Low. Figure 4d shows that SEP is
greatest for Pasture, followed by Cropland, Forest, and least for Low. We ran MLP as we
did with the designed data, meaning with three encoding methods: binary, SEP, and PEL.

TOPSFIELD

N

A

HAMILTON

0 45 90Miles 0 25
I T

Esni, HERE. NPS, Esri, HERE. Garmin,

WENHAM

5 Miles
| |

MassGIS, Esil, FERE, Ganmin, INCREMENT P. LISGS, EPA

USGS, EPA, NPS

Figure 3. The Plum Island Ecosystems site consisting of the towns of Topsfield, Hamilton, and Wenham in northeastern

Massachusetts, USA.
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Figure 4. PIE data demonstrates that Sample Empirical Probability and Population Evidence Likelihood produce different

results when used to extrapolate into the future. (a) The independent variable of land cover at 1971. (b) The dependent

variable of change from non-Built at 1971 to Built at 1999. (c) Sizes of the categories, where Pasture has the greatest change

intensity, while Forest has the largest change size. (d) Scatterplot, where each marker contains the first letter of the category.

(e) Comparison of the allocation from the Sample Empirical Probability (SEP) and Population Evidence Likelihood (PEL)

for the extrapolation from 1999 to 2027, where SEP favors Pasture first then Cropland, while PEL favors Cropland.
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TerrSet’s Land Change Modeler simulates change beyond 1999 by extrapolating the
quantity distinctly from the allocation of change [5]. A Markov chain extrapolates the
quantity of change from the 28-year calibration interval 1971-1999 to the 28-year extrapo-
lation interval 1999-2027. The duration of the calibration interval equals the duration of
the extrapolation interval, which makes the Markov chain extrapolation straightforward.
MLP’s transition potentials rank the pixels by priority, to allocate Built’s gain. The extrapo-
lation allocates Built’s gain during 1999-2027 to the pixels that have the greatest transition
potential values. We generated two sets of transition potential values based on two coding
methods: SEP and PEL. Therefore, we make two extrapolations, both of which have the
same quantity of Built’s gain during 1999-2027. One extrapolation allocates based on the
SEP transition potentials, while the other allocates based on the PEL transition potentials.

3. Results

The results for the PIE data are consistent with the behavior that the designed data
demonstrated. For the PIE data, Figure 4d compares the results of the three encoding
methods. Binary encoding causes the MLP to produce transition potentials that follow the
sequence of the categories’ change intensities. Pasture has the greatest change intensity and
receives the greatest transition potential. Low has the least change intensity and receives
the least transition potential. SEP encoding causes the MLP to produce transition potentials
nearly identical to binary encoding. The SEP input is nearly identical to the output from
MLP for each category; thus, the blue circles align with the Output=Input line in Figure 4d.
PEL encoding causes the MLP to generate transition potentials different from binary and
SEP encoding. PEL encoding causes Cropland to receive the greatest transition potential,
followed by Forest, Pasture, then lastly Low. Pasture has the greatest change intensity but
the PEL encoding causes Pasture to receive a relatively low transition potential because the
sigmoidal function forces Pasture to fit smoothly between the transition potentials for Low
and Cropland. The smoothing pulls down the transition potential of Pasture, just as the
smoothing pulled down the transition potential for category 1 in the designed data. The
smoothing function causes the transition potentials from PEL to follow neither the change
intensities nor the change sizes. Repeated runs with the same inputs revealed that MLP’s
random sampling does not influence these findings.

Figure 4e shows the extrapolation in PIE during 1999-2027. SEP causes the model to
allocate Built’s gain first on all of Pasture, then secondarily on some Cropland. PEL causes
the model to allocate all of Built’s gain on Cropland. Consequently, the two allocations
have more disagreement than agreement. Figure 4e shows that SEP allocates Built’s gain
on the yellow and green regions, while PEL encoding simulates the gain of Built on the
green and blue regions. Both allocations show Built’s gain on some of the Cropland.

4. Discussion
4.1. Implications of Results

Some modelers criticize machine learning algorithms as black boxes, where the ma-
chine learns, while the modeler does not learn. Our results reveal that the MLP learns by
following change intensities, which matches how we and the Geomod model learn about
patterns of change. Both binary and SEP encoding reflect categorial intensities. SEP encod-
ing is more efficient than binary encoding because binary encoding increases the number of
independent variables. SEP allows the modeler to encode the data as one variable to read
into MLP. Our results illustrate that SEP encoding and binary encoding produce similar
output values, which rank the categories consistently in sequence of change intensity.

Eastman et al. (2005) proposed PEL to encode a categorical variable while avoiding
the creation of a collection of binary variables [4]. SEP meets this same desirable property,
which conserves computer resources. The proponents of PEL believed the Multi-Layer
Perceptron would benefit from an encoding technique that disconnects the size of each
category from the size of change on each category. In contrast, our manuscript indicates
that the MLP learns the categorical intensity, which SEP measures by considering the size of
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the category when accounting for the size of change on the category. Categories that have
distinct SEP values might have the same PEL, in which case the MLP has no opportunity
to distinguish among categories that differ in terms of category intensity. If PEL encodes
the categorical variable, then the effect of MLP’s sigmoidal smoothing function can cause
the neural network to not necessarily assign greater output values to the categories with
greater change intensities, in which case the smoothing causes nonsensical output.

A comparison among the three designed cases demonstrates that category 1 maintains
the same PEL, but the output value for category 1 varies among the cases in response to
the PELs of other categories. In cases I and II, category 1 has the least PEL but receives
the greatest output value in a decreasing relationship between PELs and output values. In
case III, category 4 receives the least output value causing category 1 to receive an output
value less than in the previous cases. This change in transition potential for category 1 is an
artifact of the sigmoidal function that smooths the relationship between input and output
of the MLP. Category 4 is the largest category and thus contributes more pixels to the MLP
than category 1, so we suspect that category 4 has a strong influence on the smoothing that
corrupts the output for category 1.

The PIE extrapolation exemplifies the key conclusions that the designed cases illustrate.
First, the binary and SEP encoding methods produce similar output values. Second, the
sigmoidal smoothing function likely influences the output values from PEL in undesirable
ways that hinder interpretation. Binary and SEP encoding cause Pasture to receive the
greatest output value, whereas PEL encoding causes Pasture to receive the second greatest
output value. The smoothing function interacts with the PEL encoding to cause the output
value for Pasture to shrink because the PEL for Pasture becomes trapped between the PEL
for the categories Low and Cropland. The ranking of categories according to output value
influences the allocation when extrapolating change. SEP dictates that Built gains first
from Pasture, while PEL dictates that Built gains first from Cropland. The number of pixels
extrapolated to transition to Built is larger than the number of pixels of Pasture; therefore,
the SEP allocates Built’s gain on all of Pasture and some of Cropland, because Cropland
has the second-greatest transition potential. PEL allocates all of Built’s gain to Cropland,
thus the two extrapolations intersect on portions of Cropland, while the two extrapolations
disagree more than they agree.

Some researchers have been tempted to judge an extrapolation model by its predictive
power, through validation with an empirical reference map at the extrapolated time point.
Varga et al. (2019) explain several reasons why that is a flawed criterion by which to judge
an extrapolation model [27]. Most importantly, the purpose of an extrapolation model is to
capture the signal of change during a calibration time interval and then to extrapolate the
signal during the extrapolation time interval, to help to understand the implications of a
continuation of historic trends. If the empirical trends during the calibration interval are
not consistent with the empirical trends during the extrapolation interval, then validation
will show errors even when the model accomplishes what the model is designed to do.
Validation shows the ability of a model to predict the future, which is not the purpose of
the MLP. The MLP is designed to characterize the relationship between the dependent and
independent variables that the MLP reads. Our manuscript uses methods to assess how
efficiently MLP accomplishes its goal for the coding of a categorical independent variable.

4.2. Next Steps

Our manuscript examines the behavior of the MLP by using designed data and a
practical application. We used our understanding of machine learning algorithms to guide
our research. However, we did not examine the computer code of the MLP as programmed
into TerrSet. Thus, our analysis begs the following questions for future research.

First, the scatter plots in Figures 2 and 4 show that the SEP input nearly equals the
neural network’s output for each category. The likely reason for the slight deviations
between SEP input and SEP output is that the randomization in the sampling can cause
slight deviations between the randomly selected number and the expected number of
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persistence pixels in the sample for each category. If SEP is the value that the neural
network is designed to learn for each category, then SEP already gives the answer that
the neural network seeks. Therefore, why should modelers use the neural network when
modelers could quickly compute what the neural network takes time to learn?

Second, the neural network’s sampling uses less information than is easily available,
which is a wasted opportunity. The neural network uses random sampling to select a subset
of the persistence. The motivation for the sampling is to generate input data where the num-
ber of change pixels is equal to the number of persistence pixels. However, the sampling
constitutes a loss of information and an introduction of randomness, merely to surrender
to the requirements of the neural network’s complex fitting algorithm. Thus, again we ask,
why should modelers use the neural network when a more direct, comprehensive, and
interpretable computation is available?

Third, the combination of Equations (1) and (2) implies that SEP for each category is a
function of four factors: the category’s number of change pixels, the category’s number
of persistence pixels, the extent’s number of change pixels, and the extent’s number of
persistence pixels. The third and fourth factors imply that pixels outside a category affect
the category’s SEP, which renders SEP challenging to interpret. Table 2 contains notation for
Equations (4)—(7), which give insight into the interpretation of SEP. Equation (4) expresses
the extent’s change prevalence, which is the ratio of the number of change pixels to the
sum of change and persistence pixels. We assume the number of change pixels is positive,
thus, R is positive; otherwise, the calibration procedure would have no signal of change.
Equation (5) expresses the population empirical probability for category k, denoted as Gy
because the Geomod model uses this computation [21]. Equation (5) implies Equation (6),
which assumes G > 0 to avoid division by zero. Equation (7) begins with Equation (2), and
then uses algebra and substitution with Equations (4)—(6) to express Sy as a function of Gy
and R.

Table 2. Mathematical notation for Equations (4)—(7).

Symbol Meaning
k Identifier for an arbitrary category in the independent variable
K Number of categories in the independent variable
Cx Number of change pixels in category k
Dy Number of persistence pixels in category k
R Extent’s proportion of change
Gy Population empirical probability for category k
Ex Expected number of sampled persistence pixels in category k
Sk Sample Empirical Probability for category k
K
4 C
0<R:—sz—1 £ < )
Li=1(Ci + Di)
Cr
0<Gy=——7<1 5
SG=e5p S ©)
C Cr — GxC 1—-Gy)C
Dy=—=*_c == kk:( k) k when G;#0 (6)

G T G G
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CrtEx Ck+(zlk<:1){Dk/[Zf:1Dk”
_ [Z41De]Cx _ __(1-R)G
[ZleDk}CkJr(Zf:le){Dk} (1—-R)Cx+RDy
_ (1-R)C _ Gr(1-R)
B (1—R)Ck+R (1fgk)ck - Gk(lfR)‘FR(l*Gk) (7)
k
_ Gr(1-R) _ _G(1-R)
= GiA-R)+R-RG; — Gy(1-2R)+R
1-R

= T=2R+(R/Gy)

The ratio (R/Gy) in the final expression of Equation (7) shows that Sy increases as Gy
increases. As Gy approaches 0, Sy approaches 0. If G = R then S; = 1/2. As Gy approaches
1, Sx approaches 1. If C; = 0, then Si = Gx = 0. Therefore, Sy is a one-to-one function of
G on the continuous closed interval from 0 to 1, thus Sy has information equivalent to
Gy. The implication is that the MLP neural network uses random sampling and a complex
process to learn the same information that Geomod computes more intuitively without
random sampling. Geomod lacks smoothing between the categories because smoothing is
not appropriate for a categorical variable. MLP’s smoothing has no influence with binary
encoding, little influence with SEP encoding, and potentially corruptive influence with PEL
encoding. Geomod and SEP follow the same type of logic based on categorical intensities,
but Geomod uses Gy, which has a more direct interpretation concerning the calibration data
than SEP. The set of Gy gives the categorical intensities in the calibration data, while SEP
does not. MLP requires sampling that makes SEP deviate from the categorical intensities
in the calibration data. Therefore, the same question applies, why should modelers use
the neural network when a more direct, comprehensive, and interpretable computation
is available?

Fourth, the profession needs additional research regarding the smoothing influence of
the sigmoidal activation function. We can imagine an infinite number of ways to smooth
a curve, while it is unclear under what conditions particular types of smoothing are
desirable. If the software does not allow the user to set the smoothing separately from
other parameters that influence the MLP’s output, then it is difficult to isolate the influence
of the smoothing. If we could control the smoothing, then we could address the following
question. If smoothing were absent while each category has a unique PEL, then would PEL
encoding generate output identical to both SEP and binary encodings?

Fifth, our manuscript analyzes three ways of encoding a categorical variable onto the
continuous closed interval from 0 to 1. We found that MLP learns a relationship that relates
to the intensity of land change at various places along that continuum. However, it is not
clear how to compute the change intensity for a continuous variable. One approach is to
break the continuous variable into a set of ordered bins, as a histogram does, then treat the
continuous variable as a categorical variable; thus, our manuscript’s insights might apply.
What are the implications of our manuscript’s insights for how a neural network learns
when the original input variable is continuous, such as distance to roads?

Our sixth question for future research concerns whether the insights we have revealed
for the MLP apply to other machine learning algorithms. Do our insights concerning
intensities, sampling, and smoothing apply to algorithms such as Decision Forest, Weighted
Normalized Likelihood, Support Vector Machines, and SimWeight, which TerrSet recently
included in its Land Change Modeler?

5. Conclusions

If modelers use a neural network to fit an independent categorical variable, then we
recommend users adopt the Sample Empirical Probability (SEP) encoding method, because
SEP efficiently generates interpretable results, while avoiding the creation of a burdensome
number of correlated binary variables. SEP allows researchers to encode a categorical
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independent variable as a single variable on the continuous closed interval from 0 to 1
for input to the Multi-Layer Perceptron neural network. We recommend that TerrSet’s
Land Change Modeler discontinue its recommendation to transform a categorical variable
into Population Evidence Likelihood, and instead, recommend transforming a categorical
variable into SEP.
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